src/ZF/Constructible/Wellorderings.thy
author paulson
Fri Jul 12 11:24:40 2002 +0200 (2002-07-12)
changeset 13352 3cd767f8d78b
parent 13339 0f89104dd377
child 13428 99e52e78eb65
permissions -rw-r--r--
new definitions of fun_apply and M_is_recfun
paulson@13223
     1
header {*Relativized Wellorderings*}
paulson@13223
     2
paulson@13223
     3
theory Wellorderings = Relative:
paulson@13223
     4
paulson@13223
     5
text{*We define functions analogous to @{term ordermap} @{term ordertype} 
paulson@13223
     6
      but without using recursion.  Instead, there is a direct appeal
paulson@13223
     7
      to Replacement.  This will be the basis for a version relativized
paulson@13223
     8
      to some class @{text M}.  The main result is Theorem I 7.6 in Kunen,
paulson@13223
     9
      page 17.*}
paulson@13223
    10
paulson@13223
    11
paulson@13223
    12
subsection{*Wellorderings*}
paulson@13223
    13
paulson@13223
    14
constdefs
paulson@13223
    15
  irreflexive :: "[i=>o,i,i]=>o"
paulson@13299
    16
    "irreflexive(M,A,r) == \<forall>x[M]. x\<in>A --> <x,x> \<notin> r"
paulson@13223
    17
  
paulson@13223
    18
  transitive_rel :: "[i=>o,i,i]=>o"
paulson@13223
    19
    "transitive_rel(M,A,r) == 
paulson@13299
    20
	\<forall>x[M]. x\<in>A --> (\<forall>y[M]. y\<in>A --> (\<forall>z[M]. z\<in>A --> 
paulson@13223
    21
                          <x,y>\<in>r --> <y,z>\<in>r --> <x,z>\<in>r))"
paulson@13223
    22
paulson@13223
    23
  linear_rel :: "[i=>o,i,i]=>o"
paulson@13223
    24
    "linear_rel(M,A,r) == 
paulson@13299
    25
	\<forall>x[M]. x\<in>A --> (\<forall>y[M]. y\<in>A --> <x,y>\<in>r | x=y | <y,x>\<in>r)"
paulson@13223
    26
paulson@13223
    27
  wellfounded :: "[i=>o,i]=>o"
paulson@13223
    28
    --{*EVERY non-empty set has an @{text r}-minimal element*}
paulson@13223
    29
    "wellfounded(M,r) == 
paulson@13299
    30
	\<forall>x[M]. ~ empty(M,x) 
paulson@13299
    31
                 --> (\<exists>y[M]. y\<in>x & ~(\<exists>z[M]. z\<in>x & <z,y> \<in> r))"
paulson@13223
    32
  wellfounded_on :: "[i=>o,i,i]=>o"
paulson@13223
    33
    --{*every non-empty SUBSET OF @{text A} has an @{text r}-minimal element*}
paulson@13223
    34
    "wellfounded_on(M,A,r) == 
paulson@13299
    35
	\<forall>x[M]. ~ empty(M,x) --> subset(M,x,A)
paulson@13299
    36
                 --> (\<exists>y[M]. y\<in>x & ~(\<exists>z[M]. z\<in>x & <z,y> \<in> r))"
paulson@13223
    37
paulson@13223
    38
  wellordered :: "[i=>o,i,i]=>o"
paulson@13223
    39
    --{*every non-empty subset of @{text A} has an @{text r}-minimal element*}
paulson@13223
    40
    "wellordered(M,A,r) == 
paulson@13223
    41
	transitive_rel(M,A,r) & linear_rel(M,A,r) & wellfounded_on(M,A,r)"
paulson@13223
    42
paulson@13223
    43
paulson@13223
    44
subsubsection {*Trivial absoluteness proofs*}
paulson@13223
    45
paulson@13223
    46
lemma (in M_axioms) irreflexive_abs [simp]: 
paulson@13223
    47
     "M(A) ==> irreflexive(M,A,r) <-> irrefl(A,r)"
paulson@13223
    48
by (simp add: irreflexive_def irrefl_def)
paulson@13223
    49
paulson@13223
    50
lemma (in M_axioms) transitive_rel_abs [simp]: 
paulson@13223
    51
     "M(A) ==> transitive_rel(M,A,r) <-> trans[A](r)"
paulson@13223
    52
by (simp add: transitive_rel_def trans_on_def)
paulson@13223
    53
paulson@13223
    54
lemma (in M_axioms) linear_rel_abs [simp]: 
paulson@13223
    55
     "M(A) ==> linear_rel(M,A,r) <-> linear(A,r)"
paulson@13223
    56
by (simp add: linear_rel_def linear_def)
paulson@13223
    57
paulson@13223
    58
lemma (in M_axioms) wellordered_is_trans_on: 
paulson@13223
    59
    "[| wellordered(M,A,r); M(A) |] ==> trans[A](r)"
paulson@13223
    60
by (auto simp add: wellordered_def )
paulson@13223
    61
paulson@13223
    62
lemma (in M_axioms) wellordered_is_linear: 
paulson@13223
    63
    "[| wellordered(M,A,r); M(A) |] ==> linear(A,r)"
paulson@13223
    64
by (auto simp add: wellordered_def )
paulson@13223
    65
paulson@13223
    66
lemma (in M_axioms) wellordered_is_wellfounded_on: 
paulson@13223
    67
    "[| wellordered(M,A,r); M(A) |] ==> wellfounded_on(M,A,r)"
paulson@13223
    68
by (auto simp add: wellordered_def )
paulson@13223
    69
paulson@13223
    70
lemma (in M_axioms) wellfounded_imp_wellfounded_on: 
paulson@13223
    71
    "[| wellfounded(M,r); M(A) |] ==> wellfounded_on(M,A,r)"
paulson@13223
    72
by (auto simp add: wellfounded_def wellfounded_on_def)
paulson@13223
    73
paulson@13269
    74
lemma (in M_axioms) wellfounded_on_subset_A:
paulson@13269
    75
     "[| wellfounded_on(M,A,r);  B<=A |] ==> wellfounded_on(M,B,r)"
paulson@13269
    76
by (simp add: wellfounded_on_def, blast)
paulson@13269
    77
paulson@13223
    78
paulson@13223
    79
subsubsection {*Well-founded relations*}
paulson@13223
    80
paulson@13223
    81
lemma  (in M_axioms) wellfounded_on_iff_wellfounded:
paulson@13223
    82
     "wellfounded_on(M,A,r) <-> wellfounded(M, r \<inter> A*A)"
paulson@13223
    83
apply (simp add: wellfounded_on_def wellfounded_def, safe)
paulson@13223
    84
 apply blast 
paulson@13299
    85
apply (drule_tac x=x in rspec, assumption, blast) 
paulson@13223
    86
done
paulson@13223
    87
paulson@13247
    88
lemma (in M_axioms) wellfounded_on_imp_wellfounded:
paulson@13247
    89
     "[|wellfounded_on(M,A,r); r \<subseteq> A*A|] ==> wellfounded(M,r)"
paulson@13247
    90
by (simp add: wellfounded_on_iff_wellfounded subset_Int_iff)
paulson@13247
    91
paulson@13269
    92
lemma (in M_axioms) wellfounded_on_field_imp_wellfounded:
paulson@13269
    93
     "wellfounded_on(M, field(r), r) ==> wellfounded(M,r)"
paulson@13269
    94
by (simp add: wellfounded_def wellfounded_on_iff_wellfounded, fast)
paulson@13269
    95
paulson@13269
    96
lemma (in M_axioms) wellfounded_iff_wellfounded_on_field:
paulson@13269
    97
     "M(r) ==> wellfounded(M,r) <-> wellfounded_on(M, field(r), r)"
paulson@13269
    98
by (blast intro: wellfounded_imp_wellfounded_on
paulson@13269
    99
                 wellfounded_on_field_imp_wellfounded)
paulson@13269
   100
paulson@13251
   101
(*Consider the least z in domain(r) such that P(z) does not hold...*)
paulson@13251
   102
lemma (in M_axioms) wellfounded_induct: 
paulson@13251
   103
     "[| wellfounded(M,r); M(a); M(r); separation(M, \<lambda>x. ~P(x));  
paulson@13251
   104
         \<forall>x. M(x) & (\<forall>y. <y,x> \<in> r --> P(y)) --> P(x) |]
paulson@13251
   105
      ==> P(a)";
paulson@13251
   106
apply (simp (no_asm_use) add: wellfounded_def)
paulson@13299
   107
apply (drule_tac x="{z \<in> domain(r). ~P(z)}" in rspec)
paulson@13299
   108
apply (blast dest: transM)+
paulson@13251
   109
done
paulson@13251
   110
paulson@13223
   111
lemma (in M_axioms) wellfounded_on_induct: 
paulson@13223
   112
     "[| a\<in>A;  wellfounded_on(M,A,r);  M(A);  
paulson@13223
   113
       separation(M, \<lambda>x. x\<in>A --> ~P(x));  
paulson@13223
   114
       \<forall>x\<in>A. M(x) & (\<forall>y\<in>A. <y,x> \<in> r --> P(y)) --> P(x) |]
paulson@13223
   115
      ==> P(a)";
paulson@13223
   116
apply (simp (no_asm_use) add: wellfounded_on_def)
paulson@13299
   117
apply (drule_tac x="{z\<in>A. z\<in>A --> ~P(z)}" in rspec)
paulson@13299
   118
apply (blast intro: transM)+
paulson@13223
   119
done
paulson@13223
   120
paulson@13223
   121
text{*The assumption @{term "r \<subseteq> A*A"} justifies strengthening the induction
paulson@13223
   122
      hypothesis by removing the restriction to @{term A}.*}
paulson@13223
   123
lemma (in M_axioms) wellfounded_on_induct2: 
paulson@13223
   124
     "[| a\<in>A;  wellfounded_on(M,A,r);  M(A);  r \<subseteq> A*A;  
paulson@13223
   125
       separation(M, \<lambda>x. x\<in>A --> ~P(x));  
paulson@13223
   126
       \<forall>x\<in>A. M(x) & (\<forall>y. <y,x> \<in> r --> P(y)) --> P(x) |]
paulson@13223
   127
      ==> P(a)";
paulson@13223
   128
by (rule wellfounded_on_induct, assumption+, blast)
paulson@13223
   129
paulson@13223
   130
paulson@13223
   131
subsubsection {*Kunen's lemma IV 3.14, page 123*}
paulson@13223
   132
paulson@13223
   133
lemma (in M_axioms) linear_imp_relativized: 
paulson@13223
   134
     "linear(A,r) ==> linear_rel(M,A,r)" 
paulson@13223
   135
by (simp add: linear_def linear_rel_def) 
paulson@13223
   136
paulson@13223
   137
lemma (in M_axioms) trans_on_imp_relativized: 
paulson@13223
   138
     "trans[A](r) ==> transitive_rel(M,A,r)" 
paulson@13223
   139
by (unfold transitive_rel_def trans_on_def, blast) 
paulson@13223
   140
paulson@13223
   141
lemma (in M_axioms) wf_on_imp_relativized: 
paulson@13223
   142
     "wf[A](r) ==> wellfounded_on(M,A,r)" 
paulson@13223
   143
apply (simp add: wellfounded_on_def wf_def wf_on_def, clarify) 
paulson@13339
   144
apply (drule_tac x=x in spec, blast) 
paulson@13223
   145
done
paulson@13223
   146
paulson@13223
   147
lemma (in M_axioms) wf_imp_relativized: 
paulson@13223
   148
     "wf(r) ==> wellfounded(M,r)" 
paulson@13223
   149
apply (simp add: wellfounded_def wf_def, clarify) 
paulson@13339
   150
apply (drule_tac x=x in spec, blast) 
paulson@13223
   151
done
paulson@13223
   152
paulson@13223
   153
lemma (in M_axioms) well_ord_imp_relativized: 
paulson@13223
   154
     "well_ord(A,r) ==> wellordered(M,A,r)" 
paulson@13223
   155
by (simp add: wellordered_def well_ord_def tot_ord_def part_ord_def
paulson@13223
   156
       linear_imp_relativized trans_on_imp_relativized wf_on_imp_relativized)
paulson@13223
   157
paulson@13223
   158
paulson@13223
   159
subsection{* Relativized versions of order-isomorphisms and order types *}
paulson@13223
   160
paulson@13223
   161
lemma (in M_axioms) order_isomorphism_abs [simp]: 
paulson@13223
   162
     "[| M(A); M(B); M(f) |] 
paulson@13223
   163
      ==> order_isomorphism(M,A,r,B,s,f) <-> f \<in> ord_iso(A,r,B,s)"
paulson@13352
   164
by (simp add: apply_closed order_isomorphism_def ord_iso_def)
paulson@13223
   165
paulson@13223
   166
lemma (in M_axioms) pred_set_abs [simp]: 
paulson@13223
   167
     "[| M(r); M(B) |] ==> pred_set(M,A,x,r,B) <-> B = Order.pred(A,x,r)"
paulson@13223
   168
apply (simp add: pred_set_def Order.pred_def)
paulson@13223
   169
apply (blast dest: transM) 
paulson@13223
   170
done
paulson@13223
   171
paulson@13245
   172
lemma (in M_axioms) pred_closed [intro,simp]: 
paulson@13223
   173
     "[| M(A); M(r); M(x) |] ==> M(Order.pred(A,x,r))"
paulson@13223
   174
apply (simp add: Order.pred_def) 
paulson@13245
   175
apply (insert pred_separation [of r x], simp) 
paulson@13223
   176
done
paulson@13223
   177
paulson@13223
   178
lemma (in M_axioms) membership_abs [simp]: 
paulson@13223
   179
     "[| M(r); M(A) |] ==> membership(M,A,r) <-> r = Memrel(A)"
paulson@13223
   180
apply (simp add: membership_def Memrel_def, safe)
paulson@13223
   181
  apply (rule equalityI) 
paulson@13223
   182
   apply clarify 
paulson@13223
   183
   apply (frule transM, assumption)
paulson@13223
   184
   apply blast
paulson@13223
   185
  apply clarify 
paulson@13223
   186
  apply (subgoal_tac "M(<xb,ya>)", blast) 
paulson@13223
   187
  apply (blast dest: transM) 
paulson@13223
   188
 apply auto 
paulson@13223
   189
done
paulson@13223
   190
paulson@13223
   191
lemma (in M_axioms) M_Memrel_iff:
paulson@13223
   192
     "M(A) ==> 
paulson@13298
   193
      Memrel(A) = {z \<in> A*A. \<exists>x[M]. \<exists>y[M]. z = \<langle>x,y\<rangle> & x \<in> y}"
paulson@13223
   194
apply (simp add: Memrel_def) 
paulson@13223
   195
apply (blast dest: transM)
paulson@13223
   196
done 
paulson@13223
   197
paulson@13245
   198
lemma (in M_axioms) Memrel_closed [intro,simp]: 
paulson@13223
   199
     "M(A) ==> M(Memrel(A))"
paulson@13223
   200
apply (simp add: M_Memrel_iff) 
paulson@13245
   201
apply (insert Memrel_separation, simp)
paulson@13223
   202
done
paulson@13223
   203
paulson@13223
   204
paulson@13223
   205
subsection {* Main results of Kunen, Chapter 1 section 6 *}
paulson@13223
   206
paulson@13223
   207
text{*Subset properties-- proved outside the locale*}
paulson@13223
   208
paulson@13223
   209
lemma linear_rel_subset: 
paulson@13223
   210
    "[| linear_rel(M,A,r);  B<=A |] ==> linear_rel(M,B,r)"
paulson@13223
   211
by (unfold linear_rel_def, blast)
paulson@13223
   212
paulson@13223
   213
lemma transitive_rel_subset: 
paulson@13223
   214
    "[| transitive_rel(M,A,r);  B<=A |] ==> transitive_rel(M,B,r)"
paulson@13223
   215
by (unfold transitive_rel_def, blast)
paulson@13223
   216
paulson@13223
   217
lemma wellfounded_on_subset: 
paulson@13223
   218
    "[| wellfounded_on(M,A,r);  B<=A |] ==> wellfounded_on(M,B,r)"
paulson@13223
   219
by (unfold wellfounded_on_def subset_def, blast)
paulson@13223
   220
paulson@13223
   221
lemma wellordered_subset: 
paulson@13223
   222
    "[| wellordered(M,A,r);  B<=A |] ==> wellordered(M,B,r)"
paulson@13223
   223
apply (unfold wellordered_def)
paulson@13223
   224
apply (blast intro: linear_rel_subset transitive_rel_subset 
paulson@13223
   225
		    wellfounded_on_subset)
paulson@13223
   226
done
paulson@13223
   227
paulson@13223
   228
text{*Inductive argument for Kunen's Lemma 6.1, etc.
paulson@13223
   229
      Simple proof from Halmos, page 72*}
paulson@13223
   230
lemma  (in M_axioms) wellordered_iso_subset_lemma: 
paulson@13223
   231
     "[| wellordered(M,A,r);  f \<in> ord_iso(A,r, A',r);  A'<= A;  y \<in> A;  
paulson@13223
   232
       M(A);  M(f);  M(r) |] ==> ~ <f`y, y> \<in> r"
paulson@13223
   233
apply (unfold wellordered_def ord_iso_def)
paulson@13223
   234
apply (elim conjE CollectE) 
paulson@13223
   235
apply (erule wellfounded_on_induct, assumption+)
paulson@13223
   236
 apply (insert well_ord_iso_separation [of A f r])
paulson@13352
   237
 apply (simp, clarify) 
paulson@13223
   238
apply (drule_tac a = x in bij_is_fun [THEN apply_type], assumption, blast)
paulson@13223
   239
done
paulson@13223
   240
paulson@13223
   241
paulson@13223
   242
text{*Kunen's Lemma 6.1: there's no order-isomorphism to an initial segment
paulson@13223
   243
      of a well-ordering*}
paulson@13223
   244
lemma (in M_axioms) wellordered_iso_predD:
paulson@13223
   245
     "[| wellordered(M,A,r);  f \<in> ord_iso(A, r, Order.pred(A,x,r), r);  
paulson@13223
   246
       M(A);  M(f);  M(r) |] ==> x \<notin> A"
paulson@13223
   247
apply (rule notI) 
paulson@13223
   248
apply (frule wellordered_iso_subset_lemma, assumption)
paulson@13223
   249
apply (auto elim: predE)  
paulson@13223
   250
(*Now we know  ~ (f`x < x) *)
paulson@13223
   251
apply (drule ord_iso_is_bij [THEN bij_is_fun, THEN apply_type], assumption)
paulson@13223
   252
(*Now we also know f`x  \<in> pred(A,x,r);  contradiction! *)
paulson@13223
   253
apply (simp add: Order.pred_def)
paulson@13223
   254
done
paulson@13223
   255
paulson@13223
   256
paulson@13223
   257
lemma (in M_axioms) wellordered_iso_pred_eq_lemma:
paulson@13223
   258
     "[| f \<in> \<langle>Order.pred(A,y,r), r\<rangle> \<cong> \<langle>Order.pred(A,x,r), r\<rangle>;
paulson@13223
   259
       wellordered(M,A,r); x\<in>A; y\<in>A; M(A); M(f); M(r) |] ==> <x,y> \<notin> r"
paulson@13223
   260
apply (frule wellordered_is_trans_on, assumption)
paulson@13223
   261
apply (rule notI) 
paulson@13223
   262
apply (drule_tac x2=y and x=x and r2=r in 
paulson@13223
   263
         wellordered_subset [OF _ pred_subset, THEN wellordered_iso_predD]) 
paulson@13223
   264
apply (simp add: trans_pred_pred_eq) 
paulson@13223
   265
apply (blast intro: predI dest: transM)+
paulson@13223
   266
done
paulson@13223
   267
paulson@13223
   268
paulson@13223
   269
text{*Simple consequence of Lemma 6.1*}
paulson@13223
   270
lemma (in M_axioms) wellordered_iso_pred_eq:
paulson@13223
   271
     "[| wellordered(M,A,r);
paulson@13223
   272
       f \<in> ord_iso(Order.pred(A,a,r), r, Order.pred(A,c,r), r);   
paulson@13223
   273
       M(A);  M(f);  M(r);  a\<in>A;  c\<in>A |] ==> a=c"
paulson@13223
   274
apply (frule wellordered_is_trans_on, assumption)
paulson@13223
   275
apply (frule wellordered_is_linear, assumption)
paulson@13223
   276
apply (erule_tac x=a and y=c in linearE, auto) 
paulson@13223
   277
apply (drule ord_iso_sym)
paulson@13223
   278
(*two symmetric cases*)
paulson@13223
   279
apply (blast dest: wellordered_iso_pred_eq_lemma)+ 
paulson@13223
   280
done
paulson@13223
   281
paulson@13223
   282
lemma (in M_axioms) wellfounded_on_asym:
paulson@13223
   283
     "[| wellfounded_on(M,A,r);  <a,x>\<in>r;  a\<in>A; x\<in>A;  M(A) |] ==> <x,a>\<notin>r"
paulson@13223
   284
apply (simp add: wellfounded_on_def) 
paulson@13299
   285
apply (drule_tac x="{x,a}" in rspec) 
paulson@13299
   286
apply (blast dest: transM)+
paulson@13223
   287
done
paulson@13223
   288
paulson@13223
   289
lemma (in M_axioms) wellordered_asym:
paulson@13223
   290
     "[| wellordered(M,A,r);  <a,x>\<in>r;  a\<in>A; x\<in>A;  M(A) |] ==> <x,a>\<notin>r"
paulson@13223
   291
by (simp add: wellordered_def, blast dest: wellfounded_on_asym)
paulson@13223
   292
paulson@13223
   293
paulson@13223
   294
text{*Surely a shorter proof using lemmas in @{text Order}?
wenzelm@13295
   295
     Like @{text well_ord_iso_preserving}?*}
paulson@13223
   296
lemma (in M_axioms) ord_iso_pred_imp_lt:
paulson@13223
   297
     "[| f \<in> ord_iso(Order.pred(A,x,r), r, i, Memrel(i));
paulson@13223
   298
       g \<in> ord_iso(Order.pred(A,y,r), r, j, Memrel(j));
paulson@13223
   299
       wellordered(M,A,r);  x \<in> A;  y \<in> A; M(A); M(r); M(f); M(g); M(j);
paulson@13223
   300
       Ord(i); Ord(j); \<langle>x,y\<rangle> \<in> r |]
paulson@13223
   301
      ==> i < j"
paulson@13223
   302
apply (frule wellordered_is_trans_on, assumption)
paulson@13223
   303
apply (frule_tac y=y in transM, assumption) 
paulson@13223
   304
apply (rule_tac i=i and j=j in Ord_linear_lt, auto)  
paulson@13223
   305
txt{*case @{term "i=j"} yields a contradiction*}
paulson@13223
   306
 apply (rule_tac x1=x and A1="Order.pred(A,y,r)" in 
paulson@13223
   307
          wellordered_iso_predD [THEN notE]) 
paulson@13223
   308
   apply (blast intro: wellordered_subset [OF _ pred_subset]) 
paulson@13223
   309
  apply (simp add: trans_pred_pred_eq)
paulson@13223
   310
  apply (blast intro: Ord_iso_implies_eq ord_iso_sym ord_iso_trans) 
paulson@13223
   311
 apply (simp_all add: pred_iff pred_closed converse_closed comp_closed)
paulson@13223
   312
txt{*case @{term "j<i"} also yields a contradiction*}
paulson@13223
   313
apply (frule restrict_ord_iso2, assumption+) 
paulson@13223
   314
apply (frule ord_iso_sym [THEN ord_iso_is_bij, THEN bij_is_fun]) 
paulson@13223
   315
apply (frule apply_type, blast intro: ltD) 
paulson@13223
   316
  --{*thus @{term "converse(f)`j \<in> Order.pred(A,x,r)"}*}
paulson@13223
   317
apply (simp add: pred_iff) 
paulson@13223
   318
apply (subgoal_tac
paulson@13299
   319
       "\<exists>h[M]. h \<in> ord_iso(Order.pred(A,y,r), r, 
paulson@13223
   320
                               Order.pred(A, converse(f)`j, r), r)")
paulson@13223
   321
 apply (clarify, frule wellordered_iso_pred_eq, assumption+)
paulson@13223
   322
 apply (blast dest: wellordered_asym)  
paulson@13299
   323
apply (intro rexI)
paulson@13299
   324
 apply (blast intro: Ord_iso_implies_eq ord_iso_sym ord_iso_trans)+
paulson@13223
   325
done
paulson@13223
   326
paulson@13223
   327
paulson@13223
   328
lemma ord_iso_converse1:
paulson@13223
   329
     "[| f: ord_iso(A,r,B,s);  <b, f`a>: s;  a:A;  b:B |] 
paulson@13223
   330
      ==> <converse(f) ` b, a> : r"
paulson@13223
   331
apply (frule ord_iso_converse, assumption+) 
paulson@13223
   332
apply (blast intro: ord_iso_is_bij [THEN bij_is_fun, THEN apply_funtype]) 
paulson@13223
   333
apply (simp add: left_inverse_bij [OF ord_iso_is_bij])
paulson@13223
   334
done
paulson@13223
   335
paulson@13223
   336
paulson@13223
   337
subsection {* Order Types: A Direct Construction by Replacement*}
paulson@13223
   338
paulson@13223
   339
text{*This follows Kunen's Theorem I 7.6, page 17.*}
paulson@13223
   340
paulson@13223
   341
constdefs
paulson@13223
   342
  
paulson@13223
   343
  obase :: "[i=>o,i,i,i] => o"
paulson@13223
   344
       --{*the domain of @{text om}, eventually shown to equal @{text A}*}
paulson@13223
   345
   "obase(M,A,r,z) == 
paulson@13293
   346
	\<forall>a[M]. 
paulson@13293
   347
         a \<in> z <-> 
paulson@13306
   348
          (a\<in>A & (\<exists>x[M]. \<exists>g[M]. \<exists>mx[M]. \<exists>par[M]. 
paulson@13306
   349
                   ordinal(M,x) & membership(M,x,mx) & pred_set(M,A,a,r,par) &
paulson@13306
   350
                   order_isomorphism(M,par,r,x,mx,g)))"
paulson@13223
   351
paulson@13223
   352
paulson@13223
   353
  omap :: "[i=>o,i,i,i] => o"  
paulson@13223
   354
    --{*the function that maps wosets to order types*}
paulson@13223
   355
   "omap(M,A,r,f) == 
paulson@13293
   356
	\<forall>z[M].
paulson@13293
   357
         z \<in> f <-> 
paulson@13299
   358
          (\<exists>a[M]. a\<in>A & 
paulson@13306
   359
           (\<exists>x[M]. \<exists>g[M]. \<exists>mx[M]. \<exists>par[M]. 
paulson@13306
   360
                ordinal(M,x) & pair(M,a,x,z) & membership(M,x,mx) & 
paulson@13306
   361
                pred_set(M,A,a,r,par) & order_isomorphism(M,par,r,x,mx,g)))"
paulson@13223
   362
paulson@13223
   363
paulson@13223
   364
  otype :: "[i=>o,i,i,i] => o"  --{*the order types themselves*}
paulson@13299
   365
   "otype(M,A,r,i) == \<exists>f[M]. omap(M,A,r,f) & is_range(M,f,i)"
paulson@13223
   366
paulson@13223
   367
paulson@13223
   368
paulson@13223
   369
lemma (in M_axioms) obase_iff:
paulson@13223
   370
     "[| M(A); M(r); M(z) |] 
paulson@13223
   371
      ==> obase(M,A,r,z) <-> 
paulson@13306
   372
          z = {a\<in>A. \<exists>x[M]. \<exists>g[M]. Ord(x) & 
paulson@13223
   373
                          g \<in> ord_iso(Order.pred(A,a,r),r,x,Memrel(x))}"
paulson@13223
   374
apply (simp add: obase_def Memrel_closed pred_closed)
paulson@13223
   375
apply (rule iffI) 
paulson@13223
   376
 prefer 2 apply blast 
paulson@13223
   377
apply (rule equalityI) 
paulson@13223
   378
 apply (clarify, frule transM, assumption, rotate_tac -1, simp) 
paulson@13223
   379
apply (clarify, frule transM, assumption, force)
paulson@13223
   380
done
paulson@13223
   381
paulson@13223
   382
text{*Can also be proved with the premise @{term "M(z)"} instead of
paulson@13223
   383
      @{term "M(f)"}, but that version is less useful.*}
paulson@13223
   384
lemma (in M_axioms) omap_iff:
paulson@13223
   385
     "[| omap(M,A,r,f); M(A); M(r); M(f) |] 
paulson@13223
   386
      ==> z \<in> f <->
paulson@13306
   387
      (\<exists>a\<in>A. \<exists>x[M]. \<exists>g[M]. z = <a,x> & Ord(x) & 
paulson@13306
   388
                        g \<in> ord_iso(Order.pred(A,a,r),r,x,Memrel(x)))"
paulson@13223
   389
apply (rotate_tac 1) 
paulson@13223
   390
apply (simp add: omap_def Memrel_closed pred_closed) 
paulson@13293
   391
apply (rule iffI)
paulson@13293
   392
 apply (drule_tac [2] x=z in rspec)
paulson@13293
   393
 apply (drule_tac x=z in rspec)
paulson@13293
   394
 apply (blast dest: transM)+
paulson@13223
   395
done
paulson@13223
   396
paulson@13223
   397
lemma (in M_axioms) omap_unique:
paulson@13223
   398
     "[| omap(M,A,r,f); omap(M,A,r,f'); M(A); M(r); M(f); M(f') |] ==> f' = f" 
paulson@13223
   399
apply (rule equality_iffI) 
paulson@13223
   400
apply (simp add: omap_iff) 
paulson@13223
   401
done
paulson@13223
   402
paulson@13223
   403
lemma (in M_axioms) omap_yields_Ord:
paulson@13223
   404
     "[| omap(M,A,r,f); \<langle>a,x\<rangle> \<in> f; M(a); M(x) |]  ==> Ord(x)"
paulson@13223
   405
apply (simp add: omap_def, blast) 
paulson@13223
   406
done
paulson@13223
   407
paulson@13223
   408
lemma (in M_axioms) otype_iff:
paulson@13223
   409
     "[| otype(M,A,r,i); M(A); M(r); M(i) |] 
paulson@13223
   410
      ==> x \<in> i <-> 
paulson@13306
   411
          (M(x) & Ord(x) & 
paulson@13306
   412
           (\<exists>a\<in>A. \<exists>g[M]. g \<in> ord_iso(Order.pred(A,a,r),r,x,Memrel(x))))"
paulson@13306
   413
apply (auto simp add: omap_iff otype_def)
paulson@13306
   414
 apply (blast intro: transM) 
paulson@13306
   415
apply (rule rangeI) 
paulson@13223
   416
apply (frule transM, assumption)
paulson@13223
   417
apply (simp add: omap_iff, blast)
paulson@13223
   418
done
paulson@13223
   419
paulson@13223
   420
lemma (in M_axioms) otype_eq_range:
paulson@13306
   421
     "[| omap(M,A,r,f); otype(M,A,r,i); M(A); M(r); M(f); M(i) |] 
paulson@13306
   422
      ==> i = range(f)"
paulson@13223
   423
apply (auto simp add: otype_def omap_iff)
paulson@13223
   424
apply (blast dest: omap_unique) 
paulson@13223
   425
done
paulson@13223
   426
paulson@13223
   427
paulson@13223
   428
lemma (in M_axioms) Ord_otype:
paulson@13223
   429
     "[| otype(M,A,r,i); trans[A](r); M(A); M(r); M(i) |] ==> Ord(i)"
paulson@13223
   430
apply (rotate_tac 1) 
paulson@13223
   431
apply (rule OrdI) 
paulson@13223
   432
prefer 2 
paulson@13223
   433
    apply (simp add: Ord_def otype_def omap_def) 
paulson@13223
   434
    apply clarify 
paulson@13223
   435
    apply (frule pair_components_in_M, assumption) 
paulson@13223
   436
    apply blast 
paulson@13223
   437
apply (auto simp add: Transset_def otype_iff) 
paulson@13306
   438
  apply (blast intro: transM)
paulson@13306
   439
 apply (blast intro: Ord_in_Ord) 
paulson@13223
   440
apply (rename_tac y a g)
paulson@13223
   441
apply (frule ord_iso_sym [THEN ord_iso_is_bij, THEN bij_is_fun, 
paulson@13223
   442
			  THEN apply_funtype],  assumption)  
paulson@13223
   443
apply (rule_tac x="converse(g)`y" in bexI)
paulson@13223
   444
 apply (frule_tac a="converse(g) ` y" in ord_iso_restrict_pred, assumption) 
paulson@13223
   445
apply (safe elim!: predE) 
paulson@13306
   446
apply (blast intro: restrict_ord_iso ord_iso_sym ltI dest: transM)
paulson@13223
   447
done
paulson@13223
   448
paulson@13223
   449
lemma (in M_axioms) domain_omap:
paulson@13223
   450
     "[| omap(M,A,r,f);  obase(M,A,r,B); M(A); M(r); M(B); M(f) |] 
paulson@13223
   451
      ==> domain(f) = B"
paulson@13223
   452
apply (rotate_tac 2) 
paulson@13223
   453
apply (simp add: domain_closed obase_iff) 
paulson@13223
   454
apply (rule equality_iffI) 
paulson@13223
   455
apply (simp add: domain_iff omap_iff, blast) 
paulson@13223
   456
done
paulson@13223
   457
paulson@13223
   458
lemma (in M_axioms) omap_subset: 
paulson@13223
   459
     "[| omap(M,A,r,f); obase(M,A,r,B); otype(M,A,r,i); 
paulson@13223
   460
       M(A); M(r); M(f); M(B); M(i) |] ==> f \<subseteq> B * i"
paulson@13223
   461
apply (rotate_tac 3, clarify) 
paulson@13223
   462
apply (simp add: omap_iff obase_iff) 
paulson@13223
   463
apply (force simp add: otype_iff) 
paulson@13223
   464
done
paulson@13223
   465
paulson@13223
   466
lemma (in M_axioms) omap_funtype: 
paulson@13223
   467
     "[| omap(M,A,r,f); obase(M,A,r,B); otype(M,A,r,i); 
paulson@13223
   468
       M(A); M(r); M(f); M(B); M(i) |] ==> f \<in> B -> i"
paulson@13223
   469
apply (rotate_tac 3) 
paulson@13223
   470
apply (simp add: domain_omap omap_subset Pi_iff function_def omap_iff) 
paulson@13223
   471
apply (blast intro: Ord_iso_implies_eq ord_iso_sym ord_iso_trans) 
paulson@13223
   472
done
paulson@13223
   473
paulson@13223
   474
paulson@13223
   475
lemma (in M_axioms) wellordered_omap_bij:
paulson@13223
   476
     "[| wellordered(M,A,r); omap(M,A,r,f); obase(M,A,r,B); otype(M,A,r,i); 
paulson@13223
   477
       M(A); M(r); M(f); M(B); M(i) |] ==> f \<in> bij(B,i)"
paulson@13223
   478
apply (insert omap_funtype [of A r f B i]) 
paulson@13223
   479
apply (auto simp add: bij_def inj_def) 
paulson@13223
   480
prefer 2  apply (blast intro: fun_is_surj dest: otype_eq_range) 
paulson@13339
   481
apply (frule_tac a=w in apply_Pair, assumption) 
paulson@13339
   482
apply (frule_tac a=x in apply_Pair, assumption) 
paulson@13223
   483
apply (simp add: omap_iff) 
paulson@13223
   484
apply (blast intro: wellordered_iso_pred_eq ord_iso_sym ord_iso_trans) 
paulson@13223
   485
done
paulson@13223
   486
paulson@13223
   487
paulson@13223
   488
text{*This is not the final result: we must show @{term "oB(A,r) = A"}*}
paulson@13223
   489
lemma (in M_axioms) omap_ord_iso:
paulson@13223
   490
     "[| wellordered(M,A,r); omap(M,A,r,f); obase(M,A,r,B); otype(M,A,r,i); 
paulson@13223
   491
       M(A); M(r); M(f); M(B); M(i) |] ==> f \<in> ord_iso(B,r,i,Memrel(i))"
paulson@13223
   492
apply (rule ord_isoI)
paulson@13223
   493
 apply (erule wellordered_omap_bij, assumption+) 
paulson@13223
   494
apply (insert omap_funtype [of A r f B i], simp) 
paulson@13339
   495
apply (frule_tac a=x in apply_Pair, assumption) 
paulson@13339
   496
apply (frule_tac a=y in apply_Pair, assumption) 
paulson@13223
   497
apply (auto simp add: omap_iff)
paulson@13223
   498
 txt{*direction 1: assuming @{term "\<langle>x,y\<rangle> \<in> r"}*}
paulson@13223
   499
 apply (blast intro: ltD ord_iso_pred_imp_lt)
paulson@13223
   500
 txt{*direction 2: proving @{term "\<langle>x,y\<rangle> \<in> r"} using linearity of @{term r}*}
paulson@13223
   501
apply (rename_tac x y g ga) 
paulson@13223
   502
apply (frule wellordered_is_linear, assumption, 
paulson@13223
   503
       erule_tac x=x and y=y in linearE, assumption+) 
paulson@13223
   504
txt{*the case @{term "x=y"} leads to immediate contradiction*} 
paulson@13223
   505
apply (blast elim: mem_irrefl) 
paulson@13223
   506
txt{*the case @{term "\<langle>y,x\<rangle> \<in> r"}: handle like the opposite direction*}
paulson@13223
   507
apply (blast dest: ord_iso_pred_imp_lt ltD elim: mem_asym) 
paulson@13223
   508
done
paulson@13223
   509
paulson@13223
   510
lemma (in M_axioms) Ord_omap_image_pred:
paulson@13223
   511
     "[| wellordered(M,A,r); omap(M,A,r,f); obase(M,A,r,B); otype(M,A,r,i); 
paulson@13223
   512
       M(A); M(r); M(f); M(B); M(i); b \<in> A |] ==> Ord(f `` Order.pred(A,b,r))"
paulson@13223
   513
apply (frule wellordered_is_trans_on, assumption)
paulson@13223
   514
apply (rule OrdI) 
paulson@13223
   515
	prefer 2 apply (simp add: image_iff omap_iff Ord_def, blast) 
paulson@13223
   516
txt{*Hard part is to show that the image is a transitive set.*}
paulson@13223
   517
apply (rotate_tac 3)
paulson@13223
   518
apply (simp add: Transset_def, clarify) 
paulson@13223
   519
apply (simp add: image_iff pred_iff apply_iff [OF omap_funtype [of A r f B i]])
paulson@13223
   520
apply (rename_tac c j, clarify)
paulson@13223
   521
apply (frule omap_funtype [of A r f B, THEN apply_funtype], assumption+)
paulson@13223
   522
apply (subgoal_tac "j : i") 
paulson@13223
   523
	prefer 2 apply (blast intro: Ord_trans Ord_otype)
paulson@13223
   524
apply (subgoal_tac "converse(f) ` j : B") 
paulson@13223
   525
	prefer 2 
paulson@13223
   526
	apply (blast dest: wellordered_omap_bij [THEN bij_converse_bij, 
paulson@13223
   527
                                      THEN bij_is_fun, THEN apply_funtype])
paulson@13223
   528
apply (rule_tac x="converse(f) ` j" in bexI) 
paulson@13223
   529
 apply (simp add: right_inverse_bij [OF wellordered_omap_bij]) 
paulson@13223
   530
apply (intro predI conjI)
paulson@13223
   531
 apply (erule_tac b=c in trans_onD) 
paulson@13223
   532
 apply (rule ord_iso_converse1 [OF omap_ord_iso [of A r f B i]])
paulson@13223
   533
apply (auto simp add: obase_iff)
paulson@13223
   534
done
paulson@13223
   535
paulson@13223
   536
lemma (in M_axioms) restrict_omap_ord_iso:
paulson@13223
   537
     "[| wellordered(M,A,r); omap(M,A,r,f); obase(M,A,r,B); otype(M,A,r,i); 
paulson@13223
   538
       D \<subseteq> B; M(A); M(r); M(f); M(B); M(i) |] 
paulson@13223
   539
      ==> restrict(f,D) \<in> (\<langle>D,r\<rangle> \<cong> \<langle>f``D, Memrel(f``D)\<rangle>)"
paulson@13223
   540
apply (frule ord_iso_restrict_image [OF omap_ord_iso [of A r f B i]], 
paulson@13223
   541
       assumption+)
paulson@13223
   542
apply (drule ord_iso_sym [THEN subset_ord_iso_Memrel]) 
paulson@13223
   543
apply (blast dest: subsetD [OF omap_subset]) 
paulson@13223
   544
apply (drule ord_iso_sym, simp) 
paulson@13223
   545
done
paulson@13223
   546
paulson@13223
   547
lemma (in M_axioms) obase_equals: 
paulson@13223
   548
     "[| wellordered(M,A,r); omap(M,A,r,f); obase(M,A,r,B); otype(M,A,r,i);
paulson@13223
   549
       M(A); M(r); M(f); M(B); M(i) |] ==> B = A"
paulson@13223
   550
apply (rotate_tac 4)
paulson@13223
   551
apply (rule equalityI, force simp add: obase_iff, clarify) 
paulson@13223
   552
apply (subst obase_iff [of A r B, THEN iffD1], assumption+, simp) 
paulson@13223
   553
apply (frule wellordered_is_wellfounded_on, assumption)
paulson@13223
   554
apply (erule wellfounded_on_induct, assumption+)
paulson@13306
   555
 apply (frule obase_equals_separation [of A r], assumption) 
paulson@13306
   556
 apply (simp, clarify) 
paulson@13223
   557
apply (rename_tac b) 
paulson@13223
   558
apply (subgoal_tac "Order.pred(A,b,r) <= B") 
paulson@13306
   559
 apply (blast intro!: restrict_omap_ord_iso Ord_omap_image_pred)
paulson@13306
   560
apply (force simp add: pred_iff obase_iff)  
paulson@13223
   561
done
paulson@13223
   562
paulson@13223
   563
paulson@13223
   564
paulson@13223
   565
text{*Main result: @{term om} gives the order-isomorphism 
paulson@13223
   566
      @{term "\<langle>A,r\<rangle> \<cong> \<langle>i, Memrel(i)\<rangle>"} *}
paulson@13223
   567
theorem (in M_axioms) omap_ord_iso_otype:
paulson@13223
   568
     "[| wellordered(M,A,r); omap(M,A,r,f); obase(M,A,r,B); otype(M,A,r,i);
paulson@13223
   569
       M(A); M(r); M(f); M(B); M(i) |] ==> f \<in> ord_iso(A, r, i, Memrel(i))"
paulson@13223
   570
apply (frule omap_ord_iso, assumption+) 
paulson@13223
   571
apply (frule obase_equals, assumption+, blast) 
paulson@13293
   572
done 
paulson@13223
   573
paulson@13223
   574
lemma (in M_axioms) obase_exists:
paulson@13293
   575
     "[| M(A); M(r) |] ==> \<exists>z[M]. obase(M,A,r,z)"
paulson@13223
   576
apply (simp add: obase_def) 
paulson@13223
   577
apply (insert obase_separation [of A r])
paulson@13223
   578
apply (simp add: separation_def)  
paulson@13223
   579
done
paulson@13223
   580
paulson@13223
   581
lemma (in M_axioms) omap_exists:
paulson@13293
   582
     "[| M(A); M(r) |] ==> \<exists>z[M]. omap(M,A,r,z)"
paulson@13223
   583
apply (insert obase_exists [of A r]) 
paulson@13223
   584
apply (simp add: omap_def) 
paulson@13223
   585
apply (insert omap_replacement [of A r])
paulson@13223
   586
apply (simp add: strong_replacement_def, clarify) 
paulson@13299
   587
apply (drule_tac x=x in rspec, clarify) 
paulson@13223
   588
apply (simp add: Memrel_closed pred_closed obase_iff)
paulson@13223
   589
apply (erule impE) 
paulson@13223
   590
 apply (clarsimp simp add: univalent_def)
paulson@13223
   591
 apply (blast intro: Ord_iso_implies_eq ord_iso_sym ord_iso_trans, clarify)  
paulson@13293
   592
apply (rule_tac x=Y in rexI) 
paulson@13293
   593
apply (simp add: Memrel_closed pred_closed obase_iff, blast, assumption)
paulson@13223
   594
done
paulson@13223
   595
paulson@13293
   596
declare rall_simps [simp] rex_simps [simp]
paulson@13293
   597
paulson@13223
   598
lemma (in M_axioms) otype_exists:
paulson@13299
   599
     "[| wellordered(M,A,r); M(A); M(r) |] ==> \<exists>i[M]. otype(M,A,r,i)"
paulson@13293
   600
apply (insert omap_exists [of A r])  
paulson@13293
   601
apply (simp add: otype_def, safe)
paulson@13299
   602
apply (rule_tac x="range(x)" in rexI) 
paulson@13299
   603
apply blast+
paulson@13223
   604
done
paulson@13223
   605
paulson@13223
   606
theorem (in M_axioms) omap_ord_iso_otype:
paulson@13223
   607
     "[| wellordered(M,A,r); M(A); M(r) |]
paulson@13299
   608
      ==> \<exists>f[M]. (\<exists>i[M]. Ord(i) & f \<in> ord_iso(A, r, i, Memrel(i)))"
paulson@13223
   609
apply (insert obase_exists [of A r] omap_exists [of A r] otype_exists [of A r], simp, clarify)
paulson@13299
   610
apply (rename_tac i) 
paulson@13223
   611
apply (subgoal_tac "Ord(i)", blast intro: omap_ord_iso_otype) 
paulson@13223
   612
apply (rule Ord_otype) 
paulson@13223
   613
    apply (force simp add: otype_def range_closed) 
paulson@13223
   614
   apply (simp_all add: wellordered_is_trans_on) 
paulson@13223
   615
done
paulson@13223
   616
paulson@13223
   617
lemma (in M_axioms) ordertype_exists:
paulson@13223
   618
     "[| wellordered(M,A,r); M(A); M(r) |]
paulson@13299
   619
      ==> \<exists>f[M]. (\<exists>i[M]. Ord(i) & f \<in> ord_iso(A, r, i, Memrel(i)))"
paulson@13223
   620
apply (insert obase_exists [of A r] omap_exists [of A r] otype_exists [of A r], simp, clarify)
paulson@13299
   621
apply (rename_tac i) 
paulson@13223
   622
apply (subgoal_tac "Ord(i)", blast intro: omap_ord_iso_otype) 
paulson@13223
   623
apply (rule Ord_otype) 
paulson@13223
   624
    apply (force simp add: otype_def range_closed) 
paulson@13223
   625
   apply (simp_all add: wellordered_is_trans_on) 
paulson@13223
   626
done
paulson@13223
   627
paulson@13223
   628
paulson@13223
   629
lemma (in M_axioms) relativized_imp_well_ord: 
paulson@13223
   630
     "[| wellordered(M,A,r); M(A); M(r) |] ==> well_ord(A,r)" 
paulson@13223
   631
apply (insert ordertype_exists [of A r], simp)
paulson@13223
   632
apply (blast intro: well_ord_ord_iso well_ord_Memrel )  
paulson@13223
   633
done
paulson@13223
   634
paulson@13223
   635
subsection {*Kunen's theorem 5.4, poage 127*}
paulson@13223
   636
paulson@13223
   637
text{*(a) The notion of Wellordering is absolute*}
paulson@13223
   638
theorem (in M_axioms) well_ord_abs [simp]: 
paulson@13223
   639
     "[| M(A); M(r) |] ==> wellordered(M,A,r) <-> well_ord(A,r)" 
paulson@13223
   640
by (blast intro: well_ord_imp_relativized relativized_imp_well_ord)  
paulson@13223
   641
paulson@13223
   642
paulson@13223
   643
text{*(b) Order types are absolute*}
paulson@13223
   644
lemma (in M_axioms) 
paulson@13223
   645
     "[| wellordered(M,A,r); f \<in> ord_iso(A, r, i, Memrel(i));
paulson@13223
   646
       M(A); M(r); M(f); M(i); Ord(i) |] ==> i = ordertype(A,r)"
paulson@13223
   647
by (blast intro: Ord_ordertype relativized_imp_well_ord ordertype_ord_iso
paulson@13223
   648
                 Ord_iso_implies_eq ord_iso_sym ord_iso_trans)
paulson@13223
   649
paulson@13223
   650
end