src/HOL/Library/Discrete.thy
author wenzelm
Sun Jan 11 13:44:25 2015 +0100 (2015-01-11)
changeset 59349 3bde948f439c
parent 58881 b9556a055632
child 60500 903bb1495239
permissions -rw-r--r--
tuned -- more Sidekick-friendly layout;
wenzelm@59349
     1
(* Author: Florian Haftmann, TU Muenchen *)
haftmann@51174
     2
wenzelm@58881
     3
section {* Common discrete functions *}
haftmann@51174
     4
haftmann@51174
     5
theory Discrete
haftmann@51174
     6
imports Main
haftmann@51174
     7
begin
haftmann@51174
     8
haftmann@51174
     9
subsection {* Discrete logarithm *}
haftmann@51174
    10
wenzelm@59349
    11
fun log :: "nat \<Rightarrow> nat"
wenzelm@59349
    12
  where [simp del]: "log n = (if n < 2 then 0 else Suc (log (n div 2)))"
haftmann@51174
    13
wenzelm@59349
    14
lemma log_zero [simp]: "log 0 = 0"
haftmann@51174
    15
  by (simp add: log.simps)
haftmann@51174
    16
wenzelm@59349
    17
lemma log_one [simp]: "log 1 = 0"
haftmann@51174
    18
  by (simp add: log.simps)
haftmann@51174
    19
wenzelm@59349
    20
lemma log_Suc_zero [simp]: "log (Suc 0) = 0"
haftmann@51174
    21
  using log_one by simp
haftmann@51174
    22
wenzelm@59349
    23
lemma log_rec: "n \<ge> 2 \<Longrightarrow> log n = Suc (log (n div 2))"
haftmann@51174
    24
  by (simp add: log.simps)
haftmann@51174
    25
wenzelm@59349
    26
lemma log_twice [simp]: "n \<noteq> 0 \<Longrightarrow> log (2 * n) = Suc (log n)"
haftmann@51174
    27
  by (simp add: log_rec)
haftmann@51174
    28
wenzelm@59349
    29
lemma log_half [simp]: "log (n div 2) = log n - 1"
haftmann@51174
    30
proof (cases "n < 2")
haftmann@51174
    31
  case True
haftmann@51174
    32
  then have "n = 0 \<or> n = 1" by arith
haftmann@51174
    33
  then show ?thesis by (auto simp del: One_nat_def)
haftmann@51174
    34
next
wenzelm@59349
    35
  case False
wenzelm@59349
    36
  then show ?thesis by (simp add: log_rec)
haftmann@51174
    37
qed
haftmann@51174
    38
wenzelm@59349
    39
lemma log_exp [simp]: "log (2 ^ n) = n"
haftmann@51174
    40
  by (induct n) simp_all
haftmann@51174
    41
wenzelm@59349
    42
lemma log_mono: "mono log"
haftmann@51174
    43
proof
haftmann@51174
    44
  fix m n :: nat
haftmann@51174
    45
  assume "m \<le> n"
haftmann@51174
    46
  then show "log m \<le> log n"
haftmann@51174
    47
  proof (induct m arbitrary: n rule: log.induct)
haftmann@51174
    48
    case (1 m)
haftmann@51174
    49
    then have mn2: "m div 2 \<le> n div 2" by arith
haftmann@51174
    50
    show "log m \<le> log n"
haftmann@51174
    51
    proof (cases "m < 2")
haftmann@51174
    52
      case True
haftmann@51174
    53
      then have "m = 0 \<or> m = 1" by arith
haftmann@51174
    54
      then show ?thesis by (auto simp del: One_nat_def)
haftmann@51174
    55
    next
haftmann@51174
    56
      case False
haftmann@51174
    57
      with mn2 have "m \<ge> 2" and "n \<ge> 2" by auto arith
haftmann@51174
    58
      from False have m2_0: "m div 2 \<noteq> 0" by arith
haftmann@51174
    59
      with mn2 have n2_0: "n div 2 \<noteq> 0" by arith
haftmann@51174
    60
      from False "1.hyps" mn2 have "log (m div 2) \<le> log (n div 2)" by blast
haftmann@51174
    61
      with m2_0 n2_0 have "log (2 * (m div 2)) \<le> log (2 * (n div 2))" by simp
haftmann@51174
    62
      with m2_0 n2_0 `m \<ge> 2` `n \<ge> 2` show ?thesis by (simp only: log_rec [of m] log_rec [of n]) simp
haftmann@51174
    63
    qed
haftmann@51174
    64
  qed
haftmann@51174
    65
qed
haftmann@51174
    66
haftmann@51174
    67
haftmann@51174
    68
subsection {* Discrete square root *}
haftmann@51174
    69
haftmann@51174
    70
definition sqrt :: "nat \<Rightarrow> nat"
wenzelm@59349
    71
  where "sqrt n = Max {m. m\<^sup>2 \<le> n}"
haftmann@51263
    72
haftmann@51263
    73
lemma sqrt_aux:
haftmann@51263
    74
  fixes n :: nat
wenzelm@53015
    75
  shows "finite {m. m\<^sup>2 \<le> n}" and "{m. m\<^sup>2 \<le> n} \<noteq> {}"
haftmann@51263
    76
proof -
haftmann@51263
    77
  { fix m
wenzelm@53015
    78
    assume "m\<^sup>2 \<le> n"
haftmann@51263
    79
    then have "m \<le> n"
haftmann@51263
    80
      by (cases m) (simp_all add: power2_eq_square)
haftmann@51263
    81
  } note ** = this
wenzelm@53015
    82
  then have "{m. m\<^sup>2 \<le> n} \<subseteq> {m. m \<le> n}" by auto
wenzelm@53015
    83
  then show "finite {m. m\<^sup>2 \<le> n}" by (rule finite_subset) rule
wenzelm@53015
    84
  have "0\<^sup>2 \<le> n" by simp
wenzelm@53015
    85
  then show *: "{m. m\<^sup>2 \<le> n} \<noteq> {}" by blast
haftmann@51263
    86
qed
haftmann@51263
    87
wenzelm@59349
    88
lemma [code]: "sqrt n = Max (Set.filter (\<lambda>m. m\<^sup>2 \<le> n) {0..n})"
haftmann@51263
    89
proof -
wenzelm@53015
    90
  from power2_nat_le_imp_le [of _ n] have "{m. m \<le> n \<and> m\<^sup>2 \<le> n} = {m. m\<^sup>2 \<le> n}" by auto
haftmann@51263
    91
  then show ?thesis by (simp add: sqrt_def Set.filter_def)
haftmann@51263
    92
qed
haftmann@51174
    93
wenzelm@59349
    94
lemma sqrt_inverse_power2 [simp]: "sqrt (n\<^sup>2) = n"
haftmann@51174
    95
proof -
haftmann@51174
    96
  have "{m. m \<le> n} \<noteq> {}" by auto
haftmann@51174
    97
  then have "Max {m. m \<le> n} \<le> n" by auto
haftmann@51174
    98
  then show ?thesis
haftmann@51174
    99
    by (auto simp add: sqrt_def power2_nat_le_eq_le intro: antisym)
haftmann@51174
   100
qed
haftmann@51174
   101
wenzelm@59349
   102
lemma sqrt_zero [simp]: "sqrt 0 = 0"
haftmann@58787
   103
  using sqrt_inverse_power2 [of 0] by simp
haftmann@58787
   104
wenzelm@59349
   105
lemma sqrt_one [simp]: "sqrt 1 = 1"
haftmann@58787
   106
  using sqrt_inverse_power2 [of 1] by simp
haftmann@58787
   107
wenzelm@59349
   108
lemma mono_sqrt: "mono sqrt"
haftmann@51263
   109
proof
haftmann@51263
   110
  fix m n :: nat
haftmann@51263
   111
  have *: "0 * 0 \<le> m" by simp
haftmann@51263
   112
  assume "m \<le> n"
haftmann@51263
   113
  then show "sqrt m \<le> sqrt n"
haftmann@51263
   114
    by (auto intro!: Max_mono `0 * 0 \<le> m` finite_less_ub simp add: power2_eq_square sqrt_def)
haftmann@51263
   115
qed
haftmann@51263
   116
wenzelm@59349
   117
lemma sqrt_greater_zero_iff [simp]: "sqrt n > 0 \<longleftrightarrow> n > 0"
haftmann@51174
   118
proof -
wenzelm@53015
   119
  have *: "0 < Max {m. m\<^sup>2 \<le> n} \<longleftrightarrow> (\<exists>a\<in>{m. m\<^sup>2 \<le> n}. 0 < a)"
haftmann@51263
   120
    by (rule Max_gr_iff) (fact sqrt_aux)+
haftmann@51263
   121
  show ?thesis
haftmann@51263
   122
  proof
haftmann@51263
   123
    assume "0 < sqrt n"
wenzelm@53015
   124
    then have "0 < Max {m. m\<^sup>2 \<le> n}" by (simp add: sqrt_def)
haftmann@51263
   125
    with * show "0 < n" by (auto dest: power2_nat_le_imp_le)
haftmann@51263
   126
  next
haftmann@51263
   127
    assume "0 < n"
wenzelm@53015
   128
    then have "1\<^sup>2 \<le> n \<and> 0 < (1::nat)" by simp
wenzelm@53015
   129
    then have "\<exists>q. q\<^sup>2 \<le> n \<and> 0 < q" ..
wenzelm@53015
   130
    with * have "0 < Max {m. m\<^sup>2 \<le> n}" by blast
haftmann@51263
   131
    then show "0 < sqrt n" by  (simp add: sqrt_def)
haftmann@51263
   132
  qed
haftmann@51263
   133
qed
haftmann@51263
   134
wenzelm@59349
   135
lemma sqrt_power2_le [simp]: "(sqrt n)\<^sup>2 \<le> n" (* FIXME tune proof *)
haftmann@51263
   136
proof (cases "n > 0")
haftmann@58787
   137
  case False then show ?thesis by simp
haftmann@51263
   138
next
haftmann@51263
   139
  case True then have "sqrt n > 0" by simp
wenzelm@53015
   140
  then have "mono (times (Max {m. m\<^sup>2 \<le> n}))" by (auto intro: mono_times_nat simp add: sqrt_def)
wenzelm@53015
   141
  then have *: "Max {m. m\<^sup>2 \<le> n} * Max {m. m\<^sup>2 \<le> n} = Max (times (Max {m. m\<^sup>2 \<le> n}) ` {m. m\<^sup>2 \<le> n})"
haftmann@51263
   142
    using sqrt_aux [of n] by (rule mono_Max_commute)
haftmann@51263
   143
  have "Max (op * (Max {m. m * m \<le> n}) ` {m. m * m \<le> n}) \<le> n"
haftmann@51263
   144
    apply (subst Max_le_iff)
haftmann@51263
   145
    apply (metis (mono_tags) finite_imageI finite_less_ub le_square)
haftmann@51263
   146
    apply simp
haftmann@51263
   147
    apply (metis le0 mult_0_right)
haftmann@51263
   148
    apply auto
haftmann@51263
   149
    proof -
haftmann@51263
   150
      fix q
haftmann@51263
   151
      assume "q * q \<le> n"
haftmann@51263
   152
      show "Max {m. m * m \<le> n} * q \<le> n"
haftmann@51263
   153
      proof (cases "q > 0")
haftmann@51263
   154
        case False then show ?thesis by simp
haftmann@51263
   155
      next
haftmann@51263
   156
        case True then have "mono (times q)" by (rule mono_times_nat)
haftmann@51263
   157
        then have "q * Max {m. m * m \<le> n} = Max (times q ` {m. m * m \<le> n})"
haftmann@51263
   158
          using sqrt_aux [of n] by (auto simp add: power2_eq_square intro: mono_Max_commute)
haftmann@57514
   159
        then have "Max {m. m * m \<le> n} * q = Max (times q ` {m. m * m \<le> n})" by (simp add: ac_simps)
wenzelm@59349
   160
        then show ?thesis
wenzelm@59349
   161
          apply simp
haftmann@51263
   162
          apply (subst Max_le_iff)
haftmann@51263
   163
          apply auto
haftmann@51263
   164
          apply (metis (mono_tags) finite_imageI finite_less_ub le_square)
haftmann@51263
   165
          apply (metis `q * q \<le> n`)
wenzelm@59349
   166
          apply (metis `q * q \<le> n` le_cases mult_le_mono1 mult_le_mono2 order_trans)
wenzelm@59349
   167
          done
haftmann@51263
   168
      qed
haftmann@51263
   169
    qed
haftmann@51263
   170
  with * show ?thesis by (simp add: sqrt_def power2_eq_square)
haftmann@51174
   171
qed
haftmann@51174
   172
wenzelm@59349
   173
lemma sqrt_le: "sqrt n \<le> n"
haftmann@51263
   174
  using sqrt_aux [of n] by (auto simp add: sqrt_def intro: power2_nat_le_imp_le)
haftmann@51174
   175
haftmann@51174
   176
hide_const (open) log sqrt
haftmann@51174
   177
haftmann@51174
   178
end
haftmann@51174
   179