src/HOL/Probability/Radon_Nikodym.thy
author hoelzl
Wed Feb 02 12:34:45 2011 +0100 (2011-02-02)
changeset 41689 3e39b0e730d6
parent 41661 baf1964bc468
child 41705 1100512e16d8
permissions -rw-r--r--
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
changed syntax for simple_function, simple_integral, positive_integral, integral and RN_deriv.
introduced binder variants for simple_integral, positive_integral and integral.
hoelzl@38656
     1
theory Radon_Nikodym
hoelzl@38656
     2
imports Lebesgue_Integration
hoelzl@38656
     3
begin
hoelzl@38656
     4
hoelzl@40859
     5
lemma less_\<omega>_Ex_of_nat: "x < \<omega> \<longleftrightarrow> (\<exists>n. x < of_nat n)"
hoelzl@40859
     6
proof safe
hoelzl@40859
     7
  assume "x < \<omega>"
hoelzl@40859
     8
  then obtain r where "0 \<le> r" "x = Real r" by (cases x) auto
hoelzl@40859
     9
  moreover obtain n where "r < of_nat n" using ex_less_of_nat by auto
hoelzl@40859
    10
  ultimately show "\<exists>n. x < of_nat n" by (auto simp: real_eq_of_nat)
hoelzl@40859
    11
qed auto
hoelzl@40859
    12
hoelzl@38656
    13
lemma (in sigma_finite_measure) Ex_finite_integrable_function:
hoelzl@41689
    14
  shows "\<exists>h\<in>borel_measurable M. integral\<^isup>P M h \<noteq> \<omega> \<and> (\<forall>x\<in>space M. 0 < h x \<and> h x < \<omega>)"
hoelzl@38656
    15
proof -
hoelzl@38656
    16
  obtain A :: "nat \<Rightarrow> 'a set" where
hoelzl@38656
    17
    range: "range A \<subseteq> sets M" and
hoelzl@38656
    18
    space: "(\<Union>i. A i) = space M" and
hoelzl@38656
    19
    measure: "\<And>i. \<mu> (A i) \<noteq> \<omega>" and
hoelzl@38656
    20
    disjoint: "disjoint_family A"
hoelzl@38656
    21
    using disjoint_sigma_finite by auto
hoelzl@38656
    22
  let "?B i" = "2^Suc i * \<mu> (A i)"
hoelzl@38656
    23
  have "\<forall>i. \<exists>x. 0 < x \<and> x < inverse (?B i)"
hoelzl@38656
    24
  proof
hoelzl@38656
    25
    fix i show "\<exists>x. 0 < x \<and> x < inverse (?B i)"
hoelzl@38656
    26
    proof cases
hoelzl@38656
    27
      assume "\<mu> (A i) = 0"
hoelzl@38656
    28
      then show ?thesis by (auto intro!: exI[of _ 1])
hoelzl@38656
    29
    next
hoelzl@38656
    30
      assume not_0: "\<mu> (A i) \<noteq> 0"
hoelzl@38656
    31
      then have "?B i \<noteq> \<omega>" using measure[of i] by auto
hoelzl@41023
    32
      then have "inverse (?B i) \<noteq> 0" unfolding pextreal_inverse_eq_0 by simp
hoelzl@38656
    33
      then show ?thesis using measure[of i] not_0
hoelzl@38656
    34
        by (auto intro!: exI[of _ "inverse (?B i) / 2"]
hoelzl@41023
    35
                 simp: pextreal_noteq_omega_Ex zero_le_mult_iff zero_less_mult_iff mult_le_0_iff power_le_zero_eq)
hoelzl@38656
    36
    qed
hoelzl@38656
    37
  qed
hoelzl@38656
    38
  from choice[OF this] obtain n where n: "\<And>i. 0 < n i"
hoelzl@38656
    39
    "\<And>i. n i < inverse (2^Suc i * \<mu> (A i))" by auto
hoelzl@38656
    40
  let "?h x" = "\<Sum>\<^isub>\<infinity> i. n i * indicator (A i) x"
hoelzl@38656
    41
  show ?thesis
hoelzl@38656
    42
  proof (safe intro!: bexI[of _ ?h] del: notI)
hoelzl@39092
    43
    have "\<And>i. A i \<in> sets M"
hoelzl@39092
    44
      using range by fastsimp+
hoelzl@41689
    45
    then have "integral\<^isup>P M ?h = (\<Sum>\<^isub>\<infinity> i. n i * \<mu> (A i))"
hoelzl@39092
    46
      by (simp add: positive_integral_psuminf positive_integral_cmult_indicator)
hoelzl@38656
    47
    also have "\<dots> \<le> (\<Sum>\<^isub>\<infinity> i. Real ((1 / 2)^Suc i))"
hoelzl@38656
    48
    proof (rule psuminf_le)
hoelzl@38656
    49
      fix N show "n N * \<mu> (A N) \<le> Real ((1 / 2) ^ Suc N)"
hoelzl@38656
    50
        using measure[of N] n[of N]
hoelzl@39092
    51
        by (cases "n N")
hoelzl@41023
    52
           (auto simp: pextreal_noteq_omega_Ex field_simps zero_le_mult_iff
hoelzl@39092
    53
                       mult_le_0_iff mult_less_0_iff power_less_zero_eq
hoelzl@39092
    54
                       power_le_zero_eq inverse_eq_divide less_divide_eq
hoelzl@39092
    55
                       power_divide split: split_if_asm)
hoelzl@38656
    56
    qed
hoelzl@38656
    57
    also have "\<dots> = Real 1"
hoelzl@38656
    58
      by (rule suminf_imp_psuminf, rule power_half_series, auto)
hoelzl@41689
    59
    finally show "integral\<^isup>P M ?h \<noteq> \<omega>" by auto
hoelzl@38656
    60
  next
hoelzl@38656
    61
    fix x assume "x \<in> space M"
hoelzl@38656
    62
    then obtain i where "x \<in> A i" using space[symmetric] by auto
hoelzl@38656
    63
    from psuminf_cmult_indicator[OF disjoint, OF this]
hoelzl@38656
    64
    have "?h x = n i" by simp
hoelzl@38656
    65
    then show "0 < ?h x" and "?h x < \<omega>" using n[of i] by auto
hoelzl@38656
    66
  next
hoelzl@38656
    67
    show "?h \<in> borel_measurable M" using range
hoelzl@41023
    68
      by (auto intro!: borel_measurable_psuminf borel_measurable_pextreal_times)
hoelzl@38656
    69
  qed
hoelzl@38656
    70
qed
hoelzl@38656
    71
hoelzl@40871
    72
subsection "Absolutely continuous"
hoelzl@40871
    73
hoelzl@38656
    74
definition (in measure_space)
hoelzl@41023
    75
  "absolutely_continuous \<nu> = (\<forall>N\<in>null_sets. \<nu> N = (0 :: pextreal))"
hoelzl@38656
    76
hoelzl@40859
    77
lemma (in sigma_finite_measure) absolutely_continuous_AE:
hoelzl@41689
    78
  assumes "measure_space M'" and [simp]: "sets M' = sets M" "space M' = space M"
hoelzl@41689
    79
    and "absolutely_continuous (measure M')" "AE x. P x"
hoelzl@41689
    80
  shows "measure_space.almost_everywhere M' P"
hoelzl@40859
    81
proof -
hoelzl@41689
    82
  interpret \<nu>: measure_space M' by fact
hoelzl@40859
    83
  from `AE x. P x` obtain N where N: "N \<in> null_sets" and "{x\<in>space M. \<not> P x} \<subseteq> N"
hoelzl@40859
    84
    unfolding almost_everywhere_def by auto
hoelzl@40859
    85
  show "\<nu>.almost_everywhere P"
hoelzl@40859
    86
  proof (rule \<nu>.AE_I')
hoelzl@41689
    87
    show "{x\<in>space M'. \<not> P x} \<subseteq> N" by simp fact
hoelzl@41689
    88
    from `absolutely_continuous (measure M')` show "N \<in> \<nu>.null_sets"
hoelzl@40859
    89
      using N unfolding absolutely_continuous_def by auto
hoelzl@40859
    90
  qed
hoelzl@40859
    91
qed
hoelzl@40859
    92
hoelzl@39097
    93
lemma (in finite_measure_space) absolutely_continuousI:
hoelzl@41689
    94
  assumes "finite_measure_space (M\<lparr> measure := \<nu>\<rparr>)" (is "finite_measure_space ?\<nu>")
hoelzl@39097
    95
  assumes v: "\<And>x. \<lbrakk> x \<in> space M ; \<mu> {x} = 0 \<rbrakk> \<Longrightarrow> \<nu> {x} = 0"
hoelzl@39097
    96
  shows "absolutely_continuous \<nu>"
hoelzl@39097
    97
proof (unfold absolutely_continuous_def sets_eq_Pow, safe)
hoelzl@39097
    98
  fix N assume "\<mu> N = 0" "N \<subseteq> space M"
hoelzl@41689
    99
  interpret v: finite_measure_space ?\<nu> by fact
hoelzl@41689
   100
  have "\<nu> N = measure ?\<nu> (\<Union>x\<in>N. {x})" by simp
hoelzl@41689
   101
  also have "\<dots> = (\<Sum>x\<in>N. measure ?\<nu> {x})"
hoelzl@39097
   102
  proof (rule v.measure_finitely_additive''[symmetric])
hoelzl@39097
   103
    show "finite N" using `N \<subseteq> space M` finite_space by (auto intro: finite_subset)
hoelzl@39097
   104
    show "disjoint_family_on (\<lambda>i. {i}) N" unfolding disjoint_family_on_def by auto
hoelzl@41689
   105
    fix x assume "x \<in> N" thus "{x} \<in> sets ?\<nu>" using `N \<subseteq> space M` sets_eq_Pow by auto
hoelzl@39097
   106
  qed
hoelzl@39097
   107
  also have "\<dots> = 0"
hoelzl@39097
   108
  proof (safe intro!: setsum_0')
hoelzl@39097
   109
    fix x assume "x \<in> N"
hoelzl@39097
   110
    hence "\<mu> {x} \<le> \<mu> N" using sets_eq_Pow `N \<subseteq> space M` by (auto intro!: measure_mono)
hoelzl@39097
   111
    hence "\<mu> {x} = 0" using `\<mu> N = 0` by simp
hoelzl@41689
   112
    thus "measure ?\<nu> {x} = 0" using v[of x] `x \<in> N` `N \<subseteq> space M` by auto
hoelzl@39097
   113
  qed
hoelzl@41689
   114
  finally show "\<nu> N = 0" by simp
hoelzl@39097
   115
qed
hoelzl@39097
   116
hoelzl@40871
   117
lemma (in measure_space) density_is_absolutely_continuous:
hoelzl@41689
   118
  assumes "\<And>A. A \<in> sets M \<Longrightarrow> \<nu> A = (\<integral>\<^isup>+x. f x * indicator A x \<partial>M)"
hoelzl@40871
   119
  shows "absolutely_continuous \<nu>"
hoelzl@40871
   120
  using assms unfolding absolutely_continuous_def
hoelzl@40871
   121
  by (simp add: positive_integral_null_set)
hoelzl@40871
   122
hoelzl@40871
   123
subsection "Existence of the Radon-Nikodym derivative"
hoelzl@40871
   124
hoelzl@38656
   125
lemma (in finite_measure) Radon_Nikodym_aux_epsilon:
hoelzl@38656
   126
  fixes e :: real assumes "0 < e"
hoelzl@41689
   127
  assumes "finite_measure (M\<lparr>measure := \<nu>\<rparr>)"
hoelzl@41689
   128
  shows "\<exists>A\<in>sets M. real (\<mu> (space M)) - real (\<nu> (space M)) \<le>
hoelzl@41689
   129
                    real (\<mu> A) - real (\<nu> A) \<and>
hoelzl@41689
   130
                    (\<forall>B\<in>sets M. B \<subseteq> A \<longrightarrow> - e < real (\<mu> B) - real (\<nu> B))"
hoelzl@38656
   131
proof -
hoelzl@41689
   132
  let "?d A" = "real (\<mu> A) - real (\<nu> A)"
hoelzl@41689
   133
  interpret M': finite_measure "M\<lparr>measure := \<nu>\<rparr>" by fact
hoelzl@38656
   134
  let "?A A" = "if (\<forall>B\<in>sets M. B \<subseteq> space M - A \<longrightarrow> -e < ?d B)
hoelzl@38656
   135
    then {}
hoelzl@38656
   136
    else (SOME B. B \<in> sets M \<and> B \<subseteq> space M - A \<and> ?d B \<le> -e)"
hoelzl@38656
   137
  def A \<equiv> "\<lambda>n. ((\<lambda>B. B \<union> ?A B) ^^ n) {}"
hoelzl@38656
   138
  have A_simps[simp]:
hoelzl@38656
   139
    "A 0 = {}"
hoelzl@38656
   140
    "\<And>n. A (Suc n) = (A n \<union> ?A (A n))" unfolding A_def by simp_all
hoelzl@38656
   141
  { fix A assume "A \<in> sets M"
hoelzl@38656
   142
    have "?A A \<in> sets M"
hoelzl@38656
   143
      by (auto intro!: someI2[of _ _ "\<lambda>A. A \<in> sets M"] simp: not_less) }
hoelzl@38656
   144
  note A'_in_sets = this
hoelzl@38656
   145
  { fix n have "A n \<in> sets M"
hoelzl@38656
   146
    proof (induct n)
hoelzl@38656
   147
      case (Suc n) thus "A (Suc n) \<in> sets M"
hoelzl@38656
   148
        using A'_in_sets[of "A n"] by (auto split: split_if_asm)
hoelzl@38656
   149
    qed (simp add: A_def) }
hoelzl@38656
   150
  note A_in_sets = this
hoelzl@38656
   151
  hence "range A \<subseteq> sets M" by auto
hoelzl@38656
   152
  { fix n B
hoelzl@38656
   153
    assume Ex: "\<exists>B. B \<in> sets M \<and> B \<subseteq> space M - A n \<and> ?d B \<le> -e"
hoelzl@38656
   154
    hence False: "\<not> (\<forall>B\<in>sets M. B \<subseteq> space M - A n \<longrightarrow> -e < ?d B)" by (auto simp: not_less)
hoelzl@38656
   155
    have "?d (A (Suc n)) \<le> ?d (A n) - e" unfolding A_simps if_not_P[OF False]
hoelzl@38656
   156
    proof (rule someI2_ex[OF Ex])
hoelzl@38656
   157
      fix B assume "B \<in> sets M \<and> B \<subseteq> space M - A n \<and> ?d B \<le> - e"
hoelzl@38656
   158
      hence "A n \<inter> B = {}" "B \<in> sets M" and dB: "?d B \<le> -e" by auto
hoelzl@38656
   159
      hence "?d (A n \<union> B) = ?d (A n) + ?d B"
hoelzl@38656
   160
        using `A n \<in> sets M` real_finite_measure_Union M'.real_finite_measure_Union by simp
hoelzl@38656
   161
      also have "\<dots> \<le> ?d (A n) - e" using dB by simp
hoelzl@38656
   162
      finally show "?d (A n \<union> B) \<le> ?d (A n) - e" .
hoelzl@38656
   163
    qed }
hoelzl@38656
   164
  note dA_epsilon = this
hoelzl@38656
   165
  { fix n have "?d (A (Suc n)) \<le> ?d (A n)"
hoelzl@38656
   166
    proof (cases "\<exists>B. B\<in>sets M \<and> B \<subseteq> space M - A n \<and> ?d B \<le> - e")
hoelzl@38656
   167
      case True from dA_epsilon[OF this] show ?thesis using `0 < e` by simp
hoelzl@38656
   168
    next
hoelzl@38656
   169
      case False
hoelzl@38656
   170
      hence "\<forall>B\<in>sets M. B \<subseteq> space M - A n \<longrightarrow> -e < ?d B" by (auto simp: not_le)
hoelzl@38656
   171
      thus ?thesis by simp
hoelzl@38656
   172
    qed }
hoelzl@38656
   173
  note dA_mono = this
hoelzl@38656
   174
  show ?thesis
hoelzl@38656
   175
  proof (cases "\<exists>n. \<forall>B\<in>sets M. B \<subseteq> space M - A n \<longrightarrow> -e < ?d B")
hoelzl@38656
   176
    case True then obtain n where B: "\<And>B. \<lbrakk> B \<in> sets M; B \<subseteq> space M - A n\<rbrakk> \<Longrightarrow> -e < ?d B" by blast
hoelzl@38656
   177
    show ?thesis
hoelzl@38656
   178
    proof (safe intro!: bexI[of _ "space M - A n"])
hoelzl@38656
   179
      fix B assume "B \<in> sets M" "B \<subseteq> space M - A n"
hoelzl@38656
   180
      from B[OF this] show "-e < ?d B" .
hoelzl@38656
   181
    next
hoelzl@38656
   182
      show "space M - A n \<in> sets M" by (rule compl_sets) fact
hoelzl@38656
   183
    next
hoelzl@38656
   184
      show "?d (space M) \<le> ?d (space M - A n)"
hoelzl@38656
   185
      proof (induct n)
hoelzl@38656
   186
        fix n assume "?d (space M) \<le> ?d (space M - A n)"
hoelzl@38656
   187
        also have "\<dots> \<le> ?d (space M - A (Suc n))"
hoelzl@38656
   188
          using A_in_sets sets_into_space dA_mono[of n]
hoelzl@38656
   189
            real_finite_measure_Diff[of "space M"]
hoelzl@38656
   190
            real_finite_measure_Diff[of "space M"]
hoelzl@38656
   191
            M'.real_finite_measure_Diff[of "space M"]
hoelzl@38656
   192
            M'.real_finite_measure_Diff[of "space M"]
hoelzl@38656
   193
          by (simp del: A_simps)
hoelzl@38656
   194
        finally show "?d (space M) \<le> ?d (space M - A (Suc n))" .
hoelzl@38656
   195
      qed simp
hoelzl@38656
   196
    qed
hoelzl@38656
   197
  next
hoelzl@38656
   198
    case False hence B: "\<And>n. \<exists>B. B\<in>sets M \<and> B \<subseteq> space M - A n \<and> ?d B \<le> - e"
hoelzl@38656
   199
      by (auto simp add: not_less)
hoelzl@38656
   200
    { fix n have "?d (A n) \<le> - real n * e"
hoelzl@38656
   201
      proof (induct n)
hoelzl@38656
   202
        case (Suc n) with dA_epsilon[of n, OF B] show ?case by (simp del: A_simps add: real_of_nat_Suc field_simps)
hoelzl@38656
   203
      qed simp } note dA_less = this
hoelzl@38656
   204
    have decseq: "decseq (\<lambda>n. ?d (A n))" unfolding decseq_eq_incseq
hoelzl@38656
   205
    proof (rule incseq_SucI)
hoelzl@38656
   206
      fix n show "- ?d (A n) \<le> - ?d (A (Suc n))" using dA_mono[of n] by auto
hoelzl@38656
   207
    qed
hoelzl@38656
   208
    from real_finite_continuity_from_below[of A] `range A \<subseteq> sets M`
hoelzl@38656
   209
      M'.real_finite_continuity_from_below[of A]
hoelzl@38656
   210
    have convergent: "(\<lambda>i. ?d (A i)) ----> ?d (\<Union>i. A i)"
hoelzl@38656
   211
      by (auto intro!: LIMSEQ_diff)
hoelzl@38656
   212
    obtain n :: nat where "- ?d (\<Union>i. A i) / e < real n" using reals_Archimedean2 by auto
hoelzl@38656
   213
    moreover from order_trans[OF decseq_le[OF decseq convergent] dA_less]
hoelzl@38656
   214
    have "real n \<le> - ?d (\<Union>i. A i) / e" using `0<e` by (simp add: field_simps)
hoelzl@38656
   215
    ultimately show ?thesis by auto
hoelzl@38656
   216
  qed
hoelzl@38656
   217
qed
hoelzl@38656
   218
hoelzl@38656
   219
lemma (in finite_measure) Radon_Nikodym_aux:
hoelzl@41689
   220
  assumes "finite_measure (M\<lparr>measure := \<nu>\<rparr>)" (is "finite_measure ?M'")
hoelzl@41689
   221
  shows "\<exists>A\<in>sets M. real (\<mu> (space M)) - real (\<nu> (space M)) \<le>
hoelzl@41689
   222
                    real (\<mu> A) - real (\<nu> A) \<and>
hoelzl@41689
   223
                    (\<forall>B\<in>sets M. B \<subseteq> A \<longrightarrow> 0 \<le> real (\<mu> B) - real (\<nu> B))"
hoelzl@38656
   224
proof -
hoelzl@41689
   225
  let "?d A" = "real (\<mu> A) - real (\<nu> A)"
hoelzl@38656
   226
  let "?P A B n" = "A \<in> sets M \<and> A \<subseteq> B \<and> ?d B \<le> ?d A \<and> (\<forall>C\<in>sets M. C \<subseteq> A \<longrightarrow> - 1 / real (Suc n) < ?d C)"
hoelzl@41689
   227
  interpret M': finite_measure ?M' where
hoelzl@41689
   228
    "space ?M' = space M" and "sets ?M' = sets M" and "measure ?M' = \<nu>" by fact auto
hoelzl@39092
   229
  let "?r S" = "restricted_space S"
hoelzl@38656
   230
  { fix S n
hoelzl@38656
   231
    assume S: "S \<in> sets M"
hoelzl@38656
   232
    hence **: "\<And>X. X \<in> op \<inter> S ` sets M \<longleftrightarrow> X \<in> sets M \<and> X \<subseteq> S" by auto
hoelzl@41689
   233
    have [simp]: "(restricted_space S\<lparr>measure := \<nu>\<rparr>) = M'.restricted_space S"
hoelzl@41689
   234
      by (cases M) simp
hoelzl@41689
   235
    from M'.restricted_finite_measure[of S] restricted_finite_measure[OF S] S
hoelzl@41689
   236
    have "finite_measure (?r S)" "0 < 1 / real (Suc n)"
hoelzl@41689
   237
      "finite_measure (?r S\<lparr>measure := \<nu>\<rparr>)" by auto
hoelzl@38656
   238
    from finite_measure.Radon_Nikodym_aux_epsilon[OF this] guess X ..
hoelzl@38656
   239
    hence "?P X S n"
hoelzl@38656
   240
    proof (simp add: **, safe)
hoelzl@38656
   241
      fix C assume C: "C \<in> sets M" "C \<subseteq> X" "X \<subseteq> S" and
hoelzl@38656
   242
        *: "\<forall>B\<in>sets M. S \<inter> B \<subseteq> X \<longrightarrow> - (1 / real (Suc n)) < ?d (S \<inter> B)"
hoelzl@38656
   243
      hence "C \<subseteq> S" "C \<subseteq> X" "S \<inter> C = C" by auto
hoelzl@38656
   244
      with *[THEN bspec, OF `C \<in> sets M`]
hoelzl@38656
   245
      show "- (1 / real (Suc n)) < ?d C" by auto
hoelzl@38656
   246
    qed
hoelzl@38656
   247
    hence "\<exists>A. ?P A S n" by auto }
hoelzl@38656
   248
  note Ex_P = this
hoelzl@38656
   249
  def A \<equiv> "nat_rec (space M) (\<lambda>n A. SOME B. ?P B A n)"
hoelzl@38656
   250
  have A_Suc: "\<And>n. A (Suc n) = (SOME B. ?P B (A n) n)" by (simp add: A_def)
hoelzl@38656
   251
  have A_0[simp]: "A 0 = space M" unfolding A_def by simp
hoelzl@38656
   252
  { fix i have "A i \<in> sets M" unfolding A_def
hoelzl@38656
   253
    proof (induct i)
hoelzl@38656
   254
      case (Suc i)
hoelzl@38656
   255
      from Ex_P[OF this, of i] show ?case unfolding nat_rec_Suc
hoelzl@38656
   256
        by (rule someI2_ex) simp
hoelzl@38656
   257
    qed simp }
hoelzl@38656
   258
  note A_in_sets = this
hoelzl@38656
   259
  { fix n have "?P (A (Suc n)) (A n) n"
hoelzl@38656
   260
      using Ex_P[OF A_in_sets] unfolding A_Suc
hoelzl@38656
   261
      by (rule someI2_ex) simp }
hoelzl@38656
   262
  note P_A = this
hoelzl@38656
   263
  have "range A \<subseteq> sets M" using A_in_sets by auto
hoelzl@38656
   264
  have A_mono: "\<And>i. A (Suc i) \<subseteq> A i" using P_A by simp
hoelzl@38656
   265
  have mono_dA: "mono (\<lambda>i. ?d (A i))" using P_A by (simp add: mono_iff_le_Suc)
hoelzl@38656
   266
  have epsilon: "\<And>C i. \<lbrakk> C \<in> sets M; C \<subseteq> A (Suc i) \<rbrakk> \<Longrightarrow> - 1 / real (Suc i) < ?d C"
hoelzl@38656
   267
      using P_A by auto
hoelzl@38656
   268
  show ?thesis
hoelzl@38656
   269
  proof (safe intro!: bexI[of _ "\<Inter>i. A i"])
hoelzl@38656
   270
    show "(\<Inter>i. A i) \<in> sets M" using A_in_sets by auto
hoelzl@38656
   271
    from `range A \<subseteq> sets M` A_mono
hoelzl@38656
   272
      real_finite_continuity_from_above[of A]
hoelzl@38656
   273
      M'.real_finite_continuity_from_above[of A]
hoelzl@38656
   274
    have "(\<lambda>i. ?d (A i)) ----> ?d (\<Inter>i. A i)" by (auto intro!: LIMSEQ_diff)
hoelzl@38656
   275
    thus "?d (space M) \<le> ?d (\<Inter>i. A i)" using mono_dA[THEN monoD, of 0 _]
hoelzl@38656
   276
      by (rule_tac LIMSEQ_le_const) (auto intro!: exI)
hoelzl@38656
   277
  next
hoelzl@38656
   278
    fix B assume B: "B \<in> sets M" "B \<subseteq> (\<Inter>i. A i)"
hoelzl@38656
   279
    show "0 \<le> ?d B"
hoelzl@38656
   280
    proof (rule ccontr)
hoelzl@38656
   281
      assume "\<not> 0 \<le> ?d B"
hoelzl@38656
   282
      hence "0 < - ?d B" by auto
hoelzl@38656
   283
      from ex_inverse_of_nat_Suc_less[OF this]
hoelzl@38656
   284
      obtain n where *: "?d B < - 1 / real (Suc n)"
hoelzl@38656
   285
        by (auto simp: real_eq_of_nat inverse_eq_divide field_simps)
hoelzl@38656
   286
      have "B \<subseteq> A (Suc n)" using B by (auto simp del: nat_rec_Suc)
hoelzl@38656
   287
      from epsilon[OF B(1) this] *
hoelzl@38656
   288
      show False by auto
hoelzl@38656
   289
    qed
hoelzl@38656
   290
  qed
hoelzl@38656
   291
qed
hoelzl@38656
   292
hoelzl@38656
   293
lemma (in finite_measure) Radon_Nikodym_finite_measure:
hoelzl@41689
   294
  assumes "finite_measure (M\<lparr> measure := \<nu>\<rparr>)" (is "finite_measure ?M'")
hoelzl@38656
   295
  assumes "absolutely_continuous \<nu>"
hoelzl@41689
   296
  shows "\<exists>f \<in> borel_measurable M. \<forall>A\<in>sets M. \<nu> A = (\<integral>\<^isup>+x. f x * indicator A x \<partial>M)"
hoelzl@38656
   297
proof -
hoelzl@41689
   298
  interpret M': finite_measure ?M'
hoelzl@41689
   299
    where "space ?M' = space M" and "sets ?M' = sets M" and "measure ?M' = \<nu>"
hoelzl@41689
   300
    using assms(1) by auto
hoelzl@41689
   301
  def G \<equiv> "{g \<in> borel_measurable M. \<forall>A\<in>sets M. (\<integral>\<^isup>+x. g x * indicator A x \<partial>M) \<le> \<nu> A}"
hoelzl@38656
   302
  have "(\<lambda>x. 0) \<in> G" unfolding G_def by auto
hoelzl@38656
   303
  hence "G \<noteq> {}" by auto
hoelzl@38656
   304
  { fix f g assume f: "f \<in> G" and g: "g \<in> G"
hoelzl@38656
   305
    have "(\<lambda>x. max (g x) (f x)) \<in> G" (is "?max \<in> G") unfolding G_def
hoelzl@38656
   306
    proof safe
hoelzl@38656
   307
      show "?max \<in> borel_measurable M" using f g unfolding G_def by auto
hoelzl@38656
   308
      let ?A = "{x \<in> space M. f x \<le> g x}"
hoelzl@38656
   309
      have "?A \<in> sets M" using f g unfolding G_def by auto
hoelzl@38656
   310
      fix A assume "A \<in> sets M"
hoelzl@38656
   311
      hence sets: "?A \<inter> A \<in> sets M" "(space M - ?A) \<inter> A \<in> sets M" using `?A \<in> sets M` by auto
hoelzl@38656
   312
      have union: "((?A \<inter> A) \<union> ((space M - ?A) \<inter> A)) = A"
hoelzl@38656
   313
        using sets_into_space[OF `A \<in> sets M`] by auto
hoelzl@38656
   314
      have "\<And>x. x \<in> space M \<Longrightarrow> max (g x) (f x) * indicator A x =
hoelzl@38656
   315
        g x * indicator (?A \<inter> A) x + f x * indicator ((space M - ?A) \<inter> A) x"
hoelzl@38656
   316
        by (auto simp: indicator_def max_def)
hoelzl@41689
   317
      hence "(\<integral>\<^isup>+x. max (g x) (f x) * indicator A x \<partial>M) =
hoelzl@41689
   318
        (\<integral>\<^isup>+x. g x * indicator (?A \<inter> A) x \<partial>M) +
hoelzl@41689
   319
        (\<integral>\<^isup>+x. f x * indicator ((space M - ?A) \<inter> A) x \<partial>M)"
hoelzl@38656
   320
        using f g sets unfolding G_def
hoelzl@38656
   321
        by (auto cong: positive_integral_cong intro!: positive_integral_add borel_measurable_indicator)
hoelzl@38656
   322
      also have "\<dots> \<le> \<nu> (?A \<inter> A) + \<nu> ((space M - ?A) \<inter> A)"
hoelzl@38656
   323
        using f g sets unfolding G_def by (auto intro!: add_mono)
hoelzl@38656
   324
      also have "\<dots> = \<nu> A"
hoelzl@38656
   325
        using M'.measure_additive[OF sets] union by auto
hoelzl@41689
   326
      finally show "(\<integral>\<^isup>+x. max (g x) (f x) * indicator A x \<partial>M) \<le> \<nu> A" .
hoelzl@38656
   327
    qed }
hoelzl@38656
   328
  note max_in_G = this
hoelzl@38656
   329
  { fix f g assume  "f \<up> g" and f: "\<And>i. f i \<in> G"
hoelzl@38656
   330
    have "g \<in> G" unfolding G_def
hoelzl@38656
   331
    proof safe
hoelzl@41097
   332
      from `f \<up> g` have [simp]: "g = (\<lambda>x. SUP i. f i x)"
hoelzl@41097
   333
        unfolding isoton_def fun_eq_iff SUPR_apply by simp
hoelzl@38656
   334
      have f_borel: "\<And>i. f i \<in> borel_measurable M" using f unfolding G_def by simp
hoelzl@41097
   335
      thus "g \<in> borel_measurable M" by auto
hoelzl@38656
   336
      fix A assume "A \<in> sets M"
hoelzl@38656
   337
      hence "\<And>i. (\<lambda>x. f i x * indicator A x) \<in> borel_measurable M"
hoelzl@38656
   338
        using f_borel by (auto intro!: borel_measurable_indicator)
hoelzl@38656
   339
      from positive_integral_isoton[OF isoton_indicator[OF `f \<up> g`] this]
hoelzl@41689
   340
      have SUP: "(\<integral>\<^isup>+x. g x * indicator A x \<partial>M) =
hoelzl@41689
   341
          (SUP i. (\<integral>\<^isup>+x. f i x * indicator A x \<partial>M))"
hoelzl@38656
   342
        unfolding isoton_def by simp
hoelzl@41689
   343
      show "(\<integral>\<^isup>+x. g x * indicator A x \<partial>M) \<le> \<nu> A" unfolding SUP
hoelzl@38656
   344
        using f `A \<in> sets M` unfolding G_def by (auto intro!: SUP_leI)
hoelzl@38656
   345
    qed }
hoelzl@38656
   346
  note SUP_in_G = this
hoelzl@41689
   347
  let ?y = "SUP g : G. integral\<^isup>P M g"
hoelzl@38656
   348
  have "?y \<le> \<nu> (space M)" unfolding G_def
hoelzl@38656
   349
  proof (safe intro!: SUP_leI)
hoelzl@41689
   350
    fix g assume "\<forall>A\<in>sets M. (\<integral>\<^isup>+x. g x * indicator A x \<partial>M) \<le> \<nu> A"
hoelzl@41689
   351
    from this[THEN bspec, OF top] show "integral\<^isup>P M g \<le> \<nu> (space M)"
hoelzl@38656
   352
      by (simp cong: positive_integral_cong)
hoelzl@38656
   353
  qed
hoelzl@38656
   354
  hence "?y \<noteq> \<omega>" using M'.finite_measure_of_space by auto
hoelzl@38656
   355
  from SUPR_countable_SUPR[OF this `G \<noteq> {}`] guess ys .. note ys = this
hoelzl@41689
   356
  hence "\<forall>n. \<exists>g. g\<in>G \<and> integral\<^isup>P M g = ys n"
hoelzl@38656
   357
  proof safe
hoelzl@41689
   358
    fix n assume "range ys \<subseteq> integral\<^isup>P M ` G"
hoelzl@41689
   359
    hence "ys n \<in> integral\<^isup>P M ` G" by auto
hoelzl@41689
   360
    thus "\<exists>g. g\<in>G \<and> integral\<^isup>P M g = ys n" by auto
hoelzl@38656
   361
  qed
hoelzl@41689
   362
  from choice[OF this] obtain gs where "\<And>i. gs i \<in> G" "\<And>n. integral\<^isup>P M (gs n) = ys n" by auto
hoelzl@41689
   363
  hence y_eq: "?y = (SUP i. integral\<^isup>P M (gs i))" using ys by auto
hoelzl@38656
   364
  let "?g i x" = "Max ((\<lambda>n. gs n x) ` {..i})"
hoelzl@38656
   365
  def f \<equiv> "SUP i. ?g i"
hoelzl@38656
   366
  have gs_not_empty: "\<And>i. (\<lambda>n. gs n x) ` {..i} \<noteq> {}" by auto
hoelzl@38656
   367
  { fix i have "?g i \<in> G"
hoelzl@38656
   368
    proof (induct i)
hoelzl@38656
   369
      case 0 thus ?case by simp fact
hoelzl@38656
   370
    next
hoelzl@38656
   371
      case (Suc i)
hoelzl@38656
   372
      with Suc gs_not_empty `gs (Suc i) \<in> G` show ?case
hoelzl@38656
   373
        by (auto simp add: atMost_Suc intro!: max_in_G)
hoelzl@38656
   374
    qed }
hoelzl@38656
   375
  note g_in_G = this
hoelzl@38656
   376
  have "\<And>x. \<forall>i. ?g i x \<le> ?g (Suc i) x"
hoelzl@38656
   377
    using gs_not_empty by (simp add: atMost_Suc)
hoelzl@38656
   378
  hence isoton_g: "?g \<up> f" by (simp add: isoton_def le_fun_def f_def)
hoelzl@38656
   379
  from SUP_in_G[OF this g_in_G] have "f \<in> G" .
hoelzl@38656
   380
  hence [simp, intro]: "f \<in> borel_measurable M" unfolding G_def by auto
hoelzl@41689
   381
  have "(\<lambda>i. integral\<^isup>P M (?g i)) \<up> integral\<^isup>P M f"
hoelzl@38656
   382
    using isoton_g g_in_G by (auto intro!: positive_integral_isoton simp: G_def f_def)
hoelzl@41689
   383
  hence "integral\<^isup>P M f = (SUP i. integral\<^isup>P M (?g i))"
hoelzl@38656
   384
    unfolding isoton_def by simp
hoelzl@38656
   385
  also have "\<dots> = ?y"
hoelzl@38656
   386
  proof (rule antisym)
hoelzl@41689
   387
    show "(SUP i. integral\<^isup>P M (?g i)) \<le> ?y"
hoelzl@38656
   388
      using g_in_G by (auto intro!: exI Sup_mono simp: SUPR_def)
hoelzl@41689
   389
    show "?y \<le> (SUP i. integral\<^isup>P M (?g i))" unfolding y_eq
hoelzl@38656
   390
      by (auto intro!: SUP_mono positive_integral_mono Max_ge)
hoelzl@38656
   391
  qed
hoelzl@41689
   392
  finally have int_f_eq_y: "integral\<^isup>P M f = ?y" .
hoelzl@41689
   393
  let "?t A" = "\<nu> A - (\<integral>\<^isup>+x. f x * indicator A x \<partial>M)"
hoelzl@41689
   394
  let ?M = "M\<lparr> measure := ?t\<rparr>"
hoelzl@41689
   395
  interpret M: sigma_algebra ?M
hoelzl@41689
   396
    by (intro sigma_algebra_cong) auto
hoelzl@41689
   397
  have fmM: "finite_measure ?M"
hoelzl@41689
   398
  proof (default, simp_all add: countably_additive_def, safe)
hoelzl@41689
   399
    fix A :: "nat \<Rightarrow> 'a set"  assume A: "range A \<subseteq> sets M" "disjoint_family A"
hoelzl@41689
   400
    have "(\<Sum>\<^isub>\<infinity> n. (\<integral>\<^isup>+x. f x * indicator (A n) x \<partial>M))
hoelzl@41689
   401
      = (\<integral>\<^isup>+x. (\<Sum>\<^isub>\<infinity>n. f x * indicator (A n) x) \<partial>M)"
hoelzl@41689
   402
      using `range A \<subseteq> sets M`
hoelzl@41689
   403
      by (rule_tac positive_integral_psuminf[symmetric]) (auto intro!: borel_measurable_indicator)
hoelzl@41689
   404
    also have "\<dots> = (\<integral>\<^isup>+x. f x * indicator (\<Union>n. A n) x \<partial>M)"
hoelzl@41689
   405
      apply (rule positive_integral_cong)
hoelzl@41689
   406
      apply (subst psuminf_cmult_right)
hoelzl@41689
   407
      unfolding psuminf_indicator[OF `disjoint_family A`] ..
hoelzl@41689
   408
    finally have "(\<Sum>\<^isub>\<infinity> n. (\<integral>\<^isup>+x. f x * indicator (A n) x \<partial>M))
hoelzl@41689
   409
      = (\<integral>\<^isup>+x. f x * indicator (\<Union>n. A n) x \<partial>M)" .
hoelzl@41689
   410
    moreover have "(\<Sum>\<^isub>\<infinity>n. \<nu> (A n)) = \<nu> (\<Union>n. A n)"
hoelzl@41689
   411
      using M'.measure_countably_additive A by (simp add: comp_def)
hoelzl@41689
   412
    moreover have "\<And>i. (\<integral>\<^isup>+x. f x * indicator (A i) x \<partial>M) \<le> \<nu> (A i)"
hoelzl@41689
   413
        using A `f \<in> G` unfolding G_def by auto
hoelzl@41689
   414
    moreover have v_fin: "\<nu> (\<Union>i. A i) \<noteq> \<omega>" using M'.finite_measure A by (simp add: countable_UN)
hoelzl@41689
   415
    moreover {
hoelzl@41689
   416
      have "(\<integral>\<^isup>+x. f x * indicator (\<Union>i. A i) x \<partial>M) \<le> \<nu> (\<Union>i. A i)"
hoelzl@41689
   417
        using A `f \<in> G` unfolding G_def by (auto simp: countable_UN)
hoelzl@41689
   418
      also have "\<nu> (\<Union>i. A i) < \<omega>" using v_fin by (simp add: pextreal_less_\<omega>)
hoelzl@41689
   419
      finally have "(\<integral>\<^isup>+x. f x * indicator (\<Union>i. A i) x \<partial>M) \<noteq> \<omega>"
hoelzl@41689
   420
        by (simp add: pextreal_less_\<omega>) }
hoelzl@41689
   421
    ultimately
hoelzl@41689
   422
    show "(\<Sum>\<^isub>\<infinity> n. ?t (A n)) = ?t (\<Union>i. A i)"
hoelzl@41689
   423
      apply (subst psuminf_minus) by simp_all
hoelzl@38656
   424
  qed
hoelzl@41689
   425
  then interpret M: finite_measure ?M
hoelzl@41689
   426
    where "space ?M = space M" and "sets ?M = sets M" and "measure ?M = ?t"
hoelzl@41689
   427
    by (simp_all add: fmM)
hoelzl@38656
   428
  have ac: "absolutely_continuous ?t" using `absolutely_continuous \<nu>` unfolding absolutely_continuous_def by auto
hoelzl@38656
   429
  have upper_bound: "\<forall>A\<in>sets M. ?t A \<le> 0"
hoelzl@38656
   430
  proof (rule ccontr)
hoelzl@38656
   431
    assume "\<not> ?thesis"
hoelzl@38656
   432
    then obtain A where A: "A \<in> sets M" and pos: "0 < ?t A"
hoelzl@38656
   433
      by (auto simp: not_le)
hoelzl@38656
   434
    note pos
hoelzl@38656
   435
    also have "?t A \<le> ?t (space M)"
hoelzl@38656
   436
      using M.measure_mono[of A "space M"] A sets_into_space by simp
hoelzl@38656
   437
    finally have pos_t: "0 < ?t (space M)" by simp
hoelzl@38656
   438
    moreover
hoelzl@38656
   439
    hence pos_M: "0 < \<mu> (space M)"
hoelzl@38656
   440
      using ac top unfolding absolutely_continuous_def by auto
hoelzl@38656
   441
    moreover
hoelzl@41689
   442
    have "(\<integral>\<^isup>+x. f x * indicator (space M) x \<partial>M) \<le> \<nu> (space M)"
hoelzl@38656
   443
      using `f \<in> G` unfolding G_def by auto
hoelzl@41689
   444
    hence "(\<integral>\<^isup>+x. f x * indicator (space M) x \<partial>M) \<noteq> \<omega>"
hoelzl@38656
   445
      using M'.finite_measure_of_space by auto
hoelzl@38656
   446
    moreover
hoelzl@38656
   447
    def b \<equiv> "?t (space M) / \<mu> (space M) / 2"
hoelzl@38656
   448
    ultimately have b: "b \<noteq> 0" "b \<noteq> \<omega>"
hoelzl@38656
   449
      using M'.finite_measure_of_space
hoelzl@41023
   450
      by (auto simp: pextreal_inverse_eq_0 finite_measure_of_space)
hoelzl@41689
   451
    let ?Mb = "?M\<lparr>measure := \<lambda>A. b * \<mu> A\<rparr>"
hoelzl@41689
   452
    interpret b: sigma_algebra ?Mb by (intro sigma_algebra_cong) auto
hoelzl@41689
   453
    have "finite_measure ?Mb"
hoelzl@41689
   454
      by default
hoelzl@41689
   455
         (insert finite_measure_of_space b measure_countably_additive,
hoelzl@41689
   456
          auto simp: psuminf_cmult_right countably_additive_def)
hoelzl@38656
   457
    from M.Radon_Nikodym_aux[OF this]
hoelzl@38656
   458
    obtain A0 where "A0 \<in> sets M" and
hoelzl@38656
   459
      space_less_A0: "real (?t (space M)) - real (b * \<mu> (space M)) \<le> real (?t A0) - real (b * \<mu> A0)" and
hoelzl@38656
   460
      *: "\<And>B. \<lbrakk> B \<in> sets M ; B \<subseteq> A0 \<rbrakk> \<Longrightarrow> 0 \<le> real (?t B) - real (b * \<mu> B)" by auto
hoelzl@38656
   461
    { fix B assume "B \<in> sets M" "B \<subseteq> A0"
hoelzl@38656
   462
      with *[OF this] have "b * \<mu> B \<le> ?t B"
hoelzl@38656
   463
        using M'.finite_measure b finite_measure
hoelzl@38656
   464
        by (cases "b * \<mu> B", cases "?t B") (auto simp: field_simps) }
hoelzl@38656
   465
    note bM_le_t = this
hoelzl@38656
   466
    let "?f0 x" = "f x + b * indicator A0 x"
hoelzl@38656
   467
    { fix A assume A: "A \<in> sets M"
hoelzl@38656
   468
      hence "A \<inter> A0 \<in> sets M" using `A0 \<in> sets M` by auto
hoelzl@41689
   469
      have "(\<integral>\<^isup>+x. ?f0 x  * indicator A x \<partial>M) =
hoelzl@41689
   470
        (\<integral>\<^isup>+x. f x * indicator A x + b * indicator (A \<inter> A0) x \<partial>M)"
hoelzl@38656
   471
        by (auto intro!: positive_integral_cong simp: field_simps indicator_inter_arith)
hoelzl@41689
   472
      hence "(\<integral>\<^isup>+x. ?f0 x * indicator A x \<partial>M) =
hoelzl@41689
   473
          (\<integral>\<^isup>+x. f x * indicator A x \<partial>M) + b * \<mu> (A \<inter> A0)"
hoelzl@38656
   474
        using `A0 \<in> sets M` `A \<inter> A0 \<in> sets M` A
hoelzl@38656
   475
        by (simp add: borel_measurable_indicator positive_integral_add positive_integral_cmult_indicator) }
hoelzl@38656
   476
    note f0_eq = this
hoelzl@38656
   477
    { fix A assume A: "A \<in> sets M"
hoelzl@38656
   478
      hence "A \<inter> A0 \<in> sets M" using `A0 \<in> sets M` by auto
hoelzl@41689
   479
      have f_le_v: "(\<integral>\<^isup>+x. f x * indicator A x \<partial>M) \<le> \<nu> A"
hoelzl@38656
   480
        using `f \<in> G` A unfolding G_def by auto
hoelzl@38656
   481
      note f0_eq[OF A]
hoelzl@41689
   482
      also have "(\<integral>\<^isup>+x. f x * indicator A x \<partial>M) + b * \<mu> (A \<inter> A0) \<le>
hoelzl@41689
   483
          (\<integral>\<^isup>+x. f x * indicator A x \<partial>M) + ?t (A \<inter> A0)"
hoelzl@38656
   484
        using bM_le_t[OF `A \<inter> A0 \<in> sets M`] `A \<in> sets M` `A0 \<in> sets M`
hoelzl@38656
   485
        by (auto intro!: add_left_mono)
hoelzl@41689
   486
      also have "\<dots> \<le> (\<integral>\<^isup>+x. f x * indicator A x \<partial>M) + ?t A"
hoelzl@38656
   487
        using M.measure_mono[simplified, OF _ `A \<inter> A0 \<in> sets M` `A \<in> sets M`]
hoelzl@38656
   488
        by (auto intro!: add_left_mono)
hoelzl@38656
   489
      also have "\<dots> \<le> \<nu> A"
hoelzl@38656
   490
        using f_le_v M'.finite_measure[simplified, OF `A \<in> sets M`]
hoelzl@41689
   491
        by (cases "(\<integral>\<^isup>+x. f x * indicator A x \<partial>M)", cases "\<nu> A", auto)
hoelzl@41689
   492
      finally have "(\<integral>\<^isup>+x. ?f0 x * indicator A x \<partial>M) \<le> \<nu> A" . }
hoelzl@38656
   493
    hence "?f0 \<in> G" using `A0 \<in> sets M` unfolding G_def
hoelzl@41023
   494
      by (auto intro!: borel_measurable_indicator borel_measurable_pextreal_add borel_measurable_pextreal_times)
hoelzl@38656
   495
    have real: "?t (space M) \<noteq> \<omega>" "?t A0 \<noteq> \<omega>"
hoelzl@38656
   496
      "b * \<mu> (space M) \<noteq> \<omega>" "b * \<mu> A0 \<noteq> \<omega>"
hoelzl@38656
   497
      using `A0 \<in> sets M` b
hoelzl@38656
   498
        finite_measure[of A0] M.finite_measure[of A0]
hoelzl@38656
   499
        finite_measure_of_space M.finite_measure_of_space
hoelzl@38656
   500
      by auto
hoelzl@41689
   501
    have int_f_finite: "integral\<^isup>P M f \<noteq> \<omega>"
hoelzl@41023
   502
      using M'.finite_measure_of_space pos_t unfolding pextreal_zero_less_diff_iff
hoelzl@38656
   503
      by (auto cong: positive_integral_cong)
hoelzl@38656
   504
    have "?t (space M) > b * \<mu> (space M)" unfolding b_def
hoelzl@38656
   505
      apply (simp add: field_simps)
hoelzl@38656
   506
      apply (subst mult_assoc[symmetric])
hoelzl@41023
   507
      apply (subst pextreal_mult_inverse)
hoelzl@38656
   508
      using finite_measure_of_space M'.finite_measure_of_space pos_t pos_M
hoelzl@41023
   509
      using pextreal_mult_strict_right_mono[of "Real (1/2)" 1 "?t (space M)"]
hoelzl@38656
   510
      by simp_all
hoelzl@38656
   511
    hence  "0 < ?t (space M) - b * \<mu> (space M)"
hoelzl@41023
   512
      by (simp add: pextreal_zero_less_diff_iff)
hoelzl@38656
   513
    also have "\<dots> \<le> ?t A0 - b * \<mu> A0"
hoelzl@41023
   514
      using space_less_A0 pos_M pos_t b real[unfolded pextreal_noteq_omega_Ex] by auto
hoelzl@41023
   515
    finally have "b * \<mu> A0 < ?t A0" unfolding pextreal_zero_less_diff_iff .
hoelzl@38656
   516
    hence "0 < ?t A0" by auto
hoelzl@38656
   517
    hence "0 < \<mu> A0" using ac unfolding absolutely_continuous_def
hoelzl@38656
   518
      using `A0 \<in> sets M` by auto
hoelzl@38656
   519
    hence "0 < b * \<mu> A0" using b by auto
hoelzl@38656
   520
    from int_f_finite this
hoelzl@41689
   521
    have "?y + 0 < integral\<^isup>P M f + b * \<mu> A0" unfolding int_f_eq_y
hoelzl@41023
   522
      by (rule pextreal_less_add)
hoelzl@41689
   523
    also have "\<dots> = integral\<^isup>P M ?f0" using f0_eq[OF top] `A0 \<in> sets M` sets_into_space
hoelzl@38656
   524
      by (simp cong: positive_integral_cong)
hoelzl@41689
   525
    finally have "?y < integral\<^isup>P M ?f0" by simp
hoelzl@41689
   526
    moreover from `?f0 \<in> G` have "integral\<^isup>P M ?f0 \<le> ?y" by (auto intro!: le_SUPI)
hoelzl@38656
   527
    ultimately show False by auto
hoelzl@38656
   528
  qed
hoelzl@38656
   529
  show ?thesis
hoelzl@38656
   530
  proof (safe intro!: bexI[of _ f])
hoelzl@38656
   531
    fix A assume "A\<in>sets M"
hoelzl@41689
   532
    show "\<nu> A = (\<integral>\<^isup>+x. f x * indicator A x \<partial>M)"
hoelzl@38656
   533
    proof (rule antisym)
hoelzl@41689
   534
      show "(\<integral>\<^isup>+x. f x * indicator A x \<partial>M) \<le> \<nu> A"
hoelzl@38656
   535
        using `f \<in> G` `A \<in> sets M` unfolding G_def by auto
hoelzl@41689
   536
      show "\<nu> A \<le> (\<integral>\<^isup>+x. f x * indicator A x \<partial>M)"
hoelzl@38656
   537
        using upper_bound[THEN bspec, OF `A \<in> sets M`]
hoelzl@41023
   538
         by (simp add: pextreal_zero_le_diff)
hoelzl@38656
   539
    qed
hoelzl@38656
   540
  qed simp
hoelzl@38656
   541
qed
hoelzl@38656
   542
hoelzl@40859
   543
lemma (in finite_measure) split_space_into_finite_sets_and_rest:
hoelzl@41689
   544
  assumes "measure_space (M\<lparr>measure := \<nu>\<rparr>)" (is "measure_space ?N")
hoelzl@40859
   545
  assumes ac: "absolutely_continuous \<nu>"
hoelzl@40859
   546
  shows "\<exists>\<Omega>0\<in>sets M. \<exists>\<Omega>::nat\<Rightarrow>'a set. disjoint_family \<Omega> \<and> range \<Omega> \<subseteq> sets M \<and> \<Omega>0 = space M - (\<Union>i. \<Omega> i) \<and>
hoelzl@40859
   547
    (\<forall>A\<in>sets M. A \<subseteq> \<Omega>0 \<longrightarrow> (\<mu> A = 0 \<and> \<nu> A = 0) \<or> (\<mu> A > 0 \<and> \<nu> A = \<omega>)) \<and>
hoelzl@40859
   548
    (\<forall>i. \<nu> (\<Omega> i) \<noteq> \<omega>)"
hoelzl@38656
   549
proof -
hoelzl@41689
   550
  interpret v: measure_space ?N
hoelzl@41689
   551
    where "space ?N = space M" and "sets ?N = sets M" and "measure ?N = \<nu>"
hoelzl@41689
   552
    by fact auto
hoelzl@38656
   553
  let ?Q = "{Q\<in>sets M. \<nu> Q \<noteq> \<omega>}"
hoelzl@38656
   554
  let ?a = "SUP Q:?Q. \<mu> Q"
hoelzl@38656
   555
  have "{} \<in> ?Q" using v.empty_measure by auto
hoelzl@38656
   556
  then have Q_not_empty: "?Q \<noteq> {}" by blast
hoelzl@38656
   557
  have "?a \<le> \<mu> (space M)" using sets_into_space
hoelzl@38656
   558
    by (auto intro!: SUP_leI measure_mono top)
hoelzl@38656
   559
  then have "?a \<noteq> \<omega>" using finite_measure_of_space
hoelzl@38656
   560
    by auto
hoelzl@38656
   561
  from SUPR_countable_SUPR[OF this Q_not_empty]
hoelzl@38656
   562
  obtain Q'' where "range Q'' \<subseteq> \<mu> ` ?Q" and a: "?a = (SUP i::nat. Q'' i)"
hoelzl@38656
   563
    by auto
hoelzl@38656
   564
  then have "\<forall>i. \<exists>Q'. Q'' i = \<mu> Q' \<and> Q' \<in> ?Q" by auto
hoelzl@38656
   565
  from choice[OF this] obtain Q' where Q': "\<And>i. Q'' i = \<mu> (Q' i)" "\<And>i. Q' i \<in> ?Q"
hoelzl@38656
   566
    by auto
hoelzl@38656
   567
  then have a_Lim: "?a = (SUP i::nat. \<mu> (Q' i))" using a by simp
hoelzl@38656
   568
  let "?O n" = "\<Union>i\<le>n. Q' i"
hoelzl@38656
   569
  have Union: "(SUP i. \<mu> (?O i)) = \<mu> (\<Union>i. ?O i)"
hoelzl@38656
   570
  proof (rule continuity_from_below[of ?O])
hoelzl@38656
   571
    show "range ?O \<subseteq> sets M" using Q' by (auto intro!: finite_UN)
hoelzl@38656
   572
    show "\<And>i. ?O i \<subseteq> ?O (Suc i)" by fastsimp
hoelzl@38656
   573
  qed
hoelzl@38656
   574
  have Q'_sets: "\<And>i. Q' i \<in> sets M" using Q' by auto
hoelzl@38656
   575
  have O_sets: "\<And>i. ?O i \<in> sets M"
hoelzl@38656
   576
     using Q' by (auto intro!: finite_UN Un)
hoelzl@38656
   577
  then have O_in_G: "\<And>i. ?O i \<in> ?Q"
hoelzl@38656
   578
  proof (safe del: notI)
hoelzl@38656
   579
    fix i have "Q' ` {..i} \<subseteq> sets M"
hoelzl@38656
   580
      using Q' by (auto intro: finite_UN)
hoelzl@38656
   581
    with v.measure_finitely_subadditive[of "{.. i}" Q']
hoelzl@38656
   582
    have "\<nu> (?O i) \<le> (\<Sum>i\<le>i. \<nu> (Q' i))" by auto
hoelzl@41023
   583
    also have "\<dots> < \<omega>" unfolding setsum_\<omega> pextreal_less_\<omega> using Q' by auto
hoelzl@41023
   584
    finally show "\<nu> (?O i) \<noteq> \<omega>" unfolding pextreal_less_\<omega> by auto
hoelzl@38656
   585
  qed auto
hoelzl@38656
   586
  have O_mono: "\<And>n. ?O n \<subseteq> ?O (Suc n)" by fastsimp
hoelzl@38656
   587
  have a_eq: "?a = \<mu> (\<Union>i. ?O i)" unfolding Union[symmetric]
hoelzl@38656
   588
  proof (rule antisym)
hoelzl@38656
   589
    show "?a \<le> (SUP i. \<mu> (?O i))" unfolding a_Lim
hoelzl@38656
   590
      using Q' by (auto intro!: SUP_mono measure_mono finite_UN)
hoelzl@38656
   591
    show "(SUP i. \<mu> (?O i)) \<le> ?a" unfolding SUPR_def
hoelzl@38656
   592
    proof (safe intro!: Sup_mono, unfold bex_simps)
hoelzl@38656
   593
      fix i
hoelzl@38656
   594
      have *: "(\<Union>Q' ` {..i}) = ?O i" by auto
hoelzl@38656
   595
      then show "\<exists>x. (x \<in> sets M \<and> \<nu> x \<noteq> \<omega>) \<and>
hoelzl@38656
   596
        \<mu> (\<Union>Q' ` {..i}) \<le> \<mu> x"
hoelzl@38656
   597
        using O_in_G[of i] by (auto intro!: exI[of _ "?O i"])
hoelzl@38656
   598
    qed
hoelzl@38656
   599
  qed
hoelzl@38656
   600
  let "?O_0" = "(\<Union>i. ?O i)"
hoelzl@38656
   601
  have "?O_0 \<in> sets M" using Q' by auto
hoelzl@40859
   602
  def Q \<equiv> "\<lambda>i. case i of 0 \<Rightarrow> Q' 0 | Suc n \<Rightarrow> ?O (Suc n) - ?O n"
hoelzl@38656
   603
  { fix i have "Q i \<in> sets M" unfolding Q_def using Q'[of 0] by (cases i) (auto intro: O_sets) }
hoelzl@38656
   604
  note Q_sets = this
hoelzl@40859
   605
  show ?thesis
hoelzl@40859
   606
  proof (intro bexI exI conjI ballI impI allI)
hoelzl@40859
   607
    show "disjoint_family Q"
hoelzl@40859
   608
      by (fastsimp simp: disjoint_family_on_def Q_def
hoelzl@40859
   609
        split: nat.split_asm)
hoelzl@40859
   610
    show "range Q \<subseteq> sets M"
hoelzl@40859
   611
      using Q_sets by auto
hoelzl@40859
   612
    { fix A assume A: "A \<in> sets M" "A \<subseteq> space M - ?O_0"
hoelzl@40859
   613
      show "\<mu> A = 0 \<and> \<nu> A = 0 \<or> 0 < \<mu> A \<and> \<nu> A = \<omega>"
hoelzl@40859
   614
      proof (rule disjCI, simp)
hoelzl@40859
   615
        assume *: "0 < \<mu> A \<longrightarrow> \<nu> A \<noteq> \<omega>"
hoelzl@40859
   616
        show "\<mu> A = 0 \<and> \<nu> A = 0"
hoelzl@40859
   617
        proof cases
hoelzl@40859
   618
          assume "\<mu> A = 0" moreover with ac A have "\<nu> A = 0"
hoelzl@40859
   619
            unfolding absolutely_continuous_def by auto
hoelzl@40859
   620
          ultimately show ?thesis by simp
hoelzl@40859
   621
        next
hoelzl@40859
   622
          assume "\<mu> A \<noteq> 0" with * have "\<nu> A \<noteq> \<omega>" by auto
hoelzl@40859
   623
          with A have "\<mu> ?O_0 + \<mu> A = \<mu> (?O_0 \<union> A)"
hoelzl@40859
   624
            using Q' by (auto intro!: measure_additive countable_UN)
hoelzl@40859
   625
          also have "\<dots> = (SUP i. \<mu> (?O i \<union> A))"
hoelzl@40859
   626
          proof (rule continuity_from_below[of "\<lambda>i. ?O i \<union> A", symmetric, simplified])
hoelzl@40859
   627
            show "range (\<lambda>i. ?O i \<union> A) \<subseteq> sets M"
hoelzl@40859
   628
              using `\<nu> A \<noteq> \<omega>` O_sets A by auto
hoelzl@40859
   629
          qed fastsimp
hoelzl@40859
   630
          also have "\<dots> \<le> ?a"
hoelzl@40859
   631
          proof (safe intro!: SUPR_bound)
hoelzl@40859
   632
            fix i have "?O i \<union> A \<in> ?Q"
hoelzl@40859
   633
            proof (safe del: notI)
hoelzl@40859
   634
              show "?O i \<union> A \<in> sets M" using O_sets A by auto
hoelzl@40859
   635
              from O_in_G[of i]
hoelzl@40859
   636
              moreover have "\<nu> (?O i \<union> A) \<le> \<nu> (?O i) + \<nu> A"
hoelzl@40859
   637
                using v.measure_subadditive[of "?O i" A] A O_sets by auto
hoelzl@40859
   638
              ultimately show "\<nu> (?O i \<union> A) \<noteq> \<omega>"
hoelzl@40859
   639
                using `\<nu> A \<noteq> \<omega>` by auto
hoelzl@40859
   640
            qed
hoelzl@40859
   641
            then show "\<mu> (?O i \<union> A) \<le> ?a" by (rule le_SUPI)
hoelzl@40859
   642
          qed
hoelzl@40859
   643
          finally have "\<mu> A = 0" unfolding a_eq using finite_measure[OF `?O_0 \<in> sets M`]
hoelzl@41023
   644
            by (cases "\<mu> A") (auto simp: pextreal_noteq_omega_Ex)
hoelzl@40859
   645
          with `\<mu> A \<noteq> 0` show ?thesis by auto
hoelzl@40859
   646
        qed
hoelzl@40859
   647
      qed }
hoelzl@40859
   648
    { fix i show "\<nu> (Q i) \<noteq> \<omega>"
hoelzl@40859
   649
      proof (cases i)
hoelzl@40859
   650
        case 0 then show ?thesis
hoelzl@40859
   651
          unfolding Q_def using Q'[of 0] by simp
hoelzl@40859
   652
      next
hoelzl@40859
   653
        case (Suc n)
hoelzl@40859
   654
        then show ?thesis unfolding Q_def
hoelzl@40859
   655
          using `?O n \<in> ?Q` `?O (Suc n) \<in> ?Q` O_mono
hoelzl@40859
   656
          using v.measure_Diff[of "?O n" "?O (Suc n)"] by auto
hoelzl@40859
   657
      qed }
hoelzl@40859
   658
    show "space M - ?O_0 \<in> sets M" using Q'_sets by auto
hoelzl@40859
   659
    { fix j have "(\<Union>i\<le>j. ?O i) = (\<Union>i\<le>j. Q i)"
hoelzl@40859
   660
      proof (induct j)
hoelzl@40859
   661
        case 0 then show ?case by (simp add: Q_def)
hoelzl@40859
   662
      next
hoelzl@40859
   663
        case (Suc j)
hoelzl@40859
   664
        have eq: "\<And>j. (\<Union>i\<le>j. ?O i) = (\<Union>i\<le>j. Q' i)" by fastsimp
hoelzl@40859
   665
        have "{..j} \<union> {..Suc j} = {..Suc j}" by auto
hoelzl@40859
   666
        then have "(\<Union>i\<le>Suc j. Q' i) = (\<Union>i\<le>j. Q' i) \<union> Q (Suc j)"
hoelzl@40859
   667
          by (simp add: UN_Un[symmetric] Q_def del: UN_Un)
hoelzl@40859
   668
        then show ?case using Suc by (auto simp add: eq atMost_Suc)
hoelzl@40859
   669
      qed }
hoelzl@40859
   670
    then have "(\<Union>j. (\<Union>i\<le>j. ?O i)) = (\<Union>j. (\<Union>i\<le>j. Q i))" by simp
hoelzl@40859
   671
    then show "space M - ?O_0 = space M - (\<Union>i. Q i)" by fastsimp
hoelzl@40859
   672
  qed
hoelzl@40859
   673
qed
hoelzl@40859
   674
hoelzl@40859
   675
lemma (in finite_measure) Radon_Nikodym_finite_measure_infinite:
hoelzl@41689
   676
  assumes "measure_space (M\<lparr>measure := \<nu>\<rparr>)" (is "measure_space ?N")
hoelzl@40859
   677
  assumes "absolutely_continuous \<nu>"
hoelzl@41689
   678
  shows "\<exists>f \<in> borel_measurable M. \<forall>A\<in>sets M. \<nu> A = (\<integral>\<^isup>+x. f x * indicator A x \<partial>M)"
hoelzl@40859
   679
proof -
hoelzl@41689
   680
  interpret v: measure_space ?N
hoelzl@41689
   681
    where "space ?N = space M" and "sets ?N = sets M" and "measure ?N = \<nu>"
hoelzl@41689
   682
    by fact auto
hoelzl@40859
   683
  from split_space_into_finite_sets_and_rest[OF assms]
hoelzl@40859
   684
  obtain Q0 and Q :: "nat \<Rightarrow> 'a set"
hoelzl@40859
   685
    where Q: "disjoint_family Q" "range Q \<subseteq> sets M"
hoelzl@40859
   686
    and Q0: "Q0 \<in> sets M" "Q0 = space M - (\<Union>i. Q i)"
hoelzl@40859
   687
    and in_Q0: "\<And>A. A \<in> sets M \<Longrightarrow> A \<subseteq> Q0 \<Longrightarrow> \<mu> A = 0 \<and> \<nu> A = 0 \<or> 0 < \<mu> A \<and> \<nu> A = \<omega>"
hoelzl@40859
   688
    and Q_fin: "\<And>i. \<nu> (Q i) \<noteq> \<omega>" by force
hoelzl@40859
   689
  from Q have Q_sets: "\<And>i. Q i \<in> sets M" by auto
hoelzl@38656
   690
  have "\<forall>i. \<exists>f. f\<in>borel_measurable M \<and> (\<forall>A\<in>sets M.
hoelzl@41689
   691
    \<nu> (Q i \<inter> A) = (\<integral>\<^isup>+x. f x * indicator (Q i \<inter> A) x \<partial>M))"
hoelzl@38656
   692
  proof
hoelzl@38656
   693
    fix i
hoelzl@41023
   694
    have indicator_eq: "\<And>f x A. (f x :: pextreal) * indicator (Q i \<inter> A) x * indicator (Q i) x
hoelzl@38656
   695
      = (f x * indicator (Q i) x) * indicator A x"
hoelzl@38656
   696
      unfolding indicator_def by auto
hoelzl@41689
   697
    have fm: "finite_measure (restricted_space (Q i))"
hoelzl@41689
   698
      (is "finite_measure ?R") by (rule restricted_finite_measure[OF Q_sets[of i]])
hoelzl@38656
   699
    then interpret R: finite_measure ?R .
hoelzl@41689
   700
    have fmv: "finite_measure (restricted_space (Q i) \<lparr> measure := \<nu>\<rparr>)" (is "finite_measure ?Q")
hoelzl@38656
   701
      unfolding finite_measure_def finite_measure_axioms_def
hoelzl@38656
   702
    proof
hoelzl@41689
   703
      show "measure_space ?Q"
hoelzl@38656
   704
        using v.restricted_measure_space Q_sets[of i] by auto
hoelzl@41689
   705
      show "measure ?Q (space ?Q) \<noteq> \<omega>" using Q_fin by simp
hoelzl@38656
   706
    qed
hoelzl@38656
   707
    have "R.absolutely_continuous \<nu>"
hoelzl@38656
   708
      using `absolutely_continuous \<nu>` `Q i \<in> sets M`
hoelzl@38656
   709
      by (auto simp: R.absolutely_continuous_def absolutely_continuous_def)
hoelzl@41689
   710
    from R.Radon_Nikodym_finite_measure[OF fmv this]
hoelzl@38656
   711
    obtain f where f: "(\<lambda>x. f x * indicator (Q i) x) \<in> borel_measurable M"
hoelzl@41689
   712
      and f_int: "\<And>A. A\<in>sets M \<Longrightarrow> \<nu> (Q i \<inter> A) = (\<integral>\<^isup>+x. (f x * indicator (Q i) x) * indicator A x \<partial>M)"
hoelzl@38656
   713
      unfolding Bex_def borel_measurable_restricted[OF `Q i \<in> sets M`]
hoelzl@38656
   714
        positive_integral_restricted[OF `Q i \<in> sets M`] by (auto simp: indicator_eq)
hoelzl@38656
   715
    then show "\<exists>f. f\<in>borel_measurable M \<and> (\<forall>A\<in>sets M.
hoelzl@41689
   716
      \<nu> (Q i \<inter> A) = (\<integral>\<^isup>+x. f x * indicator (Q i \<inter> A) x \<partial>M))"
hoelzl@38656
   717
      by (fastsimp intro!: exI[of _ "\<lambda>x. f x * indicator (Q i) x"] positive_integral_cong
hoelzl@38656
   718
          simp: indicator_def)
hoelzl@38656
   719
  qed
hoelzl@38656
   720
  from choice[OF this] obtain f where borel: "\<And>i. f i \<in> borel_measurable M"
hoelzl@38656
   721
    and f: "\<And>A i. A \<in> sets M \<Longrightarrow>
hoelzl@41689
   722
      \<nu> (Q i \<inter> A) = (\<integral>\<^isup>+x. f i x * indicator (Q i \<inter> A) x \<partial>M)"
hoelzl@38656
   723
    by auto
hoelzl@38656
   724
  let "?f x" =
hoelzl@40859
   725
    "(\<Sum>\<^isub>\<infinity> i. f i x * indicator (Q i) x) + \<omega> * indicator Q0 x"
hoelzl@38656
   726
  show ?thesis
hoelzl@38656
   727
  proof (safe intro!: bexI[of _ ?f])
hoelzl@38656
   728
    show "?f \<in> borel_measurable M"
hoelzl@41023
   729
      by (safe intro!: borel_measurable_psuminf borel_measurable_pextreal_times
hoelzl@41023
   730
        borel_measurable_pextreal_add borel_measurable_indicator
hoelzl@40859
   731
        borel_measurable_const borel Q_sets Q0 Diff countable_UN)
hoelzl@38656
   732
    fix A assume "A \<in> sets M"
hoelzl@40859
   733
    have *:
hoelzl@38656
   734
      "\<And>x i. indicator A x * (f i x * indicator (Q i) x) =
hoelzl@38656
   735
        f i x * indicator (Q i \<inter> A) x"
hoelzl@41023
   736
      "\<And>x i. (indicator A x * indicator Q0 x :: pextreal) =
hoelzl@40859
   737
        indicator (Q0 \<inter> A) x" by (auto simp: indicator_def)
hoelzl@41689
   738
    have "(\<integral>\<^isup>+x. ?f x * indicator A x \<partial>M) =
hoelzl@40859
   739
      (\<Sum>\<^isub>\<infinity> i. \<nu> (Q i \<inter> A)) + \<omega> * \<mu> (Q0 \<inter> A)"
hoelzl@38656
   740
      unfolding f[OF `A \<in> sets M`]
hoelzl@41023
   741
      apply (simp del: pextreal_times(2) add: field_simps *)
hoelzl@38656
   742
      apply (subst positive_integral_add)
hoelzl@40859
   743
      apply (fastsimp intro: Q0 `A \<in> sets M`)
hoelzl@40859
   744
      apply (fastsimp intro: Q_sets `A \<in> sets M` borel_measurable_psuminf borel)
hoelzl@40859
   745
      apply (subst positive_integral_cmult_indicator)
hoelzl@40859
   746
      apply (fastsimp intro: Q0 `A \<in> sets M`)
hoelzl@38656
   747
      unfolding psuminf_cmult_right[symmetric]
hoelzl@38656
   748
      apply (subst positive_integral_psuminf)
hoelzl@40859
   749
      apply (fastsimp intro: `A \<in> sets M` Q_sets borel)
hoelzl@40859
   750
      apply (simp add: *)
hoelzl@40859
   751
      done
hoelzl@38656
   752
    moreover have "(\<Sum>\<^isub>\<infinity>i. \<nu> (Q i \<inter> A)) = \<nu> ((\<Union>i. Q i) \<inter> A)"
hoelzl@40859
   753
      using Q Q_sets `A \<in> sets M`
hoelzl@40859
   754
      by (intro v.measure_countably_additive[of "\<lambda>i. Q i \<inter> A", unfolded comp_def, simplified])
hoelzl@40859
   755
         (auto simp: disjoint_family_on_def)
hoelzl@40859
   756
    moreover have "\<omega> * \<mu> (Q0 \<inter> A) = \<nu> (Q0 \<inter> A)"
hoelzl@40859
   757
    proof -
hoelzl@40859
   758
      have "Q0 \<inter> A \<in> sets M" using Q0(1) `A \<in> sets M` by blast
hoelzl@40859
   759
      from in_Q0[OF this] show ?thesis by auto
hoelzl@38656
   760
    qed
hoelzl@40859
   761
    moreover have "Q0 \<inter> A \<in> sets M" "((\<Union>i. Q i) \<inter> A) \<in> sets M"
hoelzl@40859
   762
      using Q_sets `A \<in> sets M` Q0(1) by (auto intro!: countable_UN)
hoelzl@40859
   763
    moreover have "((\<Union>i. Q i) \<inter> A) \<union> (Q0 \<inter> A) = A" "((\<Union>i. Q i) \<inter> A) \<inter> (Q0 \<inter> A) = {}"
hoelzl@40859
   764
      using `A \<in> sets M` sets_into_space Q0 by auto
hoelzl@41689
   765
    ultimately show "\<nu> A = (\<integral>\<^isup>+x. ?f x * indicator A x \<partial>M)"
hoelzl@40859
   766
      using v.measure_additive[simplified, of "(\<Union>i. Q i) \<inter> A" "Q0 \<inter> A"]
hoelzl@40859
   767
      by simp
hoelzl@38656
   768
  qed
hoelzl@38656
   769
qed
hoelzl@38656
   770
hoelzl@38656
   771
lemma (in sigma_finite_measure) Radon_Nikodym:
hoelzl@41689
   772
  assumes "measure_space (M\<lparr>measure := \<nu>\<rparr>)" (is "measure_space ?N")
hoelzl@38656
   773
  assumes "absolutely_continuous \<nu>"
hoelzl@41689
   774
  shows "\<exists>f \<in> borel_measurable M. \<forall>A\<in>sets M. \<nu> A = (\<integral>\<^isup>+x. f x * indicator A x \<partial>M)"
hoelzl@38656
   775
proof -
hoelzl@38656
   776
  from Ex_finite_integrable_function
hoelzl@41689
   777
  obtain h where finite: "integral\<^isup>P M h \<noteq> \<omega>" and
hoelzl@38656
   778
    borel: "h \<in> borel_measurable M" and
hoelzl@38656
   779
    pos: "\<And>x. x \<in> space M \<Longrightarrow> 0 < h x" and
hoelzl@38656
   780
    "\<And>x. x \<in> space M \<Longrightarrow> h x < \<omega>" by auto
hoelzl@41689
   781
  let "?T A" = "(\<integral>\<^isup>+x. h x * indicator A x \<partial>M)"
hoelzl@41689
   782
  let ?MT = "M\<lparr> measure := ?T \<rparr>"
hoelzl@38656
   783
  from measure_space_density[OF borel] finite
hoelzl@41689
   784
  interpret T: finite_measure ?MT
hoelzl@41689
   785
    where "space ?MT = space M" and "sets ?MT = sets M" and "measure ?MT = ?T"
hoelzl@38656
   786
    unfolding finite_measure_def finite_measure_axioms_def
hoelzl@41689
   787
    by (simp_all cong: positive_integral_cong)
hoelzl@41023
   788
  have "\<And>N. N \<in> sets M \<Longrightarrow> {x \<in> space M. h x \<noteq> 0 \<and> indicator N x \<noteq> (0::pextreal)} = N"
hoelzl@38656
   789
    using sets_into_space pos by (force simp: indicator_def)
hoelzl@38656
   790
  then have "T.absolutely_continuous \<nu>" using assms(2) borel
hoelzl@38656
   791
    unfolding T.absolutely_continuous_def absolutely_continuous_def
hoelzl@38656
   792
    by (fastsimp simp: borel_measurable_indicator positive_integral_0_iff)
hoelzl@38656
   793
  from T.Radon_Nikodym_finite_measure_infinite[simplified, OF assms(1) this]
hoelzl@38656
   794
  obtain f where f_borel: "f \<in> borel_measurable M" and
hoelzl@41689
   795
    fT: "\<And>A. A \<in> sets M \<Longrightarrow> \<nu> A = (\<integral>\<^isup>+ x. f x * indicator A x \<partial>?MT)"
hoelzl@41689
   796
    by (auto simp: measurable_def)
hoelzl@38656
   797
  show ?thesis
hoelzl@38656
   798
  proof (safe intro!: bexI[of _ "\<lambda>x. h x * f x"])
hoelzl@38656
   799
    show "(\<lambda>x. h x * f x) \<in> borel_measurable M"
hoelzl@41023
   800
      using borel f_borel by (auto intro: borel_measurable_pextreal_times)
hoelzl@38656
   801
    fix A assume "A \<in> sets M"
hoelzl@38656
   802
    then have "(\<lambda>x. f x * indicator A x) \<in> borel_measurable M"
hoelzl@41023
   803
      using f_borel by (auto intro: borel_measurable_pextreal_times borel_measurable_indicator)
hoelzl@38656
   804
    from positive_integral_translated_density[OF borel this]
hoelzl@41689
   805
    show "\<nu> A = (\<integral>\<^isup>+x. h x * f x * indicator A x \<partial>M)"
hoelzl@38656
   806
      unfolding fT[OF `A \<in> sets M`] by (simp add: field_simps)
hoelzl@38656
   807
  qed
hoelzl@38656
   808
qed
hoelzl@38656
   809
hoelzl@40859
   810
section "Uniqueness of densities"
hoelzl@40859
   811
hoelzl@40859
   812
lemma (in measure_space) finite_density_unique:
hoelzl@40859
   813
  assumes borel: "f \<in> borel_measurable M" "g \<in> borel_measurable M"
hoelzl@41689
   814
  and fin: "integral\<^isup>P M f < \<omega>"
hoelzl@41689
   815
  shows "(\<forall>A\<in>sets M. (\<integral>\<^isup>+x. f x * indicator A x \<partial>M) = (\<integral>\<^isup>+x. g x * indicator A x \<partial>M))
hoelzl@40859
   816
    \<longleftrightarrow> (AE x. f x = g x)"
hoelzl@40859
   817
    (is "(\<forall>A\<in>sets M. ?P f A = ?P g A) \<longleftrightarrow> _")
hoelzl@40859
   818
proof (intro iffI ballI)
hoelzl@40859
   819
  fix A assume eq: "AE x. f x = g x"
hoelzl@40859
   820
  show "?P f A = ?P g A"
hoelzl@40859
   821
    by (rule positive_integral_cong_AE[OF AE_mp[OF eq]]) simp
hoelzl@40859
   822
next
hoelzl@40859
   823
  assume eq: "\<forall>A\<in>sets M. ?P f A = ?P g A"
hoelzl@40859
   824
  from this[THEN bspec, OF top] fin
hoelzl@41689
   825
  have g_fin: "integral\<^isup>P M g < \<omega>" by (simp cong: positive_integral_cong)
hoelzl@40859
   826
  { fix f g assume borel: "f \<in> borel_measurable M" "g \<in> borel_measurable M"
hoelzl@41689
   827
      and g_fin: "integral\<^isup>P M g < \<omega>" and eq: "\<forall>A\<in>sets M. ?P f A = ?P g A"
hoelzl@40859
   828
    let ?N = "{x\<in>space M. g x < f x}"
hoelzl@40859
   829
    have N: "?N \<in> sets M" using borel by simp
hoelzl@41689
   830
    have "?P (\<lambda>x. (f x - g x)) ?N = (\<integral>\<^isup>+x. f x * indicator ?N x - g x * indicator ?N x \<partial>M)"
hoelzl@40859
   831
      by (auto intro!: positive_integral_cong simp: indicator_def)
hoelzl@40859
   832
    also have "\<dots> = ?P f ?N - ?P g ?N"
hoelzl@40859
   833
    proof (rule positive_integral_diff)
hoelzl@40859
   834
      show "(\<lambda>x. f x * indicator ?N x) \<in> borel_measurable M" "(\<lambda>x. g x * indicator ?N x) \<in> borel_measurable M"
hoelzl@40859
   835
        using borel N by auto
hoelzl@41689
   836
      have "?P g ?N \<le> integral\<^isup>P M g"
hoelzl@40859
   837
        by (auto intro!: positive_integral_mono simp: indicator_def)
hoelzl@40859
   838
      then show "?P g ?N \<noteq> \<omega>" using g_fin by auto
hoelzl@40859
   839
      fix x assume "x \<in> space M"
hoelzl@40859
   840
      show "g x * indicator ?N x \<le> f x * indicator ?N x"
hoelzl@40859
   841
        by (auto simp: indicator_def)
hoelzl@40859
   842
    qed
hoelzl@40859
   843
    also have "\<dots> = 0"
hoelzl@40859
   844
      using eq[THEN bspec, OF N] by simp
hoelzl@40859
   845
    finally have "\<mu> {x\<in>space M. (f x - g x) * indicator ?N x \<noteq> 0} = 0"
hoelzl@40859
   846
      using borel N by (subst (asm) positive_integral_0_iff) auto
hoelzl@40859
   847
    moreover have "{x\<in>space M. (f x - g x) * indicator ?N x \<noteq> 0} = ?N"
hoelzl@41023
   848
      by (auto simp: pextreal_zero_le_diff)
hoelzl@40859
   849
    ultimately have "?N \<in> null_sets" using N by simp }
hoelzl@40859
   850
  from this[OF borel g_fin eq] this[OF borel(2,1) fin]
hoelzl@40859
   851
  have "{x\<in>space M. g x < f x} \<union> {x\<in>space M. f x < g x} \<in> null_sets"
hoelzl@40859
   852
    using eq by (intro null_sets_Un) auto
hoelzl@40859
   853
  also have "{x\<in>space M. g x < f x} \<union> {x\<in>space M. f x < g x} = {x\<in>space M. f x \<noteq> g x}"
hoelzl@40859
   854
    by auto
hoelzl@40859
   855
  finally show "AE x. f x = g x"
hoelzl@40859
   856
    unfolding almost_everywhere_def by auto
hoelzl@40859
   857
qed
hoelzl@40859
   858
hoelzl@40859
   859
lemma (in finite_measure) density_unique_finite_measure:
hoelzl@40859
   860
  assumes borel: "f \<in> borel_measurable M" "f' \<in> borel_measurable M"
hoelzl@41689
   861
  assumes f: "\<And>A. A \<in> sets M \<Longrightarrow> (\<integral>\<^isup>+x. f x * indicator A x \<partial>M) = (\<integral>\<^isup>+x. f' x * indicator A x \<partial>M)"
hoelzl@40859
   862
    (is "\<And>A. A \<in> sets M \<Longrightarrow> ?P f A = ?P f' A")
hoelzl@40859
   863
  shows "AE x. f x = f' x"
hoelzl@40859
   864
proof -
hoelzl@40859
   865
  let "?\<nu> A" = "?P f A" and "?\<nu>' A" = "?P f' A"
hoelzl@40859
   866
  let "?f A x" = "f x * indicator A x" and "?f' A x" = "f' x * indicator A x"
hoelzl@41689
   867
  interpret M: measure_space "M\<lparr> measure := ?\<nu>\<rparr>"
hoelzl@41689
   868
    using borel(1) by (rule measure_space_density) simp
hoelzl@40859
   869
  have ac: "absolutely_continuous ?\<nu>"
hoelzl@40859
   870
    using f by (rule density_is_absolutely_continuous)
hoelzl@41689
   871
  from split_space_into_finite_sets_and_rest[OF `measure_space (M\<lparr> measure := ?\<nu>\<rparr>)` ac]
hoelzl@40859
   872
  obtain Q0 and Q :: "nat \<Rightarrow> 'a set"
hoelzl@40859
   873
    where Q: "disjoint_family Q" "range Q \<subseteq> sets M"
hoelzl@40859
   874
    and Q0: "Q0 \<in> sets M" "Q0 = space M - (\<Union>i. Q i)"
hoelzl@40859
   875
    and in_Q0: "\<And>A. A \<in> sets M \<Longrightarrow> A \<subseteq> Q0 \<Longrightarrow> \<mu> A = 0 \<and> ?\<nu> A = 0 \<or> 0 < \<mu> A \<and> ?\<nu> A = \<omega>"
hoelzl@40859
   876
    and Q_fin: "\<And>i. ?\<nu> (Q i) \<noteq> \<omega>" by force
hoelzl@40859
   877
  from Q have Q_sets: "\<And>i. Q i \<in> sets M" by auto
hoelzl@40859
   878
  let ?N = "{x\<in>space M. f x \<noteq> f' x}"
hoelzl@40859
   879
  have "?N \<in> sets M" using borel by auto
hoelzl@41023
   880
  have *: "\<And>i x A. \<And>y::pextreal. y * indicator (Q i) x * indicator A x = y * indicator (Q i \<inter> A) x"
hoelzl@40859
   881
    unfolding indicator_def by auto
hoelzl@40859
   882
  have 1: "\<forall>i. AE x. ?f (Q i) x = ?f' (Q i) x"
hoelzl@40859
   883
    using borel Q_fin Q
hoelzl@40859
   884
    by (intro finite_density_unique[THEN iffD1] allI)
hoelzl@41023
   885
       (auto intro!: borel_measurable_pextreal_times f Int simp: *)
hoelzl@40859
   886
  have 2: "AE x. ?f Q0 x = ?f' Q0 x"
hoelzl@40859
   887
  proof (rule AE_I')
hoelzl@41023
   888
    { fix f :: "'a \<Rightarrow> pextreal" assume borel: "f \<in> borel_measurable M"
hoelzl@41689
   889
        and eq: "\<And>A. A \<in> sets M \<Longrightarrow> ?\<nu> A = (\<integral>\<^isup>+x. f x * indicator A x \<partial>M)"
hoelzl@40859
   890
      let "?A i" = "Q0 \<inter> {x \<in> space M. f x < of_nat i}"
hoelzl@40859
   891
      have "(\<Union>i. ?A i) \<in> null_sets"
hoelzl@40859
   892
      proof (rule null_sets_UN)
hoelzl@40859
   893
        fix i have "?A i \<in> sets M"
hoelzl@40859
   894
          using borel Q0(1) by auto
hoelzl@41689
   895
        have "?\<nu> (?A i) \<le> (\<integral>\<^isup>+x. of_nat i * indicator (?A i) x \<partial>M)"
hoelzl@40859
   896
          unfolding eq[OF `?A i \<in> sets M`]
hoelzl@40859
   897
          by (auto intro!: positive_integral_mono simp: indicator_def)
hoelzl@40859
   898
        also have "\<dots> = of_nat i * \<mu> (?A i)"
hoelzl@40859
   899
          using `?A i \<in> sets M` by (auto intro!: positive_integral_cmult_indicator)
hoelzl@40859
   900
        also have "\<dots> < \<omega>"
hoelzl@40859
   901
          using `?A i \<in> sets M`[THEN finite_measure] by auto
hoelzl@40859
   902
        finally have "?\<nu> (?A i) \<noteq> \<omega>" by simp
hoelzl@40859
   903
        then show "?A i \<in> null_sets" using in_Q0[OF `?A i \<in> sets M`] `?A i \<in> sets M` by auto
hoelzl@40859
   904
      qed
hoelzl@40859
   905
      also have "(\<Union>i. ?A i) = Q0 \<inter> {x\<in>space M. f x < \<omega>}"
hoelzl@40859
   906
        by (auto simp: less_\<omega>_Ex_of_nat)
hoelzl@41023
   907
      finally have "Q0 \<inter> {x\<in>space M. f x \<noteq> \<omega>} \<in> null_sets" by (simp add: pextreal_less_\<omega>) }
hoelzl@40859
   908
    from this[OF borel(1) refl] this[OF borel(2) f]
hoelzl@40859
   909
    have "Q0 \<inter> {x\<in>space M. f x \<noteq> \<omega>} \<in> null_sets" "Q0 \<inter> {x\<in>space M. f' x \<noteq> \<omega>} \<in> null_sets" by simp_all
hoelzl@40859
   910
    then show "(Q0 \<inter> {x\<in>space M. f x \<noteq> \<omega>}) \<union> (Q0 \<inter> {x\<in>space M. f' x \<noteq> \<omega>}) \<in> null_sets" by (rule null_sets_Un)
hoelzl@40859
   911
    show "{x \<in> space M. ?f Q0 x \<noteq> ?f' Q0 x} \<subseteq>
hoelzl@40859
   912
      (Q0 \<inter> {x\<in>space M. f x \<noteq> \<omega>}) \<union> (Q0 \<inter> {x\<in>space M. f' x \<noteq> \<omega>})" by (auto simp: indicator_def)
hoelzl@40859
   913
  qed
hoelzl@40859
   914
  have **: "\<And>x. (?f Q0 x = ?f' Q0 x) \<longrightarrow> (\<forall>i. ?f (Q i) x = ?f' (Q i) x) \<longrightarrow>
hoelzl@40859
   915
    ?f (space M) x = ?f' (space M) x"
hoelzl@40859
   916
    by (auto simp: indicator_def Q0)
hoelzl@40859
   917
  have 3: "AE x. ?f (space M) x = ?f' (space M) x"
hoelzl@40859
   918
    by (rule AE_mp[OF 1[unfolded all_AE_countable] AE_mp[OF 2]]) (simp add: **)
hoelzl@40859
   919
  then show "AE x. f x = f' x"
hoelzl@40859
   920
    by (rule AE_mp) (auto intro!: AE_cong simp: indicator_def)
hoelzl@40859
   921
qed
hoelzl@40859
   922
hoelzl@40859
   923
lemma (in sigma_finite_measure) density_unique:
hoelzl@40859
   924
  assumes borel: "f \<in> borel_measurable M" "f' \<in> borel_measurable M"
hoelzl@41689
   925
  assumes f: "\<And>A. A \<in> sets M \<Longrightarrow> (\<integral>\<^isup>+x. f x * indicator A x \<partial>M) = (\<integral>\<^isup>+x. f' x * indicator A x \<partial>M)"
hoelzl@40859
   926
    (is "\<And>A. A \<in> sets M \<Longrightarrow> ?P f A = ?P f' A")
hoelzl@40859
   927
  shows "AE x. f x = f' x"
hoelzl@40859
   928
proof -
hoelzl@40859
   929
  obtain h where h_borel: "h \<in> borel_measurable M"
hoelzl@41689
   930
    and fin: "integral\<^isup>P M h \<noteq> \<omega>" and pos: "\<And>x. x \<in> space M \<Longrightarrow> 0 < h x \<and> h x < \<omega>"
hoelzl@40859
   931
    using Ex_finite_integrable_function by auto
hoelzl@41689
   932
  interpret h: measure_space "M\<lparr> measure := \<lambda>A. (\<integral>\<^isup>+x. h x * indicator A x \<partial>M) \<rparr>"
hoelzl@41689
   933
    using h_borel by (rule measure_space_density) simp
hoelzl@41689
   934
  interpret h: finite_measure "M\<lparr> measure := \<lambda>A. (\<integral>\<^isup>+x. h x * indicator A x \<partial>M) \<rparr>"
hoelzl@40859
   935
    by default (simp cong: positive_integral_cong add: fin)
hoelzl@41689
   936
  let ?fM = "M\<lparr>measure := \<lambda>A. (\<integral>\<^isup>+x. f x * indicator A x \<partial>M)\<rparr>"
hoelzl@41689
   937
  interpret f: measure_space ?fM
hoelzl@41689
   938
    using borel(1) by (rule measure_space_density) simp
hoelzl@41689
   939
  let ?f'M = "M\<lparr>measure := \<lambda>A. (\<integral>\<^isup>+x. f' x * indicator A x \<partial>M)\<rparr>"
hoelzl@41689
   940
  interpret f': measure_space ?f'M
hoelzl@41689
   941
    using borel(2) by (rule measure_space_density) simp
hoelzl@40859
   942
  { fix A assume "A \<in> sets M"
hoelzl@41023
   943
    then have " {x \<in> space M. h x \<noteq> 0 \<and> indicator A x \<noteq> (0::pextreal)} = A"
hoelzl@40859
   944
      using pos sets_into_space by (force simp: indicator_def)
hoelzl@41689
   945
    then have "(\<integral>\<^isup>+x. h x * indicator A x \<partial>M) = 0 \<longleftrightarrow> A \<in> null_sets"
hoelzl@40859
   946
      using h_borel `A \<in> sets M` by (simp add: positive_integral_0_iff) }
hoelzl@40859
   947
  note h_null_sets = this
hoelzl@40859
   948
  { fix A assume "A \<in> sets M"
hoelzl@41689
   949
    have "(\<integral>\<^isup>+x. h x * (f x * indicator A x) \<partial>M) = (\<integral>\<^isup>+x. h x * indicator A x \<partial>?fM)"
hoelzl@41689
   950
      using `A \<in> sets M` h_borel borel
hoelzl@41689
   951
      by (simp add: positive_integral_translated_density ac_simps cong: positive_integral_cong)
hoelzl@41689
   952
    also have "\<dots> = (\<integral>\<^isup>+x. h x * indicator A x \<partial>?f'M)"
hoelzl@41689
   953
      by (rule f'.positive_integral_cong_measure) (simp_all add: f)
hoelzl@41689
   954
    also have "\<dots> = (\<integral>\<^isup>+x. h x * (f' x * indicator A x) \<partial>M)"
hoelzl@40859
   955
      using `A \<in> sets M` h_borel borel
hoelzl@40859
   956
      by (simp add: positive_integral_translated_density ac_simps cong: positive_integral_cong)
hoelzl@41689
   957
    finally have "(\<integral>\<^isup>+x. h x * (f x * indicator A x) \<partial>M) = (\<integral>\<^isup>+x. h x * (f' x * indicator A x) \<partial>M)" . }
hoelzl@40859
   958
  then have "h.almost_everywhere (\<lambda>x. f x = f' x)"
hoelzl@40859
   959
    using h_borel borel
hoelzl@41689
   960
    apply (intro h.density_unique_finite_measure)
hoelzl@41689
   961
    apply (simp add: measurable_def)
hoelzl@41689
   962
    apply (simp add: measurable_def)
hoelzl@41689
   963
    by (simp add: positive_integral_translated_density)
hoelzl@40859
   964
  then show "AE x. f x = f' x"
hoelzl@40859
   965
    unfolding h.almost_everywhere_def almost_everywhere_def
hoelzl@40859
   966
    by (auto simp add: h_null_sets)
hoelzl@40859
   967
qed
hoelzl@40859
   968
hoelzl@40859
   969
lemma (in sigma_finite_measure) sigma_finite_iff_density_finite:
hoelzl@41689
   970
  assumes \<nu>: "measure_space (M\<lparr>measure := \<nu>\<rparr>)" (is "measure_space ?N")
hoelzl@41689
   971
    and f: "f \<in> borel_measurable M"
hoelzl@41689
   972
    and eq: "\<And>A. A \<in> sets M \<Longrightarrow> \<nu> A = (\<integral>\<^isup>+x. f x * indicator A x \<partial>M)"
hoelzl@41689
   973
  shows "sigma_finite_measure (M\<lparr>measure := \<nu>\<rparr>) \<longleftrightarrow> (AE x. f x \<noteq> \<omega>)"
hoelzl@40859
   974
proof
hoelzl@41689
   975
  assume "sigma_finite_measure ?N"
hoelzl@41689
   976
  then interpret \<nu>: sigma_finite_measure ?N
hoelzl@41689
   977
    where "borel_measurable ?N = borel_measurable M" and "measure ?N = \<nu>"
hoelzl@41689
   978
    and "sets ?N = sets M" and "space ?N = space M" by (auto simp: measurable_def)
hoelzl@40859
   979
  from \<nu>.Ex_finite_integrable_function obtain h where
hoelzl@41689
   980
    h: "h \<in> borel_measurable M" "integral\<^isup>P ?N h \<noteq> \<omega>"
hoelzl@40859
   981
    and fin: "\<And>x. x \<in> space M \<Longrightarrow> 0 < h x \<and> h x < \<omega>" by auto
hoelzl@40859
   982
  have "AE x. f x * h x \<noteq> \<omega>"
hoelzl@40859
   983
  proof (rule AE_I')
hoelzl@41689
   984
    have "integral\<^isup>P ?N h = (\<integral>\<^isup>+x. f x * h x \<partial>M)"
hoelzl@41689
   985
      apply (subst \<nu>.positive_integral_cong_measure[symmetric,
hoelzl@41689
   986
        of "M\<lparr> measure := \<lambda> A. \<integral>\<^isup>+x. f x * indicator A x \<partial>M \<rparr>"])
hoelzl@41689
   987
      apply (simp_all add: eq)
hoelzl@41689
   988
      apply (rule positive_integral_translated_density)
hoelzl@41689
   989
      using f h by auto
hoelzl@41689
   990
    then have "(\<integral>\<^isup>+x. f x * h x \<partial>M) \<noteq> \<omega>"
hoelzl@40859
   991
      using h(2) by simp
hoelzl@40859
   992
    then show "(\<lambda>x. f x * h x) -` {\<omega>} \<inter> space M \<in> null_sets"
hoelzl@40859
   993
      using f h(1) by (auto intro!: positive_integral_omega borel_measurable_vimage)
hoelzl@40859
   994
  qed auto
hoelzl@40859
   995
  then show "AE x. f x \<noteq> \<omega>"
hoelzl@40859
   996
  proof (rule AE_mp, intro AE_cong)
hoelzl@40859
   997
    fix x assume "x \<in> space M" from this[THEN fin]
hoelzl@40859
   998
    show "f x * h x \<noteq> \<omega> \<longrightarrow> f x \<noteq> \<omega>" by auto
hoelzl@40859
   999
  qed
hoelzl@40859
  1000
next
hoelzl@40859
  1001
  assume AE: "AE x. f x \<noteq> \<omega>"
hoelzl@40859
  1002
  from sigma_finite guess Q .. note Q = this
hoelzl@41689
  1003
  interpret \<nu>: measure_space ?N
hoelzl@41689
  1004
    where "borel_measurable ?N = borel_measurable M" and "measure ?N = \<nu>"
hoelzl@41689
  1005
    and "sets ?N = sets M" and "space ?N = space M" using \<nu> by (auto simp: measurable_def)
hoelzl@40859
  1006
  def A \<equiv> "\<lambda>i. f -` (case i of 0 \<Rightarrow> {\<omega>} | Suc n \<Rightarrow> {.. of_nat (Suc n)}) \<inter> space M"
hoelzl@40859
  1007
  { fix i j have "A i \<inter> Q j \<in> sets M"
hoelzl@40859
  1008
    unfolding A_def using f Q
hoelzl@40859
  1009
    apply (rule_tac Int)
hoelzl@40859
  1010
    by (cases i) (auto intro: measurable_sets[OF f]) }
hoelzl@40859
  1011
  note A_in_sets = this
hoelzl@40859
  1012
  let "?A n" = "case prod_decode n of (i,j) \<Rightarrow> A i \<inter> Q j"
hoelzl@41689
  1013
  show "sigma_finite_measure ?N"
hoelzl@40859
  1014
  proof (default, intro exI conjI subsetI allI)
hoelzl@40859
  1015
    fix x assume "x \<in> range ?A"
hoelzl@40859
  1016
    then obtain n where n: "x = ?A n" by auto
hoelzl@41689
  1017
    then show "x \<in> sets ?N" using A_in_sets by (cases "prod_decode n") auto
hoelzl@40859
  1018
  next
hoelzl@40859
  1019
    have "(\<Union>i. ?A i) = (\<Union>i j. A i \<inter> Q j)"
hoelzl@40859
  1020
    proof safe
hoelzl@40859
  1021
      fix x i j assume "x \<in> A i" "x \<in> Q j"
hoelzl@40859
  1022
      then show "x \<in> (\<Union>i. case prod_decode i of (i, j) \<Rightarrow> A i \<inter> Q j)"
hoelzl@40859
  1023
        by (intro UN_I[of "prod_encode (i,j)"]) auto
hoelzl@40859
  1024
    qed auto
hoelzl@40859
  1025
    also have "\<dots> = (\<Union>i. A i) \<inter> space M" using Q by auto
hoelzl@40859
  1026
    also have "(\<Union>i. A i) = space M"
hoelzl@40859
  1027
    proof safe
hoelzl@40859
  1028
      fix x assume x: "x \<in> space M"
hoelzl@40859
  1029
      show "x \<in> (\<Union>i. A i)"
hoelzl@40859
  1030
      proof (cases "f x")
hoelzl@40859
  1031
        case infinite then show ?thesis using x unfolding A_def by (auto intro: exI[of _ 0])
hoelzl@40859
  1032
      next
hoelzl@40859
  1033
        case (preal r)
hoelzl@40859
  1034
        with less_\<omega>_Ex_of_nat[of "f x"] obtain n where "f x < of_nat n" by auto
hoelzl@40859
  1035
        then show ?thesis using x preal unfolding A_def by (auto intro!: exI[of _ "Suc n"])
hoelzl@40859
  1036
      qed
hoelzl@40859
  1037
    qed (auto simp: A_def)
hoelzl@41689
  1038
    finally show "(\<Union>i. ?A i) = space ?N" by simp
hoelzl@40859
  1039
  next
hoelzl@40859
  1040
    fix n obtain i j where
hoelzl@40859
  1041
      [simp]: "prod_decode n = (i, j)" by (cases "prod_decode n") auto
hoelzl@41689
  1042
    have "(\<integral>\<^isup>+x. f x * indicator (A i \<inter> Q j) x \<partial>M) \<noteq> \<omega>"
hoelzl@40859
  1043
    proof (cases i)
hoelzl@40859
  1044
      case 0
hoelzl@40859
  1045
      have "AE x. f x * indicator (A i \<inter> Q j) x = 0"
hoelzl@40859
  1046
        using AE by (rule AE_mp) (auto intro!: AE_cong simp: A_def `i = 0`)
hoelzl@41689
  1047
      then have "(\<integral>\<^isup>+x. f x * indicator (A i \<inter> Q j) x \<partial>M) = 0"
hoelzl@40859
  1048
        using A_in_sets f
hoelzl@40859
  1049
        apply (subst positive_integral_0_iff)
hoelzl@40859
  1050
        apply fast
hoelzl@40859
  1051
        apply (subst (asm) AE_iff_null_set)
hoelzl@41023
  1052
        apply (intro borel_measurable_pextreal_neq_const)
hoelzl@40859
  1053
        apply fast
hoelzl@40859
  1054
        by simp
hoelzl@40859
  1055
      then show ?thesis by simp
hoelzl@40859
  1056
    next
hoelzl@40859
  1057
      case (Suc n)
hoelzl@41689
  1058
      then have "(\<integral>\<^isup>+x. f x * indicator (A i \<inter> Q j) x \<partial>M) \<le>
hoelzl@41689
  1059
        (\<integral>\<^isup>+x. of_nat (Suc n) * indicator (Q j) x \<partial>M)"
hoelzl@40859
  1060
        by (auto intro!: positive_integral_mono simp: indicator_def A_def)
hoelzl@40859
  1061
      also have "\<dots> = of_nat (Suc n) * \<mu> (Q j)"
hoelzl@40859
  1062
        using Q by (auto intro!: positive_integral_cmult_indicator)
hoelzl@40859
  1063
      also have "\<dots> < \<omega>"
hoelzl@40859
  1064
        using Q by auto
hoelzl@40859
  1065
      finally show ?thesis by simp
hoelzl@40859
  1066
    qed
hoelzl@41689
  1067
    then show "measure ?N (?A n) \<noteq> \<omega>"
hoelzl@40859
  1068
      using A_in_sets Q eq by auto
hoelzl@40859
  1069
  qed
hoelzl@40859
  1070
qed
hoelzl@40859
  1071
hoelzl@40871
  1072
section "Radon-Nikodym derivative"
hoelzl@38656
  1073
hoelzl@41689
  1074
definition
hoelzl@41689
  1075
  "RN_deriv M \<nu> \<equiv> SOME f. f \<in> borel_measurable M \<and>
hoelzl@41689
  1076
    (\<forall>A \<in> sets M. \<nu> A = (\<integral>\<^isup>+x. f x * indicator A x \<partial>M))"
hoelzl@38656
  1077
hoelzl@40859
  1078
lemma (in sigma_finite_measure) RN_deriv_cong:
hoelzl@41689
  1079
  assumes cong: "\<And>A. A \<in> sets M \<Longrightarrow> measure M' A = \<mu> A" "sets M' = sets M" "space M' = space M"
hoelzl@41689
  1080
    and \<nu>: "\<And>A. A \<in> sets M \<Longrightarrow> \<nu>' A = \<nu> A"
hoelzl@41689
  1081
  shows "RN_deriv M' \<nu>' x = RN_deriv M \<nu> x"
hoelzl@40859
  1082
proof -
hoelzl@41689
  1083
  interpret \<mu>': sigma_finite_measure M'
hoelzl@41689
  1084
    using cong by (rule sigma_finite_measure_cong)
hoelzl@40859
  1085
  show ?thesis
hoelzl@41689
  1086
    unfolding RN_deriv_def
hoelzl@41689
  1087
    by (simp add: cong \<nu> positive_integral_cong_measure[OF cong] measurable_def)
hoelzl@40859
  1088
qed
hoelzl@40859
  1089
hoelzl@38656
  1090
lemma (in sigma_finite_measure) RN_deriv:
hoelzl@41689
  1091
  assumes "measure_space (M\<lparr>measure := \<nu>\<rparr>)"
hoelzl@38656
  1092
  assumes "absolutely_continuous \<nu>"
hoelzl@41689
  1093
  shows "RN_deriv M \<nu> \<in> borel_measurable M" (is ?borel)
hoelzl@41689
  1094
  and "\<And>A. A \<in> sets M \<Longrightarrow> \<nu> A = (\<integral>\<^isup>+x. RN_deriv M \<nu> x * indicator A x \<partial>M)"
hoelzl@38656
  1095
    (is "\<And>A. _ \<Longrightarrow> ?int A")
hoelzl@38656
  1096
proof -
hoelzl@38656
  1097
  note Ex = Radon_Nikodym[OF assms, unfolded Bex_def]
hoelzl@38656
  1098
  thus ?borel unfolding RN_deriv_def by (rule someI2_ex) auto
hoelzl@38656
  1099
  fix A assume "A \<in> sets M"
hoelzl@38656
  1100
  from Ex show "?int A" unfolding RN_deriv_def
hoelzl@38656
  1101
    by (rule someI2_ex) (simp add: `A \<in> sets M`)
hoelzl@38656
  1102
qed
hoelzl@38656
  1103
hoelzl@40859
  1104
lemma (in sigma_finite_measure) RN_deriv_positive_integral:
hoelzl@41689
  1105
  assumes \<nu>: "measure_space (M\<lparr>measure := \<nu>\<rparr>)" "absolutely_continuous \<nu>"
hoelzl@40859
  1106
    and f: "f \<in> borel_measurable M"
hoelzl@41689
  1107
  shows "integral\<^isup>P (M\<lparr>measure := \<nu>\<rparr>) f = (\<integral>\<^isup>+x. RN_deriv M \<nu> x * f x \<partial>M)"
hoelzl@40859
  1108
proof -
hoelzl@41689
  1109
  interpret \<nu>: measure_space "M\<lparr>measure := \<nu>\<rparr>" by fact
hoelzl@41689
  1110
  have "integral\<^isup>P (M\<lparr>measure := \<nu>\<rparr>) f =
hoelzl@41689
  1111
    integral\<^isup>P (M\<lparr>measure := \<lambda>A. (\<integral>\<^isup>+x. RN_deriv M \<nu> x * indicator A x \<partial>M)\<rparr>) f"
hoelzl@41689
  1112
    by (intro \<nu>.positive_integral_cong_measure[symmetric])
hoelzl@41689
  1113
       (simp_all add:  RN_deriv(2)[OF \<nu>, symmetric])
hoelzl@41689
  1114
  also have "\<dots> = (\<integral>\<^isup>+x. RN_deriv M \<nu> x * f x \<partial>M)"
hoelzl@41689
  1115
    by (intro positive_integral_translated_density)
hoelzl@41689
  1116
       (simp_all add: RN_deriv[OF \<nu>] f)
hoelzl@40859
  1117
  finally show ?thesis .
hoelzl@40859
  1118
qed
hoelzl@40859
  1119
hoelzl@40859
  1120
lemma (in sigma_finite_measure) RN_deriv_unique:
hoelzl@41689
  1121
  assumes \<nu>: "measure_space (M\<lparr>measure := \<nu>\<rparr>)" "absolutely_continuous \<nu>"
hoelzl@40859
  1122
  and f: "f \<in> borel_measurable M"
hoelzl@41689
  1123
  and eq: "\<And>A. A \<in> sets M \<Longrightarrow> \<nu> A = (\<integral>\<^isup>+x. f x * indicator A x \<partial>M)"
hoelzl@41689
  1124
  shows "AE x. f x = RN_deriv M \<nu> x"
hoelzl@40859
  1125
proof (rule density_unique[OF f RN_deriv(1)[OF \<nu>]])
hoelzl@40859
  1126
  fix A assume A: "A \<in> sets M"
hoelzl@41689
  1127
  show "(\<integral>\<^isup>+x. f x * indicator A x \<partial>M) = (\<integral>\<^isup>+x. RN_deriv M \<nu> x * indicator A x \<partial>M)"
hoelzl@40859
  1128
    unfolding eq[OF A, symmetric] RN_deriv(2)[OF \<nu> A, symmetric] ..
hoelzl@40859
  1129
qed
hoelzl@40859
  1130
hoelzl@40859
  1131
lemma (in sigma_finite_measure) RN_deriv_finite:
hoelzl@41689
  1132
  assumes sfm: "sigma_finite_measure (M\<lparr>measure := \<nu>\<rparr>)" and ac: "absolutely_continuous \<nu>"
hoelzl@41689
  1133
  shows "AE x. RN_deriv M \<nu> x \<noteq> \<omega>"
hoelzl@40859
  1134
proof -
hoelzl@41689
  1135
  interpret \<nu>: sigma_finite_measure "M\<lparr>measure := \<nu>\<rparr>" by fact
hoelzl@41689
  1136
  have \<nu>: "measure_space (M\<lparr>measure := \<nu>\<rparr>)" by default
hoelzl@40859
  1137
  from sfm show ?thesis
hoelzl@40859
  1138
    using sigma_finite_iff_density_finite[OF \<nu> RN_deriv[OF \<nu> ac]] by simp
hoelzl@40859
  1139
qed
hoelzl@40859
  1140
hoelzl@40859
  1141
lemma (in sigma_finite_measure)
hoelzl@41689
  1142
  assumes \<nu>: "sigma_finite_measure (M\<lparr>measure := \<nu>\<rparr>)" "absolutely_continuous \<nu>"
hoelzl@40859
  1143
    and f: "f \<in> borel_measurable M"
hoelzl@41689
  1144
  shows RN_deriv_integrable: "integrable (M\<lparr>measure := \<nu>\<rparr>) f \<longleftrightarrow>
hoelzl@41689
  1145
      integrable M (\<lambda>x. real (RN_deriv M \<nu> x) * f x)" (is ?integrable)
hoelzl@41689
  1146
    and RN_deriv_integral: "integral\<^isup>L (M\<lparr>measure := \<nu>\<rparr>) f =
hoelzl@41689
  1147
      (\<integral>x. real (RN_deriv M \<nu> x) * f x \<partial>M)" (is ?integral)
hoelzl@40859
  1148
proof -
hoelzl@41689
  1149
  interpret \<nu>: sigma_finite_measure "M\<lparr>measure := \<nu>\<rparr>" by fact
hoelzl@41689
  1150
  have ms: "measure_space (M\<lparr>measure := \<nu>\<rparr>)" by default
hoelzl@41023
  1151
  have minus_cong: "\<And>A B A' B'::pextreal. A = A' \<Longrightarrow> B = B' \<Longrightarrow> real A - real B = real A' - real B'" by simp
hoelzl@40859
  1152
  have f': "(\<lambda>x. - f x) \<in> borel_measurable M" using f by auto
hoelzl@41689
  1153
  have Nf: "f \<in> borel_measurable (M\<lparr>measure := \<nu>\<rparr>)" using f unfolding measurable_def by auto
hoelzl@41689
  1154
  { fix f :: "'a \<Rightarrow> real"
hoelzl@41689
  1155
    { fix x assume *: "RN_deriv M \<nu> x \<noteq> \<omega>"
hoelzl@41689
  1156
      have "Real (real (RN_deriv M \<nu> x)) * Real (f x) = Real (real (RN_deriv M \<nu> x) * f x)"
hoelzl@40859
  1157
        by (simp add: mult_le_0_iff)
hoelzl@41689
  1158
      then have "RN_deriv M \<nu> x * Real (f x) = Real (real (RN_deriv M \<nu> x) * f x)"
hoelzl@40859
  1159
        using * by (simp add: Real_real) }
hoelzl@40859
  1160
    note * = this
hoelzl@41689
  1161
    have "(\<integral>\<^isup>+x. RN_deriv M \<nu> x * Real (f x) \<partial>M) = (\<integral>\<^isup>+x. Real (real (RN_deriv M \<nu> x) * f x) \<partial>M)"
hoelzl@40859
  1162
      apply (rule positive_integral_cong_AE)
hoelzl@40859
  1163
      apply (rule AE_mp[OF RN_deriv_finite[OF \<nu>]])
hoelzl@40859
  1164
      by (auto intro!: AE_cong simp: *) }
hoelzl@41689
  1165
  with this this f f' Nf
hoelzl@40859
  1166
  show ?integral ?integrable
hoelzl@41689
  1167
    unfolding lebesgue_integral_def integrable_def
hoelzl@41689
  1168
    by (auto intro!: RN_deriv(1)[OF ms \<nu>(2)] minus_cong
hoelzl@41689
  1169
             simp: RN_deriv_positive_integral[OF ms \<nu>(2)])
hoelzl@40859
  1170
qed
hoelzl@40859
  1171
hoelzl@38656
  1172
lemma (in sigma_finite_measure) RN_deriv_singleton:
hoelzl@41689
  1173
  assumes "measure_space (M\<lparr>measure := \<nu>\<rparr>)"
hoelzl@38656
  1174
  and ac: "absolutely_continuous \<nu>"
hoelzl@38656
  1175
  and "{x} \<in> sets M"
hoelzl@41689
  1176
  shows "\<nu> {x} = RN_deriv M \<nu> x * \<mu> {x}"
hoelzl@38656
  1177
proof -
hoelzl@38656
  1178
  note deriv = RN_deriv[OF assms(1, 2)]
hoelzl@38656
  1179
  from deriv(2)[OF `{x} \<in> sets M`]
hoelzl@41689
  1180
  have "\<nu> {x} = (\<integral>\<^isup>+w. RN_deriv M \<nu> x * indicator {x} w \<partial>M)"
hoelzl@38656
  1181
    by (auto simp: indicator_def intro!: positive_integral_cong)
hoelzl@38656
  1182
  thus ?thesis using positive_integral_cmult_indicator[OF `{x} \<in> sets M`]
hoelzl@38656
  1183
    by auto
hoelzl@38656
  1184
qed
hoelzl@38656
  1185
hoelzl@38656
  1186
theorem (in finite_measure_space) RN_deriv_finite_measure:
hoelzl@41689
  1187
  assumes "measure_space (M\<lparr>measure := \<nu>\<rparr>)"
hoelzl@38656
  1188
  and ac: "absolutely_continuous \<nu>"
hoelzl@38656
  1189
  and "x \<in> space M"
hoelzl@41689
  1190
  shows "\<nu> {x} = RN_deriv M \<nu> x * \<mu> {x}"
hoelzl@38656
  1191
proof -
hoelzl@38656
  1192
  have "{x} \<in> sets M" using sets_eq_Pow `x \<in> space M` by auto
hoelzl@38656
  1193
  from RN_deriv_singleton[OF assms(1,2) this] show ?thesis .
hoelzl@38656
  1194
qed
hoelzl@38656
  1195
hoelzl@38656
  1196
end