src/Pure/proofterm.ML
author wenzelm
Fri Dec 14 11:52:54 2001 +0100 (2001-12-14)
changeset 12498 3b0091bf06e8
parent 12497 ec6ba9e6eef3
child 12868 cdf338ef5fad
permissions -rw-r--r--
changed Thm.varifyT';
berghofe@11519
     1
(*  Title:      Pure/proofterm.ML
berghofe@11519
     2
    ID:         $Id$
wenzelm@11540
     3
    Author:     Stefan Berghofer, TU Muenchen
wenzelm@11540
     4
    License:    GPL (GNU GENERAL PUBLIC LICENSE)
berghofe@11519
     5
wenzelm@11540
     6
LF style proof terms.
berghofe@11519
     7
*)
berghofe@11519
     8
berghofe@11615
     9
infix 8 % %% %>;
berghofe@11519
    10
berghofe@11519
    11
signature BASIC_PROOFTERM =
berghofe@11519
    12
sig
wenzelm@11543
    13
  val proofs: int ref
berghofe@11519
    14
berghofe@11519
    15
  datatype proof =
berghofe@11519
    16
     PBound of int
berghofe@11519
    17
   | Abst of string * typ option * proof
berghofe@11519
    18
   | AbsP of string * term option * proof
berghofe@11615
    19
   | op % of proof * term option
berghofe@11615
    20
   | op %% of proof * proof
berghofe@11519
    21
   | Hyp of term
berghofe@11519
    22
   | PThm of (string * (string * string list) list) * proof * term * typ list option
berghofe@11519
    23
   | PAxm of string * term * typ list option
berghofe@11519
    24
   | Oracle of string * term * typ list option
berghofe@11519
    25
   | MinProof of proof list;
berghofe@11519
    26
berghofe@11615
    27
  val %> : proof * term -> proof
berghofe@11519
    28
end;
berghofe@11519
    29
berghofe@11519
    30
signature PROOFTERM =
berghofe@11519
    31
sig
berghofe@11519
    32
  include BASIC_PROOFTERM
berghofe@11519
    33
berghofe@11519
    34
  val infer_derivs : (proof -> proof -> proof) -> bool * proof -> bool * proof -> bool * proof
berghofe@11519
    35
  val infer_derivs' : (proof -> proof) -> (bool * proof -> bool * proof)
berghofe@11519
    36
berghofe@11519
    37
  (** primitive operations **)
berghofe@11519
    38
  val proof_combt : proof * term list -> proof
berghofe@11519
    39
  val proof_combt' : proof * term option list -> proof
berghofe@11519
    40
  val proof_combP : proof * proof list -> proof
berghofe@11519
    41
  val strip_combt : proof -> proof * term option list
berghofe@11519
    42
  val strip_combP : proof -> proof * proof list
berghofe@11519
    43
  val strip_thm : proof -> proof
berghofe@11519
    44
  val map_proof_terms : (term -> term) -> (typ -> typ) -> proof -> proof
berghofe@11519
    45
  val fold_proof_terms : (term * 'a -> 'a) -> (typ * 'a -> 'a) -> 'a * proof -> 'a
berghofe@11519
    46
  val add_prf_names : string list * proof -> string list
berghofe@11519
    47
  val add_prf_tfree_names : string list * proof -> string list
berghofe@11519
    48
  val add_prf_tvar_ixns : indexname list * proof -> indexname list
berghofe@11519
    49
  val prf_abstract_over : term -> proof -> proof
berghofe@11519
    50
  val prf_incr_bv : int -> int -> int -> int -> proof -> proof
berghofe@11519
    51
  val incr_pboundvars : int -> int -> proof -> proof
berghofe@11519
    52
  val prf_loose_bvar1 : proof -> int -> bool
berghofe@11519
    53
  val prf_loose_Pbvar1 : proof -> int -> bool
berghofe@12279
    54
  val prf_add_loose_bnos : int -> int -> proof ->
berghofe@12279
    55
    int list * int list -> int list * int list
berghofe@11519
    56
  val norm_proof : Envir.env -> proof -> proof
berghofe@11519
    57
  val norm_proof' : Envir.env -> proof -> proof
berghofe@11519
    58
  val prf_subst_bounds : term list -> proof -> proof
berghofe@11519
    59
  val prf_subst_pbounds : proof list -> proof -> proof
berghofe@11519
    60
  val freeze_thaw_prf : proof -> proof * (proof -> proof)
berghofe@11519
    61
berghofe@11519
    62
  val thms_of_proof : (term * proof) list Symtab.table -> proof ->
berghofe@11519
    63
    (term * proof) list Symtab.table
berghofe@11519
    64
  val axms_of_proof : proof Symtab.table -> proof -> proof Symtab.table
berghofe@11519
    65
  val oracles_of_proof : proof list -> proof -> proof list
berghofe@11519
    66
berghofe@11519
    67
  (** proof terms for specific inference rules **)
berghofe@11519
    68
  val implies_intr_proof : term -> proof -> proof
berghofe@11519
    69
  val forall_intr_proof : term -> string -> proof -> proof
berghofe@11519
    70
  val varify_proof : term -> string list -> proof -> proof
berghofe@11519
    71
  val freezeT : term -> proof -> proof
berghofe@11519
    72
  val rotate_proof : term list -> term -> int -> proof -> proof
berghofe@11519
    73
  val permute_prems_prf : term list -> int -> int -> proof -> proof
berghofe@11519
    74
  val instantiate : (indexname * typ) list -> (term * term) list -> proof -> proof
berghofe@11519
    75
  val lift_proof : term -> int -> term -> proof -> proof
berghofe@11519
    76
  val assumption_proof : term list -> term -> int -> proof -> proof
berghofe@11519
    77
  val bicompose_proof : term list -> term list -> term list -> term option ->
berghofe@11519
    78
    int -> proof -> proof -> proof
berghofe@11519
    79
  val equality_axms : (string * term) list
berghofe@11519
    80
  val reflexive_axm : proof
berghofe@11519
    81
  val symmetric_axm : proof
berghofe@11519
    82
  val transitive_axm : proof
berghofe@11519
    83
  val equal_intr_axm : proof
berghofe@11519
    84
  val equal_elim_axm : proof
berghofe@11519
    85
  val abstract_rule_axm : proof
berghofe@11519
    86
  val combination_axm : proof
berghofe@11519
    87
  val reflexive : proof
berghofe@11519
    88
  val symmetric : proof -> proof
berghofe@11519
    89
  val transitive : term -> typ -> proof -> proof -> proof
berghofe@11519
    90
  val abstract_rule : term -> string -> proof -> proof
berghofe@11519
    91
  val combination : term -> term -> term -> term -> typ -> proof -> proof -> proof
berghofe@11519
    92
  val equal_intr : term -> term -> proof -> proof -> proof
berghofe@11519
    93
  val equal_elim : term -> term -> proof -> proof -> proof
berghofe@11519
    94
  val axm_proof : string -> term -> proof
berghofe@11519
    95
  val oracle_proof : string -> term -> proof
berghofe@11519
    96
  val thm_proof : Sign.sg -> string * (string * string list) list ->
berghofe@11519
    97
    term list -> term -> proof -> proof
berghofe@11519
    98
  val get_name_tags : term -> proof -> string * (string * string list) list
berghofe@11519
    99
berghofe@11519
   100
  (** rewriting on proof terms **)
berghofe@12233
   101
  val add_prf_rrules : (proof * proof) list -> theory -> theory
berghofe@12233
   102
  val add_prf_rprocs : (string * (Term.typ list -> proof -> proof option)) list ->
berghofe@12233
   103
    theory -> theory
berghofe@11519
   104
  val rewrite_proof : Type.type_sig -> (proof * proof) list *
berghofe@11519
   105
    (string * (typ list -> proof -> proof option)) list -> proof -> proof
berghofe@11615
   106
  val rewrite_proof_notypes : (proof * proof) list *
berghofe@11615
   107
    (string * (typ list -> proof -> proof option)) list -> proof -> proof
berghofe@11519
   108
  val init : theory -> theory
berghofe@11519
   109
  
berghofe@11519
   110
end
berghofe@11519
   111
berghofe@11519
   112
structure Proofterm : PROOFTERM =
berghofe@11519
   113
struct
berghofe@11519
   114
berghofe@11715
   115
open Envir;
berghofe@11715
   116
berghofe@11519
   117
datatype proof =
berghofe@11519
   118
   PBound of int
berghofe@11519
   119
 | Abst of string * typ option * proof
berghofe@11519
   120
 | AbsP of string * term option * proof
wenzelm@12497
   121
 | op % of proof * term option
wenzelm@12497
   122
 | op %% of proof * proof
berghofe@11519
   123
 | Hyp of term
berghofe@11519
   124
 | PThm of (string * (string * string list) list) * proof * term * typ list option
berghofe@11519
   125
 | PAxm of string * term * typ list option
berghofe@11519
   126
 | Oracle of string * term * typ list option
berghofe@11519
   127
 | MinProof of proof list;
berghofe@11519
   128
berghofe@11519
   129
fun oracles_of_proof prfs prf =
berghofe@11519
   130
  let
berghofe@11519
   131
    fun oras_of (tabs, Abst (_, _, prf)) = oras_of (tabs, prf)
berghofe@11519
   132
      | oras_of (tabs, AbsP (_, _, prf)) = oras_of (tabs, prf)
berghofe@11615
   133
      | oras_of (tabs, prf % _) = oras_of (tabs, prf)
berghofe@11615
   134
      | oras_of (tabs, prf1 %% prf2) = oras_of (oras_of (tabs, prf1), prf2)
berghofe@11519
   135
      | oras_of (tabs as (thms, oras), PThm ((name, _), prf, prop, _)) =
berghofe@11519
   136
          (case Symtab.lookup (thms, name) of
berghofe@11519
   137
             None => oras_of ((Symtab.update ((name, [prop]), thms), oras), prf)
berghofe@11519
   138
           | Some ps => if prop mem ps then tabs else
berghofe@11519
   139
               oras_of ((Symtab.update ((name, prop::ps), thms), oras), prf))
berghofe@11519
   140
      | oras_of ((thms, oras), prf as Oracle _) = (thms, prf ins oras)
berghofe@11519
   141
      | oras_of (tabs, MinProof prfs) = foldl oras_of (tabs, prfs)
berghofe@11519
   142
      | oras_of (tabs, _) = tabs
berghofe@11519
   143
  in
berghofe@11519
   144
    snd (oras_of ((Symtab.empty, prfs), prf))
berghofe@11519
   145
  end;
berghofe@11519
   146
berghofe@11519
   147
fun thms_of_proof tab (Abst (_, _, prf)) = thms_of_proof tab prf
berghofe@11519
   148
  | thms_of_proof tab (AbsP (_, _, prf)) = thms_of_proof tab prf
berghofe@11615
   149
  | thms_of_proof tab (prf1 %% prf2) = thms_of_proof (thms_of_proof tab prf1) prf2
berghofe@11615
   150
  | thms_of_proof tab (prf % _) = thms_of_proof tab prf
berghofe@11519
   151
  | thms_of_proof tab (prf' as PThm ((s, _), prf, prop, _)) =
berghofe@11519
   152
      (case Symtab.lookup (tab, s) of
berghofe@11519
   153
         None => thms_of_proof (Symtab.update ((s, [(prop, prf')]), tab)) prf
berghofe@11519
   154
       | Some ps => if exists (equal prop o fst) ps then tab else
berghofe@11519
   155
           thms_of_proof (Symtab.update ((s, (prop, prf')::ps), tab)) prf)
berghofe@11519
   156
  | thms_of_proof tab _ = tab;
berghofe@11519
   157
berghofe@11519
   158
fun axms_of_proof tab (Abst (_, _, prf)) = axms_of_proof tab prf
berghofe@11519
   159
  | axms_of_proof tab (AbsP (_, _, prf)) = axms_of_proof tab prf
berghofe@11615
   160
  | axms_of_proof tab (prf1 %% prf2) = axms_of_proof (axms_of_proof tab prf1) prf2
berghofe@11615
   161
  | axms_of_proof tab (prf % _) = axms_of_proof tab prf
berghofe@11519
   162
  | axms_of_proof tab (prf as PAxm (s, _, _)) = Symtab.update ((s, prf), tab)
berghofe@11519
   163
  | axms_of_proof tab _ = tab;
berghofe@11519
   164
berghofe@11519
   165
(** collect all theorems, axioms and oracles **)
berghofe@11519
   166
berghofe@11519
   167
fun mk_min_proof (prfs, Abst (_, _, prf)) = mk_min_proof (prfs, prf)
berghofe@11519
   168
  | mk_min_proof (prfs, AbsP (_, _, prf)) = mk_min_proof (prfs, prf)
berghofe@11615
   169
  | mk_min_proof (prfs, prf % _) = mk_min_proof (prfs, prf)
berghofe@11615
   170
  | mk_min_proof (prfs, prf1 %% prf2) = mk_min_proof (mk_min_proof (prfs, prf1), prf2)
berghofe@11519
   171
  | mk_min_proof (prfs, prf as PThm _) = prf ins prfs
berghofe@11519
   172
  | mk_min_proof (prfs, prf as PAxm _) = prf ins prfs
berghofe@11519
   173
  | mk_min_proof (prfs, prf as Oracle _) = prf ins prfs
berghofe@11519
   174
  | mk_min_proof (prfs, MinProof prfs') = prfs union prfs'
berghofe@11519
   175
  | mk_min_proof (prfs, _) = prfs;
berghofe@11519
   176
berghofe@11519
   177
(** proof objects with different levels of detail **)
berghofe@11519
   178
wenzelm@11543
   179
val proofs = ref 2;
berghofe@11519
   180
wenzelm@11543
   181
fun err_illegal_level i =
wenzelm@11543
   182
  error ("Illegal level of detail for proof objects: " ^ string_of_int i);
berghofe@11519
   183
berghofe@11519
   184
fun if_ora b = if b then oracles_of_proof else K;
berghofe@11519
   185
berghofe@11519
   186
fun infer_derivs f (ora1, prf1) (ora2, prf2) =
berghofe@11519
   187
  (ora1 orelse ora2, 
wenzelm@11543
   188
   case !proofs of
wenzelm@11543
   189
     2 => f prf1 prf2
wenzelm@11543
   190
   | 1 => MinProof (mk_min_proof (mk_min_proof ([], prf1), prf2))
wenzelm@11543
   191
   | 0 => MinProof (if_ora ora2 (if_ora ora1 [] prf1) prf2)
wenzelm@11543
   192
   | i => err_illegal_level i);
berghofe@11519
   193
berghofe@11519
   194
fun infer_derivs' f (ora, prf) =
berghofe@11519
   195
  (ora,
wenzelm@11543
   196
   case !proofs of
wenzelm@11543
   197
     2 => f prf
wenzelm@11543
   198
   | 1 => MinProof (mk_min_proof ([], prf))
wenzelm@11543
   199
   | 0 => MinProof (if_ora ora [] prf)
wenzelm@11543
   200
   | i => err_illegal_level i);
berghofe@11519
   201
berghofe@11615
   202
fun (prf %> t) = prf % Some t;
berghofe@11519
   203
berghofe@11615
   204
val proof_combt = foldl (op %>);
berghofe@11615
   205
val proof_combt' = foldl (op %);
berghofe@11615
   206
val proof_combP = foldl (op %%);
berghofe@11519
   207
berghofe@11519
   208
fun strip_combt prf = 
berghofe@11615
   209
    let fun stripc (prf % t, ts) = stripc (prf, t::ts)
berghofe@11519
   210
          | stripc  x =  x 
berghofe@11519
   211
    in  stripc (prf, [])  end;
berghofe@11519
   212
berghofe@11519
   213
fun strip_combP prf = 
berghofe@11615
   214
    let fun stripc (prf %% prf', prfs) = stripc (prf, prf'::prfs)
berghofe@11519
   215
          | stripc  x =  x
berghofe@11519
   216
    in  stripc (prf, [])  end;
berghofe@11519
   217
berghofe@11519
   218
fun strip_thm prf = (case strip_combt (fst (strip_combP prf)) of
berghofe@11519
   219
      (PThm (_, prf', _, _), _) => prf'
berghofe@11519
   220
    | _ => prf);
berghofe@11519
   221
berghofe@11519
   222
val mk_Abst = foldr (fn ((s, T:typ), prf) => Abst (s, None, prf));
berghofe@11519
   223
fun mk_AbsP (i, prf) = funpow i (fn prf => AbsP ("H", None, prf)) prf;
berghofe@11519
   224
berghofe@11715
   225
fun apsome' f None = raise SAME
berghofe@11715
   226
  | apsome' f (Some x) = Some (f x);
berghofe@11715
   227
berghofe@11715
   228
fun same f x =
berghofe@11715
   229
  let val x' = f x
berghofe@11715
   230
  in if x = x' then raise SAME else x' end;
berghofe@11715
   231
berghofe@11715
   232
fun map_proof_terms f g =
berghofe@11715
   233
  let
berghofe@11715
   234
    fun mapp (Abst (s, T, prf)) = (Abst (s, apsome' (same g) T, mapph prf)
berghofe@11715
   235
          handle SAME => Abst (s, T, mapp prf))
berghofe@11715
   236
      | mapp (AbsP (s, t, prf)) = (AbsP (s, apsome' (same f) t, mapph prf)
berghofe@11715
   237
          handle SAME => AbsP (s, t, mapp prf))
berghofe@11715
   238
      | mapp (prf % t) = (mapp prf % apsome f t
berghofe@11715
   239
          handle SAME => prf % apsome' (same f) t)
berghofe@11715
   240
      | mapp (prf1 %% prf2) = (mapp prf1 %% mapph prf2
berghofe@11715
   241
          handle SAME => prf1 %% mapp prf2)
berghofe@11715
   242
      | mapp (PThm (a, prf, prop, Some Ts)) =
berghofe@11715
   243
          PThm (a, prf, prop, Some (same (map g) Ts))
berghofe@11715
   244
      | mapp (PAxm (a, prop, Some Ts)) =
berghofe@11715
   245
          PAxm (a, prop, Some (same (map g) Ts))
berghofe@11715
   246
      | mapp _ = raise SAME
berghofe@11715
   247
    and mapph prf = (mapp prf handle SAME => prf)
berghofe@11715
   248
berghofe@11715
   249
  in mapph end;
berghofe@11519
   250
berghofe@11519
   251
fun fold_proof_terms f g (a, Abst (_, Some T, prf)) = fold_proof_terms f g (g (T, a), prf)
berghofe@11519
   252
  | fold_proof_terms f g (a, Abst (_, None, prf)) = fold_proof_terms f g (a, prf)
berghofe@11519
   253
  | fold_proof_terms f g (a, AbsP (_, Some t, prf)) = fold_proof_terms f g (f (t, a), prf)
berghofe@11519
   254
  | fold_proof_terms f g (a, AbsP (_, None, prf)) = fold_proof_terms f g (a, prf)
berghofe@11615
   255
  | fold_proof_terms f g (a, prf % Some t) = f (t, fold_proof_terms f g (a, prf))
berghofe@11615
   256
  | fold_proof_terms f g (a, prf % None) = fold_proof_terms f g (a, prf)
berghofe@11615
   257
  | fold_proof_terms f g (a, prf1 %% prf2) = fold_proof_terms f g
berghofe@11519
   258
      (fold_proof_terms f g (a, prf1), prf2)
berghofe@11519
   259
  | fold_proof_terms _ g (a, PThm (_, _, _, Some Ts)) = foldr g (Ts, a)
berghofe@11519
   260
  | fold_proof_terms _ g (a, PAxm (_, prop, Some Ts)) = foldr g (Ts, a)
berghofe@11519
   261
  | fold_proof_terms _ _ (a, _) = a;
berghofe@11519
   262
berghofe@11519
   263
val add_prf_names = fold_proof_terms add_term_names ((uncurry K) o swap);
berghofe@11519
   264
val add_prf_tfree_names = fold_proof_terms add_term_tfree_names add_typ_tfree_names;
berghofe@11519
   265
val add_prf_tvar_ixns = fold_proof_terms add_term_tvar_ixns (add_typ_ixns o swap);
berghofe@11519
   266
berghofe@11519
   267
berghofe@11519
   268
(***** utilities *****)
berghofe@11519
   269
berghofe@11519
   270
fun strip_abs (_::Ts) (Abs (_, _, t)) = strip_abs Ts t
berghofe@11519
   271
  | strip_abs _ t = t;
berghofe@11519
   272
berghofe@11519
   273
fun mk_abs Ts t = foldl (fn (t', T) => Abs ("", T, t')) (t, Ts);
berghofe@11519
   274
berghofe@11519
   275
berghofe@11519
   276
(*Abstraction of a proof term over its occurrences of v, 
berghofe@11519
   277
    which must contain no loose bound variables.
berghofe@11519
   278
  The resulting proof term is ready to become the body of an Abst.*)
berghofe@11519
   279
berghofe@11519
   280
fun prf_abstract_over v =
berghofe@11519
   281
  let
berghofe@11715
   282
    fun abst' lev u = if v aconv u then Bound lev else
berghofe@11715
   283
      (case u of
berghofe@11715
   284
         Abs (a, T, t) => Abs (a, T, abst' (lev + 1) t)
berghofe@11715
   285
       | f $ t => (abst' lev f $ absth' lev t handle SAME => f $ abst' lev t)
berghofe@11715
   286
       | _ => raise SAME)
berghofe@11715
   287
    and absth' lev t = (abst' lev t handle SAME => t);
berghofe@11519
   288
berghofe@11715
   289
    fun abst lev (AbsP (a, t, prf)) =
berghofe@11715
   290
          (AbsP (a, apsome' (abst' lev) t, absth lev prf)
berghofe@11715
   291
           handle SAME => AbsP (a, t, abst lev prf))
berghofe@11715
   292
      | abst lev (Abst (a, T, prf)) = Abst (a, T, abst (lev + 1) prf)
berghofe@11715
   293
      | abst lev (prf1 %% prf2) = (abst lev prf1 %% absth lev prf2
berghofe@11715
   294
          handle SAME => prf1 %% abst lev prf2)
berghofe@11715
   295
      | abst lev (prf % t) = (abst lev prf % apsome (absth' lev) t
berghofe@11715
   296
          handle SAME => prf % apsome' (abst' lev) t)
berghofe@11715
   297
      | abst _ _ = raise SAME
berghofe@11715
   298
    and absth lev prf = (abst lev prf handle SAME => prf)
berghofe@11519
   299
berghofe@11715
   300
  in absth 0 end;
berghofe@11519
   301
berghofe@11519
   302
berghofe@11519
   303
(*increments a proof term's non-local bound variables
berghofe@11519
   304
  required when moving a proof term within abstractions
berghofe@11519
   305
     inc is  increment for bound variables
berghofe@11519
   306
     lev is  level at which a bound variable is considered 'loose'*)
berghofe@11519
   307
berghofe@11519
   308
fun incr_bv' inct tlev t = incr_bv (inct, tlev, t);
berghofe@11519
   309
berghofe@11715
   310
fun prf_incr_bv' incP inct Plev tlev (PBound i) =
berghofe@11715
   311
      if i >= Plev then PBound (i+incP) else raise SAME 
berghofe@11715
   312
  | prf_incr_bv' incP inct Plev tlev (AbsP (a, t, body)) =
berghofe@11715
   313
      (AbsP (a, apsome' (same (incr_bv' inct tlev)) t,
berghofe@11715
   314
         prf_incr_bv incP inct (Plev+1) tlev body) handle SAME =>
berghofe@11715
   315
           AbsP (a, t, prf_incr_bv' incP inct (Plev+1) tlev body))
berghofe@11715
   316
  | prf_incr_bv' incP inct Plev tlev (Abst (a, T, body)) =
berghofe@11715
   317
      Abst (a, T, prf_incr_bv' incP inct Plev (tlev+1) body)
berghofe@11715
   318
  | prf_incr_bv' incP inct Plev tlev (prf %% prf') = 
berghofe@11715
   319
      (prf_incr_bv' incP inct Plev tlev prf %% prf_incr_bv incP inct Plev tlev prf'
berghofe@11715
   320
       handle SAME => prf %% prf_incr_bv' incP inct Plev tlev prf')
berghofe@11715
   321
  | prf_incr_bv' incP inct Plev tlev (prf % t) = 
berghofe@11715
   322
      (prf_incr_bv' incP inct Plev tlev prf % apsome (incr_bv' inct tlev) t
berghofe@11715
   323
       handle SAME => prf % apsome' (same (incr_bv' inct tlev)) t)
berghofe@11715
   324
  | prf_incr_bv' _ _ _ _ _ = raise SAME
berghofe@11715
   325
and prf_incr_bv incP inct Plev tlev prf =
berghofe@11715
   326
      (prf_incr_bv' incP inct Plev tlev prf handle SAME => prf);
berghofe@11519
   327
berghofe@11519
   328
fun incr_pboundvars  0 0 prf = prf
berghofe@11519
   329
  | incr_pboundvars incP inct prf = prf_incr_bv incP inct 0 0 prf;
berghofe@11519
   330
berghofe@11519
   331
berghofe@11615
   332
fun prf_loose_bvar1 (prf1 %% prf2) k = prf_loose_bvar1 prf1 k orelse prf_loose_bvar1 prf2 k
berghofe@11615
   333
  | prf_loose_bvar1 (prf % Some t) k = prf_loose_bvar1 prf k orelse loose_bvar1 (t, k)
berghofe@11615
   334
  | prf_loose_bvar1 (_ % None) _ = true
berghofe@11519
   335
  | prf_loose_bvar1 (AbsP (_, Some t, prf)) k = loose_bvar1 (t, k) orelse prf_loose_bvar1 prf k
berghofe@11519
   336
  | prf_loose_bvar1 (AbsP (_, None, _)) k = true
berghofe@11519
   337
  | prf_loose_bvar1 (Abst (_, _, prf)) k = prf_loose_bvar1 prf (k+1)
berghofe@11519
   338
  | prf_loose_bvar1 _ _ = false;
berghofe@11519
   339
berghofe@11519
   340
fun prf_loose_Pbvar1 (PBound i) k = i = k
berghofe@11615
   341
  | prf_loose_Pbvar1 (prf1 %% prf2) k = prf_loose_Pbvar1 prf1 k orelse prf_loose_Pbvar1 prf2 k
berghofe@11615
   342
  | prf_loose_Pbvar1 (prf % _) k = prf_loose_Pbvar1 prf k
berghofe@11519
   343
  | prf_loose_Pbvar1 (AbsP (_, _, prf)) k = prf_loose_Pbvar1 prf (k+1)
berghofe@11519
   344
  | prf_loose_Pbvar1 (Abst (_, _, prf)) k = prf_loose_Pbvar1 prf k
berghofe@11519
   345
  | prf_loose_Pbvar1 _ _ = false;
berghofe@11519
   346
berghofe@12279
   347
fun prf_add_loose_bnos plev tlev (PBound i) (is, js) =
berghofe@12279
   348
      if i < plev then (is, js) else ((i-plev) ins is, js)
berghofe@12279
   349
  | prf_add_loose_bnos plev tlev (prf1 %% prf2) p =
berghofe@12279
   350
      prf_add_loose_bnos plev tlev prf2
berghofe@12279
   351
        (prf_add_loose_bnos plev tlev prf1 p)
berghofe@12279
   352
  | prf_add_loose_bnos plev tlev (prf % opt) (is, js) =
berghofe@12279
   353
      prf_add_loose_bnos plev tlev prf (case opt of
berghofe@12279
   354
          None => (is, ~1 ins js)
berghofe@12279
   355
        | Some t => (is, add_loose_bnos (t, tlev, js)))
berghofe@12279
   356
  | prf_add_loose_bnos plev tlev (AbsP (_, opt, prf)) (is, js) =
berghofe@12279
   357
      prf_add_loose_bnos (plev+1) tlev prf (case opt of
berghofe@12279
   358
          None => (is, ~1 ins js)
berghofe@12279
   359
        | Some t => (is, add_loose_bnos (t, tlev, js)))
berghofe@12279
   360
  | prf_add_loose_bnos plev tlev (Abst (_, _, prf)) p =
berghofe@12279
   361
      prf_add_loose_bnos plev (tlev+1) prf p
berghofe@12279
   362
  | prf_add_loose_bnos _ _ _ _ = ([], []);
berghofe@12279
   363
berghofe@11519
   364
berghofe@11519
   365
(**** substitutions ****)
berghofe@11519
   366
berghofe@11519
   367
fun norm_proof env =
berghofe@11519
   368
  let
wenzelm@12497
   369
    val envT = type_env env;
wenzelm@12497
   370
    fun norm (Abst (s, T, prf)) = (Abst (s, apsome' (norm_type_same envT) T, normh prf)
berghofe@11519
   371
          handle SAME => Abst (s, T, norm prf))
berghofe@11519
   372
      | norm (AbsP (s, t, prf)) = (AbsP (s, apsome' (norm_term_same env) t, normh prf)
berghofe@11519
   373
          handle SAME => AbsP (s, t, norm prf))
berghofe@11615
   374
      | norm (prf % t) = (norm prf % apsome (norm_term env) t
berghofe@11615
   375
          handle SAME => prf % apsome' (norm_term_same env) t)
berghofe@11615
   376
      | norm (prf1 %% prf2) = (norm prf1 %% normh prf2
berghofe@11615
   377
          handle SAME => prf1 %% norm prf2)
wenzelm@12497
   378
      | norm (PThm (s, prf, t, Ts)) = PThm (s, prf, t, apsome' (norm_types_same envT) Ts)
wenzelm@12497
   379
      | norm (PAxm (s, prop, Ts)) = PAxm (s, prop, apsome' (norm_types_same envT) Ts)
berghofe@11519
   380
      | norm _ = raise SAME
berghofe@11519
   381
    and normh prf = (norm prf handle SAME => prf);
berghofe@11519
   382
  in normh end;
berghofe@11519
   383
berghofe@11519
   384
(***** Remove some types in proof term (to save space) *****)
berghofe@11519
   385
berghofe@11519
   386
fun remove_types (Abs (s, _, t)) = Abs (s, dummyT, remove_types t)
berghofe@11519
   387
  | remove_types (t $ u) = remove_types t $ remove_types u
berghofe@11519
   388
  | remove_types (Const (s, _)) = Const (s, dummyT)
berghofe@11519
   389
  | remove_types t = t;
berghofe@11519
   390
berghofe@11519
   391
fun remove_types_env (Envir.Envir {iTs, asol, maxidx}) =
berghofe@11519
   392
  Envir.Envir {iTs = iTs, asol = Vartab.map remove_types asol, maxidx = maxidx};
berghofe@11519
   393
berghofe@11519
   394
fun norm_proof' env prf = norm_proof (remove_types_env env) prf;
berghofe@11519
   395
berghofe@11519
   396
(**** substitution of bound variables ****)
berghofe@11519
   397
berghofe@11519
   398
fun prf_subst_bounds args prf =
berghofe@11519
   399
  let
berghofe@11519
   400
    val n = length args;
berghofe@11519
   401
    fun subst' lev (Bound i) =
berghofe@11519
   402
         (if i<lev then raise SAME    (*var is locally bound*)
berghofe@11519
   403
          else  incr_boundvars lev (List.nth (args, i-lev))
berghofe@11519
   404
                  handle Subscript => Bound (i-n)  (*loose: change it*))
berghofe@11519
   405
      | subst' lev (Abs (a, T, body)) = Abs (a, T,  subst' (lev+1) body)
berghofe@11519
   406
      | subst' lev (f $ t) = (subst' lev f $ substh' lev t
berghofe@11519
   407
          handle SAME => f $ subst' lev t)
berghofe@11519
   408
      | subst' _ _ = raise SAME
berghofe@11519
   409
    and substh' lev t = (subst' lev t handle SAME => t);
berghofe@11519
   410
berghofe@11519
   411
    fun subst lev (AbsP (a, t, body)) = (AbsP (a, apsome' (subst' lev) t, substh lev body)
berghofe@11519
   412
          handle SAME => AbsP (a, t, subst lev body))
berghofe@11519
   413
      | subst lev (Abst (a, T, body)) = Abst (a, T, subst (lev+1) body)
berghofe@11615
   414
      | subst lev (prf %% prf') = (subst lev prf %% substh lev prf'
berghofe@11615
   415
          handle SAME => prf %% subst lev prf')
berghofe@11615
   416
      | subst lev (prf % t) = (subst lev prf % apsome (substh' lev) t
berghofe@11615
   417
          handle SAME => prf % apsome' (subst' lev) t)
berghofe@11519
   418
      | subst _ _ = raise SAME
berghofe@11519
   419
    and substh lev prf = (subst lev prf handle SAME => prf)
berghofe@11519
   420
  in case args of [] => prf | _ => substh 0 prf end;
berghofe@11519
   421
berghofe@11519
   422
fun prf_subst_pbounds args prf =
berghofe@11519
   423
  let
berghofe@11519
   424
    val n = length args;
berghofe@11519
   425
    fun subst (PBound i) Plev tlev =
berghofe@11519
   426
 	 (if i < Plev then raise SAME    (*var is locally bound*)
berghofe@11519
   427
          else incr_pboundvars Plev tlev (List.nth (args, i-Plev))
berghofe@11519
   428
                 handle Subscript => PBound (i-n)  (*loose: change it*))
berghofe@11519
   429
      | subst (AbsP (a, t, body)) Plev tlev = AbsP (a, t, subst body (Plev+1) tlev)
berghofe@11519
   430
      | subst (Abst (a, T, body)) Plev tlev = Abst (a, T, subst body Plev (tlev+1))
berghofe@11615
   431
      | subst (prf %% prf') Plev tlev = (subst prf Plev tlev %% substh prf' Plev tlev
berghofe@11615
   432
          handle SAME => prf %% subst prf' Plev tlev)
berghofe@11615
   433
      | subst (prf % t) Plev tlev = subst prf Plev tlev % t
berghofe@11519
   434
      | subst  prf _ _ = raise SAME
berghofe@11519
   435
    and substh prf Plev tlev = (subst prf Plev tlev handle SAME => prf)
berghofe@11519
   436
  in case args of [] => prf | _ => substh prf 0 0 end;
berghofe@11519
   437
berghofe@11519
   438
berghofe@11519
   439
(**** Freezing and thawing of variables in proof terms ****)
berghofe@11519
   440
berghofe@11519
   441
fun frzT names =
berghofe@11519
   442
  map_type_tvar (fn (ixn, xs) => TFree (the (assoc (names, ixn)), xs));
berghofe@11519
   443
berghofe@11519
   444
fun thawT names =
berghofe@11519
   445
  map_type_tfree (fn (s, xs) => case assoc (names, s) of
berghofe@11519
   446
      None => TFree (s, xs)
berghofe@11519
   447
    | Some ixn => TVar (ixn, xs));
berghofe@11519
   448
berghofe@11519
   449
fun freeze names names' (t $ u) =
berghofe@11519
   450
      freeze names names' t $ freeze names names' u
berghofe@11519
   451
  | freeze names names' (Abs (s, T, t)) =
berghofe@11519
   452
      Abs (s, frzT names' T, freeze names names' t)
berghofe@11519
   453
  | freeze names names' (Const (s, T)) = Const (s, frzT names' T)
berghofe@11519
   454
  | freeze names names' (Free (s, T)) = Free (s, frzT names' T)
berghofe@11519
   455
  | freeze names names' (Var (ixn, T)) =
berghofe@11519
   456
      Free (the (assoc (names, ixn)), frzT names' T)
berghofe@11519
   457
  | freeze names names' t = t;
berghofe@11519
   458
berghofe@11519
   459
fun thaw names names' (t $ u) =
berghofe@11519
   460
      thaw names names' t $ thaw names names' u
berghofe@11519
   461
  | thaw names names' (Abs (s, T, t)) =
berghofe@11519
   462
      Abs (s, thawT names' T, thaw names names' t)
berghofe@11519
   463
  | thaw names names' (Const (s, T)) = Const (s, thawT names' T)
berghofe@11519
   464
  | thaw names names' (Free (s, T)) = 
berghofe@11519
   465
      let val T' = thawT names' T
berghofe@11519
   466
      in case assoc (names, s) of
berghofe@11519
   467
          None => Free (s, T')
berghofe@11519
   468
        | Some ixn => Var (ixn, T')
berghofe@11519
   469
      end
berghofe@11519
   470
  | thaw names names' (Var (ixn, T)) = Var (ixn, thawT names' T)
berghofe@11519
   471
  | thaw names names' t = t;
berghofe@11519
   472
berghofe@11519
   473
fun freeze_thaw_prf prf =
berghofe@11519
   474
  let
berghofe@11519
   475
    val (fs, Tfs, vs, Tvs) = fold_proof_terms
berghofe@11519
   476
      (fn (t, (fs, Tfs, vs, Tvs)) =>
berghofe@11519
   477
         (add_term_frees (t, fs), add_term_tfree_names (t, Tfs),
berghofe@11519
   478
          add_term_vars (t, vs), add_term_tvar_ixns (t, Tvs)))
berghofe@11519
   479
      (fn (T, (fs, Tfs, vs, Tvs)) =>
berghofe@11519
   480
         (fs, add_typ_tfree_names (T, Tfs),
berghofe@11519
   481
          vs, add_typ_ixns (Tvs, T)))
berghofe@11519
   482
            (([], [], [], []), prf);
berghofe@11519
   483
    val fs' = map (fst o dest_Free) fs;
berghofe@11519
   484
    val vs' = map (fst o dest_Var) vs;
berghofe@11519
   485
    val names = vs' ~~ variantlist (map fst vs', fs');
berghofe@11519
   486
    val names' = Tvs ~~ variantlist (map fst Tvs, Tfs);
berghofe@11519
   487
    val rnames = map swap names;
berghofe@11519
   488
    val rnames' = map swap names';
berghofe@11519
   489
  in
berghofe@11519
   490
    (map_proof_terms (freeze names names') (frzT names') prf,
berghofe@11519
   491
     map_proof_terms (thaw rnames rnames') (thawT rnames'))
berghofe@11519
   492
  end;
berghofe@11519
   493
berghofe@11519
   494
berghofe@11519
   495
(***** implication introduction *****)
berghofe@11519
   496
berghofe@11519
   497
fun implies_intr_proof h prf =
berghofe@11519
   498
  let
berghofe@11715
   499
    fun abshyp i (Hyp t) = if h aconv t then PBound i else raise SAME
berghofe@11519
   500
      | abshyp i (Abst (s, T, prf)) = Abst (s, T, abshyp i prf)
berghofe@11519
   501
      | abshyp i (AbsP (s, t, prf)) = AbsP (s, t, abshyp (i+1) prf)
berghofe@11615
   502
      | abshyp i (prf % t) = abshyp i prf % t
berghofe@11715
   503
      | abshyp i (prf1 %% prf2) = (abshyp i prf1 %% abshyph i prf2
berghofe@11715
   504
          handle SAME => prf1 %% abshyp i prf2)
berghofe@11715
   505
      | abshyp _ _ = raise SAME
berghofe@11715
   506
    and abshyph i prf = (abshyp i prf handle SAME => prf)
berghofe@11519
   507
  in
berghofe@11715
   508
    AbsP ("H", None (*h*), abshyph 0 prf)
berghofe@11519
   509
  end;
berghofe@11519
   510
berghofe@11519
   511
berghofe@11519
   512
(***** forall introduction *****)
berghofe@11519
   513
berghofe@11519
   514
fun forall_intr_proof x a prf = Abst (a, None, prf_abstract_over x prf);
berghofe@11519
   515
berghofe@11519
   516
berghofe@11519
   517
(***** varify *****)
berghofe@11519
   518
berghofe@11519
   519
fun varify_proof t fixed prf =
berghofe@11519
   520
  let
berghofe@11519
   521
    val fs = add_term_tfree_names (t, []) \\ fixed;
berghofe@11519
   522
    val ixns = add_term_tvar_ixns (t, []);
berghofe@11519
   523
    val fmap = fs ~~ variantlist (fs, map #1 ixns)
berghofe@11519
   524
    fun thaw (f as (a, S)) =
berghofe@11519
   525
      (case assoc (fmap, a) of
berghofe@11519
   526
        None => TFree f
berghofe@11519
   527
      | Some b => TVar ((b, 0), S));
berghofe@11519
   528
  in map_proof_terms (map_term_types (map_type_tfree thaw)) (map_type_tfree thaw) prf
berghofe@11519
   529
  end;
berghofe@11519
   530
berghofe@11519
   531
berghofe@11519
   532
local
berghofe@11519
   533
berghofe@11519
   534
fun new_name (ix, (pairs,used)) =
berghofe@11519
   535
  let val v = variant used (string_of_indexname ix)
berghofe@11519
   536
  in  ((ix, v) :: pairs, v :: used)  end;
berghofe@11519
   537
berghofe@11519
   538
fun freeze_one alist (ix, sort) = (case assoc (alist, ix) of
berghofe@11519
   539
    None => TVar (ix, sort)
berghofe@11519
   540
  | Some name => TFree (name, sort));
berghofe@11519
   541
berghofe@11519
   542
in
berghofe@11519
   543
berghofe@11519
   544
fun freezeT t prf =
berghofe@11519
   545
  let
berghofe@11519
   546
    val used = it_term_types add_typ_tfree_names (t, [])
berghofe@11519
   547
    and tvars = map #1 (it_term_types add_typ_tvars (t, []));
berghofe@11519
   548
    val (alist, _) = foldr new_name (tvars, ([], used));
berghofe@11519
   549
  in
berghofe@11519
   550
    (case alist of
berghofe@11519
   551
      [] => prf (*nothing to do!*)
berghofe@11519
   552
    | _ =>
berghofe@11519
   553
      let val frzT = map_type_tvar (freeze_one alist)
berghofe@11519
   554
      in map_proof_terms (map_term_types frzT) frzT prf end)
berghofe@11519
   555
  end;
berghofe@11519
   556
berghofe@11519
   557
end;
berghofe@11519
   558
berghofe@11519
   559
berghofe@11519
   560
(***** rotate assumptions *****)
berghofe@11519
   561
berghofe@11519
   562
fun rotate_proof Bs Bi m prf =
berghofe@11519
   563
  let
berghofe@11519
   564
    val params = Term.strip_all_vars Bi;
berghofe@11519
   565
    val asms = Logic.strip_imp_prems (Term.strip_all_body Bi);
berghofe@11519
   566
    val i = length asms;
berghofe@11519
   567
    val j = length Bs;
berghofe@11519
   568
  in
berghofe@11519
   569
    mk_AbsP (j+1, proof_combP (prf, map PBound
berghofe@11519
   570
      (j downto 1) @ [mk_Abst (params, mk_AbsP (i,
berghofe@11519
   571
        proof_combP (proof_combt (PBound i, map Bound ((length params - 1) downto 0)),
berghofe@11519
   572
          map PBound (((i-m-1) downto 0) @ ((i-1) downto (i-m))))))]))
berghofe@11519
   573
  end;
berghofe@11519
   574
berghofe@11519
   575
berghofe@11519
   576
(***** permute premises *****)
berghofe@11519
   577
berghofe@11519
   578
fun permute_prems_prf prems j k prf =
berghofe@11519
   579
  let val n = length prems
berghofe@11519
   580
  in mk_AbsP (n, proof_combP (prf,
berghofe@11519
   581
    map PBound ((n-1 downto n-j) @ (k-1 downto 0) @ (n-j-1 downto k))))
berghofe@11519
   582
  end;
berghofe@11519
   583
berghofe@11519
   584
berghofe@11519
   585
(***** instantiation *****)
berghofe@11519
   586
berghofe@11519
   587
fun instantiate vTs tpairs =
berghofe@11519
   588
  map_proof_terms (subst_atomic (map (apsnd remove_types) tpairs) o
berghofe@11519
   589
    subst_TVars vTs) (typ_subst_TVars vTs);
berghofe@11519
   590
berghofe@11519
   591
berghofe@11519
   592
(***** lifting *****)
berghofe@11519
   593
berghofe@11519
   594
fun lift_proof Bi inc prop prf =
berghofe@11519
   595
  let
berghofe@11519
   596
    val (_, lift_all) = Logic.lift_fns (Bi, inc);
berghofe@11519
   597
berghofe@11519
   598
    fun lift'' Us Ts t = strip_abs Ts (Logic.incr_indexes (Us, inc) (mk_abs Ts t));
berghofe@11519
   599
berghofe@11715
   600
    fun lift' Us Ts (Abst (s, T, prf)) =
berghofe@11715
   601
          (Abst (s, apsome' (same (incr_tvar inc)) T, lifth' Us (dummyT::Ts) prf)
berghofe@11715
   602
           handle SAME => Abst (s, T, lift' Us (dummyT::Ts) prf))
berghofe@11715
   603
      | lift' Us Ts (AbsP (s, t, prf)) =
berghofe@11715
   604
          (AbsP (s, apsome' (same (lift'' Us Ts)) t, lifth' Us Ts prf)
berghofe@11715
   605
           handle SAME => AbsP (s, t, lift' Us Ts prf))
berghofe@11715
   606
      | lift' Us Ts (prf % t) = (lift' Us Ts prf % apsome (lift'' Us Ts) t
berghofe@11715
   607
          handle SAME => prf % apsome' (same (lift'' Us Ts)) t)
berghofe@11715
   608
      | lift' Us Ts (prf1 %% prf2) = (lift' Us Ts prf1 %% lifth' Us Ts prf2
berghofe@11715
   609
          handle SAME => prf1 %% lift' Us Ts prf2)
berghofe@11715
   610
      | lift' _ _ (PThm (s, prf, prop, Ts)) =
berghofe@11715
   611
          PThm (s, prf, prop, apsome' (same (map (incr_tvar inc))) Ts)
berghofe@11715
   612
      | lift' _ _ (PAxm (s, prop, Ts)) =
berghofe@11715
   613
          PAxm (s, prop, apsome' (same (map (incr_tvar inc))) Ts)
berghofe@11715
   614
      | lift' _ _ _ = raise SAME
berghofe@11715
   615
    and lifth' Us Ts prf = (lift' Us Ts prf handle SAME => prf);
berghofe@11519
   616
berghofe@11519
   617
    val ps = map lift_all (Logic.strip_imp_prems (snd (Logic.strip_flexpairs prop)));
berghofe@11519
   618
    val k = length ps;
berghofe@11519
   619
berghofe@11519
   620
    fun mk_app (b, (i, j, prf)) = 
berghofe@11615
   621
          if b then (i-1, j, prf %% PBound i) else (i, j-1, prf %> Bound j);
berghofe@11519
   622
berghofe@11519
   623
    fun lift Us bs i j (Const ("==>", _) $ A $ B) =
berghofe@11519
   624
	    AbsP ("H", None (*A*), lift Us (true::bs) (i+1) j B)
berghofe@11519
   625
      | lift Us bs i j (Const ("all", _) $ Abs (a, T, t)) = 
berghofe@11519
   626
	    Abst (a, None (*T*), lift (T::Us) (false::bs) i (j+1) t)
berghofe@11715
   627
      | lift Us bs i j _ = proof_combP (lifth' (rev Us) [] prf,
berghofe@11519
   628
            map (fn k => (#3 (foldr mk_app (bs, (i-1, j-1, PBound k)))))
berghofe@11519
   629
              (i + k - 1 downto i));
berghofe@11519
   630
  in
berghofe@11519
   631
    mk_AbsP (k, lift [] [] 0 0 Bi)
berghofe@11519
   632
  end;
berghofe@11519
   633
berghofe@11519
   634
berghofe@11519
   635
(***** proof by assumption *****)
berghofe@11519
   636
berghofe@11519
   637
fun mk_asm_prf (Const ("==>", _) $ A $ B) i = AbsP ("H", None (*A*), mk_asm_prf B (i+1))
berghofe@11519
   638
  | mk_asm_prf (Const ("all", _) $ Abs (a, T, t)) i = Abst (a, None (*T*), mk_asm_prf t i)
berghofe@11519
   639
  | mk_asm_prf _ i = PBound i;
berghofe@11519
   640
berghofe@11519
   641
fun assumption_proof Bs Bi n prf =
berghofe@11519
   642
  mk_AbsP (length Bs, proof_combP (prf,
berghofe@11519
   643
    map PBound (length Bs - 1 downto 0) @ [mk_asm_prf Bi (~n)]));
berghofe@11519
   644
berghofe@11519
   645
berghofe@11519
   646
(***** Composition of object rule with proof state *****)
berghofe@11519
   647
berghofe@11519
   648
fun flatten_params_proof i j n (Const ("==>", _) $ A $ B, k) =
berghofe@11519
   649
      AbsP ("H", None (*A*), flatten_params_proof (i+1) j n (B, k))
berghofe@11519
   650
  | flatten_params_proof i j n (Const ("all", _) $ Abs (a, T, t), k) =
berghofe@11519
   651
      Abst (a, None (*T*), flatten_params_proof i (j+1) n (t, k))
berghofe@11519
   652
  | flatten_params_proof i j n (_, k) = proof_combP (proof_combt (PBound (k+i),
berghofe@11519
   653
      map Bound (j-1 downto 0)), map PBound (i-1 downto 0 \ i-n));
berghofe@11519
   654
berghofe@11519
   655
fun bicompose_proof Bs oldAs newAs A n rprf sprf =
berghofe@11519
   656
  let
berghofe@11519
   657
    val la = length newAs;
berghofe@11519
   658
    val lb = length Bs;
berghofe@11519
   659
  in
berghofe@11519
   660
    mk_AbsP (lb+la, proof_combP (sprf,
berghofe@11615
   661
      map PBound (lb + la - 1 downto la)) %%
berghofe@11519
   662
        proof_combP (rprf, (if n>0 then [mk_asm_prf (the A) (~n)] else []) @
berghofe@11519
   663
          map (flatten_params_proof 0 0 n) (oldAs ~~ (la - 1 downto 0))))
berghofe@11519
   664
  end;
berghofe@11519
   665
berghofe@11519
   666
berghofe@11519
   667
(***** axioms for equality *****)
berghofe@11519
   668
berghofe@11519
   669
val aT = TFree ("'a", ["logic"]);
berghofe@11519
   670
val bT = TFree ("'b", ["logic"]);
berghofe@11519
   671
val x = Free ("x", aT);
berghofe@11519
   672
val y = Free ("y", aT);
berghofe@11519
   673
val z = Free ("z", aT);
berghofe@11519
   674
val A = Free ("A", propT);
berghofe@11519
   675
val B = Free ("B", propT);
berghofe@11519
   676
val f = Free ("f", aT --> bT);
berghofe@11519
   677
val g = Free ("g", aT --> bT);
berghofe@11519
   678
berghofe@11519
   679
local open Logic in
berghofe@11519
   680
berghofe@11519
   681
val equality_axms =
berghofe@11519
   682
  [("reflexive", mk_equals (x, x)),
berghofe@11519
   683
   ("symmetric", mk_implies (mk_equals (x, y), mk_equals (y, x))),
berghofe@11519
   684
   ("transitive", list_implies ([mk_equals (x, y), mk_equals (y, z)], mk_equals (x, z))),
berghofe@11519
   685
   ("equal_intr", list_implies ([mk_implies (A, B), mk_implies (B, A)], mk_equals (A, B))),
berghofe@11519
   686
   ("equal_elim", list_implies ([mk_equals (A, B), A], B)),
berghofe@11519
   687
   ("abstract_rule", Logic.mk_implies
berghofe@11519
   688
      (all aT $ Abs ("x", aT, equals bT $ (f $ Bound 0) $ (g $ Bound 0)),
berghofe@11519
   689
       equals (aT --> bT) $
berghofe@11519
   690
         Abs ("x", aT, f $ Bound 0) $ Abs ("x", aT, g $ Bound 0))),
berghofe@11519
   691
   ("combination", Logic.list_implies
berghofe@11519
   692
      ([Logic.mk_equals (f, g), Logic.mk_equals (x, y)],
berghofe@11519
   693
       Logic.mk_equals (f $ x, g $ y)))];
berghofe@11519
   694
berghofe@11519
   695
val [reflexive_axm, symmetric_axm, transitive_axm, equal_intr_axm,
berghofe@11519
   696
  equal_elim_axm, abstract_rule_axm, combination_axm] =
berghofe@11519
   697
    map (fn (s, t) => PAxm ("ProtoPure." ^ s, varify t, None)) equality_axms;
berghofe@11519
   698
berghofe@11519
   699
end;
berghofe@11519
   700
berghofe@11615
   701
val reflexive = reflexive_axm % None;
berghofe@11519
   702
berghofe@11615
   703
fun symmetric (prf as PAxm ("ProtoPure.reflexive", _, _) % _) = prf
berghofe@11615
   704
  | symmetric prf = symmetric_axm % None % None %% prf;
berghofe@11519
   705
berghofe@11615
   706
fun transitive _ _ (PAxm ("ProtoPure.reflexive", _, _) % _) prf2 = prf2
berghofe@11615
   707
  | transitive _ _ prf1 (PAxm ("ProtoPure.reflexive", _, _) % _) = prf1
berghofe@11519
   708
  | transitive u (Type ("prop", [])) prf1 prf2 =
berghofe@11615
   709
      transitive_axm % None % Some (remove_types u) % None %% prf1 %% prf2
berghofe@11519
   710
  | transitive u T prf1 prf2 =
berghofe@11615
   711
      transitive_axm % None % None % None %% prf1 %% prf2;
berghofe@11519
   712
berghofe@11519
   713
fun abstract_rule x a prf =
berghofe@11615
   714
  abstract_rule_axm % None % None %% forall_intr_proof x a prf;
berghofe@11519
   715
berghofe@11615
   716
fun check_comb (PAxm ("ProtoPure.combination", _, _) % f % g % _ % _ %% prf %% _) =
berghofe@11519
   717
      is_some f orelse check_comb prf
berghofe@11615
   718
  | check_comb (PAxm ("ProtoPure.transitive", _, _) % _ % _ % _ %% prf1 %% prf2) =
berghofe@11519
   719
      check_comb prf1 andalso check_comb prf2
berghofe@11615
   720
  | check_comb (PAxm ("ProtoPure.symmetric", _, _) % _ % _ %% prf) = check_comb prf
berghofe@11519
   721
  | check_comb _ = false;
berghofe@11519
   722
berghofe@11519
   723
fun combination f g t u (Type (_, [T, U])) prf1 prf2 =
berghofe@11519
   724
  let
berghofe@11519
   725
    val f = Envir.beta_norm f;
berghofe@11519
   726
    val g = Envir.beta_norm g;
berghofe@11519
   727
    val prf =  if check_comb prf1 then
berghofe@11615
   728
        combination_axm % None % None
berghofe@11519
   729
      else (case prf1 of
berghofe@11615
   730
          PAxm ("ProtoPure.reflexive", _, _) % _ =>
berghofe@11615
   731
            combination_axm %> remove_types f % None
berghofe@11615
   732
        | _ => combination_axm %> remove_types f %> remove_types g)
berghofe@11519
   733
  in
berghofe@11519
   734
    (case T of
berghofe@11615
   735
       Type ("fun", _) => prf %
berghofe@11519
   736
         (case head_of f of
berghofe@11519
   737
            Abs _ => Some (remove_types t)
berghofe@11519
   738
          | Var _ => Some (remove_types t)
berghofe@11615
   739
          | _ => None) %
berghofe@11519
   740
         (case head_of g of
berghofe@11519
   741
            Abs _ => Some (remove_types u)
berghofe@11519
   742
          | Var _ => Some (remove_types u)
berghofe@11615
   743
          | _ => None) %% prf1 %% prf2
berghofe@11615
   744
     | _ => prf % None % None %% prf1 %% prf2)
berghofe@11519
   745
  end;
berghofe@11519
   746
berghofe@11519
   747
fun equal_intr A B prf1 prf2 =
berghofe@11615
   748
  equal_intr_axm %> remove_types A %> remove_types B %% prf1 %% prf2;
berghofe@11519
   749
berghofe@11519
   750
fun equal_elim A B prf1 prf2 =
berghofe@11615
   751
  equal_elim_axm %> remove_types A %> remove_types B %% prf1 %% prf2;
berghofe@11519
   752
berghofe@11519
   753
berghofe@11519
   754
(***** axioms and theorems *****)
berghofe@11519
   755
berghofe@11519
   756
fun vars_of t = rev (foldl_aterms
berghofe@11519
   757
  (fn (vs, v as Var _) => v ins vs | (vs, _) => vs) ([], t));
berghofe@11519
   758
berghofe@11519
   759
fun test_args _ [] = true
berghofe@11519
   760
  | test_args is (Bound i :: ts) =
berghofe@11519
   761
      not (i mem is) andalso test_args (i :: is) ts
berghofe@11519
   762
  | test_args _ _ = false;
berghofe@11519
   763
berghofe@11519
   764
fun is_fun (Type ("fun", _)) = true
berghofe@11519
   765
  | is_fun (TVar _) = true
berghofe@11519
   766
  | is_fun _ = false;
berghofe@11519
   767
berghofe@11519
   768
fun add_funvars Ts (vs, t) =
berghofe@11519
   769
  if is_fun (fastype_of1 (Ts, t)) then
berghofe@11519
   770
    vs union mapfilter (fn Var (ixn, T) =>
berghofe@11519
   771
      if is_fun T then Some ixn else None | _ => None) (vars_of t)
berghofe@11519
   772
  else vs;
berghofe@11519
   773
berghofe@11519
   774
fun add_npvars q p Ts (vs, Const ("==>", _) $ t $ u) =
berghofe@11519
   775
      add_npvars q p Ts (add_npvars q (not p) Ts (vs, t), u)
berghofe@11519
   776
  | add_npvars q p Ts (vs, Const ("all", Type (_, [Type (_, [T, _]), _])) $ t) =
berghofe@11519
   777
      add_npvars q p Ts (vs, if p andalso q then betapply (t, Var (("",0), T)) else t)
berghofe@12041
   778
  | add_npvars q p Ts (vs, Abs (_, T, t)) = add_npvars q p (T::Ts) (vs, t)
berghofe@12041
   779
  | add_npvars _ _ Ts (vs, t) = add_npvars' Ts (vs, t)
berghofe@12041
   780
and add_npvars' Ts (vs, t) = (case strip_comb t of
berghofe@11519
   781
    (Var (ixn, _), ts) => if test_args [] ts then vs
berghofe@12041
   782
      else foldl (add_npvars' Ts) (overwrite (vs,
berghofe@11519
   783
        (ixn, foldl (add_funvars Ts) (if_none (assoc (vs, ixn)) [], ts))), ts)
berghofe@12041
   784
  | (Abs (_, T, u), ts) => foldl (add_npvars' (T::Ts)) (vs, u :: ts)
berghofe@12041
   785
  | (_, ts) => foldl (add_npvars' Ts) (vs, ts));
berghofe@11519
   786
berghofe@11519
   787
fun prop_vars (Const ("==>", _) $ P $ Q) = prop_vars P union prop_vars Q
berghofe@11519
   788
  | prop_vars (Const ("all", _) $ Abs (_, _, t)) = prop_vars t
berghofe@11519
   789
  | prop_vars t = (case strip_comb t of
berghofe@11519
   790
      (Var (ixn, _), _) => [ixn] | _ => []);
berghofe@11519
   791
berghofe@11519
   792
fun is_proj t =
berghofe@11519
   793
  let
berghofe@11519
   794
    fun is_p i t = (case strip_comb t of
berghofe@11519
   795
        (Bound j, []) => false
berghofe@11519
   796
      | (Bound j, ts) => j >= i orelse exists (is_p i) ts
berghofe@11519
   797
      | (Abs (_, _, u), _) => is_p (i+1) u
berghofe@11519
   798
      | (_, ts) => exists (is_p i) ts)
berghofe@11519
   799
  in (case strip_abs_body t of
berghofe@11519
   800
        Bound _ => true
berghofe@11519
   801
      | t' => is_p 0 t')
berghofe@11519
   802
  end;
berghofe@11519
   803
berghofe@11519
   804
fun needed_vars prop = 
berghofe@11519
   805
  foldl op union ([], map op ins (add_npvars true true [] ([], prop))) union
berghofe@11519
   806
  prop_vars prop;
berghofe@11519
   807
berghofe@11519
   808
fun gen_axm_proof c name prop =
berghofe@11519
   809
  let
berghofe@11519
   810
    val nvs = needed_vars prop;
berghofe@11519
   811
    val args = map (fn (v as Var (ixn, _)) =>
berghofe@11519
   812
        if ixn mem nvs then Some v else None) (vars_of prop) @
berghofe@11519
   813
      map Some (sort (make_ord atless) (term_frees prop));
berghofe@11519
   814
  in
berghofe@11519
   815
    proof_combt' (c (name, prop, None), args)
berghofe@11519
   816
  end;
berghofe@11519
   817
berghofe@11519
   818
val axm_proof = gen_axm_proof PAxm;
berghofe@11519
   819
val oracle_proof = gen_axm_proof Oracle;
berghofe@11519
   820
berghofe@11519
   821
fun shrink ls lev (prf as Abst (a, T, body)) =
berghofe@11519
   822
      let val (b, is, ch, body') = shrink ls (lev+1) body
berghofe@11519
   823
      in (b, is, ch, if ch then Abst (a, T, body') else prf) end
berghofe@11519
   824
  | shrink ls lev (prf as AbsP (a, t, body)) =
berghofe@11519
   825
      let val (b, is, ch, body') = shrink (lev::ls) lev body
berghofe@11519
   826
      in (b orelse 0 mem is, mapfilter (fn 0 => None | i => Some (i-1)) is,
berghofe@11519
   827
        ch, if ch then AbsP (a, t, body') else prf)
berghofe@11519
   828
      end
berghofe@11519
   829
  | shrink ls lev prf =
berghofe@11519
   830
      let val (is, ch, _, prf') = shrink' ls lev [] [] prf
berghofe@11519
   831
      in (false, is, ch, prf') end
berghofe@11615
   832
and shrink' ls lev ts prfs (prf as prf1 %% prf2) =
berghofe@11519
   833
      let
berghofe@11519
   834
        val p as (_, is', ch', prf') = shrink ls lev prf2;
berghofe@11519
   835
        val (is, ch, ts', prf'') = shrink' ls lev ts (p::prfs) prf1
berghofe@11519
   836
      in (is union is', ch orelse ch', ts',
berghofe@11615
   837
          if ch orelse ch' then prf'' %% prf' else prf)
berghofe@11519
   838
      end
berghofe@11615
   839
  | shrink' ls lev ts prfs (prf as prf1 % t) =
berghofe@11519
   840
      let val (is, ch, (ch', t')::ts', prf') = shrink' ls lev (t::ts) prfs prf1
berghofe@11615
   841
      in (is, ch orelse ch', ts', if ch orelse ch' then prf' % t' else prf) end
berghofe@11519
   842
  | shrink' ls lev ts prfs (prf as PBound i) =
berghofe@11519
   843
      (if exists (fn Some (Bound j) => lev-j <= nth_elem (i, ls) | _ => true) ts
berghofe@12233
   844
         orelse not (null (duplicates
berghofe@12233
   845
           (foldl (fn (js, Some (Bound j)) => j :: js | (js, _) => js) ([], ts))))
berghofe@11519
   846
         orelse exists #1 prfs then [i] else [], false, map (pair false) ts, prf)
berghofe@11519
   847
  | shrink' ls lev ts prfs (prf as Hyp _) = ([], false, map (pair false) ts, prf)
berghofe@11615
   848
  | shrink' ls lev ts prfs (prf as MinProof _) =
berghofe@11615
   849
      ([], false, map (pair false) ts, prf)
berghofe@11519
   850
  | shrink' ls lev ts prfs prf =
berghofe@11519
   851
      let
berghofe@11519
   852
        val prop = (case prf of PThm (_, _, prop, _) => prop | PAxm (_, prop, _) => prop
berghofe@11519
   853
          | Oracle (_, prop, _) => prop | _ => error "shrink: proof not in normal form");
berghofe@11519
   854
        val vs = vars_of prop;
berghofe@11519
   855
        val ts' = take (length vs, ts)
berghofe@11519
   856
        val ts'' = drop (length vs, ts)
berghofe@11519
   857
        val insts = take (length ts', map (fst o dest_Var) vs) ~~ ts';
berghofe@11519
   858
        val nvs = foldl (fn (ixns', (ixn, ixns)) =>
berghofe@11519
   859
          ixn ins (case assoc (insts, ixn) of
berghofe@11519
   860
              Some (Some t) => if is_proj t then ixns union ixns' else ixns'
berghofe@11519
   861
            | _ => ixns union ixns'))
berghofe@11519
   862
              (needed prop ts'' prfs, add_npvars false true [] ([], prop));
berghofe@11519
   863
        val insts' = map
berghofe@11519
   864
          (fn (ixn, x as Some _) => if ixn mem nvs then (false, x) else (true, None)
berghofe@11519
   865
            | (_, x) => (false, x)) insts
berghofe@11519
   866
      in ([], false, insts' @ map (pair false) ts'', prf) end
berghofe@11519
   867
and needed (Const ("==>", _) $ t $ u) ts ((b, _, _, _)::prfs) =
berghofe@11519
   868
      (if b then map (fst o dest_Var) (vars_of t) else []) union needed u ts prfs
berghofe@11519
   869
  | needed (Var (ixn, _)) (_::_) _ = [ixn]
berghofe@11519
   870
  | needed _ _ _ = [];
berghofe@11519
   871
berghofe@11519
   872
berghofe@11519
   873
(**** Simple first order matching functions for terms and proofs ****)
berghofe@11519
   874
berghofe@11519
   875
exception PMatch;
berghofe@11519
   876
berghofe@11519
   877
(** see pattern.ML **)
berghofe@11519
   878
berghofe@12279
   879
fun flt i = filter (fn n => n < i);
berghofe@12279
   880
berghofe@12279
   881
fun fomatch Ts tymatch j =
berghofe@11519
   882
  let
berghofe@11519
   883
    fun mtch (instsp as (tyinsts, insts)) = fn
berghofe@11519
   884
        (Var (ixn, T), t)  =>
berghofe@12279
   885
          if j>0 andalso not (null (flt j (loose_bnos t)))
berghofe@12279
   886
          then raise PMatch
berghofe@12279
   887
          else (tymatch (tyinsts, fn () => (T, fastype_of1 (Ts, t))),
berghofe@12279
   888
            (ixn, t) :: insts)
berghofe@11519
   889
      | (Free (a, T), Free (b, U)) =>
berghofe@12279
   890
	  if a=b then (tymatch (tyinsts, K (T, U)), insts) else raise PMatch
berghofe@11519
   891
      | (Const (a, T), Const (b, U))  =>
berghofe@12279
   892
	  if a=b then (tymatch (tyinsts, K (T, U)), insts) else raise PMatch
berghofe@11519
   893
      | (f $ t, g $ u) => mtch (mtch instsp (f, g)) (t, u)
berghofe@12279
   894
      | (Bound i, Bound j) => if i=j then instsp else raise PMatch
berghofe@11519
   895
      | _ => raise PMatch
berghofe@11519
   896
  in mtch end;
berghofe@11519
   897
berghofe@12279
   898
fun match_proof Ts tymatch =
berghofe@11519
   899
  let
berghofe@12279
   900
    fun optmatch _ inst (None, _) = inst
berghofe@12279
   901
      | optmatch _ _ (Some _, None) = raise PMatch
berghofe@12279
   902
      | optmatch mtch inst (Some x, Some y) = mtch inst (x, y)
berghofe@12279
   903
berghofe@12279
   904
    fun matcht Ts j (pinst, tinst) (t, u) =
berghofe@12279
   905
      (pinst, fomatch Ts tymatch j tinst (t, Envir.beta_norm u));
berghofe@12279
   906
    fun matchT (pinst, (tyinsts, insts)) p =
berghofe@12279
   907
      (pinst, (tymatch (tyinsts, K p), insts));
berghofe@12279
   908
    fun matchTs inst (Ts, Us) = foldl (uncurry matchT) (inst, Ts ~~ Us);
berghofe@12279
   909
berghofe@12279
   910
    fun mtch Ts i j (pinst, tinst) (Hyp (Var (ixn, _)), prf) =
berghofe@12279
   911
          if i = 0 andalso j = 0 then ((ixn, prf) :: pinst, tinst)
berghofe@12279
   912
          else (case apfst (flt i) (apsnd (flt j)
berghofe@12279
   913
                  (prf_add_loose_bnos 0 0 prf ([], []))) of
berghofe@12279
   914
              ([], []) => ((ixn, incr_pboundvars (~i) (~j) prf) :: pinst, tinst)
berghofe@12279
   915
            | ([], _) => if j = 0 then
berghofe@12279
   916
                   ((ixn, incr_pboundvars (~i) (~j) prf) :: pinst, tinst)
berghofe@12279
   917
                 else raise PMatch
berghofe@12279
   918
            | _ => raise PMatch)
berghofe@12279
   919
      | mtch Ts i j inst (prf1 % opt1, prf2 % opt2) =
berghofe@12279
   920
          optmatch (matcht Ts j) (mtch Ts i j inst (prf1, prf2)) (opt1, opt2)
berghofe@12279
   921
      | mtch Ts i j inst (prf1 %% prf2, prf1' %% prf2') =
berghofe@12279
   922
          mtch Ts i j (mtch Ts i j inst (prf1, prf1')) (prf2, prf2')
berghofe@12279
   923
      | mtch Ts i j inst (Abst (_, opT, prf1), Abst (_, opU, prf2)) =
berghofe@12279
   924
          mtch (if_none opU dummyT :: Ts) i (j+1)
berghofe@12279
   925
            (optmatch matchT inst (opT, opU)) (prf1, prf2)
berghofe@12279
   926
      | mtch Ts i j inst (prf1, Abst (_, opU, prf2)) =
berghofe@12279
   927
          mtch (if_none opU dummyT :: Ts) i (j+1) inst
berghofe@12279
   928
            (incr_pboundvars 0 1 prf1 %> Bound 0, prf2)
berghofe@12279
   929
      | mtch Ts i j inst (AbsP (_, opt, prf1), AbsP (_, opu, prf2)) =
berghofe@12279
   930
          mtch Ts (i+1) j (optmatch (matcht Ts j) inst (opt, opu)) (prf1, prf2)
berghofe@12279
   931
      | mtch Ts i j inst (prf1, AbsP (_, _, prf2)) =
berghofe@12279
   932
          mtch Ts (i+1) j inst (incr_pboundvars 1 0 prf1 %% PBound 0, prf2)
berghofe@12279
   933
      | mtch Ts i j inst (PThm ((name1, _), _, prop1, opTs),
berghofe@12279
   934
            PThm ((name2, _), _, prop2, opUs)) =
berghofe@11519
   935
          if name1=name2 andalso prop1=prop2 then
berghofe@12279
   936
            optmatch matchTs inst (opTs, opUs)
berghofe@11519
   937
          else raise PMatch
berghofe@12279
   938
      | mtch Ts i j inst (PAxm (s1, _, opTs), PAxm (s2, _, opUs)) =
berghofe@12279
   939
          if s1=s2 then optmatch matchTs inst (opTs, opUs)
berghofe@11519
   940
          else raise PMatch
berghofe@12279
   941
      | mtch _ _ _ inst (PBound i, PBound j) = if i = j then inst else raise PMatch
berghofe@12279
   942
      | mtch _ _ _ _ _ = raise PMatch
berghofe@12279
   943
  in mtch Ts 0 0 end;
berghofe@11519
   944
berghofe@11519
   945
fun prf_subst (pinst, (tyinsts, insts)) =
berghofe@11519
   946
  let
berghofe@11519
   947
    val substT = typ_subst_TVars_Vartab tyinsts;
berghofe@11519
   948
berghofe@11519
   949
    fun subst' lev (t as Var (ixn, _)) = (case assoc (insts, ixn) of
berghofe@11519
   950
          None => t
berghofe@11519
   951
        | Some u => incr_boundvars lev u)
berghofe@11519
   952
      | subst' lev (Const (s, T)) = Const (s, substT T)
berghofe@11519
   953
      | subst' lev (Free (s, T)) = Free (s, substT T)
berghofe@11519
   954
      | subst' lev (Abs (a, T, body)) = Abs (a, substT T, subst' (lev+1) body)
berghofe@11519
   955
      | subst' lev (f $ t) = subst' lev f $ subst' lev t
berghofe@11519
   956
      | subst' _ t = t;
berghofe@11519
   957
berghofe@11519
   958
    fun subst plev tlev (AbsP (a, t, body)) =
berghofe@11519
   959
          AbsP (a, apsome (subst' tlev) t, subst (plev+1) tlev body)
berghofe@11519
   960
      | subst plev tlev (Abst (a, T, body)) =
berghofe@11519
   961
          Abst (a, apsome substT T, subst plev (tlev+1) body)
berghofe@11615
   962
      | subst plev tlev (prf %% prf') = subst plev tlev prf %% subst plev tlev prf'
berghofe@11615
   963
      | subst plev tlev (prf % t) = subst plev tlev prf % apsome (subst' tlev) t
berghofe@11519
   964
      | subst plev tlev (prf as Hyp (Var (ixn, _))) = (case assoc (pinst, ixn) of
berghofe@11519
   965
          None => prf
berghofe@11519
   966
        | Some prf' => incr_pboundvars plev tlev prf')
berghofe@11519
   967
      | subst _ _ (PThm (id, prf, prop, Ts)) =
berghofe@11519
   968
          PThm (id, prf, prop, apsome (map substT) Ts)
berghofe@11519
   969
      | subst _ _ (PAxm (id, prop, Ts)) =
berghofe@11519
   970
          PAxm (id, prop, apsome (map substT) Ts)
berghofe@11519
   971
      | subst _ _ t = t
berghofe@11519
   972
  in subst 0 0 end;
berghofe@11519
   973
berghofe@11519
   974
(**** rewriting on proof terms ****)
berghofe@11519
   975
berghofe@12279
   976
fun rewrite_prf tymatch (rules, procs) prf =
berghofe@11519
   977
  let
berghofe@11615
   978
    fun rew _ (Abst (_, _, body) % Some t) = Some (prf_subst_bounds [t] body)
berghofe@11615
   979
      | rew _ (AbsP (_, _, body) %% prf) = Some (prf_subst_pbounds [prf] body)
berghofe@11519
   980
      | rew Ts prf = (case get_first (fn (_, r) => r Ts prf) procs of
berghofe@11519
   981
          Some prf' => Some prf'
berghofe@11519
   982
        | None => get_first (fn (prf1, prf2) => Some (prf_subst
berghofe@12279
   983
            (match_proof Ts tymatch ([], (Vartab.empty, [])) (prf1, prf)) prf2)
berghofe@11519
   984
               handle PMatch => None) rules);
berghofe@11519
   985
berghofe@11615
   986
    fun rew0 Ts (prf as AbsP (_, _, prf' %% PBound 0)) =
berghofe@11519
   987
          if prf_loose_Pbvar1 prf' 0 then rew Ts prf
berghofe@11519
   988
          else
berghofe@11519
   989
            let val prf'' = incr_pboundvars (~1) 0 prf'
berghofe@11519
   990
            in Some (if_none (rew Ts prf'') prf'') end
berghofe@11615
   991
      | rew0 Ts (prf as Abst (_, _, prf' % Some (Bound 0))) =
berghofe@11519
   992
          if prf_loose_bvar1 prf' 0 then rew Ts prf
berghofe@11519
   993
          else
berghofe@11519
   994
            let val prf'' = incr_pboundvars 0 (~1) prf'
berghofe@11519
   995
            in Some (if_none (rew Ts prf'') prf'') end
berghofe@11519
   996
      | rew0 Ts prf = rew Ts prf;
berghofe@11519
   997
berghofe@11519
   998
    fun rew1 Ts prf = (case rew2 Ts prf of
berghofe@11519
   999
          Some prf1 => (case rew0 Ts prf1 of
berghofe@11519
  1000
              Some prf2 => Some (if_none (rew1 Ts prf2) prf2)
berghofe@11519
  1001
            | None => Some prf1)
berghofe@11519
  1002
        | None => (case rew0 Ts prf of
berghofe@11519
  1003
              Some prf1 => Some (if_none (rew1 Ts prf1) prf1)
berghofe@11519
  1004
            | None => None))
berghofe@11519
  1005
berghofe@11615
  1006
    and rew2 Ts (prf % Some t) = (case prf of
berghofe@11519
  1007
            Abst (_, _, body) =>
berghofe@11519
  1008
              let val prf' = prf_subst_bounds [t] body
berghofe@11519
  1009
              in Some (if_none (rew2 Ts prf') prf') end
berghofe@11519
  1010
          | _ => (case rew1 Ts prf of
berghofe@11615
  1011
              Some prf' => Some (prf' % Some t)
berghofe@11519
  1012
            | None => None))
berghofe@11615
  1013
      | rew2 Ts (prf % None) = apsome (fn prf' => prf' % None) (rew1 Ts prf)
berghofe@11615
  1014
      | rew2 Ts (prf1 %% prf2) = (case prf1 of
berghofe@11519
  1015
            AbsP (_, _, body) =>
berghofe@11519
  1016
              let val prf' = prf_subst_pbounds [prf2] body
berghofe@11519
  1017
              in Some (if_none (rew2 Ts prf') prf') end
berghofe@11519
  1018
          | _ => (case rew1 Ts prf1 of
berghofe@11519
  1019
              Some prf1' => (case rew1 Ts prf2 of
berghofe@11615
  1020
                  Some prf2' => Some (prf1' %% prf2')
berghofe@11615
  1021
                | None => Some (prf1' %% prf2))
berghofe@11519
  1022
            | None => (case rew1 Ts prf2 of
berghofe@11615
  1023
                  Some prf2' => Some (prf1 %% prf2')
berghofe@11519
  1024
                | None => None)))
berghofe@11519
  1025
      | rew2 Ts (Abst (s, T, prf)) = (case rew1 (if_none T dummyT :: Ts) prf of
berghofe@11519
  1026
            Some prf' => Some (Abst (s, T, prf'))
berghofe@11519
  1027
          | None => None)
berghofe@11519
  1028
      | rew2 Ts (AbsP (s, t, prf)) = (case rew1 Ts prf of
berghofe@11519
  1029
            Some prf' => Some (AbsP (s, t, prf'))
berghofe@11519
  1030
          | None => None)
berghofe@11519
  1031
      | rew2 _ _ = None
berghofe@11519
  1032
berghofe@11519
  1033
  in if_none (rew1 [] prf) prf end;
berghofe@11519
  1034
berghofe@11519
  1035
fun rewrite_proof tsig = rewrite_prf (fn (tab, f) =>
berghofe@11519
  1036
  Type.typ_match tsig (tab, f ()) handle Type.TYPE_MATCH => raise PMatch);
berghofe@11519
  1037
berghofe@11715
  1038
fun rewrite_proof_notypes rews = rewrite_prf fst rews;
berghofe@11615
  1039
berghofe@11519
  1040
(**** theory data ****)
berghofe@11519
  1041
berghofe@11519
  1042
(* data kind 'Pure/proof' *)
berghofe@11519
  1043
berghofe@11519
  1044
structure ProofArgs =
berghofe@11519
  1045
struct
berghofe@11519
  1046
  val name = "Pure/proof";
berghofe@11519
  1047
  type T = ((proof * proof) list *
berghofe@12233
  1048
    (string * (typ list -> proof -> proof option)) list);
berghofe@11519
  1049
berghofe@12233
  1050
  val empty = ([], []);
berghofe@12233
  1051
  val copy = I;
berghofe@12233
  1052
  val prep_ext = I;
berghofe@12233
  1053
  fun merge ((rules1, procs1), (rules2, procs2)) =
wenzelm@12293
  1054
    (merge_lists rules1 rules2, merge_alists procs1 procs2);
berghofe@11519
  1055
  fun print _ _ = ();
berghofe@11519
  1056
end;
berghofe@11519
  1057
berghofe@11519
  1058
structure ProofData = TheoryDataFun(ProofArgs);
berghofe@11519
  1059
berghofe@11519
  1060
val init = ProofData.init;
berghofe@11519
  1061
berghofe@12233
  1062
fun add_prf_rrules rs thy =
berghofe@11519
  1063
  let val r = ProofData.get thy
berghofe@12233
  1064
  in ProofData.put (rs @ fst r, snd r) thy end;
berghofe@11519
  1065
berghofe@12233
  1066
fun add_prf_rprocs ps thy =
berghofe@11519
  1067
  let val r = ProofData.get thy
berghofe@12233
  1068
  in ProofData.put (fst r, ps @ snd r) thy end;
berghofe@11519
  1069
berghofe@11519
  1070
fun thm_proof sign (name, tags) hyps prop prf =
berghofe@11519
  1071
  let
berghofe@11519
  1072
    val hyps' = gen_distinct op aconv hyps;
berghofe@11519
  1073
    val prop = Logic.list_implies (hyps', prop);
berghofe@11519
  1074
    val nvs = needed_vars prop;
berghofe@11519
  1075
    val args = map (fn (v as Var (ixn, _)) =>
berghofe@11519
  1076
        if ixn mem nvs then Some v else None) (vars_of prop) @
berghofe@11519
  1077
      map Some (sort (make_ord atless) (term_frees prop));
wenzelm@11543
  1078
    val opt_prf = if ! proofs = 2 then
berghofe@12233
  1079
        #4 (shrink [] 0 (rewrite_prf fst (ProofData.get_sg sign)
berghofe@11519
  1080
          (foldr (uncurry implies_intr_proof) (hyps', prf))))
berghofe@11519
  1081
      else MinProof (mk_min_proof ([], prf));
berghofe@12233
  1082
    val head = (case strip_combt (fst (strip_combP prf)) of
berghofe@11519
  1083
        (PThm ((old_name, _), prf', prop', None), args') =>
berghofe@11519
  1084
          if (old_name="" orelse old_name=name) andalso
berghofe@11519
  1085
             prop = prop' andalso args = args' then
berghofe@11519
  1086
            PThm ((name, tags), prf', prop, None)
berghofe@11519
  1087
          else
berghofe@11519
  1088
            PThm ((name, tags), opt_prf, prop, None)
berghofe@11519
  1089
      | _ => PThm ((name, tags), opt_prf, prop, None))
berghofe@11519
  1090
  in
berghofe@11519
  1091
    proof_combP (proof_combt' (head, args), map Hyp hyps')
berghofe@11519
  1092
  end;
berghofe@11519
  1093
berghofe@11519
  1094
fun get_name_tags prop prf = (case strip_combt (fst (strip_combP prf)) of
berghofe@11519
  1095
      (PThm ((name, tags), _, prop', _), _) =>
berghofe@11519
  1096
        if prop=prop' then (name, tags) else ("", [])
berghofe@11519
  1097
    | (PAxm (name, prop', _), _) =>
berghofe@11519
  1098
        if prop=prop' then (name, []) else ("", [])
berghofe@11519
  1099
    | _ => ("", []));
berghofe@11519
  1100
berghofe@11519
  1101
end;
berghofe@11519
  1102
berghofe@11519
  1103
structure BasicProofterm : BASIC_PROOFTERM = Proofterm;
berghofe@11519
  1104
open BasicProofterm;