author  wenzelm 
Thu, 17 Apr 2008 22:22:21 +0200  
changeset 26711  3a478bfa1650 
parent 26110  06eacfd8dd9f 
child 27338  2cd6c60cc10b 
permissions  rwrr 
21163  1 
(* Title: HOL/simpdata.ML 
2 
ID: $Id$ 

3 
Author: Tobias Nipkow 

4 
Copyright 1991 University of Cambridge 

5 

6 
Instantiation of the generic simplifier for HOL. 

7 
*) 

8 

9 
(** tools setup **) 

10 

11 
structure Quantifier1 = Quantifier1Fun 

12 
(struct 

13 
(*abstract syntax*) 

14 
fun dest_eq ((c as Const("op =",_)) $ s $ t) = SOME (c, s, t) 

15 
 dest_eq _ = NONE; 

16 
fun dest_conj ((c as Const("op &",_)) $ s $ t) = SOME (c, s, t) 

17 
 dest_conj _ = NONE; 

18 
fun dest_imp ((c as Const("op >",_)) $ s $ t) = SOME (c, s, t) 

19 
 dest_imp _ = NONE; 

20 
val conj = HOLogic.conj 

21 
val imp = HOLogic.imp 

22 
(*rules*) 

22147  23 
val iff_reflection = @{thm eq_reflection} 
24 
val iffI = @{thm iffI} 

25 
val iff_trans = @{thm trans} 

26 
val conjI= @{thm conjI} 

27 
val conjE= @{thm conjE} 

28 
val impI = @{thm impI} 

29 
val mp = @{thm mp} 

30 
val uncurry = @{thm uncurry} 

31 
val exI = @{thm exI} 

32 
val exE = @{thm exE} 

33 
val iff_allI = @{thm iff_allI} 

34 
val iff_exI = @{thm iff_exI} 

35 
val all_comm = @{thm all_comm} 

36 
val ex_comm = @{thm ex_comm} 

21163  37 
end); 
38 

21551  39 
structure Simpdata = 
21163  40 
struct 
41 

22147  42 
fun mk_meta_eq r = r RS @{thm eq_reflection}; 
21163  43 
fun safe_mk_meta_eq r = mk_meta_eq r handle Thm.THM _ => r; 
44 

22147  45 
fun mk_eq th = case concl_of th 
21163  46 
(*expects Trueprop if not == *) 
21551  47 
of Const ("==",_) $ _ $ _ => th 
48 
 _ $ (Const ("op =", _) $ _ $ _) => mk_meta_eq th 

22147  49 
 _ $ (Const ("Not", _) $ _) => th RS @{thm Eq_FalseI} 
50 
 _ => th RS @{thm Eq_TrueI} 

21163  51 

22147  52 
fun mk_eq_True r = 
53 
SOME (r RS @{thm meta_eq_to_obj_eq} RS @{thm Eq_TrueI}) handle Thm.THM _ => NONE; 

21163  54 

55 
(* Produce theorems of the form 

56 
(P1 =simp=> ... =simp=> Pn => x == y) ==> (P1 =simp=> ... =simp=> Pn => x = y) 

57 
*) 

22838  58 

22147  59 
fun lift_meta_eq_to_obj_eq i st = 
21163  60 
let 
61 
fun count_imp (Const ("HOL.simp_implies", _) $ P $ Q) = 1 + count_imp Q 

62 
 count_imp _ = 0; 

63 
val j = count_imp (Logic.strip_assums_concl (List.nth (prems_of st, i  1))) 

22147  64 
in if j = 0 then @{thm meta_eq_to_obj_eq} 
21163  65 
else 
66 
let 

67 
val Ps = map (fn k => Free ("P" ^ string_of_int k, propT)) (1 upto j); 

68 
fun mk_simp_implies Q = foldr (fn (R, S) => 

69 
Const ("HOL.simp_implies", propT > propT > propT) $ R $ S) Q Ps 

70 
val aT = TFree ("'a", HOLogic.typeS); 

71 
val x = Free ("x", aT); 

72 
val y = Free ("y", aT) 

73 
in Goal.prove_global (Thm.theory_of_thm st) [] 

74 
[mk_simp_implies (Logic.mk_equals (x, y))] 

75 
(mk_simp_implies (HOLogic.mk_Trueprop (HOLogic.mk_eq (x, y)))) 

26711  76 
(fn {prems, ...} => EVERY 
22147  77 
[rewrite_goals_tac @{thms simp_implies_def}, 
78 
REPEAT (ares_tac (@{thm meta_eq_to_obj_eq} :: 

79 
map (rewrite_rule @{thms simp_implies_def}) prems) 1)]) 

21163  80 
end 
81 
end; 

82 

83 
(*Congruence rules for = (instead of ==)*) 

84 
fun mk_meta_cong rl = zero_var_indexes 

85 
(let val rl' = Seq.hd (TRYALL (fn i => fn st => 

86 
rtac (lift_meta_eq_to_obj_eq i st) i st) rl) 

87 
in mk_meta_eq rl' handle THM _ => 

88 
if can Logic.dest_equals (concl_of rl') then rl' 

89 
else error "Conclusion of congruence rules must be =equality" 

90 
end); 

91 

92 
fun mk_atomize pairs = 

93 
let 

21313
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset

94 
fun atoms thm = 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset

95 
let 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset

96 
fun res th = map (fn rl => th RS rl); (*exception THM*) 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset

97 
fun res_fixed rls = 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset

98 
if Thm.maxidx_of (Thm.adjust_maxidx_thm ~1 thm) = ~1 then res thm rls 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset

99 
else Variable.trade (K (fn [thm'] => res thm' rls)) (Variable.thm_context thm) [thm]; 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset

100 
in 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset

101 
case concl_of thm 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset

102 
of Const ("Trueprop", _) $ p => (case head_of p 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset

103 
of Const (a, _) => (case AList.lookup (op =) pairs a 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset

104 
of SOME rls => (maps atoms (res_fixed rls) handle THM _ => [thm]) 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset

105 
 NONE => [thm]) 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset

106 
 _ => [thm]) 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset

107 
 _ => [thm] 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset

108 
end; 
21163  109 
in atoms end; 
110 

111 
fun mksimps pairs = 

21313
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset

112 
map_filter (try mk_eq) o mk_atomize pairs o gen_all; 
21163  113 

22147  114 
fun unsafe_solver_tac prems = 
115 
(fn i => REPEAT_DETERM (match_tac @{thms simp_impliesI} i)) THEN' 

116 
FIRST' [resolve_tac (reflexive_thm :: @{thm TrueI} :: @{thm refl} :: prems), atac, 

117 
etac @{thm FalseE}]; 

118 

21163  119 
val unsafe_solver = mk_solver "HOL unsafe" unsafe_solver_tac; 
120 

22838  121 

21163  122 
(*No premature instantiation of variables during simplification*) 
22147  123 
fun safe_solver_tac prems = 
124 
(fn i => REPEAT_DETERM (match_tac @{thms simp_impliesI} i)) THEN' 

125 
FIRST' [match_tac (reflexive_thm :: @{thm TrueI} :: @{thm refl} :: prems), 

126 
eq_assume_tac, ematch_tac @{thms FalseE}]; 

127 

21163  128 
val safe_solver = mk_solver "HOL safe" safe_solver_tac; 
129 

130 
structure SplitterData = 

131 
struct 

132 
structure Simplifier = Simplifier 

21551  133 
val mk_eq = mk_eq 
22147  134 
val meta_eq_to_iff = @{thm meta_eq_to_obj_eq} 
135 
val iffD = @{thm iffD2} 

136 
val disjE = @{thm disjE} 

137 
val conjE = @{thm conjE} 

138 
val exE = @{thm exE} 

139 
val contrapos = @{thm contrapos_nn} 

140 
val contrapos2 = @{thm contrapos_pp} 

141 
val notnotD = @{thm notnotD} 

21163  142 
end; 
143 

144 
structure Splitter = SplitterFun(SplitterData); 

145 

21674  146 
val split_tac = Splitter.split_tac; 
147 
val split_inside_tac = Splitter.split_inside_tac; 

148 

149 
val op addsplits = Splitter.addsplits; 

150 
val op delsplits = Splitter.delsplits; 

151 
val Addsplits = Splitter.Addsplits; 

152 
val Delsplits = Splitter.Delsplits; 

153 

154 

21163  155 
(* integration of simplifier with classical reasoner *) 
156 

157 
structure Clasimp = ClasimpFun 

158 
(structure Simplifier = Simplifier and Splitter = Splitter 

159 
and Classical = Classical and Blast = Blast 

22147  160 
val iffD1 = @{thm iffD1} val iffD2 = @{thm iffD2} val notE = @{thm notE}); 
21674  161 
open Clasimp; 
21163  162 

22128  163 
val _ = ML_Context.value_antiq "clasimpset" 
164 
(Scan.succeed ("clasimpset", "Clasimp.local_clasimpset_of (ML_Context.the_local_context ())")); 

165 

21163  166 
val mksimps_pairs = 
22147  167 
[("op >", [@{thm mp}]), ("op &", [@{thm conjunct1}, @{thm conjunct2}]), 
168 
("All", [@{thm spec}]), ("True", []), ("False", []), 

169 
("HOL.If", [@{thm if_bool_eq_conj} RS @{thm iffD1}])]; 

21163  170 

21674  171 
val HOL_basic_ss = 
22147  172 
Simplifier.theory_context @{theory} empty_ss 
21163  173 
setsubgoaler asm_simp_tac 
174 
setSSolver safe_solver 

175 
setSolver unsafe_solver 

176 
setmksimps (mksimps mksimps_pairs) 

177 
setmkeqTrue mk_eq_True 

178 
setmkcong mk_meta_cong; 

179 

21674  180 
fun hol_simplify rews = Simplifier.full_simplify (HOL_basic_ss addsimps rews); 
21163  181 

182 
fun unfold_tac ths = 

21674  183 
let val ss0 = Simplifier.clear_ss HOL_basic_ss addsimps ths 
21163  184 
in fn ss => ALLGOALS (full_simp_tac (Simplifier.inherit_context ss ss0)) end; 
185 

186 
val defALL_regroup = 

22147  187 
Simplifier.simproc @{theory} 
21163  188 
"defined ALL" ["ALL x. P x"] Quantifier1.rearrange_all; 
189 

190 
val defEX_regroup = 

22147  191 
Simplifier.simproc @{theory} 
21163  192 
"defined EX" ["EX x. P x"] Quantifier1.rearrange_ex; 
193 

194 

24035  195 
val simpset_simprocs = HOL_basic_ss addsimprocs [defALL_regroup, defEX_regroup] 
21163  196 

21313
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset

197 
end; 
21551  198 

199 
structure Splitter = Simpdata.Splitter; 

200 
structure Clasimp = Simpdata.Clasimp; 