src/HOL/Hyperreal/Series.thy
author nipkow
Fri Feb 18 11:48:53 2005 +0100 (2005-02-18)
changeset 15536 3ce1cb7a24f0
parent 15360 300e09825d8b
child 15537 5538d3244b4d
permissions -rw-r--r--
starting to get rid of sumr
paulson@10751
     1
(*  Title       : Series.thy
paulson@10751
     2
    Author      : Jacques D. Fleuriot
paulson@10751
     3
    Copyright   : 1998  University of Cambridge
paulson@14416
     4
paulson@14416
     5
Converted to Isar and polished by lcp
paulson@10751
     6
*) 
paulson@10751
     7
paulson@14416
     8
header{*Finite Summation and Infinite Series*}
paulson@10751
     9
nipkow@15131
    10
theory Series
nipkow@15140
    11
imports SEQ Lim
nipkow@15131
    12
begin
paulson@10751
    13
nipkow@15536
    14
declare atLeastLessThan_empty[simp];
nipkow@15536
    15
paulson@15047
    16
syntax sumr :: "[nat,nat,(nat=>real)] => real"
paulson@15047
    17
translations
paulson@15047
    18
  "sumr m n f" => "setsum (f::nat=>real) (atLeastLessThan m n)"
paulson@10751
    19
paulson@10751
    20
constdefs
paulson@14416
    21
   sums  :: "[nat=>real,real] => bool"     (infixr "sums" 80)
nipkow@15536
    22
   "f sums s  == (%n. setsum f {0..<n}) ----> s"
paulson@10751
    23
paulson@14416
    24
   summable :: "(nat=>real) => bool"
paulson@14416
    25
   "summable f == (\<exists>s. f sums s)"
paulson@14416
    26
paulson@14416
    27
   suminf   :: "(nat=>real) => real"
paulson@14416
    28
   "suminf f == (@s. f sums s)"
paulson@14416
    29
paulson@14416
    30
paulson@15047
    31
lemma sumr_Suc [simp]:
nipkow@15536
    32
  "setsum f {m..<Suc n} = (if n < m then 0 else setsum f {m..<n} + f(n))"
nipkow@15536
    33
by (simp add: atLeastLessThanSuc add_commute)
paulson@14416
    34
nipkow@15536
    35
(*
paulson@14416
    36
lemma sumr_add: "sumr m n f + sumr m n g = sumr m n (%n. f n + g n)"
paulson@15047
    37
by (simp add: setsum_addf)
paulson@14416
    38
paulson@15047
    39
lemma sumr_mult: "r * sumr m n (f::nat=>real) = sumr m n (%n. r * f n)"
paulson@15047
    40
by (simp add: setsum_mult)
paulson@14416
    41
paulson@14416
    42
lemma sumr_split_add [rule_format]:
paulson@15047
    43
     "n < p --> sumr 0 n f + sumr n p f = sumr 0 p (f::nat=>real)"
paulson@15251
    44
apply (induct "p", auto)
paulson@14416
    45
apply (rename_tac k) 
paulson@14416
    46
apply (subgoal_tac "n=k", auto) 
paulson@14416
    47
done
nipkow@15536
    48
*)
nipkow@15536
    49
nipkow@15536
    50
lemma sumr_split_add: "\<lbrakk> m \<le> n; n \<le> p \<rbrakk> \<Longrightarrow>
nipkow@15536
    51
  setsum f {m..<n} + setsum f {n..<p} = setsum f {m..<p::nat}"
nipkow@15536
    52
by (simp add:setsum_Un_disjoint[symmetric] ivl_disj_int ivl_disj_un)
paulson@14416
    53
paulson@15047
    54
lemma sumr_split_add_minus:
paulson@15047
    55
     "n < p ==> sumr 0 p f + - sumr 0 n f = sumr n p (f::nat=>real)"
nipkow@15536
    56
using sumr_split_add [of 0 n p f,symmetric]
paulson@14416
    57
apply (simp add: add_ac)
paulson@14416
    58
done
paulson@14416
    59
nipkow@15536
    60
lemma sumr_diff_mult_const: "sumr 0 n f - (real n*r) = sumr 0 n (%i. f i - r)"
nipkow@15536
    61
by (simp add: diff_minus setsum_addf real_of_nat_def)
nipkow@15536
    62
nipkow@15536
    63
(*
paulson@15047
    64
lemma sumr_rabs: "abs(sumr m n  (f::nat=>real)) \<le> sumr m n (%i. abs(f i))"
paulson@15047
    65
by (simp add: setsum_abs)
paulson@14416
    66
paulson@15047
    67
lemma sumr_rabs_ge_zero [iff]: "0 \<le> sumr m n (%n. abs (f n))"
paulson@15047
    68
by (simp add: setsum_abs_ge_zero)
paulson@14416
    69
paulson@15047
    70
text{*Just a congruence rule*}
paulson@15047
    71
lemma sumr_fun_eq:
paulson@15047
    72
     "(\<forall>r. m \<le> r & r < n --> f r = g r) ==> sumr m n f = sumr m n g"
paulson@15047
    73
by (auto intro: setsum_cong) 
paulson@14416
    74
paulson@15047
    75
lemma sumr_less_bounds_zero [simp]: "n < m ==> sumr m n f = 0"
paulson@15047
    76
by (simp add: atLeastLessThan_empty)
paulson@14416
    77
paulson@14416
    78
lemma sumr_minus: "sumr m n (%i. - f i) = - sumr m n f"
paulson@15047
    79
by (simp add: Finite_Set.setsum_negf)
nipkow@15536
    80
*)
paulson@14416
    81
paulson@14416
    82
lemma sumr_shift_bounds: "sumr (m+k) (n+k) f = sumr m n (%i. f(i + k))"
paulson@15251
    83
by (induct "n", auto)
paulson@14416
    84
paulson@14416
    85
lemma sumr_minus_one_realpow_zero [simp]: "sumr 0 (2*n) (%i. (-1) ^ Suc i) = 0"
paulson@15251
    86
by (induct "n", auto)
paulson@14416
    87
paulson@15251
    88
lemma sumr_interval_const:
paulson@15251
    89
     "\<lbrakk>\<forall>n. m \<le> Suc n --> f n = r; m \<le> k\<rbrakk> \<Longrightarrow> sumr m k f = (real(k-m) * r)"
paulson@15251
    90
apply (induct "k", auto) 
paulson@15251
    91
apply (drule_tac x = k in spec)
paulson@14416
    92
apply (auto dest!: le_imp_less_or_eq)
paulson@15047
    93
apply (simp add: left_distrib real_of_nat_Suc split: nat_diff_split)
paulson@14416
    94
done
paulson@14416
    95
paulson@15251
    96
lemma sumr_interval_const2:
nipkow@15360
    97
     "[|\<forall>n\<ge>m. f n = r; m \<le> k|]
paulson@15251
    98
      ==> sumr m k f = (real (k - m) * r)"
paulson@15251
    99
apply (induct "k", auto) 
paulson@15251
   100
apply (drule_tac x = k in spec)
paulson@14416
   101
apply (auto dest!: le_imp_less_or_eq)
paulson@15047
   102
apply (simp add: left_distrib real_of_nat_Suc split: nat_diff_split)
paulson@14416
   103
done
paulson@14416
   104
paulson@15047
   105
paulson@15251
   106
lemma sumr_le:
nipkow@15360
   107
     "[|\<forall>n\<ge>m. 0 \<le> f n; m < k|] ==> sumr 0 m f \<le> sumr 0 k f"
paulson@15251
   108
apply (induct "k")
paulson@14416
   109
apply (auto simp add: less_Suc_eq_le)
paulson@15251
   110
apply (drule_tac x = k in spec, safe)
paulson@14416
   111
apply (drule le_imp_less_or_eq, safe)
paulson@15047
   112
apply (arith) 
paulson@14416
   113
apply (drule_tac a = "sumr 0 m f" in order_refl [THEN add_mono], auto)
paulson@14416
   114
done
paulson@14416
   115
paulson@14416
   116
lemma sumr_le2 [rule_format (no_asm)]:
paulson@14416
   117
     "(\<forall>r. m \<le> r & r < n --> f r \<le> g r) --> sumr m n f \<le> sumr m n g"
paulson@15251
   118
apply (induct "n")
paulson@14416
   119
apply (auto intro: add_mono simp add: le_def)
paulson@14416
   120
done
paulson@14416
   121
nipkow@15360
   122
lemma sumr_ge_zero: "(\<forall>n\<ge>m. 0 \<le> f n) --> 0 \<le> sumr m n f"
paulson@15251
   123
apply (induct "n", auto)
paulson@14416
   124
apply (drule_tac x = n in spec, arith)
paulson@14416
   125
done
paulson@14416
   126
nipkow@15536
   127
(* FIXME generalize *)
paulson@14416
   128
lemma rabs_sumr_rabs_cancel [simp]:
paulson@15229
   129
     "abs (sumr m n (%k. abs (f k))) = (sumr m n (%k. abs (f k)))"
paulson@15251
   130
by (induct "n", simp_all add: add_increasing)
paulson@14416
   131
paulson@14416
   132
lemma sumr_zero [rule_format]:
nipkow@15360
   133
     "\<forall>n \<ge> N. f n = 0 ==> N \<le> m --> sumr m n f = 0"
paulson@15251
   134
by (induct "n", auto)
paulson@14416
   135
paulson@14416
   136
lemma Suc_le_imp_diff_ge2:
nipkow@15360
   137
     "[|\<forall>n \<ge> N. f (Suc n) = 0; Suc N \<le> m|] ==> sumr m n f = 0"
paulson@14416
   138
apply (rule sumr_zero) 
paulson@14416
   139
apply (case_tac "n", auto)
paulson@14416
   140
done
paulson@14416
   141
paulson@14416
   142
lemma sumr_one_lb_realpow_zero [simp]: "sumr (Suc 0) n (%n. f(n) * 0 ^ n) = 0"
paulson@15251
   143
apply (induct "n")
paulson@14416
   144
apply (case_tac [2] "n", auto)
paulson@14416
   145
done
nipkow@15536
   146
(*
paulson@14416
   147
lemma sumr_diff: "sumr m n f - sumr m n g = sumr m n (%n. f n - g n)"
nipkow@15536
   148
by (simp add: diff_minus setsum_addf setsum_negf)
nipkow@15536
   149
*)
paulson@14416
   150
lemma sumr_subst [rule_format (no_asm)]:
paulson@14416
   151
     "(\<forall>p. m \<le> p & p < m+n --> (f p = g p)) --> sumr m n f = sumr m n g"
paulson@15251
   152
by (induct "n", auto)
paulson@14416
   153
paulson@14416
   154
lemma sumr_bound [rule_format (no_asm)]:
paulson@14416
   155
     "(\<forall>p. m \<le> p & p < m + n --> (f(p) \<le> K))  
paulson@14416
   156
      --> (sumr m (m + n) f \<le> (real n * K))"
paulson@15251
   157
apply (induct "n")
paulson@14416
   158
apply (auto intro: add_mono simp add: left_distrib real_of_nat_Suc)
paulson@14416
   159
done
paulson@14416
   160
paulson@14416
   161
lemma sumr_bound2 [rule_format (no_asm)]:
paulson@14416
   162
     "(\<forall>p. 0 \<le> p & p < n --> (f(p) \<le> K))  
paulson@14416
   163
      --> (sumr 0 n f \<le> (real n * K))"
paulson@15251
   164
apply (induct "n")
paulson@15047
   165
apply (auto intro: add_mono simp add: left_distrib real_of_nat_Suc add_commute)
paulson@14416
   166
done
paulson@14416
   167
paulson@14416
   168
lemma sumr_group [simp]:
paulson@14416
   169
     "sumr 0 n (%m. sumr (m * k) (m*k + k) f) = sumr 0 (n * k) f"
paulson@14416
   170
apply (subgoal_tac "k = 0 | 0 < k", auto)
paulson@15251
   171
apply (induct "n")
paulson@14416
   172
apply (simp_all add: sumr_split_add add_commute)
paulson@14416
   173
done
paulson@14416
   174
paulson@14416
   175
subsection{* Infinite Sums, by the Properties of Limits*}
paulson@14416
   176
paulson@14416
   177
(*----------------------
paulson@14416
   178
   suminf is the sum   
paulson@14416
   179
 ---------------------*)
paulson@14416
   180
lemma sums_summable: "f sums l ==> summable f"
paulson@14416
   181
by (simp add: sums_def summable_def, blast)
paulson@14416
   182
paulson@14416
   183
lemma summable_sums: "summable f ==> f sums (suminf f)"
paulson@14416
   184
apply (simp add: summable_def suminf_def)
paulson@14416
   185
apply (blast intro: someI2)
paulson@14416
   186
done
paulson@14416
   187
paulson@14416
   188
lemma summable_sumr_LIMSEQ_suminf: 
paulson@14416
   189
     "summable f ==> (%n. sumr 0 n f) ----> (suminf f)"
paulson@14416
   190
apply (simp add: summable_def suminf_def sums_def)
paulson@14416
   191
apply (blast intro: someI2)
paulson@14416
   192
done
paulson@14416
   193
paulson@14416
   194
(*-------------------
paulson@14416
   195
    sum is unique                    
paulson@14416
   196
 ------------------*)
paulson@14416
   197
lemma sums_unique: "f sums s ==> (s = suminf f)"
paulson@14416
   198
apply (frule sums_summable [THEN summable_sums])
paulson@14416
   199
apply (auto intro!: LIMSEQ_unique simp add: sums_def)
paulson@14416
   200
done
paulson@14416
   201
paulson@14416
   202
(*
paulson@14416
   203
Goalw [sums_def,LIMSEQ_def] 
paulson@14416
   204
     "(\<forall>m. n \<le> Suc m --> f(m) = 0) ==> f sums (sumr 0 n f)"
paulson@14416
   205
by safe
paulson@14416
   206
by (res_inst_tac [("x","n")] exI 1);
paulson@14416
   207
by (safe THEN ftac le_imp_less_or_eq 1)
paulson@14416
   208
by safe
paulson@14416
   209
by (dres_inst_tac [("f","f")] sumr_split_add_minus 1);
paulson@14416
   210
by (ALLGOALS (Asm_simp_tac));
paulson@14416
   211
by (dtac (conjI RS sumr_interval_const) 1);
paulson@14416
   212
by Auto_tac
paulson@14416
   213
qed "series_zero";
paulson@14416
   214
next one was called series_zero2
paulson@14416
   215
**********************)
paulson@14416
   216
paulson@14416
   217
lemma series_zero: 
paulson@14416
   218
     "(\<forall>m. n \<le> m --> f(m) = 0) ==> f sums (sumr 0 n f)"
paulson@14416
   219
apply (simp add: sums_def LIMSEQ_def, safe)
paulson@14416
   220
apply (rule_tac x = n in exI)
paulson@14416
   221
apply (safe, frule le_imp_less_or_eq, safe)
paulson@14416
   222
apply (drule_tac f = f in sumr_split_add_minus, simp_all)
paulson@14416
   223
apply (drule sumr_interval_const2, auto)
paulson@14416
   224
done
paulson@14416
   225
paulson@14416
   226
lemma sums_mult: "x sums x0 ==> (%n. c * x(n)) sums (c * x0)"
nipkow@15536
   227
by (auto simp add: sums_def setsum_mult [symmetric]
paulson@14416
   228
         intro!: LIMSEQ_mult intro: LIMSEQ_const)
paulson@14416
   229
paulson@14416
   230
lemma sums_divide: "x sums x' ==> (%n. x(n)/c) sums (x'/c)"
paulson@14416
   231
by (simp add: real_divide_def sums_mult mult_commute [of _ "inverse c"])
paulson@14416
   232
paulson@14416
   233
lemma sums_diff: "[| x sums x0; y sums y0 |] ==> (%n. x n - y n) sums (x0-y0)"
nipkow@15536
   234
by (auto simp add: sums_def setsum_subtractf intro: LIMSEQ_diff)
paulson@14416
   235
paulson@14416
   236
lemma suminf_mult: "summable f ==> suminf f * c = suminf(%n. f n * c)"
paulson@14416
   237
by (auto intro!: sums_unique sums_mult summable_sums simp add: mult_commute)
paulson@14416
   238
paulson@14416
   239
lemma suminf_mult2: "summable f ==> c * suminf f  = suminf(%n. c * f n)"
paulson@14416
   240
by (auto intro!: sums_unique sums_mult summable_sums)
paulson@14416
   241
paulson@14416
   242
lemma suminf_diff:
paulson@14416
   243
     "[| summable f; summable g |]   
paulson@14416
   244
      ==> suminf f - suminf g  = suminf(%n. f n - g n)"
paulson@14416
   245
by (auto intro!: sums_diff sums_unique summable_sums)
paulson@14416
   246
paulson@14416
   247
lemma sums_minus: "x sums x0 ==> (%n. - x n) sums - x0"
nipkow@15536
   248
by (auto simp add: sums_def intro!: LIMSEQ_minus simp add: setsum_negf)
paulson@14416
   249
paulson@14416
   250
lemma sums_group:
paulson@14416
   251
     "[|summable f; 0 < k |] ==> (%n. sumr (n*k) (n*k + k) f) sums (suminf f)"
paulson@14416
   252
apply (drule summable_sums)
paulson@14416
   253
apply (auto simp add: sums_def LIMSEQ_def)
paulson@14416
   254
apply (drule_tac x = r in spec, safe)
paulson@14416
   255
apply (rule_tac x = no in exI, safe)
paulson@14416
   256
apply (drule_tac x = "n*k" in spec)
paulson@14416
   257
apply (auto dest!: not_leE)
paulson@14416
   258
apply (drule_tac j = no in less_le_trans, auto)
paulson@14416
   259
done
paulson@14416
   260
paulson@14416
   261
lemma sumr_pos_lt_pair_lemma:
paulson@14416
   262
     "[|\<forall>d. - f (n + (d + d)) < f (Suc (n + (d + d)))|]
paulson@14416
   263
      ==> sumr 0 (n + Suc (Suc 0)) f \<le> sumr 0 (Suc (Suc 0) * Suc no + n) f"
paulson@15251
   264
apply (induct "no", auto)
paulson@15251
   265
apply (drule_tac x = "Suc no" in spec)
paulson@14416
   266
apply (simp add: add_ac) 
paulson@14416
   267
done
paulson@10751
   268
paulson@10751
   269
paulson@14416
   270
lemma sumr_pos_lt_pair:
paulson@15234
   271
     "[|summable f; 
paulson@15234
   272
        \<forall>d. 0 < (f(n + (Suc(Suc 0) * d))) + f(n + ((Suc(Suc 0) * d) + 1))|]  
paulson@14416
   273
      ==> sumr 0 n f < suminf f"
paulson@14416
   274
apply (drule summable_sums)
paulson@14416
   275
apply (auto simp add: sums_def LIMSEQ_def)
paulson@15234
   276
apply (drule_tac x = "f (n) + f (n + 1)" in spec)
paulson@15085
   277
apply (auto iff: real_0_less_add_iff)
paulson@15085
   278
   --{*legacy proof: not necessarily better!*}
paulson@14416
   279
apply (rule_tac [2] ccontr, drule_tac [2] linorder_not_less [THEN iffD1])
paulson@14416
   280
apply (frule_tac [2] no=no in sumr_pos_lt_pair_lemma) 
paulson@14416
   281
apply (drule_tac x = 0 in spec, simp)
paulson@14416
   282
apply (rotate_tac 1, drule_tac x = "Suc (Suc 0) * (Suc no) + n" in spec)
paulson@14416
   283
apply (safe, simp)
paulson@14416
   284
apply (subgoal_tac "suminf f + (f (n) + f (n + 1)) \<le> sumr 0 (Suc (Suc 0) * (Suc no) + n) f")
paulson@14416
   285
apply (rule_tac [2] y = "sumr 0 (n+ Suc (Suc 0)) f" in order_trans)
paulson@14416
   286
prefer 3 apply assumption
paulson@14416
   287
apply (rule_tac [2] y = "sumr 0 n f + (f (n) + f (n + 1))" in order_trans)
paulson@14416
   288
apply simp_all 
paulson@14416
   289
apply (subgoal_tac "suminf f \<le> sumr 0 (Suc (Suc 0) * (Suc no) + n) f")
paulson@14416
   290
apply (rule_tac [2] y = "suminf f + (f (n) + f (n + 1))" in order_trans)
paulson@14416
   291
prefer 3 apply simp 
paulson@14416
   292
apply (drule_tac [2] x = 0 in spec)
paulson@14416
   293
 prefer 2 apply simp 
paulson@14416
   294
apply (subgoal_tac "0 \<le> sumr 0 (Suc (Suc 0) * Suc no + n) f + - suminf f")
paulson@14416
   295
apply (simp add: abs_if) 
paulson@14416
   296
apply (auto simp add: linorder_not_less [symmetric])
paulson@14416
   297
done
paulson@14416
   298
paulson@15085
   299
text{*A summable series of positive terms has limit that is at least as
paulson@15085
   300
great as any partial sum.*}
paulson@14416
   301
paulson@14416
   302
lemma series_pos_le: 
nipkow@15360
   303
     "[| summable f; \<forall>m \<ge> n. 0 \<le> f(m) |] ==> sumr 0 n f \<le> suminf f"
paulson@14416
   304
apply (drule summable_sums)
paulson@14416
   305
apply (simp add: sums_def)
paulson@14416
   306
apply (cut_tac k = "sumr 0 n f" in LIMSEQ_const)
paulson@14416
   307
apply (erule LIMSEQ_le, blast) 
paulson@14416
   308
apply (rule_tac x = n in exI, clarify) 
paulson@14416
   309
apply (drule le_imp_less_or_eq)
paulson@14416
   310
apply (auto intro: sumr_le)
paulson@14416
   311
done
paulson@14416
   312
paulson@14416
   313
lemma series_pos_less:
nipkow@15360
   314
     "[| summable f; \<forall>m \<ge> n. 0 < f(m) |] ==> sumr 0 n f < suminf f"
paulson@14416
   315
apply (rule_tac y = "sumr 0 (Suc n) f" in order_less_le_trans)
paulson@14416
   316
apply (rule_tac [2] series_pos_le, auto)
paulson@14416
   317
apply (drule_tac x = m in spec, auto)
paulson@14416
   318
done
paulson@14416
   319
paulson@15085
   320
text{*Sum of a geometric progression.*}
paulson@14416
   321
paulson@14416
   322
lemma sumr_geometric: "x ~= 1 ==> sumr 0 n (%n. x ^ n) = (x ^ n - 1) / (x - 1)"
paulson@15251
   323
apply (induct "n", auto)
paulson@14416
   324
apply (rule_tac c1 = "x - 1" in real_mult_right_cancel [THEN iffD1])
paulson@15234
   325
apply (auto simp add: mult_assoc left_distrib  times_divide_eq)
paulson@15234
   326
apply (simp add: right_distrib diff_minus mult_commute)
paulson@14416
   327
done
paulson@14416
   328
paulson@14416
   329
lemma geometric_sums: "abs(x) < 1 ==> (%n. x ^ n) sums (1/(1 - x))"
paulson@14416
   330
apply (case_tac "x = 1")
paulson@15234
   331
apply (auto dest!: LIMSEQ_rabs_realpow_zero2 
paulson@15234
   332
        simp add: sumr_geometric sums_def diff_minus add_divide_distrib)
paulson@14416
   333
apply (subgoal_tac "1 / (1 + -x) = 0/ (x - 1) + - 1/ (x - 1) ")
paulson@14416
   334
apply (erule ssubst)
paulson@14416
   335
apply (rule LIMSEQ_add, rule LIMSEQ_divide)
paulson@15234
   336
apply (auto intro: LIMSEQ_const simp add: diff_minus minus_divide_right LIMSEQ_rabs_realpow_zero2)
paulson@14416
   337
done
paulson@14416
   338
paulson@15085
   339
text{*Cauchy-type criterion for convergence of series (c.f. Harrison)*}
paulson@15085
   340
paulson@14416
   341
lemma summable_convergent_sumr_iff: "summable f = convergent (%n. sumr 0 n f)"
paulson@14416
   342
by (simp add: summable_def sums_def convergent_def)
paulson@14416
   343
paulson@14416
   344
lemma summable_Cauchy:
paulson@14416
   345
     "summable f =  
nipkow@15360
   346
      (\<forall>e > 0. \<exists>N. \<forall>m \<ge> N. \<forall>n. abs(sumr m n f) < e)"
paulson@14416
   347
apply (auto simp add: summable_convergent_sumr_iff Cauchy_convergent_iff [symmetric] Cauchy_def)
paulson@14416
   348
apply (drule_tac [!] spec, auto) 
paulson@14416
   349
apply (rule_tac x = M in exI)
paulson@14416
   350
apply (rule_tac [2] x = N in exI, auto)
paulson@14416
   351
apply (cut_tac [!] m = m and n = n in less_linear, auto)
paulson@14416
   352
apply (frule le_less_trans [THEN less_imp_le], assumption)
nipkow@15360
   353
apply (drule_tac x = n in spec, simp)
paulson@14416
   354
apply (drule_tac x = m in spec)
paulson@14416
   355
apply (auto intro: abs_minus_add_cancel [THEN subst]
paulson@14416
   356
            simp add: sumr_split_add_minus abs_minus_add_cancel)
paulson@14416
   357
done
paulson@14416
   358
paulson@15085
   359
text{*Comparison test*}
paulson@15085
   360
paulson@14416
   361
lemma summable_comparison_test:
nipkow@15360
   362
     "[| \<exists>N. \<forall>n \<ge> N. abs(f n) \<le> g n; summable g |] ==> summable f"
paulson@14416
   363
apply (auto simp add: summable_Cauchy)
paulson@14416
   364
apply (drule spec, auto)
paulson@14416
   365
apply (rule_tac x = "N + Na" in exI, auto)
paulson@14416
   366
apply (rotate_tac 2)
paulson@14416
   367
apply (drule_tac x = m in spec)
paulson@14416
   368
apply (auto, rotate_tac 2, drule_tac x = n in spec)
paulson@14416
   369
apply (rule_tac y = "sumr m n (%k. abs (f k))" in order_le_less_trans)
nipkow@15536
   370
apply (rule setsum_abs)
paulson@14416
   371
apply (rule_tac y = "sumr m n g" in order_le_less_trans)
paulson@14416
   372
apply (auto intro: sumr_le2 simp add: abs_interval_iff)
paulson@14416
   373
done
paulson@14416
   374
paulson@14416
   375
lemma summable_rabs_comparison_test:
nipkow@15360
   376
     "[| \<exists>N. \<forall>n \<ge> N. abs(f n) \<le> g n; summable g |] 
paulson@14416
   377
      ==> summable (%k. abs (f k))"
paulson@14416
   378
apply (rule summable_comparison_test)
paulson@14416
   379
apply (auto simp add: abs_idempotent)
paulson@14416
   380
done
paulson@14416
   381
paulson@15085
   382
text{*Limit comparison property for series (c.f. jrh)*}
paulson@15085
   383
paulson@14416
   384
lemma summable_le:
paulson@14416
   385
     "[|\<forall>n. f n \<le> g n; summable f; summable g |] ==> suminf f \<le> suminf g"
paulson@14416
   386
apply (drule summable_sums)+
paulson@14416
   387
apply (auto intro!: LIMSEQ_le simp add: sums_def)
paulson@14416
   388
apply (rule exI)
paulson@14416
   389
apply (auto intro!: sumr_le2)
paulson@14416
   390
done
paulson@14416
   391
paulson@14416
   392
lemma summable_le2:
paulson@14416
   393
     "[|\<forall>n. abs(f n) \<le> g n; summable g |]  
paulson@14416
   394
      ==> summable f & suminf f \<le> suminf g"
paulson@14416
   395
apply (auto intro: summable_comparison_test intro!: summable_le)
paulson@14416
   396
apply (simp add: abs_le_interval_iff)
paulson@14416
   397
done
paulson@14416
   398
paulson@15085
   399
text{*Absolute convergence imples normal convergence*}
paulson@14416
   400
lemma summable_rabs_cancel: "summable (%n. abs (f n)) ==> summable f"
nipkow@15536
   401
apply (auto simp add: summable_Cauchy)
paulson@14416
   402
apply (drule spec, auto)
paulson@14416
   403
apply (rule_tac x = N in exI, auto)
paulson@14416
   404
apply (drule spec, auto)
paulson@14416
   405
apply (rule_tac y = "sumr m n (%n. abs (f n))" in order_le_less_trans)
nipkow@15536
   406
apply (auto)
paulson@14416
   407
done
paulson@14416
   408
paulson@15085
   409
text{*Absolute convergence of series*}
paulson@14416
   410
lemma summable_rabs:
paulson@14416
   411
     "summable (%n. abs (f n)) ==> abs(suminf f) \<le> suminf (%n. abs(f n))"
nipkow@15536
   412
by (auto intro: LIMSEQ_le LIMSEQ_imp_rabs summable_rabs_cancel summable_sumr_LIMSEQ_suminf)
paulson@14416
   413
paulson@14416
   414
paulson@14416
   415
subsection{* The Ratio Test*}
paulson@14416
   416
paulson@14416
   417
lemma rabs_ratiotest_lemma: "[| c \<le> 0; abs x \<le> c * abs y |] ==> x = (0::real)"
paulson@14416
   418
apply (drule order_le_imp_less_or_eq, auto)
paulson@14416
   419
apply (subgoal_tac "0 \<le> c * abs y")
paulson@14416
   420
apply (simp add: zero_le_mult_iff, arith)
paulson@14416
   421
done
paulson@14416
   422
paulson@14416
   423
lemma le_Suc_ex: "(k::nat) \<le> l ==> (\<exists>n. l = k + n)"
paulson@14416
   424
apply (drule le_imp_less_or_eq)
paulson@14416
   425
apply (auto dest: less_imp_Suc_add)
paulson@14416
   426
done
paulson@14416
   427
paulson@14416
   428
lemma le_Suc_ex_iff: "((k::nat) \<le> l) = (\<exists>n. l = k + n)"
paulson@14416
   429
by (auto simp add: le_Suc_ex)
paulson@14416
   430
paulson@14416
   431
(*All this trouble just to get 0<c *)
paulson@14416
   432
lemma ratio_test_lemma2:
nipkow@15360
   433
     "[| \<forall>n \<ge> N. abs(f(Suc n)) \<le> c*abs(f n) |]  
paulson@14416
   434
      ==> 0 < c | summable f"
paulson@14416
   435
apply (simp (no_asm) add: linorder_not_le [symmetric])
paulson@14416
   436
apply (simp add: summable_Cauchy)
paulson@14416
   437
apply (safe, subgoal_tac "\<forall>n. N \<le> n --> f (Suc n) = 0")
paulson@14416
   438
prefer 2 apply (blast intro: rabs_ratiotest_lemma)
paulson@14416
   439
apply (rule_tac x = "Suc N" in exI, clarify)
paulson@14416
   440
apply (drule_tac n=n in Suc_le_imp_diff_ge2, auto) 
paulson@14416
   441
done
paulson@14416
   442
paulson@14416
   443
lemma ratio_test:
nipkow@15360
   444
     "[| c < 1; \<forall>n \<ge> N. abs(f(Suc n)) \<le> c*abs(f n) |]  
paulson@14416
   445
      ==> summable f"
paulson@14416
   446
apply (frule ratio_test_lemma2, auto)
paulson@15234
   447
apply (rule_tac g = "%n. (abs (f N) / (c ^ N))*c ^ n" 
paulson@15234
   448
       in summable_comparison_test)
paulson@14416
   449
apply (rule_tac x = N in exI, safe)
paulson@14416
   450
apply (drule le_Suc_ex_iff [THEN iffD1])
paulson@14416
   451
apply (auto simp add: power_add realpow_not_zero)
paulson@15234
   452
apply (induct_tac "na", auto simp add: times_divide_eq)
paulson@14416
   453
apply (rule_tac y = "c*abs (f (N + n))" in order_trans)
paulson@14416
   454
apply (auto intro: mult_right_mono simp add: summable_def)
paulson@14416
   455
apply (simp add: mult_ac)
paulson@15234
   456
apply (rule_tac x = "abs (f N) * (1/ (1 - c)) / (c ^ N)" in exI)
paulson@15234
   457
apply (rule sums_divide) 
paulson@15234
   458
apply (rule sums_mult) 
paulson@15234
   459
apply (auto intro!: geometric_sums)
paulson@14416
   460
done
paulson@14416
   461
paulson@14416
   462
paulson@15085
   463
text{*Differentiation of finite sum*}
paulson@14416
   464
paulson@14416
   465
lemma DERIV_sumr [rule_format (no_asm)]:
paulson@14416
   466
     "(\<forall>r. m \<le> r & r < (m + n) --> DERIV (%x. f r x) x :> (f' r x))  
paulson@14416
   467
      --> DERIV (%x. sumr m n (%n. f n x)) x :> sumr m n (%r. f' r x)"
paulson@15251
   468
apply (induct "n")
paulson@14416
   469
apply (auto intro: DERIV_add)
paulson@14416
   470
done
paulson@14416
   471
paulson@14416
   472
ML
paulson@14416
   473
{*
paulson@14416
   474
val sumr_Suc = thm"sumr_Suc";
paulson@14416
   475
val sums_def = thm"sums_def";
paulson@14416
   476
val summable_def = thm"summable_def";
paulson@14416
   477
val suminf_def = thm"suminf_def";
paulson@14416
   478
paulson@14416
   479
val sumr_split_add = thm "sumr_split_add";
paulson@14416
   480
val sumr_minus_one_realpow_zero = thm "sumr_minus_one_realpow_zero";
paulson@14416
   481
val sumr_le2 = thm "sumr_le2";
paulson@14416
   482
val rabs_sumr_rabs_cancel = thm "rabs_sumr_rabs_cancel";
paulson@14416
   483
val sumr_zero = thm "sumr_zero";
paulson@14416
   484
val Suc_le_imp_diff_ge2 = thm "Suc_le_imp_diff_ge2";
paulson@14416
   485
val sumr_one_lb_realpow_zero = thm "sumr_one_lb_realpow_zero";
paulson@14416
   486
val sumr_subst = thm "sumr_subst";
paulson@14416
   487
val sumr_bound = thm "sumr_bound";
paulson@14416
   488
val sumr_bound2 = thm "sumr_bound2";
paulson@14416
   489
val sumr_group = thm "sumr_group";
paulson@14416
   490
val sums_summable = thm "sums_summable";
paulson@14416
   491
val summable_sums = thm "summable_sums";
paulson@14416
   492
val summable_sumr_LIMSEQ_suminf = thm "summable_sumr_LIMSEQ_suminf";
paulson@14416
   493
val sums_unique = thm "sums_unique";
paulson@14416
   494
val series_zero = thm "series_zero";
paulson@14416
   495
val sums_mult = thm "sums_mult";
paulson@14416
   496
val sums_divide = thm "sums_divide";
paulson@14416
   497
val sums_diff = thm "sums_diff";
paulson@14416
   498
val suminf_mult = thm "suminf_mult";
paulson@14416
   499
val suminf_mult2 = thm "suminf_mult2";
paulson@14416
   500
val suminf_diff = thm "suminf_diff";
paulson@14416
   501
val sums_minus = thm "sums_minus";
paulson@14416
   502
val sums_group = thm "sums_group";
paulson@14416
   503
val sumr_pos_lt_pair_lemma = thm "sumr_pos_lt_pair_lemma";
paulson@14416
   504
val sumr_pos_lt_pair = thm "sumr_pos_lt_pair";
paulson@14416
   505
val series_pos_le = thm "series_pos_le";
paulson@14416
   506
val series_pos_less = thm "series_pos_less";
paulson@14416
   507
val sumr_geometric = thm "sumr_geometric";
paulson@14416
   508
val geometric_sums = thm "geometric_sums";
paulson@14416
   509
val summable_convergent_sumr_iff = thm "summable_convergent_sumr_iff";
paulson@14416
   510
val summable_Cauchy = thm "summable_Cauchy";
paulson@14416
   511
val summable_comparison_test = thm "summable_comparison_test";
paulson@14416
   512
val summable_rabs_comparison_test = thm "summable_rabs_comparison_test";
paulson@14416
   513
val summable_le = thm "summable_le";
paulson@14416
   514
val summable_le2 = thm "summable_le2";
paulson@14416
   515
val summable_rabs_cancel = thm "summable_rabs_cancel";
paulson@14416
   516
val summable_rabs = thm "summable_rabs";
paulson@14416
   517
val rabs_ratiotest_lemma = thm "rabs_ratiotest_lemma";
paulson@14416
   518
val le_Suc_ex = thm "le_Suc_ex";
paulson@14416
   519
val le_Suc_ex_iff = thm "le_Suc_ex_iff";
paulson@14416
   520
val ratio_test_lemma2 = thm "ratio_test_lemma2";
paulson@14416
   521
val ratio_test = thm "ratio_test";
paulson@14416
   522
val DERIV_sumr = thm "DERIV_sumr";
paulson@14416
   523
*}
paulson@14416
   524
paulson@14416
   525
end