src/HOL/Library/Quotient.thy
author wenzelm
Mon Oct 23 22:11:43 2000 +0200 (2000-10-23)
changeset 10311 3b53ed2c846f
parent 10286 fdcdb8a80988
child 10333 f12ff6a4bc7b
permissions -rw-r--r--
tuned;
wenzelm@10250
     1
(*  Title:      HOL/Library/Quotient.thy
wenzelm@10250
     2
    ID:         $Id$
wenzelm@10250
     3
    Author:     Gertrud Bauer and Markus Wenzel, TU Muenchen
wenzelm@10250
     4
*)
wenzelm@10250
     5
wenzelm@10250
     6
header {*
wenzelm@10250
     7
  \title{Quotients}
wenzelm@10250
     8
  \author{Gertrud Bauer and Markus Wenzel}
wenzelm@10250
     9
*}
wenzelm@10250
    10
wenzelm@10250
    11
theory Quotient = Main:
wenzelm@10250
    12
wenzelm@10250
    13
text {*
wenzelm@10285
    14
 We introduce the notion of quotient types over equivalence relations
wenzelm@10285
    15
 via axiomatic type classes.
wenzelm@10250
    16
*}
wenzelm@10250
    17
wenzelm@10285
    18
subsection {* Equivalence relations and quotient types *}
wenzelm@10250
    19
wenzelm@10250
    20
text {*
wenzelm@10285
    21
 \medskip Type class @{text equiv} models equivalence relations using
wenzelm@10285
    22
 the polymorphic @{text "\<sim> :: 'a => 'a => bool"} relation.
wenzelm@10250
    23
*}
wenzelm@10250
    24
wenzelm@10285
    25
axclass eqv < "term"
wenzelm@10285
    26
consts
wenzelm@10285
    27
  eqv :: "('a::eqv) => 'a => bool"    (infixl "\<sim>" 50)
wenzelm@10250
    28
wenzelm@10285
    29
axclass equiv < eqv
wenzelm@10285
    30
  eqv_refl [intro]: "x \<sim> x"
wenzelm@10285
    31
  eqv_trans [trans]: "x \<sim> y ==> y \<sim> z ==> x \<sim> z"
wenzelm@10285
    32
  eqv_sym [elim?]: "x \<sim> y ==> y \<sim> x"
wenzelm@10250
    33
wenzelm@10250
    34
text {*
wenzelm@10285
    35
 \medskip The quotient type @{text "'a quot"} consists of all
wenzelm@10285
    36
 \emph{equivalence classes} over elements of the base type @{typ 'a}.
wenzelm@10250
    37
*}
wenzelm@10250
    38
wenzelm@10285
    39
typedef 'a quot = "{{x. a \<sim> x}| a::'a::eqv. True}"
wenzelm@10250
    40
  by blast
wenzelm@10250
    41
wenzelm@10250
    42
lemma quotI [intro]: "{x. a \<sim> x} \<in> quot"
wenzelm@10250
    43
  by (unfold quot_def) blast
wenzelm@10250
    44
wenzelm@10250
    45
lemma quotE [elim]: "R \<in> quot ==> (!!a. R = {x. a \<sim> x} ==> C) ==> C"
wenzelm@10250
    46
  by (unfold quot_def) blast
wenzelm@10250
    47
wenzelm@10250
    48
text {*
wenzelm@10250
    49
 \medskip Abstracted equivalence classes are the canonical
wenzelm@10250
    50
 representation of elements of a quotient type.
wenzelm@10250
    51
*}
wenzelm@10250
    52
wenzelm@10250
    53
constdefs
wenzelm@10285
    54
  equivalence_class :: "'a::equiv => 'a quot"    ("\<lfloor>_\<rfloor>")
wenzelm@10250
    55
  "\<lfloor>a\<rfloor> == Abs_quot {x. a \<sim> x}"
wenzelm@10250
    56
wenzelm@10311
    57
theorem quot_exhaust: "\<exists>a. A = \<lfloor>a\<rfloor>"
wenzelm@10278
    58
proof (cases A)
wenzelm@10278
    59
  fix R assume R: "A = Abs_quot R"
wenzelm@10278
    60
  assume "R \<in> quot" hence "\<exists>a. R = {x. a \<sim> x}" by blast
wenzelm@10278
    61
  with R have "\<exists>a. A = Abs_quot {x. a \<sim> x}" by blast
wenzelm@10285
    62
  thus ?thesis by (unfold equivalence_class_def)
wenzelm@10250
    63
qed
wenzelm@10250
    64
wenzelm@10311
    65
lemma quot_cases [cases type: quot]: "(!!a. A = \<lfloor>a\<rfloor> ==> C) ==> C"
wenzelm@10311
    66
  by (insert quot_exhaust) blast
wenzelm@10250
    67
wenzelm@10250
    68
wenzelm@10285
    69
subsection {* Equality on quotients *}
wenzelm@10250
    70
wenzelm@10250
    71
text {*
wenzelm@10286
    72
 Equality of canonical quotient elements coincides with the original
wenzelm@10286
    73
 relation.
wenzelm@10250
    74
*}
wenzelm@10250
    75
wenzelm@10285
    76
theorem equivalence_class_eq [iff?]: "(\<lfloor>a\<rfloor> = \<lfloor>b\<rfloor>) = (a \<sim> b)"
wenzelm@10285
    77
proof
wenzelm@10285
    78
  assume eq: "\<lfloor>a\<rfloor> = \<lfloor>b\<rfloor>"
wenzelm@10285
    79
  show "a \<sim> b"
wenzelm@10285
    80
  proof -
wenzelm@10285
    81
    from eq have "{x. a \<sim> x} = {x. b \<sim> x}"
wenzelm@10285
    82
      by (simp only: equivalence_class_def Abs_quot_inject quotI)
wenzelm@10285
    83
    moreover have "a \<sim> a" ..
wenzelm@10285
    84
    ultimately have "a \<in> {x. b \<sim> x}" by blast
wenzelm@10285
    85
    hence "b \<sim> a" by blast
wenzelm@10285
    86
    thus ?thesis ..
wenzelm@10285
    87
  qed
wenzelm@10285
    88
next
wenzelm@10250
    89
  assume ab: "a \<sim> b"
wenzelm@10285
    90
  show "\<lfloor>a\<rfloor> = \<lfloor>b\<rfloor>"
wenzelm@10285
    91
  proof -
wenzelm@10285
    92
    have "{x. a \<sim> x} = {x. b \<sim> x}"
wenzelm@10285
    93
    proof (rule Collect_cong)
wenzelm@10285
    94
      fix x show "(a \<sim> x) = (b \<sim> x)"
wenzelm@10285
    95
      proof
wenzelm@10285
    96
        from ab have "b \<sim> a" ..
wenzelm@10285
    97
        also assume "a \<sim> x"
wenzelm@10285
    98
        finally show "b \<sim> x" .
wenzelm@10285
    99
      next
wenzelm@10285
   100
        note ab
wenzelm@10285
   101
        also assume "b \<sim> x"
wenzelm@10285
   102
        finally show "a \<sim> x" .
wenzelm@10285
   103
      qed
wenzelm@10250
   104
    qed
wenzelm@10285
   105
    thus ?thesis by (simp only: equivalence_class_def)
wenzelm@10250
   106
  qed
wenzelm@10250
   107
qed
wenzelm@10250
   108
wenzelm@10250
   109
wenzelm@10285
   110
subsection {* Picking representing elements *}
wenzelm@10250
   111
wenzelm@10250
   112
constdefs
wenzelm@10285
   113
  pick :: "'a::equiv quot => 'a"
wenzelm@10250
   114
  "pick A == SOME a. A = \<lfloor>a\<rfloor>"
wenzelm@10250
   115
wenzelm@10285
   116
theorem pick_equiv [intro]: "pick \<lfloor>a\<rfloor> \<sim> a"
wenzelm@10250
   117
proof (unfold pick_def)
wenzelm@10250
   118
  show "(SOME x. \<lfloor>a\<rfloor> = \<lfloor>x\<rfloor>) \<sim> a"
wenzelm@10250
   119
  proof (rule someI2)
wenzelm@10250
   120
    show "\<lfloor>a\<rfloor> = \<lfloor>a\<rfloor>" ..
wenzelm@10250
   121
    fix x assume "\<lfloor>a\<rfloor> = \<lfloor>x\<rfloor>"
wenzelm@10285
   122
    hence "a \<sim> x" .. thus "x \<sim> a" ..
wenzelm@10250
   123
  qed
wenzelm@10250
   124
qed
wenzelm@10250
   125
wenzelm@10285
   126
theorem pick_inverse: "\<lfloor>pick A\<rfloor> = A"
wenzelm@10250
   127
proof (cases A)
wenzelm@10250
   128
  fix a assume a: "A = \<lfloor>a\<rfloor>"
wenzelm@10285
   129
  hence "pick A \<sim> a" by (simp only: pick_equiv)
wenzelm@10285
   130
  hence "\<lfloor>pick A\<rfloor> = \<lfloor>a\<rfloor>" ..
wenzelm@10250
   131
  with a show ?thesis by simp
wenzelm@10250
   132
qed
wenzelm@10250
   133
wenzelm@10285
   134
text {*
wenzelm@10285
   135
 \medskip The following rules support canonical function definitions
wenzelm@10285
   136
 on quotient types.
wenzelm@10285
   137
*}
wenzelm@10285
   138
wenzelm@10285
   139
theorem cong_definition1:
wenzelm@10285
   140
  "(!!X. f X == g (pick X)) ==>
wenzelm@10285
   141
    (!!x x'. x \<sim> x' ==> g x = g x') ==>
wenzelm@10285
   142
    f \<lfloor>a\<rfloor> = g a"
wenzelm@10285
   143
proof -
wenzelm@10285
   144
  assume cong: "!!x x'. x \<sim> x' ==> g x = g x'"
wenzelm@10285
   145
  assume "!!X. f X == g (pick X)"
wenzelm@10285
   146
  hence "f \<lfloor>a\<rfloor> = g (pick \<lfloor>a\<rfloor>)" by (simp only:)
wenzelm@10285
   147
  also have "\<dots> = g a"
wenzelm@10285
   148
  proof (rule cong)
wenzelm@10285
   149
    show "pick \<lfloor>a\<rfloor> \<sim> a" ..
wenzelm@10285
   150
  qed
wenzelm@10285
   151
  finally show ?thesis .
wenzelm@10285
   152
qed
wenzelm@10285
   153
wenzelm@10285
   154
theorem cong_definition2:
wenzelm@10285
   155
  "(!!X Y. f X Y == g (pick X) (pick Y)) ==>
wenzelm@10285
   156
    (!!x x' y y'. x \<sim> x' ==> y \<sim> y' ==> g x y = g x' y') ==>
wenzelm@10285
   157
    f \<lfloor>a\<rfloor> \<lfloor>b\<rfloor> = g a b"
wenzelm@10285
   158
proof -
wenzelm@10285
   159
  assume cong: "!!x x' y y'. x \<sim> x' ==> y \<sim> y' ==> g x y = g x' y'"
wenzelm@10285
   160
  assume "!!X Y. f X Y == g (pick X) (pick Y)"
wenzelm@10285
   161
  hence "f \<lfloor>a\<rfloor> \<lfloor>b\<rfloor> = g (pick \<lfloor>a\<rfloor>) (pick \<lfloor>b\<rfloor>)" by (simp only:)
wenzelm@10285
   162
  also have "\<dots> = g a b"
wenzelm@10285
   163
  proof (rule cong)
wenzelm@10285
   164
    show "pick \<lfloor>a\<rfloor> \<sim> a" ..
wenzelm@10285
   165
    show "pick \<lfloor>b\<rfloor> \<sim> b" ..
wenzelm@10285
   166
  qed
wenzelm@10285
   167
  finally show ?thesis .
wenzelm@10285
   168
qed
wenzelm@10285
   169
wenzelm@10250
   170
end