src/HOL/Product_Type.thy
author schirmer
Tue Jan 20 13:56:27 2004 +0100 (2004-01-20)
changeset 14359 3d9948163018
parent 14337 e13731554e50
child 14565 c6dc17aab88a
permissions -rw-r--r--
Added print translation for pairs
nipkow@10213
     1
(*  Title:      HOL/Product_Type.thy
nipkow@10213
     2
    ID:         $Id$
nipkow@10213
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
nipkow@10213
     4
    Copyright   1992  University of Cambridge
wenzelm@11777
     5
*)
nipkow@10213
     6
wenzelm@11838
     7
header {* Cartesian products *}
nipkow@10213
     8
oheimb@11025
     9
theory Product_Type = Fun
wenzelm@11838
    10
files ("Tools/split_rule.ML"):
wenzelm@11838
    11
wenzelm@11838
    12
subsection {* Unit *}
wenzelm@11838
    13
wenzelm@11838
    14
typedef unit = "{True}"
wenzelm@11838
    15
proof
wenzelm@11838
    16
  show "True : ?unit" by blast
wenzelm@11838
    17
qed
wenzelm@11838
    18
wenzelm@11838
    19
constdefs
wenzelm@11838
    20
  Unity :: unit    ("'(')")
wenzelm@11838
    21
  "() == Abs_unit True"
wenzelm@11838
    22
wenzelm@11838
    23
lemma unit_eq: "u = ()"
wenzelm@11838
    24
  by (induct u) (simp add: unit_def Unity_def)
wenzelm@11838
    25
wenzelm@11838
    26
text {*
wenzelm@11838
    27
  Simplification procedure for @{thm [source] unit_eq}.  Cannot use
wenzelm@11838
    28
  this rule directly --- it loops!
wenzelm@11838
    29
*}
wenzelm@11838
    30
wenzelm@11838
    31
ML_setup {*
wenzelm@13462
    32
  val unit_eq_proc =
wenzelm@13462
    33
    let val unit_meta_eq = mk_meta_eq (thm "unit_eq") in
wenzelm@13462
    34
      Simplifier.simproc (Theory.sign_of (the_context ())) "unit_eq" ["x::unit"]
wenzelm@13462
    35
      (fn _ => fn _ => fn t => if HOLogic.is_unit t then None else Some unit_meta_eq)
wenzelm@13462
    36
    end;
wenzelm@11838
    37
wenzelm@11838
    38
  Addsimprocs [unit_eq_proc];
wenzelm@11838
    39
*}
wenzelm@11838
    40
wenzelm@11838
    41
lemma unit_all_eq1: "(!!x::unit. PROP P x) == PROP P ()"
wenzelm@11838
    42
  by simp
wenzelm@11838
    43
wenzelm@11838
    44
lemma unit_all_eq2: "(!!x::unit. PROP P) == PROP P"
wenzelm@11838
    45
  by (rule triv_forall_equality)
wenzelm@11838
    46
wenzelm@11838
    47
lemma unit_induct [induct type: unit]: "P () ==> P x"
wenzelm@11838
    48
  by simp
wenzelm@11838
    49
wenzelm@11838
    50
text {*
wenzelm@11838
    51
  This rewrite counters the effect of @{text unit_eq_proc} on @{term
wenzelm@11838
    52
  [source] "%u::unit. f u"}, replacing it by @{term [source]
wenzelm@11838
    53
  f} rather than by @{term [source] "%u. f ()"}.
wenzelm@11838
    54
*}
wenzelm@11838
    55
wenzelm@11838
    56
lemma unit_abs_eta_conv [simp]: "(%u::unit. f ()) = f"
wenzelm@11838
    57
  by (rule ext) simp
nipkow@10213
    58
nipkow@10213
    59
wenzelm@11838
    60
subsection {* Pairs *}
nipkow@10213
    61
wenzelm@11777
    62
subsubsection {* Type definition *}
nipkow@10213
    63
nipkow@10213
    64
constdefs
oheimb@11025
    65
  Pair_Rep :: "['a, 'b] => ['a, 'b] => bool"
wenzelm@11032
    66
  "Pair_Rep == (%a b. %x y. x=a & y=b)"
nipkow@10213
    67
nipkow@10213
    68
global
nipkow@10213
    69
nipkow@10213
    70
typedef (Prod)
wenzelm@11838
    71
  ('a, 'b) "*"    (infixr 20)
wenzelm@11032
    72
    = "{f. EX a b. f = Pair_Rep (a::'a) (b::'b)}"
oheimb@11025
    73
proof
oheimb@11025
    74
  fix a b show "Pair_Rep a b : ?Prod"
oheimb@11025
    75
    by blast
oheimb@11025
    76
qed
nipkow@10213
    77
wenzelm@12114
    78
syntax (xsymbols)
oheimb@11493
    79
  "*"      :: "[type, type] => type"         ("(_ \<times>/ _)" [21, 20] 20)
nipkow@10213
    80
syntax (HTML output)
oheimb@11493
    81
  "*"      :: "[type, type] => type"         ("(_ \<times>/ _)" [21, 20] 20)
nipkow@10213
    82
wenzelm@11777
    83
local
nipkow@10213
    84
wenzelm@11777
    85
wenzelm@11777
    86
subsubsection {* Abstract constants and syntax *}
wenzelm@11777
    87
wenzelm@11777
    88
global
nipkow@10213
    89
nipkow@10213
    90
consts
oheimb@11025
    91
  fst      :: "'a * 'b => 'a"
oheimb@11025
    92
  snd      :: "'a * 'b => 'b"
oheimb@11025
    93
  split    :: "[['a, 'b] => 'c, 'a * 'b] => 'c"
skalberg@14189
    94
  curry    :: "['a * 'b => 'c, 'a, 'b] => 'c"
oheimb@11025
    95
  prod_fun :: "['a => 'b, 'c => 'd, 'a * 'c] => 'b * 'd"
oheimb@11025
    96
  Pair     :: "['a, 'b] => 'a * 'b"
oheimb@11025
    97
  Sigma    :: "['a set, 'a => 'b set] => ('a * 'b) set"
nipkow@10213
    98
wenzelm@11777
    99
local
nipkow@10213
   100
wenzelm@11777
   101
text {*
wenzelm@11777
   102
  Patterns -- extends pre-defined type @{typ pttrn} used in
wenzelm@11777
   103
  abstractions.
wenzelm@11777
   104
*}
nipkow@10213
   105
nipkow@10213
   106
nonterminals
nipkow@10213
   107
  tuple_args patterns
nipkow@10213
   108
nipkow@10213
   109
syntax
nipkow@10213
   110
  "_tuple"      :: "'a => tuple_args => 'a * 'b"        ("(1'(_,/ _'))")
nipkow@10213
   111
  "_tuple_arg"  :: "'a => tuple_args"                   ("_")
nipkow@10213
   112
  "_tuple_args" :: "'a => tuple_args => tuple_args"     ("_,/ _")
oheimb@11025
   113
  "_pattern"    :: "[pttrn, patterns] => pttrn"         ("'(_,/ _')")
oheimb@11025
   114
  ""            :: "pttrn => patterns"                  ("_")
oheimb@11025
   115
  "_patterns"   :: "[pttrn, patterns] => patterns"      ("_,/ _")
oheimb@11025
   116
  "@Sigma" ::"[pttrn, 'a set, 'b set] => ('a * 'b) set" ("(3SIGMA _:_./ _)" 10)
oheimb@11025
   117
  "@Times" ::"['a set,  'a => 'b set] => ('a * 'b) set" (infixr "<*>" 80)
nipkow@10213
   118
nipkow@10213
   119
translations
nipkow@10213
   120
  "(x, y)"       == "Pair x y"
nipkow@10213
   121
  "_tuple x (_tuple_args y z)" == "_tuple x (_tuple_arg (_tuple y z))"
nipkow@10213
   122
  "%(x,y,zs).b"  == "split(%x (y,zs).b)"
nipkow@10213
   123
  "%(x,y).b"     == "split(%x y. b)"
nipkow@10213
   124
  "_abs (Pair x y) t" => "%(x,y).t"
nipkow@10213
   125
  (* The last rule accommodates tuples in `case C ... (x,y) ... => ...'
nipkow@10213
   126
     The (x,y) is parsed as `Pair x y' because it is logic, not pttrn *)
nipkow@10213
   127
nipkow@10213
   128
  "SIGMA x:A. B" => "Sigma A (%x. B)"
nipkow@10213
   129
  "A <*> B"      => "Sigma A (_K B)"
nipkow@10213
   130
schirmer@14359
   131
(* reconstructs pattern from (nested) splits, avoiding eta-contraction of body*)
schirmer@14359
   132
(* works best with enclosing "let", if "let" does not avoid eta-contraction   *)
schirmer@14359
   133
print_translation {*
schirmer@14359
   134
let fun split_tr' [Abs (x,T,t as (Abs abs))] =
schirmer@14359
   135
      (* split (%x y. t) => %(x,y) t *)
schirmer@14359
   136
      let val (y,t') = atomic_abs_tr' abs;
schirmer@14359
   137
          val (x',t'') = atomic_abs_tr' (x,T,t');
schirmer@14359
   138
    
schirmer@14359
   139
      in Syntax.const "_abs" $ (Syntax.const "_pattern" $x'$y) $ t'' end
schirmer@14359
   140
    | split_tr' [Abs (x,T,(s as Const ("split",_)$t))] =
schirmer@14359
   141
       (* split (%x. (split (%y z. t))) => %(x,y,z). t *)
schirmer@14359
   142
       let val (Const ("_abs",_)$(Const ("_pattern",_)$y$z)$t') = split_tr' [t];
schirmer@14359
   143
           val (x',t'') = atomic_abs_tr' (x,T,t');
schirmer@14359
   144
       in Syntax.const "_abs"$ 
schirmer@14359
   145
           (Syntax.const "_pattern"$x'$(Syntax.const "_patterns"$y$z))$t'' end
schirmer@14359
   146
    | split_tr' [Const ("split",_)$t] =
schirmer@14359
   147
       (* split (split (%x y z. t)) => %((x,y),z). t *)   
schirmer@14359
   148
       split_tr' [(split_tr' [t])] (* inner split_tr' creates next pattern *)
schirmer@14359
   149
    | split_tr' [Const ("_abs",_)$x_y$(Abs abs)] =
schirmer@14359
   150
       (* split (%pttrn z. t) => %(pttrn,z). t *)
schirmer@14359
   151
       let val (z,t) = atomic_abs_tr' abs;
schirmer@14359
   152
       in Syntax.const "_abs" $ (Syntax.const "_pattern" $x_y$z) $ t end
schirmer@14359
   153
    | split_tr' _ =  raise Match;
schirmer@14359
   154
in [("split", split_tr')]
schirmer@14359
   155
end
schirmer@14359
   156
*}
schirmer@14359
   157
wenzelm@12114
   158
syntax (xsymbols)
oheimb@11493
   159
  "@Sigma" :: "[pttrn, 'a set, 'b set] => ('a * 'b) set"  ("(3\<Sigma> _\<in>_./ _)"   10)
oheimb@11493
   160
  "@Times" :: "['a set,  'a => 'b set] => ('a * 'b) set"  ("_ \<times> _" [81, 80] 80)
oheimb@11025
   161
wenzelm@11032
   162
print_translation {* [("Sigma", dependent_tr' ("@Sigma", "@Times"))] *}
nipkow@10213
   163
nipkow@10213
   164
wenzelm@11777
   165
subsubsection {* Definitions *}
nipkow@10213
   166
nipkow@10213
   167
defs
oheimb@11025
   168
  Pair_def:     "Pair a b == Abs_Prod(Pair_Rep a b)"
paulson@11451
   169
  fst_def:      "fst p == THE a. EX b. p = (a, b)"
paulson@11451
   170
  snd_def:      "snd p == THE b. EX a. p = (a, b)"
oheimb@11025
   171
  split_def:    "split == (%c p. c (fst p) (snd p))"
skalberg@14189
   172
  curry_def:    "curry == (%c x y. c (x,y))"
oheimb@11025
   173
  prod_fun_def: "prod_fun f g == split(%x y.(f(x), g(y)))"
oheimb@11025
   174
  Sigma_def:    "Sigma A B == UN x:A. UN y:B(x). {(x, y)}"
nipkow@10213
   175
nipkow@10213
   176
wenzelm@11966
   177
subsubsection {* Lemmas and proof tool setup *}
wenzelm@11838
   178
wenzelm@11838
   179
lemma ProdI: "Pair_Rep a b : Prod"
wenzelm@11838
   180
  by (unfold Prod_def) blast
wenzelm@11838
   181
wenzelm@11838
   182
lemma Pair_Rep_inject: "Pair_Rep a b = Pair_Rep a' b' ==> a = a' & b = b'"
wenzelm@11838
   183
  apply (unfold Pair_Rep_def)
paulson@14208
   184
  apply (drule fun_cong [THEN fun_cong], blast)
wenzelm@11838
   185
  done
nipkow@10213
   186
wenzelm@11838
   187
lemma inj_on_Abs_Prod: "inj_on Abs_Prod Prod"
wenzelm@11838
   188
  apply (rule inj_on_inverseI)
wenzelm@11838
   189
  apply (erule Abs_Prod_inverse)
wenzelm@11838
   190
  done
wenzelm@11838
   191
wenzelm@11838
   192
lemma Pair_inject:
wenzelm@11838
   193
  "(a, b) = (a', b') ==> (a = a' ==> b = b' ==> R) ==> R"
wenzelm@11838
   194
proof -
wenzelm@11838
   195
  case rule_context [unfolded Pair_def]
wenzelm@11838
   196
  show ?thesis
wenzelm@11838
   197
    apply (rule inj_on_Abs_Prod [THEN inj_onD, THEN Pair_Rep_inject, THEN conjE])
wenzelm@11838
   198
    apply (rule rule_context ProdI)+
wenzelm@11838
   199
    .
oheimb@11025
   200
qed
nipkow@10213
   201
wenzelm@11838
   202
lemma Pair_eq [iff]: "((a, b) = (a', b')) = (a = a' & b = b')"
wenzelm@11838
   203
  by (blast elim!: Pair_inject)
wenzelm@11838
   204
wenzelm@11838
   205
lemma fst_conv [simp]: "fst (a, b) = a"
wenzelm@11838
   206
  by (unfold fst_def) blast
wenzelm@11838
   207
wenzelm@11838
   208
lemma snd_conv [simp]: "snd (a, b) = b"
wenzelm@11838
   209
  by (unfold snd_def) blast
oheimb@11025
   210
wenzelm@11838
   211
lemma fst_eqD: "fst (x, y) = a ==> x = a"
wenzelm@11838
   212
  by simp
wenzelm@11838
   213
wenzelm@11838
   214
lemma snd_eqD: "snd (x, y) = a ==> y = a"
wenzelm@11838
   215
  by simp
wenzelm@11838
   216
wenzelm@11838
   217
lemma PairE_lemma: "EX x y. p = (x, y)"
wenzelm@11838
   218
  apply (unfold Pair_def)
wenzelm@11838
   219
  apply (rule Rep_Prod [unfolded Prod_def, THEN CollectE])
wenzelm@11838
   220
  apply (erule exE, erule exE, rule exI, rule exI)
wenzelm@11838
   221
  apply (rule Rep_Prod_inverse [symmetric, THEN trans])
wenzelm@11838
   222
  apply (erule arg_cong)
wenzelm@11838
   223
  done
wenzelm@11032
   224
wenzelm@11838
   225
lemma PairE [cases type: *]: "(!!x y. p = (x, y) ==> Q) ==> Q"
wenzelm@11838
   226
  by (insert PairE_lemma [of p]) blast
wenzelm@11838
   227
wenzelm@11838
   228
ML_setup {*
wenzelm@11838
   229
  local val PairE = thm "PairE" in
wenzelm@11838
   230
    fun pair_tac s =
wenzelm@11838
   231
      EVERY' [res_inst_tac [("p", s)] PairE, hyp_subst_tac, K prune_params_tac];
wenzelm@11838
   232
  end;
wenzelm@11838
   233
*}
wenzelm@11032
   234
wenzelm@11838
   235
lemma surjective_pairing: "p = (fst p, snd p)"
wenzelm@11838
   236
  -- {* Do not add as rewrite rule: invalidates some proofs in IMP *}
wenzelm@11838
   237
  by (cases p) simp
wenzelm@11838
   238
wenzelm@11838
   239
declare surjective_pairing [symmetric, simp]
oheimb@11025
   240
wenzelm@11838
   241
lemma surj_pair [simp]: "EX x y. z = (x, y)"
wenzelm@11838
   242
  apply (rule exI)
wenzelm@11838
   243
  apply (rule exI)
wenzelm@11838
   244
  apply (rule surjective_pairing)
wenzelm@11838
   245
  done
wenzelm@11838
   246
wenzelm@11838
   247
lemma split_paired_all: "(!!x. PROP P x) == (!!a b. PROP P (a, b))"
wenzelm@11820
   248
proof
wenzelm@11820
   249
  fix a b
wenzelm@11820
   250
  assume "!!x. PROP P x"
wenzelm@11820
   251
  thus "PROP P (a, b)" .
wenzelm@11820
   252
next
wenzelm@11820
   253
  fix x
wenzelm@11820
   254
  assume "!!a b. PROP P (a, b)"
wenzelm@11820
   255
  hence "PROP P (fst x, snd x)" .
wenzelm@11820
   256
  thus "PROP P x" by simp
wenzelm@11820
   257
qed
wenzelm@11820
   258
wenzelm@11838
   259
lemmas split_tupled_all = split_paired_all unit_all_eq2
wenzelm@11838
   260
wenzelm@11838
   261
text {*
wenzelm@11838
   262
  The rule @{thm [source] split_paired_all} does not work with the
wenzelm@11838
   263
  Simplifier because it also affects premises in congrence rules,
wenzelm@11838
   264
  where this can lead to premises of the form @{text "!!a b. ... =
wenzelm@11838
   265
  ?P(a, b)"} which cannot be solved by reflexivity.
wenzelm@11838
   266
*}
wenzelm@11838
   267
wenzelm@11838
   268
ML_setup "
wenzelm@11838
   269
  (* replace parameters of product type by individual component parameters *)
wenzelm@11838
   270
  val safe_full_simp_tac = generic_simp_tac true (true, false, false);
wenzelm@11838
   271
  local (* filtering with exists_paired_all is an essential optimization *)
wenzelm@11838
   272
    fun exists_paired_all (Const (\"all\", _) $ Abs (_, T, t)) =
wenzelm@11838
   273
          can HOLogic.dest_prodT T orelse exists_paired_all t
wenzelm@11838
   274
      | exists_paired_all (t $ u) = exists_paired_all t orelse exists_paired_all u
wenzelm@11838
   275
      | exists_paired_all (Abs (_, _, t)) = exists_paired_all t
wenzelm@11838
   276
      | exists_paired_all _ = false;
wenzelm@11838
   277
    val ss = HOL_basic_ss
wenzelm@11838
   278
      addsimps [thm \"split_paired_all\", thm \"unit_all_eq2\", thm \"unit_abs_eta_conv\"]
wenzelm@11838
   279
      addsimprocs [unit_eq_proc];
wenzelm@11838
   280
  in
wenzelm@11838
   281
    val split_all_tac = SUBGOAL (fn (t, i) =>
wenzelm@11838
   282
      if exists_paired_all t then safe_full_simp_tac ss i else no_tac);
wenzelm@11838
   283
    val unsafe_split_all_tac = SUBGOAL (fn (t, i) =>
wenzelm@11838
   284
      if exists_paired_all t then full_simp_tac ss i else no_tac);
wenzelm@11838
   285
    fun split_all th =
wenzelm@11838
   286
   if exists_paired_all (#prop (Thm.rep_thm th)) then full_simplify ss th else th;
wenzelm@11838
   287
  end;
wenzelm@11838
   288
wenzelm@11838
   289
claset_ref() := claset() addSbefore (\"split_all_tac\", split_all_tac);
wenzelm@11838
   290
"
wenzelm@11838
   291
wenzelm@11838
   292
lemma split_paired_All [simp]: "(ALL x. P x) = (ALL a b. P (a, b))"
wenzelm@11838
   293
  -- {* @{text "[iff]"} is not a good idea because it makes @{text blast} loop *}
wenzelm@11838
   294
  by fast
wenzelm@11838
   295
skalberg@14189
   296
lemma curry_split [simp]: "curry (split f) = f"
skalberg@14189
   297
  by (simp add: curry_def split_def)
skalberg@14189
   298
skalberg@14189
   299
lemma split_curry [simp]: "split (curry f) = f"
skalberg@14189
   300
  by (simp add: curry_def split_def)
skalberg@14189
   301
skalberg@14189
   302
lemma curryI [intro!]: "f (a,b) ==> curry f a b"
skalberg@14189
   303
  by (simp add: curry_def)
skalberg@14189
   304
skalberg@14190
   305
lemma curryD [dest!]: "curry f a b ==> f (a,b)"
skalberg@14189
   306
  by (simp add: curry_def)
skalberg@14189
   307
skalberg@14190
   308
lemma curryE: "[| curry f a b ; f (a,b) ==> Q |] ==> Q"
skalberg@14189
   309
  by (simp add: curry_def)
skalberg@14189
   310
skalberg@14189
   311
lemma curry_conv [simp]: "curry f a b = f (a,b)"
skalberg@14189
   312
  by (simp add: curry_def)
skalberg@14189
   313
wenzelm@11838
   314
lemma prod_induct [induct type: *]: "!!x. (!!a b. P (a, b)) ==> P x"
wenzelm@11838
   315
  by fast
wenzelm@11838
   316
wenzelm@11838
   317
lemma split_paired_Ex [simp]: "(EX x. P x) = (EX a b. P (a, b))"
wenzelm@11838
   318
  by fast
wenzelm@11838
   319
wenzelm@11838
   320
lemma split_conv [simp]: "split c (a, b) = c a b"
wenzelm@11838
   321
  by (simp add: split_def)
wenzelm@11838
   322
wenzelm@11838
   323
lemmas split = split_conv  -- {* for backwards compatibility *}
wenzelm@11838
   324
wenzelm@11838
   325
lemmas splitI = split_conv [THEN iffD2, standard]
wenzelm@11838
   326
lemmas splitD = split_conv [THEN iffD1, standard]
wenzelm@11838
   327
wenzelm@11838
   328
lemma split_Pair_apply: "split (%x y. f (x, y)) = f"
wenzelm@11838
   329
  -- {* Subsumes the old @{text split_Pair} when @{term f} is the identity function. *}
wenzelm@11838
   330
  apply (rule ext)
paulson@14208
   331
  apply (tactic {* pair_tac "x" 1 *}, simp)
wenzelm@11838
   332
  done
wenzelm@11838
   333
wenzelm@11838
   334
lemma split_paired_The: "(THE x. P x) = (THE (a, b). P (a, b))"
wenzelm@11838
   335
  -- {* Can't be added to simpset: loops! *}
wenzelm@11838
   336
  by (simp add: split_Pair_apply)
wenzelm@11838
   337
wenzelm@11838
   338
lemma The_split: "The (split P) = (THE xy. P (fst xy) (snd xy))"
wenzelm@11838
   339
  by (simp add: split_def)
wenzelm@11838
   340
wenzelm@11838
   341
lemma Pair_fst_snd_eq: "!!s t. (s = t) = (fst s = fst t & snd s = snd t)"
paulson@14208
   342
by (simp only: split_tupled_all, simp)
wenzelm@11838
   343
wenzelm@11838
   344
lemma prod_eqI [intro?]: "fst p = fst q ==> snd p = snd q ==> p = q"
wenzelm@11838
   345
  by (simp add: Pair_fst_snd_eq)
wenzelm@11838
   346
wenzelm@11838
   347
lemma split_weak_cong: "p = q ==> split c p = split c q"
wenzelm@11838
   348
  -- {* Prevents simplification of @{term c}: much faster *}
wenzelm@11838
   349
  by (erule arg_cong)
wenzelm@11838
   350
wenzelm@11838
   351
lemma split_eta: "(%(x, y). f (x, y)) = f"
wenzelm@11838
   352
  apply (rule ext)
wenzelm@11838
   353
  apply (simp only: split_tupled_all)
wenzelm@11838
   354
  apply (rule split_conv)
wenzelm@11838
   355
  done
wenzelm@11838
   356
wenzelm@11838
   357
lemma cond_split_eta: "(!!x y. f x y = g (x, y)) ==> (%(x, y). f x y) = g"
wenzelm@11838
   358
  by (simp add: split_eta)
wenzelm@11838
   359
wenzelm@11838
   360
text {*
wenzelm@11838
   361
  Simplification procedure for @{thm [source] cond_split_eta}.  Using
wenzelm@11838
   362
  @{thm [source] split_eta} as a rewrite rule is not general enough,
wenzelm@11838
   363
  and using @{thm [source] cond_split_eta} directly would render some
wenzelm@11838
   364
  existing proofs very inefficient; similarly for @{text
wenzelm@11838
   365
  split_beta}. *}
wenzelm@11838
   366
wenzelm@11838
   367
ML_setup {*
wenzelm@11838
   368
wenzelm@11838
   369
local
wenzelm@11838
   370
  val cond_split_eta = thm "cond_split_eta";
wenzelm@11838
   371
  fun  Pair_pat k 0 (Bound m) = (m = k)
wenzelm@11838
   372
  |    Pair_pat k i (Const ("Pair",  _) $ Bound m $ t) = i > 0 andalso
wenzelm@11838
   373
                        m = k+i andalso Pair_pat k (i-1) t
wenzelm@11838
   374
  |    Pair_pat _ _ _ = false;
wenzelm@11838
   375
  fun no_args k i (Abs (_, _, t)) = no_args (k+1) i t
wenzelm@11838
   376
  |   no_args k i (t $ u) = no_args k i t andalso no_args k i u
wenzelm@11838
   377
  |   no_args k i (Bound m) = m < k orelse m > k+i
wenzelm@11838
   378
  |   no_args _ _ _ = true;
wenzelm@11838
   379
  fun split_pat tp i (Abs  (_,_,t)) = if tp 0 i t then Some (i,t) else None
wenzelm@11838
   380
  |   split_pat tp i (Const ("split", _) $ Abs (_, _, t)) = split_pat tp (i+1) t
wenzelm@11838
   381
  |   split_pat tp i _ = None;
wenzelm@13480
   382
  fun metaeq sg lhs rhs = mk_meta_eq (Tactic.prove sg [] []
wenzelm@13480
   383
        (HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs,rhs)))
wenzelm@13480
   384
        (K (simp_tac (HOL_basic_ss addsimps [cond_split_eta]) 1)));
wenzelm@11838
   385
wenzelm@11838
   386
  fun beta_term_pat k i (Abs (_, _, t)) = beta_term_pat (k+1) i t
wenzelm@11838
   387
  |   beta_term_pat k i (t $ u) = Pair_pat k i (t $ u) orelse
wenzelm@11838
   388
                        (beta_term_pat k i t andalso beta_term_pat k i u)
wenzelm@11838
   389
  |   beta_term_pat k i t = no_args k i t;
wenzelm@11838
   390
  fun  eta_term_pat k i (f $ arg) = no_args k i f andalso Pair_pat k i arg
wenzelm@11838
   391
  |    eta_term_pat _ _ _ = false;
wenzelm@11838
   392
  fun subst arg k i (Abs (x, T, t)) = Abs (x, T, subst arg (k+1) i t)
wenzelm@11838
   393
  |   subst arg k i (t $ u) = if Pair_pat k i (t $ u) then incr_boundvars k arg
wenzelm@11838
   394
                              else (subst arg k i t $ subst arg k i u)
wenzelm@11838
   395
  |   subst arg k i t = t;
wenzelm@11838
   396
  fun beta_proc sg _ (s as Const ("split", _) $ Abs (_, _, t) $ arg) =
wenzelm@11838
   397
        (case split_pat beta_term_pat 1 t of
wenzelm@11838
   398
        Some (i,f) => Some (metaeq sg s (subst arg 0 i f))
wenzelm@11838
   399
        | None => None)
wenzelm@11838
   400
  |   beta_proc _ _ _ = None;
wenzelm@11838
   401
  fun eta_proc sg _ (s as Const ("split", _) $ Abs (_, _, t)) =
wenzelm@11838
   402
        (case split_pat eta_term_pat 1 t of
wenzelm@11838
   403
          Some (_,ft) => Some (metaeq sg s (let val (f $ arg) = ft in f end))
wenzelm@11838
   404
        | None => None)
wenzelm@11838
   405
  |   eta_proc _ _ _ = None;
wenzelm@11838
   406
in
wenzelm@13462
   407
  val split_beta_proc = Simplifier.simproc (Theory.sign_of (the_context ()))
wenzelm@13462
   408
    "split_beta" ["split f z"] beta_proc;
wenzelm@13462
   409
  val split_eta_proc = Simplifier.simproc (Theory.sign_of (the_context ()))
wenzelm@13462
   410
    "split_eta" ["split f"] eta_proc;
wenzelm@11838
   411
end;
wenzelm@11838
   412
wenzelm@11838
   413
Addsimprocs [split_beta_proc, split_eta_proc];
wenzelm@11838
   414
*}
wenzelm@11838
   415
wenzelm@11838
   416
lemma split_beta: "(%(x, y). P x y) z = P (fst z) (snd z)"
wenzelm@11838
   417
  by (subst surjective_pairing, rule split_conv)
wenzelm@11838
   418
wenzelm@11838
   419
lemma split_split: "R (split c p) = (ALL x y. p = (x, y) --> R (c x y))"
wenzelm@11838
   420
  -- {* For use with @{text split} and the Simplifier. *}
wenzelm@11838
   421
  apply (subst surjective_pairing)
paulson@14208
   422
  apply (subst split_conv, blast)
wenzelm@11838
   423
  done
wenzelm@11838
   424
wenzelm@11838
   425
text {*
wenzelm@11838
   426
  @{thm [source] split_split} could be declared as @{text "[split]"}
wenzelm@11838
   427
  done after the Splitter has been speeded up significantly;
wenzelm@11838
   428
  precompute the constants involved and don't do anything unless the
wenzelm@11838
   429
  current goal contains one of those constants.
wenzelm@11838
   430
*}
wenzelm@11838
   431
wenzelm@11838
   432
lemma split_split_asm: "R (split c p) = (~(EX x y. p = (x, y) & (~R (c x y))))"
paulson@14208
   433
by (subst split_split, simp)
wenzelm@11838
   434
wenzelm@11838
   435
wenzelm@11838
   436
text {*
wenzelm@11838
   437
  \medskip @{term split} used as a logical connective or set former.
wenzelm@11838
   438
wenzelm@11838
   439
  \medskip These rules are for use with @{text blast}; could instead
wenzelm@11838
   440
  call @{text simp} using @{thm [source] split} as rewrite. *}
wenzelm@11838
   441
wenzelm@11838
   442
lemma splitI2: "!!p. [| !!a b. p = (a, b) ==> c a b |] ==> split c p"
wenzelm@11838
   443
  apply (simp only: split_tupled_all)
wenzelm@11838
   444
  apply (simp (no_asm_simp))
wenzelm@11838
   445
  done
wenzelm@11838
   446
wenzelm@11838
   447
lemma splitI2': "!!p. [| !!a b. (a, b) = p ==> c a b x |] ==> split c p x"
wenzelm@11838
   448
  apply (simp only: split_tupled_all)
wenzelm@11838
   449
  apply (simp (no_asm_simp))
wenzelm@11838
   450
  done
wenzelm@11838
   451
wenzelm@11838
   452
lemma splitE: "split c p ==> (!!x y. p = (x, y) ==> c x y ==> Q) ==> Q"
wenzelm@11838
   453
  by (induct p) (auto simp add: split_def)
wenzelm@11838
   454
wenzelm@11838
   455
lemma splitE': "split c p z ==> (!!x y. p = (x, y) ==> c x y z ==> Q) ==> Q"
wenzelm@11838
   456
  by (induct p) (auto simp add: split_def)
wenzelm@11838
   457
wenzelm@11838
   458
lemma splitE2:
wenzelm@11838
   459
  "[| Q (split P z);  !!x y. [|z = (x, y); Q (P x y)|] ==> R |] ==> R"
wenzelm@11838
   460
proof -
wenzelm@11838
   461
  assume q: "Q (split P z)"
wenzelm@11838
   462
  assume r: "!!x y. [|z = (x, y); Q (P x y)|] ==> R"
wenzelm@11838
   463
  show R
wenzelm@11838
   464
    apply (rule r surjective_pairing)+
wenzelm@11838
   465
    apply (rule split_beta [THEN subst], rule q)
wenzelm@11838
   466
    done
wenzelm@11838
   467
qed
wenzelm@11838
   468
wenzelm@11838
   469
lemma splitD': "split R (a,b) c ==> R a b c"
wenzelm@11838
   470
  by simp
wenzelm@11838
   471
wenzelm@11838
   472
lemma mem_splitI: "z: c a b ==> z: split c (a, b)"
wenzelm@11838
   473
  by simp
wenzelm@11838
   474
wenzelm@11838
   475
lemma mem_splitI2: "!!p. [| !!a b. p = (a, b) ==> z: c a b |] ==> z: split c p"
paulson@14208
   476
by (simp only: split_tupled_all, simp)
wenzelm@11838
   477
wenzelm@11838
   478
lemma mem_splitE: "[| z: split c p; !!x y. [| p = (x,y); z: c x y |] ==> Q |] ==> Q"
wenzelm@11838
   479
proof -
wenzelm@11838
   480
  case rule_context [unfolded split_def]
wenzelm@11838
   481
  show ?thesis by (rule rule_context surjective_pairing)+
wenzelm@11838
   482
qed
wenzelm@11838
   483
wenzelm@11838
   484
declare mem_splitI2 [intro!] mem_splitI [intro!] splitI2' [intro!] splitI2 [intro!] splitI [intro!]
wenzelm@11838
   485
declare mem_splitE [elim!] splitE' [elim!] splitE [elim!]
wenzelm@11838
   486
wenzelm@11838
   487
ML_setup "
wenzelm@11838
   488
local (* filtering with exists_p_split is an essential optimization *)
wenzelm@11838
   489
  fun exists_p_split (Const (\"split\",_) $ _ $ (Const (\"Pair\",_)$_$_)) = true
wenzelm@11838
   490
    | exists_p_split (t $ u) = exists_p_split t orelse exists_p_split u
wenzelm@11838
   491
    | exists_p_split (Abs (_, _, t)) = exists_p_split t
wenzelm@11838
   492
    | exists_p_split _ = false;
wenzelm@11838
   493
  val ss = HOL_basic_ss addsimps [thm \"split_conv\"];
wenzelm@11838
   494
in
wenzelm@11838
   495
val split_conv_tac = SUBGOAL (fn (t, i) =>
wenzelm@11838
   496
    if exists_p_split t then safe_full_simp_tac ss i else no_tac);
wenzelm@11838
   497
end;
wenzelm@11838
   498
(* This prevents applications of splitE for already splitted arguments leading
wenzelm@11838
   499
   to quite time-consuming computations (in particular for nested tuples) *)
wenzelm@11838
   500
claset_ref() := claset() addSbefore (\"split_conv_tac\", split_conv_tac);
wenzelm@11838
   501
"
wenzelm@11838
   502
wenzelm@11838
   503
lemma split_eta_SetCompr [simp]: "(%u. EX x y. u = (x, y) & P (x, y)) = P"
paulson@14208
   504
by (rule ext, fast)
wenzelm@11838
   505
wenzelm@11838
   506
lemma split_eta_SetCompr2 [simp]: "(%u. EX x y. u = (x, y) & P x y) = split P"
paulson@14208
   507
by (rule ext, fast)
wenzelm@11838
   508
wenzelm@11838
   509
lemma split_part [simp]: "(%(a,b). P & Q a b) = (%ab. P & split Q ab)"
wenzelm@11838
   510
  -- {* Allows simplifications of nested splits in case of independent predicates. *}
paulson@14208
   511
  apply (rule ext, blast)
wenzelm@11838
   512
  done
wenzelm@11838
   513
nipkow@14337
   514
(* Do NOT make this a simp rule as it
nipkow@14337
   515
   a) only helps in special situations
nipkow@14337
   516
   b) can lead to nontermination in the presence of split_def
nipkow@14337
   517
*)
nipkow@14337
   518
lemma split_comp_eq: 
oheimb@14101
   519
"(%u. f (g (fst u)) (snd u)) = (split (%x. f (g x)))"
oheimb@14101
   520
by (rule ext, auto)
oheimb@14101
   521
wenzelm@11838
   522
lemma The_split_eq [simp]: "(THE (x',y'). x = x' & y = y') = (x, y)"
wenzelm@11838
   523
  by blast
wenzelm@11838
   524
wenzelm@11838
   525
(*
wenzelm@11838
   526
the following  would be slightly more general,
wenzelm@11838
   527
but cannot be used as rewrite rule:
wenzelm@11838
   528
### Cannot add premise as rewrite rule because it contains (type) unknowns:
wenzelm@11838
   529
### ?y = .x
wenzelm@11838
   530
Goal "[| P y; !!x. P x ==> x = y |] ==> (@(x',y). x = x' & P y) = (x,y)"
paulson@14208
   531
by (rtac some_equality 1)
paulson@14208
   532
by ( Simp_tac 1)
paulson@14208
   533
by (split_all_tac 1)
paulson@14208
   534
by (Asm_full_simp_tac 1)
wenzelm@11838
   535
qed "The_split_eq";
wenzelm@11838
   536
*)
wenzelm@11838
   537
wenzelm@11838
   538
lemma injective_fst_snd: "!!x y. [|fst x = fst y; snd x = snd y|] ==> x = y"
wenzelm@11838
   539
  by auto
wenzelm@11838
   540
wenzelm@11838
   541
wenzelm@11838
   542
text {*
wenzelm@11838
   543
  \bigskip @{term prod_fun} --- action of the product functor upon
wenzelm@11838
   544
  functions.
wenzelm@11838
   545
*}
wenzelm@11838
   546
wenzelm@11838
   547
lemma prod_fun [simp]: "prod_fun f g (a, b) = (f a, g b)"
wenzelm@11838
   548
  by (simp add: prod_fun_def)
wenzelm@11838
   549
wenzelm@11838
   550
lemma prod_fun_compose: "prod_fun (f1 o f2) (g1 o g2) = (prod_fun f1 g1 o prod_fun f2 g2)"
wenzelm@11838
   551
  apply (rule ext)
paulson@14208
   552
  apply (tactic {* pair_tac "x" 1 *}, simp)
wenzelm@11838
   553
  done
wenzelm@11838
   554
wenzelm@11838
   555
lemma prod_fun_ident [simp]: "prod_fun (%x. x) (%y. y) = (%z. z)"
wenzelm@11838
   556
  apply (rule ext)
paulson@14208
   557
  apply (tactic {* pair_tac "z" 1 *}, simp)
wenzelm@11838
   558
  done
wenzelm@11838
   559
wenzelm@11838
   560
lemma prod_fun_imageI [intro]: "(a, b) : r ==> (f a, g b) : prod_fun f g ` r"
wenzelm@11838
   561
  apply (rule image_eqI)
paulson@14208
   562
  apply (rule prod_fun [symmetric], assumption)
wenzelm@11838
   563
  done
wenzelm@11838
   564
wenzelm@11838
   565
lemma prod_fun_imageE [elim!]:
wenzelm@11838
   566
  "[| c: (prod_fun f g)`r;  !!x y. [| c=(f(x),g(y));  (x,y):r |] ==> P
wenzelm@11838
   567
    |] ==> P"
wenzelm@11838
   568
proof -
wenzelm@11838
   569
  case rule_context
wenzelm@11838
   570
  assume major: "c: (prod_fun f g)`r"
wenzelm@11838
   571
  show ?thesis
wenzelm@11838
   572
    apply (rule major [THEN imageE])
wenzelm@11838
   573
    apply (rule_tac p = x in PairE)
wenzelm@11838
   574
    apply (rule rule_context)
wenzelm@11838
   575
     prefer 2
wenzelm@11838
   576
     apply blast
wenzelm@11838
   577
    apply (blast intro: prod_fun)
wenzelm@11838
   578
    done
wenzelm@11838
   579
qed
wenzelm@11838
   580
wenzelm@11838
   581
oheimb@14101
   582
constdefs
oheimb@14101
   583
  upd_fst :: "('a => 'c) => 'a * 'b => 'c * 'b"
oheimb@14101
   584
 "upd_fst f == prod_fun f id"
oheimb@14101
   585
oheimb@14101
   586
  upd_snd :: "('b => 'c) => 'a * 'b => 'a * 'c"
oheimb@14101
   587
 "upd_snd f == prod_fun id f"
oheimb@14101
   588
oheimb@14101
   589
lemma upd_fst_conv [simp]: "upd_fst f (x,y) = (f x,y)" 
oheimb@14101
   590
by (simp add: upd_fst_def)
oheimb@14101
   591
oheimb@14101
   592
lemma upd_snd_conv [simp]: "upd_snd f (x,y) = (x,f y)" 
oheimb@14101
   593
by (simp add: upd_snd_def)
oheimb@14101
   594
wenzelm@11838
   595
text {*
wenzelm@11838
   596
  \bigskip Disjoint union of a family of sets -- Sigma.
wenzelm@11838
   597
*}
wenzelm@11838
   598
wenzelm@11838
   599
lemma SigmaI [intro!]: "[| a:A;  b:B(a) |] ==> (a,b) : Sigma A B"
wenzelm@11838
   600
  by (unfold Sigma_def) blast
wenzelm@11838
   601
wenzelm@11838
   602
wenzelm@11838
   603
lemma SigmaE:
wenzelm@11838
   604
    "[| c: Sigma A B;
wenzelm@11838
   605
        !!x y.[| x:A;  y:B(x);  c=(x,y) |] ==> P
wenzelm@11838
   606
     |] ==> P"
wenzelm@11838
   607
  -- {* The general elimination rule. *}
wenzelm@11838
   608
  by (unfold Sigma_def) blast
wenzelm@11838
   609
wenzelm@11838
   610
text {*
wenzelm@11838
   611
  Elimination of @{term "(a, b) : A \<times> B"} -- introduces no
wenzelm@11838
   612
  eigenvariables.
wenzelm@11838
   613
*}
wenzelm@11838
   614
wenzelm@11838
   615
lemma SigmaD1: "(a, b) : Sigma A B ==> a : A"
paulson@14208
   616
by (erule SigmaE, blast)
wenzelm@11838
   617
wenzelm@11838
   618
lemma SigmaD2: "(a, b) : Sigma A B ==> b : B a"
paulson@14208
   619
by (erule SigmaE, blast)
wenzelm@11838
   620
wenzelm@11838
   621
lemma SigmaE2:
wenzelm@11838
   622
    "[| (a, b) : Sigma A B;
wenzelm@11838
   623
        [| a:A;  b:B(a) |] ==> P
wenzelm@11838
   624
     |] ==> P"
wenzelm@11838
   625
  by (blast dest: SigmaD1 SigmaD2)
wenzelm@11838
   626
wenzelm@11838
   627
declare SigmaE [elim!] SigmaE2 [elim!]
wenzelm@11838
   628
wenzelm@11838
   629
lemma Sigma_mono: "[| A <= C; !!x. x:A ==> B x <= D x |] ==> Sigma A B <= Sigma C D"
wenzelm@11838
   630
  by blast
wenzelm@11838
   631
wenzelm@11838
   632
lemma Sigma_empty1 [simp]: "Sigma {} B = {}"
wenzelm@11838
   633
  by blast
wenzelm@11838
   634
wenzelm@11838
   635
lemma Sigma_empty2 [simp]: "A <*> {} = {}"
wenzelm@11838
   636
  by blast
wenzelm@11838
   637
wenzelm@11838
   638
lemma UNIV_Times_UNIV [simp]: "UNIV <*> UNIV = UNIV"
wenzelm@11838
   639
  by auto
wenzelm@11838
   640
wenzelm@11838
   641
lemma Compl_Times_UNIV1 [simp]: "- (UNIV <*> A) = UNIV <*> (-A)"
wenzelm@11838
   642
  by auto
wenzelm@11838
   643
wenzelm@11838
   644
lemma Compl_Times_UNIV2 [simp]: "- (A <*> UNIV) = (-A) <*> UNIV"
wenzelm@11838
   645
  by auto
wenzelm@11838
   646
wenzelm@11838
   647
lemma mem_Sigma_iff [iff]: "((a,b): Sigma A B) = (a:A & b:B(a))"
wenzelm@11838
   648
  by blast
wenzelm@11838
   649
wenzelm@11838
   650
lemma Times_subset_cancel2: "x:C ==> (A <*> C <= B <*> C) = (A <= B)"
wenzelm@11838
   651
  by blast
wenzelm@11838
   652
wenzelm@11838
   653
lemma Times_eq_cancel2: "x:C ==> (A <*> C = B <*> C) = (A = B)"
wenzelm@11838
   654
  by (blast elim: equalityE)
wenzelm@11838
   655
wenzelm@11838
   656
lemma SetCompr_Sigma_eq:
wenzelm@11838
   657
    "Collect (split (%x y. P x & Q x y)) = (SIGMA x:Collect P. Collect (Q x))"
wenzelm@11838
   658
  by blast
wenzelm@11838
   659
wenzelm@11838
   660
text {*
wenzelm@11838
   661
  \bigskip Complex rules for Sigma.
wenzelm@11838
   662
*}
wenzelm@11838
   663
wenzelm@11838
   664
lemma Collect_split [simp]: "{(a,b). P a & Q b} = Collect P <*> Collect Q"
wenzelm@11838
   665
  by blast
wenzelm@11838
   666
wenzelm@11838
   667
lemma UN_Times_distrib:
wenzelm@11838
   668
  "(UN (a,b):(A <*> B). E a <*> F b) = (UNION A E) <*> (UNION B F)"
wenzelm@11838
   669
  -- {* Suggested by Pierre Chartier *}
wenzelm@11838
   670
  by blast
wenzelm@11838
   671
wenzelm@11838
   672
lemma split_paired_Ball_Sigma [simp]:
wenzelm@11838
   673
    "(ALL z: Sigma A B. P z) = (ALL x:A. ALL y: B x. P(x,y))"
wenzelm@11838
   674
  by blast
wenzelm@11838
   675
wenzelm@11838
   676
lemma split_paired_Bex_Sigma [simp]:
wenzelm@11838
   677
    "(EX z: Sigma A B. P z) = (EX x:A. EX y: B x. P(x,y))"
wenzelm@11838
   678
  by blast
wenzelm@11838
   679
wenzelm@11838
   680
lemma Sigma_Un_distrib1: "(SIGMA i:I Un J. C(i)) = (SIGMA i:I. C(i)) Un (SIGMA j:J. C(j))"
wenzelm@11838
   681
  by blast
wenzelm@11838
   682
wenzelm@11838
   683
lemma Sigma_Un_distrib2: "(SIGMA i:I. A(i) Un B(i)) = (SIGMA i:I. A(i)) Un (SIGMA i:I. B(i))"
wenzelm@11838
   684
  by blast
wenzelm@11838
   685
wenzelm@11838
   686
lemma Sigma_Int_distrib1: "(SIGMA i:I Int J. C(i)) = (SIGMA i:I. C(i)) Int (SIGMA j:J. C(j))"
wenzelm@11838
   687
  by blast
wenzelm@11838
   688
wenzelm@11838
   689
lemma Sigma_Int_distrib2: "(SIGMA i:I. A(i) Int B(i)) = (SIGMA i:I. A(i)) Int (SIGMA i:I. B(i))"
wenzelm@11838
   690
  by blast
wenzelm@11838
   691
wenzelm@11838
   692
lemma Sigma_Diff_distrib1: "(SIGMA i:I - J. C(i)) = (SIGMA i:I. C(i)) - (SIGMA j:J. C(j))"
wenzelm@11838
   693
  by blast
wenzelm@11838
   694
wenzelm@11838
   695
lemma Sigma_Diff_distrib2: "(SIGMA i:I. A(i) - B(i)) = (SIGMA i:I. A(i)) - (SIGMA i:I. B(i))"
wenzelm@11838
   696
  by blast
wenzelm@11838
   697
wenzelm@11838
   698
lemma Sigma_Union: "Sigma (Union X) B = (UN A:X. Sigma A B)"
wenzelm@11838
   699
  by blast
wenzelm@11838
   700
wenzelm@11838
   701
text {*
wenzelm@11838
   702
  Non-dependent versions are needed to avoid the need for higher-order
wenzelm@11838
   703
  matching, especially when the rules are re-oriented.
wenzelm@11838
   704
*}
wenzelm@11838
   705
wenzelm@11838
   706
lemma Times_Un_distrib1: "(A Un B) <*> C = (A <*> C) Un (B <*> C)"
wenzelm@11838
   707
  by blast
wenzelm@11838
   708
wenzelm@11838
   709
lemma Times_Int_distrib1: "(A Int B) <*> C = (A <*> C) Int (B <*> C)"
wenzelm@11838
   710
  by blast
wenzelm@11838
   711
wenzelm@11838
   712
lemma Times_Diff_distrib1: "(A - B) <*> C = (A <*> C) - (B <*> C)"
wenzelm@11838
   713
  by blast
wenzelm@11838
   714
wenzelm@11838
   715
oheimb@11493
   716
lemma pair_imageI [intro]: "(a, b) : A ==> f a b : (%(a, b). f a b) ` A"
wenzelm@11777
   717
  apply (rule_tac x = "(a, b)" in image_eqI)
wenzelm@11777
   718
   apply auto
wenzelm@11777
   719
  done
wenzelm@11777
   720
oheimb@11493
   721
wenzelm@11838
   722
text {*
wenzelm@11838
   723
  Setup of internal @{text split_rule}.
wenzelm@11838
   724
*}
wenzelm@11838
   725
wenzelm@11032
   726
constdefs
wenzelm@11425
   727
  internal_split :: "('a => 'b => 'c) => 'a * 'b => 'c"
wenzelm@11032
   728
  "internal_split == split"
wenzelm@11032
   729
wenzelm@11032
   730
lemma internal_split_conv: "internal_split c (a, b) = c a b"
wenzelm@11032
   731
  by (simp only: internal_split_def split_conv)
wenzelm@11032
   732
wenzelm@11032
   733
hide const internal_split
wenzelm@11032
   734
oheimb@11025
   735
use "Tools/split_rule.ML"
wenzelm@11032
   736
setup SplitRule.setup
nipkow@10213
   737
nipkow@10213
   738
end