src/HOL/Product_Type.thy
author haftmann
Sat Jul 02 22:55:58 2011 +0200 (2011-07-02)
changeset 43654 3f1a44c2d645
parent 43595 7ae4a23b5be6
child 43866 8a50dc70cbff
permissions -rw-r--r--
install case certificate for If after code_datatype declaration for bool
nipkow@10213
     1
(*  Title:      HOL/Product_Type.thy
nipkow@10213
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
nipkow@10213
     3
    Copyright   1992  University of Cambridge
wenzelm@11777
     4
*)
nipkow@10213
     5
wenzelm@11838
     6
header {* Cartesian products *}
nipkow@10213
     7
nipkow@15131
     8
theory Product_Type
haftmann@33959
     9
imports Typedef Inductive Fun
haftmann@24699
    10
uses
haftmann@24699
    11
  ("Tools/split_rule.ML")
haftmann@37389
    12
  ("Tools/inductive_codegen.ML")
haftmann@31723
    13
  ("Tools/inductive_set.ML")
nipkow@15131
    14
begin
wenzelm@11838
    15
haftmann@24699
    16
subsection {* @{typ bool} is a datatype *}
haftmann@24699
    17
haftmann@27104
    18
rep_datatype True False by (auto intro: bool_induct)
haftmann@24699
    19
haftmann@24699
    20
declare case_split [cases type: bool]
haftmann@24699
    21
  -- "prefer plain propositional version"
haftmann@24699
    22
haftmann@28346
    23
lemma
haftmann@38857
    24
  shows [code]: "HOL.equal False P \<longleftrightarrow> \<not> P"
haftmann@38857
    25
    and [code]: "HOL.equal True P \<longleftrightarrow> P" 
haftmann@38857
    26
    and [code]: "HOL.equal P False \<longleftrightarrow> \<not> P" 
haftmann@38857
    27
    and [code]: "HOL.equal P True \<longleftrightarrow> P"
haftmann@38857
    28
    and [code nbe]: "HOL.equal P P \<longleftrightarrow> True"
haftmann@38857
    29
  by (simp_all add: equal)
haftmann@25534
    30
haftmann@43654
    31
lemma If_case_cert:
haftmann@43654
    32
  assumes "CASE \<equiv> (\<lambda>b. If b f g)"
haftmann@43654
    33
  shows "(CASE True \<equiv> f) &&& (CASE False \<equiv> g)"
haftmann@43654
    34
  using assms by simp_all
haftmann@43654
    35
haftmann@43654
    36
setup {*
haftmann@43654
    37
  Code.add_case @{thm If_case_cert}
haftmann@43654
    38
*}
haftmann@43654
    39
haftmann@38857
    40
code_const "HOL.equal \<Colon> bool \<Rightarrow> bool \<Rightarrow> bool"
haftmann@39272
    41
  (Haskell infix 4 "==")
haftmann@25534
    42
haftmann@38857
    43
code_instance bool :: equal
haftmann@25534
    44
  (Haskell -)
haftmann@24699
    45
haftmann@26358
    46
haftmann@37166
    47
subsection {* The @{text unit} type *}
wenzelm@11838
    48
huffman@40590
    49
typedef (open) unit = "{True}"
wenzelm@11838
    50
proof
haftmann@20588
    51
  show "True : ?unit" ..
wenzelm@11838
    52
qed
wenzelm@11838
    53
haftmann@24699
    54
definition
wenzelm@11838
    55
  Unity :: unit    ("'(')")
haftmann@24699
    56
where
haftmann@24699
    57
  "() = Abs_unit True"
wenzelm@11838
    58
blanchet@35828
    59
lemma unit_eq [no_atp]: "u = ()"
huffman@40590
    60
  by (induct u) (simp add: Unity_def)
wenzelm@11838
    61
wenzelm@11838
    62
text {*
wenzelm@11838
    63
  Simplification procedure for @{thm [source] unit_eq}.  Cannot use
wenzelm@11838
    64
  this rule directly --- it loops!
wenzelm@11838
    65
*}
wenzelm@11838
    66
wenzelm@43594
    67
simproc_setup unit_eq ("x::unit") = {*
wenzelm@43594
    68
  fn _ => fn _ => fn ct =>
wenzelm@43594
    69
    if HOLogic.is_unit (term_of ct) then NONE
wenzelm@43594
    70
    else SOME (mk_meta_eq @{thm unit_eq})
wenzelm@11838
    71
*}
wenzelm@11838
    72
haftmann@27104
    73
rep_datatype "()" by simp
haftmann@24699
    74
wenzelm@11838
    75
lemma unit_all_eq1: "(!!x::unit. PROP P x) == PROP P ()"
wenzelm@11838
    76
  by simp
wenzelm@11838
    77
wenzelm@11838
    78
lemma unit_all_eq2: "(!!x::unit. PROP P) == PROP P"
wenzelm@11838
    79
  by (rule triv_forall_equality)
wenzelm@11838
    80
wenzelm@11838
    81
text {*
wenzelm@43594
    82
  This rewrite counters the effect of simproc @{text unit_eq} on @{term
wenzelm@11838
    83
  [source] "%u::unit. f u"}, replacing it by @{term [source]
wenzelm@11838
    84
  f} rather than by @{term [source] "%u. f ()"}.
wenzelm@11838
    85
*}
wenzelm@11838
    86
blanchet@35828
    87
lemma unit_abs_eta_conv [simp,no_atp]: "(%u::unit. f ()) = f"
wenzelm@11838
    88
  by (rule ext) simp
nipkow@10213
    89
haftmann@30924
    90
instantiation unit :: default
haftmann@30924
    91
begin
haftmann@30924
    92
haftmann@30924
    93
definition "default = ()"
haftmann@30924
    94
haftmann@30924
    95
instance ..
haftmann@30924
    96
haftmann@30924
    97
end
nipkow@10213
    98
haftmann@28562
    99
lemma [code]:
haftmann@38857
   100
  "HOL.equal (u\<Colon>unit) v \<longleftrightarrow> True" unfolding equal unit_eq [of u] unit_eq [of v] by rule+
haftmann@26358
   101
haftmann@26358
   102
code_type unit
haftmann@26358
   103
  (SML "unit")
haftmann@26358
   104
  (OCaml "unit")
haftmann@26358
   105
  (Haskell "()")
haftmann@34886
   106
  (Scala "Unit")
haftmann@26358
   107
haftmann@37166
   108
code_const Unity
haftmann@37166
   109
  (SML "()")
haftmann@37166
   110
  (OCaml "()")
haftmann@37166
   111
  (Haskell "()")
haftmann@37166
   112
  (Scala "()")
haftmann@37166
   113
haftmann@38857
   114
code_instance unit :: equal
haftmann@26358
   115
  (Haskell -)
haftmann@26358
   116
haftmann@38857
   117
code_const "HOL.equal \<Colon> unit \<Rightarrow> unit \<Rightarrow> bool"
haftmann@39272
   118
  (Haskell infix 4 "==")
haftmann@26358
   119
haftmann@26358
   120
code_reserved SML
haftmann@26358
   121
  unit
haftmann@26358
   122
haftmann@26358
   123
code_reserved OCaml
haftmann@26358
   124
  unit
haftmann@26358
   125
haftmann@34886
   126
code_reserved Scala
haftmann@34886
   127
  Unit
haftmann@34886
   128
haftmann@26358
   129
haftmann@37166
   130
subsection {* The product type *}
nipkow@10213
   131
haftmann@37166
   132
subsubsection {* Type definition *}
haftmann@37166
   133
haftmann@37166
   134
definition Pair_Rep :: "'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool" where
haftmann@26358
   135
  "Pair_Rep a b = (\<lambda>x y. x = a \<and> y = b)"
nipkow@10213
   136
haftmann@37678
   137
typedef ('a, 'b) prod (infixr "*" 20)
haftmann@37389
   138
  = "{f. \<exists>a b. f = Pair_Rep (a\<Colon>'a) (b\<Colon>'b)}"
oheimb@11025
   139
proof
haftmann@37389
   140
  fix a b show "Pair_Rep a b \<in> ?prod"
haftmann@26358
   141
    by rule+
oheimb@11025
   142
qed
nipkow@10213
   143
wenzelm@35427
   144
type_notation (xsymbols)
haftmann@37678
   145
  "prod"  ("(_ \<times>/ _)" [21, 20] 20)
wenzelm@35427
   146
type_notation (HTML output)
haftmann@37678
   147
  "prod"  ("(_ \<times>/ _)" [21, 20] 20)
nipkow@10213
   148
haftmann@37389
   149
definition Pair :: "'a \<Rightarrow> 'b \<Rightarrow> 'a \<times> 'b" where
haftmann@37389
   150
  "Pair a b = Abs_prod (Pair_Rep a b)"
haftmann@37166
   151
haftmann@37678
   152
rep_datatype Pair proof -
haftmann@37166
   153
  fix P :: "'a \<times> 'b \<Rightarrow> bool" and p
haftmann@37166
   154
  assume "\<And>a b. P (Pair a b)"
haftmann@37389
   155
  then show "P p" by (cases p) (auto simp add: prod_def Pair_def Pair_Rep_def)
haftmann@37166
   156
next
haftmann@37166
   157
  fix a c :: 'a and b d :: 'b
haftmann@37166
   158
  have "Pair_Rep a b = Pair_Rep c d \<longleftrightarrow> a = c \<and> b = d"
nipkow@39302
   159
    by (auto simp add: Pair_Rep_def fun_eq_iff)
haftmann@37389
   160
  moreover have "Pair_Rep a b \<in> prod" and "Pair_Rep c d \<in> prod"
haftmann@37389
   161
    by (auto simp add: prod_def)
haftmann@37166
   162
  ultimately show "Pair a b = Pair c d \<longleftrightarrow> a = c \<and> b = d"
haftmann@37389
   163
    by (simp add: Pair_def Abs_prod_inject)
haftmann@37166
   164
qed
haftmann@37166
   165
blanchet@37704
   166
declare prod.simps(2) [nitpick_simp del]
blanchet@37704
   167
huffman@40929
   168
declare prod.weak_case_cong [cong del]
haftmann@37411
   169
haftmann@37166
   170
haftmann@37166
   171
subsubsection {* Tuple syntax *}
haftmann@37166
   172
haftmann@37591
   173
abbreviation (input) split :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c" where
haftmann@37591
   174
  "split \<equiv> prod_case"
wenzelm@19535
   175
wenzelm@11777
   176
text {*
wenzelm@11777
   177
  Patterns -- extends pre-defined type @{typ pttrn} used in
wenzelm@11777
   178
  abstractions.
wenzelm@11777
   179
*}
nipkow@10213
   180
wenzelm@41229
   181
nonterminal tuple_args and patterns
nipkow@10213
   182
nipkow@10213
   183
syntax
nipkow@10213
   184
  "_tuple"      :: "'a => tuple_args => 'a * 'b"        ("(1'(_,/ _'))")
nipkow@10213
   185
  "_tuple_arg"  :: "'a => tuple_args"                   ("_")
nipkow@10213
   186
  "_tuple_args" :: "'a => tuple_args => tuple_args"     ("_,/ _")
oheimb@11025
   187
  "_pattern"    :: "[pttrn, patterns] => pttrn"         ("'(_,/ _')")
oheimb@11025
   188
  ""            :: "pttrn => patterns"                  ("_")
oheimb@11025
   189
  "_patterns"   :: "[pttrn, patterns] => patterns"      ("_,/ _")
nipkow@10213
   190
nipkow@10213
   191
translations
wenzelm@35115
   192
  "(x, y)" == "CONST Pair x y"
nipkow@10213
   193
  "_tuple x (_tuple_args y z)" == "_tuple x (_tuple_arg (_tuple y z))"
haftmann@37591
   194
  "%(x, y, zs). b" == "CONST prod_case (%x (y, zs). b)"
haftmann@37591
   195
  "%(x, y). b" == "CONST prod_case (%x y. b)"
wenzelm@35115
   196
  "_abs (CONST Pair x y) t" => "%(x, y). t"
haftmann@37166
   197
  -- {* The last rule accommodates tuples in `case C ... (x,y) ... => ...'
haftmann@37166
   198
     The (x,y) is parsed as `Pair x y' because it is logic, not pttrn *}
nipkow@10213
   199
wenzelm@35115
   200
(*reconstruct pattern from (nested) splits, avoiding eta-contraction of body;
wenzelm@35115
   201
  works best with enclosing "let", if "let" does not avoid eta-contraction*)
schirmer@14359
   202
print_translation {*
wenzelm@35115
   203
let
wenzelm@35115
   204
  fun split_tr' [Abs (x, T, t as (Abs abs))] =
wenzelm@35115
   205
        (* split (%x y. t) => %(x,y) t *)
wenzelm@35115
   206
        let
wenzelm@42284
   207
          val (y, t') = Syntax_Trans.atomic_abs_tr' abs;
wenzelm@42284
   208
          val (x', t'') = Syntax_Trans.atomic_abs_tr' (x, T, t');
wenzelm@35115
   209
        in
wenzelm@35115
   210
          Syntax.const @{syntax_const "_abs"} $
wenzelm@35115
   211
            (Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t''
wenzelm@35115
   212
        end
haftmann@37591
   213
    | split_tr' [Abs (x, T, (s as Const (@{const_syntax prod_case}, _) $ t))] =
wenzelm@35115
   214
        (* split (%x. (split (%y z. t))) => %(x,y,z). t *)
wenzelm@35115
   215
        let
wenzelm@35115
   216
          val Const (@{syntax_const "_abs"}, _) $
wenzelm@35115
   217
            (Const (@{syntax_const "_pattern"}, _) $ y $ z) $ t' = split_tr' [t];
wenzelm@42284
   218
          val (x', t'') = Syntax_Trans.atomic_abs_tr' (x, T, t');
wenzelm@35115
   219
        in
wenzelm@35115
   220
          Syntax.const @{syntax_const "_abs"} $
wenzelm@35115
   221
            (Syntax.const @{syntax_const "_pattern"} $ x' $
wenzelm@35115
   222
              (Syntax.const @{syntax_const "_patterns"} $ y $ z)) $ t''
wenzelm@35115
   223
        end
haftmann@37591
   224
    | split_tr' [Const (@{const_syntax prod_case}, _) $ t] =
wenzelm@35115
   225
        (* split (split (%x y z. t)) => %((x, y), z). t *)
wenzelm@35115
   226
        split_tr' [(split_tr' [t])] (* inner split_tr' creates next pattern *)
wenzelm@35115
   227
    | split_tr' [Const (@{syntax_const "_abs"}, _) $ x_y $ Abs abs] =
wenzelm@35115
   228
        (* split (%pttrn z. t) => %(pttrn,z). t *)
wenzelm@42284
   229
        let val (z, t) = Syntax_Trans.atomic_abs_tr' abs in
wenzelm@35115
   230
          Syntax.const @{syntax_const "_abs"} $
wenzelm@35115
   231
            (Syntax.const @{syntax_const "_pattern"} $ x_y $ z) $ t
wenzelm@35115
   232
        end
wenzelm@35115
   233
    | split_tr' _ = raise Match;
haftmann@37591
   234
in [(@{const_syntax prod_case}, split_tr')] end
schirmer@14359
   235
*}
schirmer@14359
   236
schirmer@15422
   237
(* print "split f" as "\<lambda>(x,y). f x y" and "split (\<lambda>x. f x)" as "\<lambda>(x,y). f x y" *) 
schirmer@15422
   238
typed_print_translation {*
schirmer@15422
   239
let
wenzelm@42247
   240
  fun split_guess_names_tr' T [Abs (x, _, Abs _)] = raise Match
wenzelm@42247
   241
    | split_guess_names_tr' T [Abs (x, xT, t)] =
schirmer@15422
   242
        (case (head_of t) of
haftmann@37591
   243
          Const (@{const_syntax prod_case}, _) => raise Match
wenzelm@35115
   244
        | _ =>
wenzelm@35115
   245
          let 
wenzelm@35115
   246
            val (_ :: yT :: _) = binder_types (domain_type T) handle Bind => raise Match;
wenzelm@42284
   247
            val (y, t') = Syntax_Trans.atomic_abs_tr' ("y", yT, incr_boundvars 1 t $ Bound 0);
wenzelm@42284
   248
            val (x', t'') = Syntax_Trans.atomic_abs_tr' (x, xT, t');
wenzelm@35115
   249
          in
wenzelm@35115
   250
            Syntax.const @{syntax_const "_abs"} $
wenzelm@35115
   251
              (Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t''
wenzelm@35115
   252
          end)
wenzelm@42247
   253
    | split_guess_names_tr' T [t] =
wenzelm@35115
   254
        (case head_of t of
haftmann@37591
   255
          Const (@{const_syntax prod_case}, _) => raise Match
wenzelm@35115
   256
        | _ =>
wenzelm@35115
   257
          let
wenzelm@35115
   258
            val (xT :: yT :: _) = binder_types (domain_type T) handle Bind => raise Match;
wenzelm@42284
   259
            val (y, t') =
wenzelm@42284
   260
              Syntax_Trans.atomic_abs_tr' ("y", yT, incr_boundvars 2 t $ Bound 1 $ Bound 0);
wenzelm@42284
   261
            val (x', t'') = Syntax_Trans.atomic_abs_tr' ("x", xT, t');
wenzelm@35115
   262
          in
wenzelm@35115
   263
            Syntax.const @{syntax_const "_abs"} $
wenzelm@35115
   264
              (Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t''
wenzelm@35115
   265
          end)
wenzelm@42247
   266
    | split_guess_names_tr' _ _ = raise Match;
haftmann@37591
   267
in [(@{const_syntax prod_case}, split_guess_names_tr')] end
schirmer@15422
   268
*}
schirmer@15422
   269
nipkow@42059
   270
(* Force eta-contraction for terms of the form "Q A (%p. prod_case P p)"
nipkow@42059
   271
   where Q is some bounded quantifier or set operator.
nipkow@42059
   272
   Reason: the above prints as "Q p : A. case p of (x,y) \<Rightarrow> P x y"
nipkow@42059
   273
   whereas we want "Q (x,y):A. P x y".
nipkow@42059
   274
   Otherwise prevent eta-contraction.
nipkow@42059
   275
*)
nipkow@42059
   276
print_translation {*
nipkow@42059
   277
let
nipkow@42059
   278
  fun contract Q f ts =
nipkow@42059
   279
    case ts of
nipkow@42059
   280
      [A, Abs(_, _, (s as Const (@{const_syntax prod_case},_) $ t) $ Bound 0)]
wenzelm@42083
   281
      => if Term.is_dependent t then f ts else Syntax.const Q $ A $ s
nipkow@42059
   282
    | _ => f ts;
nipkow@42059
   283
  fun contract2 (Q,f) = (Q, contract Q f);
nipkow@42059
   284
  val pairs =
wenzelm@42284
   285
    [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax Ball} @{syntax_const "_Ball"},
wenzelm@42284
   286
     Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax Bex} @{syntax_const "_Bex"},
wenzelm@42284
   287
     Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax INFI} @{syntax_const "_INF"},
wenzelm@42284
   288
     Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax SUPR} @{syntax_const "_SUP"}]
nipkow@42059
   289
in map contract2 pairs end
nipkow@42059
   290
*}
nipkow@10213
   291
haftmann@37166
   292
subsubsection {* Code generator setup *}
haftmann@37166
   293
haftmann@37678
   294
code_type prod
haftmann@37166
   295
  (SML infix 2 "*")
haftmann@37166
   296
  (OCaml infix 2 "*")
haftmann@37166
   297
  (Haskell "!((_),/ (_))")
haftmann@37166
   298
  (Scala "((_),/ (_))")
haftmann@37166
   299
haftmann@37166
   300
code_const Pair
haftmann@37166
   301
  (SML "!((_),/ (_))")
haftmann@37166
   302
  (OCaml "!((_),/ (_))")
haftmann@37166
   303
  (Haskell "!((_),/ (_))")
haftmann@37166
   304
  (Scala "!((_),/ (_))")
haftmann@37166
   305
haftmann@38857
   306
code_instance prod :: equal
haftmann@37166
   307
  (Haskell -)
haftmann@37166
   308
haftmann@38857
   309
code_const "HOL.equal \<Colon> 'a \<times> 'b \<Rightarrow> 'a \<times> 'b \<Rightarrow> bool"
haftmann@39272
   310
  (Haskell infix 4 "==")
haftmann@37166
   311
haftmann@37166
   312
types_code
haftmann@37678
   313
  "prod"     ("(_ */ _)")
haftmann@37166
   314
attach (term_of) {*
haftmann@37678
   315
fun term_of_prod aF aT bF bT (x, y) = HOLogic.pair_const aT bT $ aF x $ bF y;
haftmann@37166
   316
*}
haftmann@37166
   317
attach (test) {*
bulwahn@37808
   318
fun gen_prod aG aT bG bT i =
haftmann@37166
   319
  let
haftmann@37166
   320
    val (x, t) = aG i;
haftmann@37166
   321
    val (y, u) = bG i
haftmann@37166
   322
  in ((x, y), fn () => HOLogic.pair_const aT bT $ t () $ u ()) end;
haftmann@37166
   323
*}
haftmann@37166
   324
haftmann@37166
   325
consts_code
haftmann@37166
   326
  "Pair"    ("(_,/ _)")
haftmann@37166
   327
haftmann@37166
   328
setup {*
haftmann@37166
   329
let
haftmann@37166
   330
haftmann@37166
   331
fun strip_abs_split 0 t = ([], t)
haftmann@37166
   332
  | strip_abs_split i (Abs (s, T, t)) =
haftmann@37166
   333
      let
haftmann@37166
   334
        val s' = Codegen.new_name t s;
haftmann@37166
   335
        val v = Free (s', T)
haftmann@37166
   336
      in apfst (cons v) (strip_abs_split (i-1) (subst_bound (v, t))) end
haftmann@37591
   337
  | strip_abs_split i (u as Const (@{const_name prod_case}, _) $ t) =
haftmann@37166
   338
      (case strip_abs_split (i+1) t of
haftmann@37166
   339
        (v :: v' :: vs, u) => (HOLogic.mk_prod (v, v') :: vs, u)
haftmann@37166
   340
      | _ => ([], u))
haftmann@37166
   341
  | strip_abs_split i t =
haftmann@37166
   342
      strip_abs_split i (Abs ("x", hd (binder_types (fastype_of t)), t $ Bound 0));
haftmann@37166
   343
wenzelm@42411
   344
fun let_codegen thy mode defs dep thyname brack t gr =
haftmann@37166
   345
  (case strip_comb t of
haftmann@37166
   346
    (t1 as Const (@{const_name Let}, _), t2 :: t3 :: ts) =>
haftmann@37166
   347
    let
haftmann@37166
   348
      fun dest_let (l as Const (@{const_name Let}, _) $ t $ u) =
haftmann@37166
   349
          (case strip_abs_split 1 u of
haftmann@37166
   350
             ([p], u') => apfst (cons (p, t)) (dest_let u')
haftmann@37166
   351
           | _ => ([], l))
haftmann@37166
   352
        | dest_let t = ([], t);
haftmann@37166
   353
      fun mk_code (l, r) gr =
haftmann@37166
   354
        let
wenzelm@42411
   355
          val (pl, gr1) = Codegen.invoke_codegen thy mode defs dep thyname false l gr;
wenzelm@42411
   356
          val (pr, gr2) = Codegen.invoke_codegen thy mode defs dep thyname false r gr1;
haftmann@37166
   357
        in ((pl, pr), gr2) end
haftmann@37166
   358
    in case dest_let (t1 $ t2 $ t3) of
haftmann@37166
   359
        ([], _) => NONE
haftmann@37166
   360
      | (ps, u) =>
haftmann@37166
   361
          let
haftmann@37166
   362
            val (qs, gr1) = fold_map mk_code ps gr;
wenzelm@42411
   363
            val (pu, gr2) = Codegen.invoke_codegen thy mode defs dep thyname false u gr1;
haftmann@37166
   364
            val (pargs, gr3) = fold_map
wenzelm@42411
   365
              (Codegen.invoke_codegen thy mode defs dep thyname true) ts gr2
haftmann@37166
   366
          in
haftmann@37166
   367
            SOME (Codegen.mk_app brack
haftmann@37166
   368
              (Pretty.blk (0, [Codegen.str "let ", Pretty.blk (0, flat
haftmann@37166
   369
                  (separate [Codegen.str ";", Pretty.brk 1] (map (fn (pl, pr) =>
haftmann@37166
   370
                    [Pretty.block [Codegen.str "val ", pl, Codegen.str " =",
haftmann@37166
   371
                       Pretty.brk 1, pr]]) qs))),
haftmann@37166
   372
                Pretty.brk 1, Codegen.str "in ", pu,
haftmann@37166
   373
                Pretty.brk 1, Codegen.str "end"])) pargs, gr3)
haftmann@37166
   374
          end
haftmann@37166
   375
    end
haftmann@37166
   376
  | _ => NONE);
haftmann@37166
   377
wenzelm@42411
   378
fun split_codegen thy mode defs dep thyname brack t gr = (case strip_comb t of
haftmann@37591
   379
    (t1 as Const (@{const_name prod_case}, _), t2 :: ts) =>
haftmann@37166
   380
      let
haftmann@37166
   381
        val ([p], u) = strip_abs_split 1 (t1 $ t2);
wenzelm@42411
   382
        val (q, gr1) = Codegen.invoke_codegen thy mode defs dep thyname false p gr;
wenzelm@42411
   383
        val (pu, gr2) = Codegen.invoke_codegen thy mode defs dep thyname false u gr1;
haftmann@37166
   384
        val (pargs, gr3) = fold_map
wenzelm@42411
   385
          (Codegen.invoke_codegen thy mode defs dep thyname true) ts gr2
haftmann@37166
   386
      in
haftmann@37166
   387
        SOME (Codegen.mk_app brack
haftmann@37166
   388
          (Pretty.block [Codegen.str "(fn ", q, Codegen.str " =>",
haftmann@37166
   389
            Pretty.brk 1, pu, Codegen.str ")"]) pargs, gr2)
haftmann@37166
   390
      end
haftmann@37166
   391
  | _ => NONE);
haftmann@37166
   392
haftmann@37166
   393
in
haftmann@37166
   394
haftmann@37166
   395
  Codegen.add_codegen "let_codegen" let_codegen
haftmann@37166
   396
  #> Codegen.add_codegen "split_codegen" split_codegen
haftmann@37166
   397
haftmann@37166
   398
end
haftmann@37166
   399
*}
haftmann@37166
   400
haftmann@37166
   401
haftmann@37166
   402
subsubsection {* Fundamental operations and properties *}
wenzelm@11838
   403
haftmann@26358
   404
lemma surj_pair [simp]: "EX x y. p = (x, y)"
haftmann@37166
   405
  by (cases p) simp
nipkow@10213
   406
haftmann@37389
   407
definition fst :: "'a \<times> 'b \<Rightarrow> 'a" where
haftmann@37389
   408
  "fst p = (case p of (a, b) \<Rightarrow> a)"
wenzelm@11838
   409
haftmann@37389
   410
definition snd :: "'a \<times> 'b \<Rightarrow> 'b" where
haftmann@37389
   411
  "snd p = (case p of (a, b) \<Rightarrow> b)"
wenzelm@11838
   412
haftmann@22886
   413
lemma fst_conv [simp, code]: "fst (a, b) = a"
haftmann@37166
   414
  unfolding fst_def by simp
wenzelm@11838
   415
haftmann@22886
   416
lemma snd_conv [simp, code]: "snd (a, b) = b"
haftmann@37166
   417
  unfolding snd_def by simp
oheimb@11025
   418
haftmann@37166
   419
code_const fst and snd
haftmann@37166
   420
  (Haskell "fst" and "snd")
haftmann@26358
   421
blanchet@41792
   422
lemma prod_case_unfold [nitpick_unfold]: "prod_case = (%c p. c (fst p) (snd p))"
nipkow@39302
   423
  by (simp add: fun_eq_iff split: prod.split)
haftmann@26358
   424
wenzelm@11838
   425
lemma fst_eqD: "fst (x, y) = a ==> x = a"
wenzelm@11838
   426
  by simp
wenzelm@11838
   427
wenzelm@11838
   428
lemma snd_eqD: "snd (x, y) = a ==> y = a"
wenzelm@11838
   429
  by simp
wenzelm@11838
   430
haftmann@26358
   431
lemma pair_collapse [simp]: "(fst p, snd p) = p"
wenzelm@11838
   432
  by (cases p) simp
wenzelm@11838
   433
haftmann@26358
   434
lemmas surjective_pairing = pair_collapse [symmetric]
wenzelm@11838
   435
haftmann@37166
   436
lemma Pair_fst_snd_eq: "s = t \<longleftrightarrow> fst s = fst t \<and> snd s = snd t"
haftmann@37166
   437
  by (cases s, cases t) simp
haftmann@37166
   438
haftmann@37166
   439
lemma prod_eqI [intro?]: "fst p = fst q \<Longrightarrow> snd p = snd q \<Longrightarrow> p = q"
haftmann@37166
   440
  by (simp add: Pair_fst_snd_eq)
haftmann@37166
   441
haftmann@37166
   442
lemma split_conv [simp, code]: "split f (a, b) = f a b"
haftmann@37591
   443
  by (fact prod.cases)
haftmann@37166
   444
haftmann@37166
   445
lemma splitI: "f a b \<Longrightarrow> split f (a, b)"
haftmann@37166
   446
  by (rule split_conv [THEN iffD2])
haftmann@37166
   447
haftmann@37166
   448
lemma splitD: "split f (a, b) \<Longrightarrow> f a b"
haftmann@37166
   449
  by (rule split_conv [THEN iffD1])
haftmann@37166
   450
haftmann@37166
   451
lemma split_Pair [simp]: "(\<lambda>(x, y). (x, y)) = id"
nipkow@39302
   452
  by (simp add: fun_eq_iff split: prod.split)
haftmann@37166
   453
haftmann@37166
   454
lemma split_eta: "(\<lambda>(x, y). f (x, y)) = f"
haftmann@37166
   455
  -- {* Subsumes the old @{text split_Pair} when @{term f} is the identity function. *}
nipkow@39302
   456
  by (simp add: fun_eq_iff split: prod.split)
haftmann@37166
   457
haftmann@37166
   458
lemma split_comp: "split (f \<circ> g) x = f (g (fst x)) (snd x)"
haftmann@37166
   459
  by (cases x) simp
haftmann@37166
   460
haftmann@37166
   461
lemma split_twice: "split f (split g p) = split (\<lambda>x y. split f (g x y)) p"
haftmann@37166
   462
  by (cases p) simp
haftmann@37166
   463
haftmann@37166
   464
lemma The_split: "The (split P) = (THE xy. P (fst xy) (snd xy))"
haftmann@37591
   465
  by (simp add: prod_case_unfold)
haftmann@37166
   466
haftmann@37166
   467
lemma split_weak_cong: "p = q \<Longrightarrow> split c p = split c q"
haftmann@37166
   468
  -- {* Prevents simplification of @{term c}: much faster *}
huffman@40929
   469
  by (fact prod.weak_case_cong)
haftmann@37166
   470
haftmann@37166
   471
lemma cond_split_eta: "(!!x y. f x y = g (x, y)) ==> (%(x, y). f x y) = g"
haftmann@37166
   472
  by (simp add: split_eta)
haftmann@37166
   473
wenzelm@11838
   474
lemma split_paired_all: "(!!x. PROP P x) == (!!a b. PROP P (a, b))"
wenzelm@11820
   475
proof
wenzelm@11820
   476
  fix a b
wenzelm@11820
   477
  assume "!!x. PROP P x"
wenzelm@19535
   478
  then show "PROP P (a, b)" .
wenzelm@11820
   479
next
wenzelm@11820
   480
  fix x
wenzelm@11820
   481
  assume "!!a b. PROP P (a, b)"
wenzelm@19535
   482
  from `PROP P (fst x, snd x)` show "PROP P x" by simp
wenzelm@11820
   483
qed
wenzelm@11820
   484
wenzelm@11838
   485
text {*
wenzelm@11838
   486
  The rule @{thm [source] split_paired_all} does not work with the
wenzelm@11838
   487
  Simplifier because it also affects premises in congrence rules,
wenzelm@11838
   488
  where this can lead to premises of the form @{text "!!a b. ... =
wenzelm@11838
   489
  ?P(a, b)"} which cannot be solved by reflexivity.
wenzelm@11838
   490
*}
wenzelm@11838
   491
haftmann@26358
   492
lemmas split_tupled_all = split_paired_all unit_all_eq2
haftmann@26358
   493
wenzelm@26480
   494
ML {*
wenzelm@11838
   495
  (* replace parameters of product type by individual component parameters *)
wenzelm@11838
   496
  val safe_full_simp_tac = generic_simp_tac true (true, false, false);
wenzelm@11838
   497
  local (* filtering with exists_paired_all is an essential optimization *)
wenzelm@16121
   498
    fun exists_paired_all (Const ("all", _) $ Abs (_, T, t)) =
wenzelm@11838
   499
          can HOLogic.dest_prodT T orelse exists_paired_all t
wenzelm@11838
   500
      | exists_paired_all (t $ u) = exists_paired_all t orelse exists_paired_all u
wenzelm@11838
   501
      | exists_paired_all (Abs (_, _, t)) = exists_paired_all t
wenzelm@11838
   502
      | exists_paired_all _ = false;
wenzelm@11838
   503
    val ss = HOL_basic_ss
wenzelm@26340
   504
      addsimps [@{thm split_paired_all}, @{thm unit_all_eq2}, @{thm unit_abs_eta_conv}]
wenzelm@43594
   505
      addsimprocs [@{simproc unit_eq}];
wenzelm@11838
   506
  in
wenzelm@11838
   507
    val split_all_tac = SUBGOAL (fn (t, i) =>
wenzelm@11838
   508
      if exists_paired_all t then safe_full_simp_tac ss i else no_tac);
wenzelm@11838
   509
    val unsafe_split_all_tac = SUBGOAL (fn (t, i) =>
wenzelm@11838
   510
      if exists_paired_all t then full_simp_tac ss i else no_tac);
wenzelm@11838
   511
    fun split_all th =
wenzelm@26340
   512
   if exists_paired_all (Thm.prop_of th) then full_simplify ss th else th;
wenzelm@11838
   513
  end;
wenzelm@26340
   514
*}
wenzelm@11838
   515
wenzelm@26340
   516
declaration {* fn _ =>
wenzelm@26340
   517
  Classical.map_cs (fn cs => cs addSbefore ("split_all_tac", split_all_tac))
wenzelm@16121
   518
*}
wenzelm@11838
   519
wenzelm@11838
   520
lemma split_paired_All [simp]: "(ALL x. P x) = (ALL a b. P (a, b))"
wenzelm@11838
   521
  -- {* @{text "[iff]"} is not a good idea because it makes @{text blast} loop *}
wenzelm@11838
   522
  by fast
wenzelm@11838
   523
haftmann@26358
   524
lemma split_paired_Ex [simp]: "(EX x. P x) = (EX a b. P (a, b))"
haftmann@26358
   525
  by fast
haftmann@26358
   526
wenzelm@11838
   527
lemma split_paired_The: "(THE x. P x) = (THE (a, b). P (a, b))"
wenzelm@11838
   528
  -- {* Can't be added to simpset: loops! *}
haftmann@26358
   529
  by (simp add: split_eta)
wenzelm@11838
   530
wenzelm@11838
   531
text {*
wenzelm@11838
   532
  Simplification procedure for @{thm [source] cond_split_eta}.  Using
wenzelm@11838
   533
  @{thm [source] split_eta} as a rewrite rule is not general enough,
wenzelm@11838
   534
  and using @{thm [source] cond_split_eta} directly would render some
wenzelm@11838
   535
  existing proofs very inefficient; similarly for @{text
haftmann@26358
   536
  split_beta}.
haftmann@26358
   537
*}
wenzelm@11838
   538
wenzelm@26480
   539
ML {*
wenzelm@11838
   540
local
wenzelm@35364
   541
  val cond_split_eta_ss = HOL_basic_ss addsimps @{thms cond_split_eta};
wenzelm@35364
   542
  fun Pair_pat k 0 (Bound m) = (m = k)
wenzelm@35364
   543
    | Pair_pat k i (Const (@{const_name Pair},  _) $ Bound m $ t) =
wenzelm@35364
   544
        i > 0 andalso m = k + i andalso Pair_pat k (i - 1) t
wenzelm@35364
   545
    | Pair_pat _ _ _ = false;
wenzelm@35364
   546
  fun no_args k i (Abs (_, _, t)) = no_args (k + 1) i t
wenzelm@35364
   547
    | no_args k i (t $ u) = no_args k i t andalso no_args k i u
wenzelm@35364
   548
    | no_args k i (Bound m) = m < k orelse m > k + i
wenzelm@35364
   549
    | no_args _ _ _ = true;
wenzelm@35364
   550
  fun split_pat tp i (Abs  (_, _, t)) = if tp 0 i t then SOME (i, t) else NONE
haftmann@37591
   551
    | split_pat tp i (Const (@{const_name prod_case}, _) $ Abs (_, _, t)) = split_pat tp (i + 1) t
wenzelm@35364
   552
    | split_pat tp i _ = NONE;
wenzelm@20044
   553
  fun metaeq ss lhs rhs = mk_meta_eq (Goal.prove (Simplifier.the_context ss) [] []
wenzelm@35364
   554
        (HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs)))
wenzelm@18328
   555
        (K (simp_tac (Simplifier.inherit_context ss cond_split_eta_ss) 1)));
wenzelm@11838
   556
wenzelm@35364
   557
  fun beta_term_pat k i (Abs (_, _, t)) = beta_term_pat (k + 1) i t
wenzelm@35364
   558
    | beta_term_pat k i (t $ u) =
wenzelm@35364
   559
        Pair_pat k i (t $ u) orelse (beta_term_pat k i t andalso beta_term_pat k i u)
wenzelm@35364
   560
    | beta_term_pat k i t = no_args k i t;
wenzelm@35364
   561
  fun eta_term_pat k i (f $ arg) = no_args k i f andalso Pair_pat k i arg
wenzelm@35364
   562
    | eta_term_pat _ _ _ = false;
wenzelm@11838
   563
  fun subst arg k i (Abs (x, T, t)) = Abs (x, T, subst arg (k+1) i t)
wenzelm@35364
   564
    | subst arg k i (t $ u) =
wenzelm@35364
   565
        if Pair_pat k i (t $ u) then incr_boundvars k arg
wenzelm@35364
   566
        else (subst arg k i t $ subst arg k i u)
wenzelm@35364
   567
    | subst arg k i t = t;
wenzelm@43595
   568
in
haftmann@37591
   569
  fun beta_proc ss (s as Const (@{const_name prod_case}, _) $ Abs (_, _, t) $ arg) =
wenzelm@11838
   570
        (case split_pat beta_term_pat 1 t of
wenzelm@35364
   571
          SOME (i, f) => SOME (metaeq ss s (subst arg 0 i f))
skalberg@15531
   572
        | NONE => NONE)
wenzelm@35364
   573
    | beta_proc _ _ = NONE;
haftmann@37591
   574
  fun eta_proc ss (s as Const (@{const_name prod_case}, _) $ Abs (_, _, t)) =
wenzelm@11838
   575
        (case split_pat eta_term_pat 1 t of
wenzelm@35364
   576
          SOME (_, ft) => SOME (metaeq ss s (let val (f $ arg) = ft in f end))
skalberg@15531
   577
        | NONE => NONE)
wenzelm@35364
   578
    | eta_proc _ _ = NONE;
wenzelm@11838
   579
end;
wenzelm@11838
   580
*}
wenzelm@43595
   581
simproc_setup split_beta ("split f z") = {* fn _ => fn ss => fn ct => beta_proc ss (term_of ct) *}
wenzelm@43595
   582
simproc_setup split_eta ("split f") = {* fn _ => fn ss => fn ct => eta_proc ss (term_of ct) *}
wenzelm@11838
   583
berghofe@26798
   584
lemma split_beta [mono]: "(%(x, y). P x y) z = P (fst z) (snd z)"
wenzelm@11838
   585
  by (subst surjective_pairing, rule split_conv)
wenzelm@11838
   586
blanchet@35828
   587
lemma split_split [no_atp]: "R(split c p) = (ALL x y. p = (x, y) --> R(c x y))"
wenzelm@11838
   588
  -- {* For use with @{text split} and the Simplifier. *}
paulson@15481
   589
  by (insert surj_pair [of p], clarify, simp)
wenzelm@11838
   590
wenzelm@11838
   591
text {*
wenzelm@11838
   592
  @{thm [source] split_split} could be declared as @{text "[split]"}
wenzelm@11838
   593
  done after the Splitter has been speeded up significantly;
wenzelm@11838
   594
  precompute the constants involved and don't do anything unless the
wenzelm@11838
   595
  current goal contains one of those constants.
wenzelm@11838
   596
*}
wenzelm@11838
   597
blanchet@35828
   598
lemma split_split_asm [no_atp]: "R (split c p) = (~(EX x y. p = (x, y) & (~R (c x y))))"
paulson@14208
   599
by (subst split_split, simp)
wenzelm@11838
   600
wenzelm@11838
   601
text {*
wenzelm@11838
   602
  \medskip @{term split} used as a logical connective or set former.
wenzelm@11838
   603
wenzelm@11838
   604
  \medskip These rules are for use with @{text blast}; could instead
huffman@40929
   605
  call @{text simp} using @{thm [source] prod.split} as rewrite. *}
wenzelm@11838
   606
wenzelm@11838
   607
lemma splitI2: "!!p. [| !!a b. p = (a, b) ==> c a b |] ==> split c p"
wenzelm@11838
   608
  apply (simp only: split_tupled_all)
wenzelm@11838
   609
  apply (simp (no_asm_simp))
wenzelm@11838
   610
  done
wenzelm@11838
   611
wenzelm@11838
   612
lemma splitI2': "!!p. [| !!a b. (a, b) = p ==> c a b x |] ==> split c p x"
wenzelm@11838
   613
  apply (simp only: split_tupled_all)
wenzelm@11838
   614
  apply (simp (no_asm_simp))
wenzelm@11838
   615
  done
wenzelm@11838
   616
wenzelm@11838
   617
lemma splitE: "split c p ==> (!!x y. p = (x, y) ==> c x y ==> Q) ==> Q"
haftmann@37591
   618
  by (induct p) auto
wenzelm@11838
   619
wenzelm@11838
   620
lemma splitE': "split c p z ==> (!!x y. p = (x, y) ==> c x y z ==> Q) ==> Q"
haftmann@37591
   621
  by (induct p) auto
wenzelm@11838
   622
wenzelm@11838
   623
lemma splitE2:
wenzelm@11838
   624
  "[| Q (split P z);  !!x y. [|z = (x, y); Q (P x y)|] ==> R |] ==> R"
wenzelm@11838
   625
proof -
wenzelm@11838
   626
  assume q: "Q (split P z)"
wenzelm@11838
   627
  assume r: "!!x y. [|z = (x, y); Q (P x y)|] ==> R"
wenzelm@11838
   628
  show R
wenzelm@11838
   629
    apply (rule r surjective_pairing)+
wenzelm@11838
   630
    apply (rule split_beta [THEN subst], rule q)
wenzelm@11838
   631
    done
wenzelm@11838
   632
qed
wenzelm@11838
   633
wenzelm@11838
   634
lemma splitD': "split R (a,b) c ==> R a b c"
wenzelm@11838
   635
  by simp
wenzelm@11838
   636
wenzelm@11838
   637
lemma mem_splitI: "z: c a b ==> z: split c (a, b)"
wenzelm@11838
   638
  by simp
wenzelm@11838
   639
wenzelm@11838
   640
lemma mem_splitI2: "!!p. [| !!a b. p = (a, b) ==> z: c a b |] ==> z: split c p"
paulson@14208
   641
by (simp only: split_tupled_all, simp)
wenzelm@11838
   642
wenzelm@18372
   643
lemma mem_splitE:
haftmann@37166
   644
  assumes major: "z \<in> split c p"
haftmann@37166
   645
    and cases: "\<And>x y. p = (x, y) \<Longrightarrow> z \<in> c x y \<Longrightarrow> Q"
wenzelm@18372
   646
  shows Q
haftmann@37591
   647
  by (rule major [unfolded prod_case_unfold] cases surjective_pairing)+
wenzelm@11838
   648
wenzelm@11838
   649
declare mem_splitI2 [intro!] mem_splitI [intro!] splitI2' [intro!] splitI2 [intro!] splitI [intro!]
wenzelm@11838
   650
declare mem_splitE [elim!] splitE' [elim!] splitE [elim!]
wenzelm@11838
   651
wenzelm@26340
   652
ML {*
wenzelm@11838
   653
local (* filtering with exists_p_split is an essential optimization *)
haftmann@37591
   654
  fun exists_p_split (Const (@{const_name prod_case},_) $ _ $ (Const (@{const_name Pair},_)$_$_)) = true
wenzelm@11838
   655
    | exists_p_split (t $ u) = exists_p_split t orelse exists_p_split u
wenzelm@11838
   656
    | exists_p_split (Abs (_, _, t)) = exists_p_split t
wenzelm@11838
   657
    | exists_p_split _ = false;
wenzelm@35364
   658
  val ss = HOL_basic_ss addsimps @{thms split_conv};
wenzelm@11838
   659
in
wenzelm@11838
   660
val split_conv_tac = SUBGOAL (fn (t, i) =>
wenzelm@11838
   661
    if exists_p_split t then safe_full_simp_tac ss i else no_tac);
wenzelm@11838
   662
end;
wenzelm@26340
   663
*}
wenzelm@26340
   664
wenzelm@11838
   665
(* This prevents applications of splitE for already splitted arguments leading
wenzelm@11838
   666
   to quite time-consuming computations (in particular for nested tuples) *)
wenzelm@26340
   667
declaration {* fn _ =>
wenzelm@26340
   668
  Classical.map_cs (fn cs => cs addSbefore ("split_conv_tac", split_conv_tac))
wenzelm@16121
   669
*}
wenzelm@11838
   670
blanchet@35828
   671
lemma split_eta_SetCompr [simp,no_atp]: "(%u. EX x y. u = (x, y) & P (x, y)) = P"
wenzelm@18372
   672
  by (rule ext) fast
wenzelm@11838
   673
blanchet@35828
   674
lemma split_eta_SetCompr2 [simp,no_atp]: "(%u. EX x y. u = (x, y) & P x y) = split P"
wenzelm@18372
   675
  by (rule ext) fast
wenzelm@11838
   676
wenzelm@11838
   677
lemma split_part [simp]: "(%(a,b). P & Q a b) = (%ab. P & split Q ab)"
wenzelm@11838
   678
  -- {* Allows simplifications of nested splits in case of independent predicates. *}
wenzelm@18372
   679
  by (rule ext) blast
wenzelm@11838
   680
nipkow@14337
   681
(* Do NOT make this a simp rule as it
nipkow@14337
   682
   a) only helps in special situations
nipkow@14337
   683
   b) can lead to nontermination in the presence of split_def
nipkow@14337
   684
*)
nipkow@14337
   685
lemma split_comp_eq: 
paulson@20415
   686
  fixes f :: "'a => 'b => 'c" and g :: "'d => 'a"
paulson@20415
   687
  shows "(%u. f (g (fst u)) (snd u)) = (split (%x. f (g x)))"
wenzelm@18372
   688
  by (rule ext) auto
oheimb@14101
   689
haftmann@26358
   690
lemma pair_imageI [intro]: "(a, b) : A ==> f a b : (%(a, b). f a b) ` A"
haftmann@26358
   691
  apply (rule_tac x = "(a, b)" in image_eqI)
haftmann@26358
   692
   apply auto
haftmann@26358
   693
  done
haftmann@26358
   694
wenzelm@11838
   695
lemma The_split_eq [simp]: "(THE (x',y'). x = x' & y = y') = (x, y)"
wenzelm@11838
   696
  by blast
wenzelm@11838
   697
wenzelm@11838
   698
(*
wenzelm@11838
   699
the following  would be slightly more general,
wenzelm@11838
   700
but cannot be used as rewrite rule:
wenzelm@11838
   701
### Cannot add premise as rewrite rule because it contains (type) unknowns:
wenzelm@11838
   702
### ?y = .x
wenzelm@11838
   703
Goal "[| P y; !!x. P x ==> x = y |] ==> (@(x',y). x = x' & P y) = (x,y)"
paulson@14208
   704
by (rtac some_equality 1)
paulson@14208
   705
by ( Simp_tac 1)
paulson@14208
   706
by (split_all_tac 1)
paulson@14208
   707
by (Asm_full_simp_tac 1)
wenzelm@11838
   708
qed "The_split_eq";
wenzelm@11838
   709
*)
wenzelm@11838
   710
wenzelm@11838
   711
text {*
wenzelm@11838
   712
  Setup of internal @{text split_rule}.
wenzelm@11838
   713
*}
wenzelm@11838
   714
haftmann@24699
   715
lemmas prod_caseI = prod.cases [THEN iffD2, standard]
haftmann@24699
   716
haftmann@24699
   717
lemma prod_caseI2: "!!p. [| !!a b. p = (a, b) ==> c a b |] ==> prod_case c p"
haftmann@37678
   718
  by (fact splitI2)
haftmann@24699
   719
haftmann@24699
   720
lemma prod_caseI2': "!!p. [| !!a b. (a, b) = p ==> c a b x |] ==> prod_case c p x"
haftmann@37678
   721
  by (fact splitI2')
haftmann@24699
   722
haftmann@24699
   723
lemma prod_caseE: "prod_case c p ==> (!!x y. p = (x, y) ==> c x y ==> Q) ==> Q"
haftmann@37678
   724
  by (fact splitE)
haftmann@24699
   725
haftmann@24699
   726
lemma prod_caseE': "prod_case c p z ==> (!!x y. p = (x, y) ==> c x y z ==> Q) ==> Q"
haftmann@37678
   727
  by (fact splitE')
haftmann@24699
   728
haftmann@37678
   729
declare prod_caseI [intro!]
haftmann@24699
   730
bulwahn@26143
   731
lemma prod_case_beta:
bulwahn@26143
   732
  "prod_case f p = f (fst p) (snd p)"
haftmann@37591
   733
  by (fact split_beta)
bulwahn@26143
   734
haftmann@24699
   735
lemma prod_cases3 [cases type]:
haftmann@24699
   736
  obtains (fields) a b c where "y = (a, b, c)"
haftmann@24699
   737
  by (cases y, case_tac b) blast
haftmann@24699
   738
haftmann@24699
   739
lemma prod_induct3 [case_names fields, induct type]:
haftmann@24699
   740
    "(!!a b c. P (a, b, c)) ==> P x"
haftmann@24699
   741
  by (cases x) blast
haftmann@24699
   742
haftmann@24699
   743
lemma prod_cases4 [cases type]:
haftmann@24699
   744
  obtains (fields) a b c d where "y = (a, b, c, d)"
haftmann@24699
   745
  by (cases y, case_tac c) blast
haftmann@24699
   746
haftmann@24699
   747
lemma prod_induct4 [case_names fields, induct type]:
haftmann@24699
   748
    "(!!a b c d. P (a, b, c, d)) ==> P x"
haftmann@24699
   749
  by (cases x) blast
haftmann@24699
   750
haftmann@24699
   751
lemma prod_cases5 [cases type]:
haftmann@24699
   752
  obtains (fields) a b c d e where "y = (a, b, c, d, e)"
haftmann@24699
   753
  by (cases y, case_tac d) blast
haftmann@24699
   754
haftmann@24699
   755
lemma prod_induct5 [case_names fields, induct type]:
haftmann@24699
   756
    "(!!a b c d e. P (a, b, c, d, e)) ==> P x"
haftmann@24699
   757
  by (cases x) blast
haftmann@24699
   758
haftmann@24699
   759
lemma prod_cases6 [cases type]:
haftmann@24699
   760
  obtains (fields) a b c d e f where "y = (a, b, c, d, e, f)"
haftmann@24699
   761
  by (cases y, case_tac e) blast
haftmann@24699
   762
haftmann@24699
   763
lemma prod_induct6 [case_names fields, induct type]:
haftmann@24699
   764
    "(!!a b c d e f. P (a, b, c, d, e, f)) ==> P x"
haftmann@24699
   765
  by (cases x) blast
haftmann@24699
   766
haftmann@24699
   767
lemma prod_cases7 [cases type]:
haftmann@24699
   768
  obtains (fields) a b c d e f g where "y = (a, b, c, d, e, f, g)"
haftmann@24699
   769
  by (cases y, case_tac f) blast
haftmann@24699
   770
haftmann@24699
   771
lemma prod_induct7 [case_names fields, induct type]:
haftmann@24699
   772
    "(!!a b c d e f g. P (a, b, c, d, e, f, g)) ==> P x"
haftmann@24699
   773
  by (cases x) blast
haftmann@24699
   774
haftmann@37166
   775
lemma split_def:
haftmann@37166
   776
  "split = (\<lambda>c p. c (fst p) (snd p))"
haftmann@37591
   777
  by (fact prod_case_unfold)
haftmann@37166
   778
haftmann@37166
   779
definition internal_split :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c" where
haftmann@37166
   780
  "internal_split == split"
haftmann@37166
   781
haftmann@37166
   782
lemma internal_split_conv: "internal_split c (a, b) = c a b"
haftmann@37166
   783
  by (simp only: internal_split_def split_conv)
haftmann@37166
   784
haftmann@37166
   785
use "Tools/split_rule.ML"
haftmann@37166
   786
setup Split_Rule.setup
haftmann@37166
   787
haftmann@37166
   788
hide_const internal_split
haftmann@37166
   789
haftmann@24699
   790
haftmann@26358
   791
subsubsection {* Derived operations *}
haftmann@26358
   792
haftmann@37387
   793
definition curry    :: "('a \<times> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'c" where
haftmann@37387
   794
  "curry = (\<lambda>c x y. c (x, y))"
haftmann@37166
   795
haftmann@37166
   796
lemma curry_conv [simp, code]: "curry f a b = f (a, b)"
haftmann@37166
   797
  by (simp add: curry_def)
haftmann@37166
   798
haftmann@37166
   799
lemma curryI [intro!]: "f (a, b) \<Longrightarrow> curry f a b"
haftmann@37166
   800
  by (simp add: curry_def)
haftmann@37166
   801
haftmann@37166
   802
lemma curryD [dest!]: "curry f a b \<Longrightarrow> f (a, b)"
haftmann@37166
   803
  by (simp add: curry_def)
haftmann@37166
   804
haftmann@37166
   805
lemma curryE: "curry f a b \<Longrightarrow> (f (a, b) \<Longrightarrow> Q) \<Longrightarrow> Q"
haftmann@37166
   806
  by (simp add: curry_def)
haftmann@37166
   807
haftmann@37166
   808
lemma curry_split [simp]: "curry (split f) = f"
haftmann@37166
   809
  by (simp add: curry_def split_def)
haftmann@37166
   810
haftmann@37166
   811
lemma split_curry [simp]: "split (curry f) = f"
haftmann@37166
   812
  by (simp add: curry_def split_def)
haftmann@37166
   813
haftmann@26358
   814
text {*
haftmann@26358
   815
  The composition-uncurry combinator.
haftmann@26358
   816
*}
haftmann@26358
   817
haftmann@37751
   818
notation fcomp (infixl "\<circ>>" 60)
haftmann@26358
   819
haftmann@37751
   820
definition scomp :: "('a \<Rightarrow> 'b \<times> 'c) \<Rightarrow> ('b \<Rightarrow> 'c \<Rightarrow> 'd) \<Rightarrow> 'a \<Rightarrow> 'd" (infixl "\<circ>\<rightarrow>" 60) where
haftmann@37751
   821
  "f \<circ>\<rightarrow> g = (\<lambda>x. prod_case g (f x))"
haftmann@26358
   822
haftmann@37678
   823
lemma scomp_unfold: "scomp = (\<lambda>f g x. g (fst (f x)) (snd (f x)))"
nipkow@39302
   824
  by (simp add: fun_eq_iff scomp_def prod_case_unfold)
haftmann@37678
   825
haftmann@37751
   826
lemma scomp_apply [simp]: "(f \<circ>\<rightarrow> g) x = prod_case g (f x)"
haftmann@37751
   827
  by (simp add: scomp_unfold prod_case_unfold)
haftmann@26358
   828
haftmann@37751
   829
lemma Pair_scomp: "Pair x \<circ>\<rightarrow> f = f x"
nipkow@39302
   830
  by (simp add: fun_eq_iff scomp_apply)
haftmann@26358
   831
haftmann@37751
   832
lemma scomp_Pair: "x \<circ>\<rightarrow> Pair = x"
nipkow@39302
   833
  by (simp add: fun_eq_iff scomp_apply)
haftmann@26358
   834
haftmann@37751
   835
lemma scomp_scomp: "(f \<circ>\<rightarrow> g) \<circ>\<rightarrow> h = f \<circ>\<rightarrow> (\<lambda>x. g x \<circ>\<rightarrow> h)"
nipkow@39302
   836
  by (simp add: fun_eq_iff scomp_unfold)
haftmann@26358
   837
haftmann@37751
   838
lemma scomp_fcomp: "(f \<circ>\<rightarrow> g) \<circ>> h = f \<circ>\<rightarrow> (\<lambda>x. g x \<circ>> h)"
nipkow@39302
   839
  by (simp add: fun_eq_iff scomp_unfold fcomp_def)
haftmann@26358
   840
haftmann@37751
   841
lemma fcomp_scomp: "(f \<circ>> g) \<circ>\<rightarrow> h = f \<circ>> (g \<circ>\<rightarrow> h)"
nipkow@39302
   842
  by (simp add: fun_eq_iff scomp_unfold fcomp_apply)
haftmann@26358
   843
haftmann@31202
   844
code_const scomp
haftmann@31202
   845
  (Eval infixl 3 "#->")
haftmann@31202
   846
haftmann@37751
   847
no_notation fcomp (infixl "\<circ>>" 60)
haftmann@37751
   848
no_notation scomp (infixl "\<circ>\<rightarrow>" 60)
haftmann@26358
   849
haftmann@26358
   850
text {*
haftmann@40607
   851
  @{term map_pair} --- action of the product functor upon
krauss@36664
   852
  functions.
haftmann@26358
   853
*}
haftmann@21195
   854
haftmann@40607
   855
definition map_pair :: "('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c \<times> 'd" where
haftmann@40607
   856
  "map_pair f g = (\<lambda>(x, y). (f x, g y))"
haftmann@26358
   857
haftmann@40607
   858
lemma map_pair_simp [simp, code]:
haftmann@40607
   859
  "map_pair f g (a, b) = (f a, g b)"
haftmann@40607
   860
  by (simp add: map_pair_def)
haftmann@26358
   861
haftmann@41505
   862
enriched_type map_pair: map_pair
haftmann@41372
   863
  by (auto simp add: split_paired_all intro: ext)
nipkow@37278
   864
haftmann@40607
   865
lemma fst_map_pair [simp]:
haftmann@40607
   866
  "fst (map_pair f g x) = f (fst x)"
haftmann@40607
   867
  by (cases x) simp_all
nipkow@37278
   868
haftmann@40607
   869
lemma snd_prod_fun [simp]:
haftmann@40607
   870
  "snd (map_pair f g x) = g (snd x)"
haftmann@40607
   871
  by (cases x) simp_all
nipkow@37278
   872
haftmann@40607
   873
lemma fst_comp_map_pair [simp]:
haftmann@40607
   874
  "fst \<circ> map_pair f g = f \<circ> fst"
haftmann@40607
   875
  by (rule ext) simp_all
nipkow@37278
   876
haftmann@40607
   877
lemma snd_comp_map_pair [simp]:
haftmann@40607
   878
  "snd \<circ> map_pair f g = g \<circ> snd"
haftmann@40607
   879
  by (rule ext) simp_all
haftmann@26358
   880
haftmann@40607
   881
lemma map_pair_compose:
haftmann@40607
   882
  "map_pair (f1 o f2) (g1 o g2) = (map_pair f1 g1 o map_pair f2 g2)"
haftmann@40607
   883
  by (rule ext) (simp add: map_pair.compositionality comp_def)
haftmann@26358
   884
haftmann@40607
   885
lemma map_pair_ident [simp]:
haftmann@40607
   886
  "map_pair (%x. x) (%y. y) = (%z. z)"
haftmann@40607
   887
  by (rule ext) (simp add: map_pair.identity)
haftmann@40607
   888
haftmann@40607
   889
lemma map_pair_imageI [intro]:
haftmann@40607
   890
  "(a, b) \<in> R \<Longrightarrow> (f a, g b) \<in> map_pair f g ` R"
haftmann@40607
   891
  by (rule image_eqI) simp_all
haftmann@21195
   892
haftmann@26358
   893
lemma prod_fun_imageE [elim!]:
haftmann@40607
   894
  assumes major: "c \<in> map_pair f g ` R"
haftmann@40607
   895
    and cases: "\<And>x y. c = (f x, g y) \<Longrightarrow> (x, y) \<in> R \<Longrightarrow> P"
haftmann@26358
   896
  shows P
haftmann@26358
   897
  apply (rule major [THEN imageE])
haftmann@37166
   898
  apply (case_tac x)
haftmann@26358
   899
  apply (rule cases)
haftmann@40607
   900
  apply simp_all
haftmann@26358
   901
  done
haftmann@26358
   902
haftmann@37166
   903
definition apfst :: "('a \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c \<times> 'b" where
haftmann@40607
   904
  "apfst f = map_pair f id"
haftmann@26358
   905
haftmann@37166
   906
definition apsnd :: "('b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'a \<times> 'c" where
haftmann@40607
   907
  "apsnd f = map_pair id f"
haftmann@26358
   908
haftmann@26358
   909
lemma apfst_conv [simp, code]:
haftmann@26358
   910
  "apfst f (x, y) = (f x, y)" 
haftmann@26358
   911
  by (simp add: apfst_def)
haftmann@26358
   912
hoelzl@33638
   913
lemma apsnd_conv [simp, code]:
haftmann@26358
   914
  "apsnd f (x, y) = (x, f y)" 
haftmann@26358
   915
  by (simp add: apsnd_def)
haftmann@21195
   916
haftmann@33594
   917
lemma fst_apfst [simp]:
haftmann@33594
   918
  "fst (apfst f x) = f (fst x)"
haftmann@33594
   919
  by (cases x) simp
haftmann@33594
   920
haftmann@33594
   921
lemma fst_apsnd [simp]:
haftmann@33594
   922
  "fst (apsnd f x) = fst x"
haftmann@33594
   923
  by (cases x) simp
haftmann@33594
   924
haftmann@33594
   925
lemma snd_apfst [simp]:
haftmann@33594
   926
  "snd (apfst f x) = snd x"
haftmann@33594
   927
  by (cases x) simp
haftmann@33594
   928
haftmann@33594
   929
lemma snd_apsnd [simp]:
haftmann@33594
   930
  "snd (apsnd f x) = f (snd x)"
haftmann@33594
   931
  by (cases x) simp
haftmann@33594
   932
haftmann@33594
   933
lemma apfst_compose:
haftmann@33594
   934
  "apfst f (apfst g x) = apfst (f \<circ> g) x"
haftmann@33594
   935
  by (cases x) simp
haftmann@33594
   936
haftmann@33594
   937
lemma apsnd_compose:
haftmann@33594
   938
  "apsnd f (apsnd g x) = apsnd (f \<circ> g) x"
haftmann@33594
   939
  by (cases x) simp
haftmann@33594
   940
haftmann@33594
   941
lemma apfst_apsnd [simp]:
haftmann@33594
   942
  "apfst f (apsnd g x) = (f (fst x), g (snd x))"
haftmann@33594
   943
  by (cases x) simp
haftmann@33594
   944
haftmann@33594
   945
lemma apsnd_apfst [simp]:
haftmann@33594
   946
  "apsnd f (apfst g x) = (g (fst x), f (snd x))"
haftmann@33594
   947
  by (cases x) simp
haftmann@33594
   948
haftmann@33594
   949
lemma apfst_id [simp] :
haftmann@33594
   950
  "apfst id = id"
nipkow@39302
   951
  by (simp add: fun_eq_iff)
haftmann@33594
   952
haftmann@33594
   953
lemma apsnd_id [simp] :
haftmann@33594
   954
  "apsnd id = id"
nipkow@39302
   955
  by (simp add: fun_eq_iff)
haftmann@33594
   956
haftmann@33594
   957
lemma apfst_eq_conv [simp]:
haftmann@33594
   958
  "apfst f x = apfst g x \<longleftrightarrow> f (fst x) = g (fst x)"
haftmann@33594
   959
  by (cases x) simp
haftmann@33594
   960
haftmann@33594
   961
lemma apsnd_eq_conv [simp]:
haftmann@33594
   962
  "apsnd f x = apsnd g x \<longleftrightarrow> f (snd x) = g (snd x)"
haftmann@33594
   963
  by (cases x) simp
haftmann@33594
   964
hoelzl@33638
   965
lemma apsnd_apfst_commute:
hoelzl@33638
   966
  "apsnd f (apfst g p) = apfst g (apsnd f p)"
hoelzl@33638
   967
  by simp
haftmann@21195
   968
haftmann@26358
   969
text {*
haftmann@26358
   970
  Disjoint union of a family of sets -- Sigma.
haftmann@26358
   971
*}
haftmann@26358
   972
haftmann@40607
   973
definition Sigma :: "['a set, 'a => 'b set] => ('a \<times> 'b) set" where
haftmann@26358
   974
  Sigma_def: "Sigma A B == UN x:A. UN y:B x. {Pair x y}"
haftmann@26358
   975
haftmann@26358
   976
abbreviation
haftmann@26358
   977
  Times :: "['a set, 'b set] => ('a * 'b) set"
haftmann@26358
   978
    (infixr "<*>" 80) where
haftmann@26358
   979
  "A <*> B == Sigma A (%_. B)"
haftmann@26358
   980
haftmann@26358
   981
notation (xsymbols)
haftmann@26358
   982
  Times  (infixr "\<times>" 80)
berghofe@15394
   983
haftmann@26358
   984
notation (HTML output)
haftmann@26358
   985
  Times  (infixr "\<times>" 80)
haftmann@26358
   986
haftmann@26358
   987
syntax
wenzelm@35115
   988
  "_Sigma" :: "[pttrn, 'a set, 'b set] => ('a * 'b) set"  ("(3SIGMA _:_./ _)" [0, 0, 10] 10)
haftmann@26358
   989
translations
wenzelm@35115
   990
  "SIGMA x:A. B" == "CONST Sigma A (%x. B)"
haftmann@26358
   991
haftmann@26358
   992
lemma SigmaI [intro!]: "[| a:A;  b:B(a) |] ==> (a,b) : Sigma A B"
haftmann@26358
   993
  by (unfold Sigma_def) blast
haftmann@26358
   994
haftmann@26358
   995
lemma SigmaE [elim!]:
haftmann@26358
   996
    "[| c: Sigma A B;
haftmann@26358
   997
        !!x y.[| x:A;  y:B(x);  c=(x,y) |] ==> P
haftmann@26358
   998
     |] ==> P"
haftmann@26358
   999
  -- {* The general elimination rule. *}
haftmann@26358
  1000
  by (unfold Sigma_def) blast
haftmann@20588
  1001
haftmann@26358
  1002
text {*
haftmann@26358
  1003
  Elimination of @{term "(a, b) : A \<times> B"} -- introduces no
haftmann@26358
  1004
  eigenvariables.
haftmann@26358
  1005
*}
haftmann@26358
  1006
haftmann@26358
  1007
lemma SigmaD1: "(a, b) : Sigma A B ==> a : A"
haftmann@26358
  1008
  by blast
haftmann@26358
  1009
haftmann@26358
  1010
lemma SigmaD2: "(a, b) : Sigma A B ==> b : B a"
haftmann@26358
  1011
  by blast
haftmann@26358
  1012
haftmann@26358
  1013
lemma SigmaE2:
haftmann@26358
  1014
    "[| (a, b) : Sigma A B;
haftmann@26358
  1015
        [| a:A;  b:B(a) |] ==> P
haftmann@26358
  1016
     |] ==> P"
haftmann@26358
  1017
  by blast
haftmann@20588
  1018
haftmann@26358
  1019
lemma Sigma_cong:
haftmann@26358
  1020
     "\<lbrakk>A = B; !!x. x \<in> B \<Longrightarrow> C x = D x\<rbrakk>
haftmann@26358
  1021
      \<Longrightarrow> (SIGMA x: A. C x) = (SIGMA x: B. D x)"
haftmann@26358
  1022
  by auto
haftmann@26358
  1023
haftmann@26358
  1024
lemma Sigma_mono: "[| A <= C; !!x. x:A ==> B x <= D x |] ==> Sigma A B <= Sigma C D"
haftmann@26358
  1025
  by blast
haftmann@26358
  1026
haftmann@26358
  1027
lemma Sigma_empty1 [simp]: "Sigma {} B = {}"
haftmann@26358
  1028
  by blast
haftmann@26358
  1029
haftmann@26358
  1030
lemma Sigma_empty2 [simp]: "A <*> {} = {}"
haftmann@26358
  1031
  by blast
haftmann@26358
  1032
haftmann@26358
  1033
lemma UNIV_Times_UNIV [simp]: "UNIV <*> UNIV = UNIV"
haftmann@26358
  1034
  by auto
haftmann@21908
  1035
haftmann@26358
  1036
lemma Compl_Times_UNIV1 [simp]: "- (UNIV <*> A) = UNIV <*> (-A)"
haftmann@26358
  1037
  by auto
haftmann@26358
  1038
haftmann@26358
  1039
lemma Compl_Times_UNIV2 [simp]: "- (A <*> UNIV) = (-A) <*> UNIV"
haftmann@26358
  1040
  by auto
haftmann@26358
  1041
haftmann@26358
  1042
lemma mem_Sigma_iff [iff]: "((a,b): Sigma A B) = (a:A & b:B(a))"
haftmann@26358
  1043
  by blast
haftmann@26358
  1044
haftmann@26358
  1045
lemma Times_subset_cancel2: "x:C ==> (A <*> C <= B <*> C) = (A <= B)"
haftmann@26358
  1046
  by blast
haftmann@26358
  1047
haftmann@26358
  1048
lemma Times_eq_cancel2: "x:C ==> (A <*> C = B <*> C) = (A = B)"
haftmann@26358
  1049
  by (blast elim: equalityE)
haftmann@20588
  1050
haftmann@26358
  1051
lemma SetCompr_Sigma_eq:
haftmann@26358
  1052
    "Collect (split (%x y. P x & Q x y)) = (SIGMA x:Collect P. Collect (Q x))"
haftmann@26358
  1053
  by blast
haftmann@26358
  1054
haftmann@26358
  1055
lemma Collect_split [simp]: "{(a,b). P a & Q b} = Collect P <*> Collect Q"
haftmann@26358
  1056
  by blast
haftmann@26358
  1057
haftmann@26358
  1058
lemma UN_Times_distrib:
haftmann@26358
  1059
  "(UN (a,b):(A <*> B). E a <*> F b) = (UNION A E) <*> (UNION B F)"
haftmann@26358
  1060
  -- {* Suggested by Pierre Chartier *}
haftmann@26358
  1061
  by blast
haftmann@26358
  1062
blanchet@35828
  1063
lemma split_paired_Ball_Sigma [simp,no_atp]:
haftmann@26358
  1064
    "(ALL z: Sigma A B. P z) = (ALL x:A. ALL y: B x. P(x,y))"
haftmann@26358
  1065
  by blast
haftmann@26358
  1066
blanchet@35828
  1067
lemma split_paired_Bex_Sigma [simp,no_atp]:
haftmann@26358
  1068
    "(EX z: Sigma A B. P z) = (EX x:A. EX y: B x. P(x,y))"
haftmann@26358
  1069
  by blast
haftmann@21908
  1070
haftmann@26358
  1071
lemma Sigma_Un_distrib1: "(SIGMA i:I Un J. C(i)) = (SIGMA i:I. C(i)) Un (SIGMA j:J. C(j))"
haftmann@26358
  1072
  by blast
haftmann@26358
  1073
haftmann@26358
  1074
lemma Sigma_Un_distrib2: "(SIGMA i:I. A(i) Un B(i)) = (SIGMA i:I. A(i)) Un (SIGMA i:I. B(i))"
haftmann@26358
  1075
  by blast
haftmann@26358
  1076
haftmann@26358
  1077
lemma Sigma_Int_distrib1: "(SIGMA i:I Int J. C(i)) = (SIGMA i:I. C(i)) Int (SIGMA j:J. C(j))"
haftmann@26358
  1078
  by blast
haftmann@26358
  1079
haftmann@26358
  1080
lemma Sigma_Int_distrib2: "(SIGMA i:I. A(i) Int B(i)) = (SIGMA i:I. A(i)) Int (SIGMA i:I. B(i))"
haftmann@26358
  1081
  by blast
haftmann@26358
  1082
haftmann@26358
  1083
lemma Sigma_Diff_distrib1: "(SIGMA i:I - J. C(i)) = (SIGMA i:I. C(i)) - (SIGMA j:J. C(j))"
haftmann@26358
  1084
  by blast
haftmann@26358
  1085
haftmann@26358
  1086
lemma Sigma_Diff_distrib2: "(SIGMA i:I. A(i) - B(i)) = (SIGMA i:I. A(i)) - (SIGMA i:I. B(i))"
haftmann@26358
  1087
  by blast
haftmann@21908
  1088
haftmann@26358
  1089
lemma Sigma_Union: "Sigma (Union X) B = (UN A:X. Sigma A B)"
haftmann@26358
  1090
  by blast
haftmann@26358
  1091
haftmann@26358
  1092
text {*
haftmann@26358
  1093
  Non-dependent versions are needed to avoid the need for higher-order
haftmann@26358
  1094
  matching, especially when the rules are re-oriented.
haftmann@26358
  1095
*}
haftmann@21908
  1096
haftmann@26358
  1097
lemma Times_Un_distrib1: "(A Un B) <*> C = (A <*> C) Un (B <*> C)"
nipkow@28719
  1098
by blast
haftmann@26358
  1099
haftmann@26358
  1100
lemma Times_Int_distrib1: "(A Int B) <*> C = (A <*> C) Int (B <*> C)"
nipkow@28719
  1101
by blast
haftmann@26358
  1102
haftmann@26358
  1103
lemma Times_Diff_distrib1: "(A - B) <*> C = (A <*> C) - (B <*> C)"
nipkow@28719
  1104
by blast
haftmann@26358
  1105
hoelzl@36622
  1106
lemma Times_empty[simp]: "A \<times> B = {} \<longleftrightarrow> A = {} \<or> B = {}"
hoelzl@36622
  1107
  by auto
hoelzl@36622
  1108
hoelzl@36622
  1109
lemma fst_image_times[simp]: "fst ` (A \<times> B) = (if B = {} then {} else A)"
hoelzl@36622
  1110
  by (auto intro!: image_eqI)
hoelzl@36622
  1111
hoelzl@36622
  1112
lemma snd_image_times[simp]: "snd ` (A \<times> B) = (if A = {} then {} else B)"
hoelzl@36622
  1113
  by (auto intro!: image_eqI)
hoelzl@36622
  1114
nipkow@28719
  1115
lemma insert_times_insert[simp]:
nipkow@28719
  1116
  "insert a A \<times> insert b B =
nipkow@28719
  1117
   insert (a,b) (A \<times> insert b B \<union> insert a A \<times> B)"
nipkow@28719
  1118
by blast
haftmann@26358
  1119
paulson@33271
  1120
lemma vimage_Times: "f -` (A \<times> B) = ((fst \<circ> f) -` A) \<inter> ((snd \<circ> f) -` B)"
haftmann@37166
  1121
  by (auto, case_tac "f x", auto)
paulson@33271
  1122
haftmann@35822
  1123
lemma swap_inj_on:
hoelzl@36622
  1124
  "inj_on (\<lambda>(i, j). (j, i)) A"
hoelzl@36622
  1125
  by (auto intro!: inj_onI)
haftmann@35822
  1126
haftmann@35822
  1127
lemma swap_product:
haftmann@35822
  1128
  "(%(i, j). (j, i)) ` (A \<times> B) = B \<times> A"
haftmann@35822
  1129
  by (simp add: split_def image_def) blast
haftmann@35822
  1130
hoelzl@36622
  1131
lemma image_split_eq_Sigma:
hoelzl@36622
  1132
  "(\<lambda>x. (f x, g x)) ` A = Sigma (f ` A) (\<lambda>x. g ` (f -` {x} \<inter> A))"
hoelzl@36622
  1133
proof (safe intro!: imageI vimageI)
hoelzl@36622
  1134
  fix a b assume *: "a \<in> A" "b \<in> A" and eq: "f a = f b"
hoelzl@36622
  1135
  show "(f b, g a) \<in> (\<lambda>x. (f x, g x)) ` A"
hoelzl@36622
  1136
    using * eq[symmetric] by auto
hoelzl@36622
  1137
qed simp_all
haftmann@35822
  1138
haftmann@40607
  1139
text {* The following @{const map_pair} lemmas are due to Joachim Breitner: *}
haftmann@40607
  1140
haftmann@40607
  1141
lemma map_pair_inj_on:
haftmann@40607
  1142
  assumes "inj_on f A" and "inj_on g B"
haftmann@40607
  1143
  shows "inj_on (map_pair f g) (A \<times> B)"
haftmann@40607
  1144
proof (rule inj_onI)
haftmann@40607
  1145
  fix x :: "'a \<times> 'c" and y :: "'a \<times> 'c"
haftmann@40607
  1146
  assume "x \<in> A \<times> B" hence "fst x \<in> A" and "snd x \<in> B" by auto
haftmann@40607
  1147
  assume "y \<in> A \<times> B" hence "fst y \<in> A" and "snd y \<in> B" by auto
haftmann@40607
  1148
  assume "map_pair f g x = map_pair f g y"
haftmann@40607
  1149
  hence "fst (map_pair f g x) = fst (map_pair f g y)" by (auto)
haftmann@40607
  1150
  hence "f (fst x) = f (fst y)" by (cases x,cases y,auto)
haftmann@40607
  1151
  with `inj_on f A` and `fst x \<in> A` and `fst y \<in> A`
haftmann@40607
  1152
  have "fst x = fst y" by (auto dest:dest:inj_onD)
haftmann@40607
  1153
  moreover from `map_pair f g x = map_pair f g y`
haftmann@40607
  1154
  have "snd (map_pair f g x) = snd (map_pair f g y)" by (auto)
haftmann@40607
  1155
  hence "g (snd x) = g (snd y)" by (cases x,cases y,auto)
haftmann@40607
  1156
  with `inj_on g B` and `snd x \<in> B` and `snd y \<in> B`
haftmann@40607
  1157
  have "snd x = snd y" by (auto dest:dest:inj_onD)
haftmann@40607
  1158
  ultimately show "x = y" by(rule prod_eqI)
haftmann@40607
  1159
qed
haftmann@40607
  1160
haftmann@40607
  1161
lemma map_pair_surj:
hoelzl@40702
  1162
  fixes f :: "'a \<Rightarrow> 'b" and g :: "'c \<Rightarrow> 'd"
haftmann@40607
  1163
  assumes "surj f" and "surj g"
haftmann@40607
  1164
  shows "surj (map_pair f g)"
haftmann@40607
  1165
unfolding surj_def
haftmann@40607
  1166
proof
haftmann@40607
  1167
  fix y :: "'b \<times> 'd"
haftmann@40607
  1168
  from `surj f` obtain a where "fst y = f a" by (auto elim:surjE)
haftmann@40607
  1169
  moreover
haftmann@40607
  1170
  from `surj g` obtain b where "snd y = g b" by (auto elim:surjE)
haftmann@40607
  1171
  ultimately have "(fst y, snd y) = map_pair f g (a,b)" by auto
haftmann@40607
  1172
  thus "\<exists>x. y = map_pair f g x" by auto
haftmann@40607
  1173
qed
haftmann@40607
  1174
haftmann@40607
  1175
lemma map_pair_surj_on:
haftmann@40607
  1176
  assumes "f ` A = A'" and "g ` B = B'"
haftmann@40607
  1177
  shows "map_pair f g ` (A \<times> B) = A' \<times> B'"
haftmann@40607
  1178
unfolding image_def
haftmann@40607
  1179
proof(rule set_eqI,rule iffI)
haftmann@40607
  1180
  fix x :: "'a \<times> 'c"
haftmann@40607
  1181
  assume "x \<in> {y\<Colon>'a \<times> 'c. \<exists>x\<Colon>'b \<times> 'd\<in>A \<times> B. y = map_pair f g x}"
haftmann@40607
  1182
  then obtain y where "y \<in> A \<times> B" and "x = map_pair f g y" by blast
haftmann@40607
  1183
  from `image f A = A'` and `y \<in> A \<times> B` have "f (fst y) \<in> A'" by auto
haftmann@40607
  1184
  moreover from `image g B = B'` and `y \<in> A \<times> B` have "g (snd y) \<in> B'" by auto
haftmann@40607
  1185
  ultimately have "(f (fst y), g (snd y)) \<in> (A' \<times> B')" by auto
haftmann@40607
  1186
  with `x = map_pair f g y` show "x \<in> A' \<times> B'" by (cases y, auto)
haftmann@40607
  1187
next
haftmann@40607
  1188
  fix x :: "'a \<times> 'c"
haftmann@40607
  1189
  assume "x \<in> A' \<times> B'" hence "fst x \<in> A'" and "snd x \<in> B'" by auto
haftmann@40607
  1190
  from `image f A = A'` and `fst x \<in> A'` have "fst x \<in> image f A" by auto
haftmann@40607
  1191
  then obtain a where "a \<in> A" and "fst x = f a" by (rule imageE)
haftmann@40607
  1192
  moreover from `image g B = B'` and `snd x \<in> B'`
haftmann@40607
  1193
  obtain b where "b \<in> B" and "snd x = g b" by auto
haftmann@40607
  1194
  ultimately have "(fst x, snd x) = map_pair f g (a,b)" by auto
haftmann@40607
  1195
  moreover from `a \<in> A` and  `b \<in> B` have "(a , b) \<in> A \<times> B" by auto
haftmann@40607
  1196
  ultimately have "\<exists>y \<in> A \<times> B. x = map_pair f g y" by auto
haftmann@40607
  1197
  thus "x \<in> {x. \<exists>y \<in> A \<times> B. x = map_pair f g y}" by auto
haftmann@40607
  1198
qed
haftmann@40607
  1199
haftmann@21908
  1200
haftmann@37166
  1201
subsection {* Inductively defined sets *}
berghofe@15394
  1202
haftmann@37389
  1203
use "Tools/inductive_codegen.ML"
haftmann@37389
  1204
setup Inductive_Codegen.setup
haftmann@37389
  1205
haftmann@31723
  1206
use "Tools/inductive_set.ML"
haftmann@31723
  1207
setup Inductive_Set.setup
haftmann@24699
  1208
haftmann@37166
  1209
haftmann@37166
  1210
subsection {* Legacy theorem bindings and duplicates *}
haftmann@37166
  1211
haftmann@37166
  1212
lemma PairE:
haftmann@37166
  1213
  obtains x y where "p = (x, y)"
haftmann@37166
  1214
  by (fact prod.exhaust)
haftmann@37166
  1215
haftmann@37166
  1216
lemma Pair_inject:
haftmann@37166
  1217
  assumes "(a, b) = (a', b')"
haftmann@37166
  1218
    and "a = a' ==> b = b' ==> R"
haftmann@37166
  1219
  shows R
haftmann@37166
  1220
  using assms by simp
haftmann@37166
  1221
haftmann@37166
  1222
lemmas Pair_eq = prod.inject
haftmann@37166
  1223
haftmann@37166
  1224
lemmas split = split_conv  -- {* for backwards compatibility *}
haftmann@37166
  1225
nipkow@10213
  1226
end