src/HOL/Code_Numeral.thy
author haftmann
Fri Apr 20 07:36:58 2018 +0000 (14 months ago)
changeset 68010 3f223b9a0066
parent 67905 fe0f4eeceeb7
child 68028 1f9f973eed2a
permissions -rw-r--r--
algebraic embeddings for bit operations
haftmann@51143
     1
(*  Title:      HOL/Code_Numeral.thy
haftmann@51143
     2
    Author:     Florian Haftmann, TU Muenchen
haftmann@51143
     3
*)
haftmann@24999
     4
wenzelm@60758
     5
section \<open>Numeric types for code generation onto target language numerals only\<close>
haftmann@24999
     6
haftmann@31205
     7
theory Code_Numeral
haftmann@66836
     8
imports Divides Lifting
haftmann@51143
     9
begin
haftmann@51143
    10
wenzelm@60758
    11
subsection \<open>Type of target language integers\<close>
haftmann@51143
    12
wenzelm@61076
    13
typedef integer = "UNIV :: int set"
haftmann@51143
    14
  morphisms int_of_integer integer_of_int ..
haftmann@51143
    15
haftmann@59487
    16
setup_lifting type_definition_integer
haftmann@51143
    17
haftmann@51143
    18
lemma integer_eq_iff:
haftmann@51143
    19
  "k = l \<longleftrightarrow> int_of_integer k = int_of_integer l"
haftmann@51143
    20
  by transfer rule
haftmann@51143
    21
haftmann@51143
    22
lemma integer_eqI:
haftmann@51143
    23
  "int_of_integer k = int_of_integer l \<Longrightarrow> k = l"
haftmann@51143
    24
  using integer_eq_iff [of k l] by simp
haftmann@51143
    25
haftmann@51143
    26
lemma int_of_integer_integer_of_int [simp]:
haftmann@51143
    27
  "int_of_integer (integer_of_int k) = k"
haftmann@51143
    28
  by transfer rule
haftmann@51143
    29
haftmann@51143
    30
lemma integer_of_int_int_of_integer [simp]:
haftmann@51143
    31
  "integer_of_int (int_of_integer k) = k"
haftmann@51143
    32
  by transfer rule
haftmann@51143
    33
haftmann@51143
    34
instantiation integer :: ring_1
haftmann@24999
    35
begin
haftmann@24999
    36
haftmann@51143
    37
lift_definition zero_integer :: integer
haftmann@51143
    38
  is "0 :: int"
haftmann@51143
    39
  .
haftmann@51143
    40
haftmann@51143
    41
declare zero_integer.rep_eq [simp]
haftmann@24999
    42
haftmann@51143
    43
lift_definition one_integer :: integer
haftmann@51143
    44
  is "1 :: int"
haftmann@51143
    45
  .
haftmann@51143
    46
haftmann@51143
    47
declare one_integer.rep_eq [simp]
haftmann@24999
    48
haftmann@51143
    49
lift_definition plus_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer"
haftmann@51143
    50
  is "plus :: int \<Rightarrow> int \<Rightarrow> int"
haftmann@51143
    51
  .
haftmann@51143
    52
haftmann@51143
    53
declare plus_integer.rep_eq [simp]
haftmann@24999
    54
haftmann@51143
    55
lift_definition uminus_integer :: "integer \<Rightarrow> integer"
haftmann@51143
    56
  is "uminus :: int \<Rightarrow> int"
haftmann@51143
    57
  .
haftmann@51143
    58
haftmann@51143
    59
declare uminus_integer.rep_eq [simp]
haftmann@24999
    60
haftmann@51143
    61
lift_definition minus_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer"
haftmann@51143
    62
  is "minus :: int \<Rightarrow> int \<Rightarrow> int"
haftmann@51143
    63
  .
haftmann@51143
    64
haftmann@51143
    65
declare minus_integer.rep_eq [simp]
haftmann@24999
    66
haftmann@51143
    67
lift_definition times_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer"
haftmann@51143
    68
  is "times :: int \<Rightarrow> int \<Rightarrow> int"
haftmann@51143
    69
  .
haftmann@51143
    70
haftmann@51143
    71
declare times_integer.rep_eq [simp]
haftmann@28708
    72
haftmann@51143
    73
instance proof
haftmann@51143
    74
qed (transfer, simp add: algebra_simps)+
haftmann@51143
    75
haftmann@51143
    76
end
haftmann@51143
    77
haftmann@64241
    78
instance integer :: Rings.dvd ..
haftmann@64241
    79
haftmann@64241
    80
lemma [transfer_rule]:
haftmann@64241
    81
  "rel_fun pcr_integer (rel_fun pcr_integer HOL.iff) Rings.dvd Rings.dvd"
haftmann@64241
    82
  unfolding dvd_def by transfer_prover
haftmann@64241
    83
haftmann@51143
    84
lemma [transfer_rule]:
haftmann@68010
    85
  "rel_fun (=) pcr_integer (of_bool :: bool \<Rightarrow> int) (of_bool :: bool \<Rightarrow> integer)"
haftmann@68010
    86
  by (unfold of_bool_def [abs_def]) transfer_prover
haftmann@68010
    87
haftmann@68010
    88
lemma [transfer_rule]:
haftmann@68010
    89
  "rel_fun (=) pcr_integer (of_nat :: nat \<Rightarrow> int) (of_nat :: nat \<Rightarrow> integer)"
haftmann@64178
    90
  by (rule transfer_rule_of_nat) transfer_prover+
haftmann@51143
    91
haftmann@51143
    92
lemma [transfer_rule]:
haftmann@68010
    93
  "rel_fun (=) pcr_integer (\<lambda>k :: int. k :: int) (of_int :: int \<Rightarrow> integer)"
haftmann@51143
    94
proof -
blanchet@55945
    95
  have "rel_fun HOL.eq pcr_integer (of_int :: int \<Rightarrow> int) (of_int :: int \<Rightarrow> integer)"
haftmann@64178
    96
    by (rule transfer_rule_of_int) transfer_prover+
haftmann@51143
    97
  then show ?thesis by (simp add: id_def)
haftmann@24999
    98
qed
haftmann@24999
    99
haftmann@51143
   100
lemma [transfer_rule]:
blanchet@55945
   101
  "rel_fun HOL.eq pcr_integer (numeral :: num \<Rightarrow> int) (numeral :: num \<Rightarrow> integer)"
haftmann@64178
   102
  by (rule transfer_rule_numeral) transfer_prover+
haftmann@26140
   103
haftmann@51143
   104
lemma [transfer_rule]:
blanchet@55945
   105
  "rel_fun HOL.eq (rel_fun HOL.eq pcr_integer) (Num.sub :: _ \<Rightarrow> _ \<Rightarrow> int) (Num.sub :: _ \<Rightarrow> _ \<Rightarrow> integer)"
haftmann@51143
   106
  by (unfold Num.sub_def [abs_def]) transfer_prover
haftmann@51143
   107
haftmann@68010
   108
lemma [transfer_rule]:
haftmann@68010
   109
  "rel_fun pcr_integer (rel_fun (=) pcr_integer) (power :: _ \<Rightarrow> _ \<Rightarrow> int) (power :: _ \<Rightarrow> _ \<Rightarrow> integer)"
haftmann@68010
   110
  by (unfold power_def [abs_def]) transfer_prover
haftmann@68010
   111
haftmann@51143
   112
lemma int_of_integer_of_nat [simp]:
haftmann@51143
   113
  "int_of_integer (of_nat n) = of_nat n"
haftmann@51143
   114
  by transfer rule
haftmann@51143
   115
haftmann@51143
   116
lift_definition integer_of_nat :: "nat \<Rightarrow> integer"
haftmann@51143
   117
  is "of_nat :: nat \<Rightarrow> int"
haftmann@51143
   118
  .
haftmann@51143
   119
haftmann@51143
   120
lemma integer_of_nat_eq_of_nat [code]:
haftmann@51143
   121
  "integer_of_nat = of_nat"
haftmann@51143
   122
  by transfer rule
haftmann@51143
   123
haftmann@51143
   124
lemma int_of_integer_integer_of_nat [simp]:
haftmann@51143
   125
  "int_of_integer (integer_of_nat n) = of_nat n"
haftmann@51143
   126
  by transfer rule
haftmann@51143
   127
haftmann@51143
   128
lift_definition nat_of_integer :: "integer \<Rightarrow> nat"
haftmann@51143
   129
  is Int.nat
haftmann@51143
   130
  .
haftmann@26140
   131
haftmann@51143
   132
lemma nat_of_integer_of_nat [simp]:
haftmann@51143
   133
  "nat_of_integer (of_nat n) = n"
haftmann@51143
   134
  by transfer simp
haftmann@51143
   135
haftmann@51143
   136
lemma int_of_integer_of_int [simp]:
haftmann@51143
   137
  "int_of_integer (of_int k) = k"
haftmann@51143
   138
  by transfer simp
haftmann@51143
   139
haftmann@51143
   140
lemma nat_of_integer_integer_of_nat [simp]:
haftmann@51143
   141
  "nat_of_integer (integer_of_nat n) = n"
haftmann@51143
   142
  by transfer simp
haftmann@51143
   143
haftmann@51143
   144
lemma integer_of_int_eq_of_int [simp, code_abbrev]:
haftmann@51143
   145
  "integer_of_int = of_int"
haftmann@51143
   146
  by transfer (simp add: fun_eq_iff)
haftmann@26140
   147
haftmann@51143
   148
lemma of_int_integer_of [simp]:
haftmann@51143
   149
  "of_int (int_of_integer k) = (k :: integer)"
haftmann@51143
   150
  by transfer rule
haftmann@51143
   151
haftmann@51143
   152
lemma int_of_integer_numeral [simp]:
haftmann@51143
   153
  "int_of_integer (numeral k) = numeral k"
haftmann@51143
   154
  by transfer rule
haftmann@51143
   155
haftmann@51143
   156
lemma int_of_integer_sub [simp]:
haftmann@51143
   157
  "int_of_integer (Num.sub k l) = Num.sub k l"
haftmann@51143
   158
  by transfer rule
haftmann@51143
   159
haftmann@66190
   160
definition integer_of_num :: "num \<Rightarrow> integer"
haftmann@66190
   161
  where [simp]: "integer_of_num = numeral"
haftmann@61275
   162
haftmann@61275
   163
lemma integer_of_num [code]:
haftmann@66190
   164
  "integer_of_num Num.One = 1"
haftmann@66190
   165
  "integer_of_num (Num.Bit0 n) = (let k = integer_of_num n in k + k)"
haftmann@66190
   166
  "integer_of_num (Num.Bit1 n) = (let k = integer_of_num n in k + k + 1)"
haftmann@66190
   167
  by (simp_all only: integer_of_num_def numeral.simps Let_def)
haftmann@61275
   168
haftmann@61275
   169
lemma integer_of_num_triv:
haftmann@61275
   170
  "integer_of_num Num.One = 1"
haftmann@61275
   171
  "integer_of_num (Num.Bit0 Num.One) = 2"
haftmann@66190
   172
  by simp_all
haftmann@61275
   173
haftmann@64592
   174
instantiation integer :: "{linordered_idom, equal}"
haftmann@26140
   175
begin
haftmann@26140
   176
haftmann@51143
   177
lift_definition abs_integer :: "integer \<Rightarrow> integer"
haftmann@51143
   178
  is "abs :: int \<Rightarrow> int"
haftmann@51143
   179
  .
haftmann@51143
   180
haftmann@51143
   181
declare abs_integer.rep_eq [simp]
haftmann@26140
   182
haftmann@51143
   183
lift_definition sgn_integer :: "integer \<Rightarrow> integer"
haftmann@51143
   184
  is "sgn :: int \<Rightarrow> int"
haftmann@51143
   185
  .
haftmann@51143
   186
haftmann@51143
   187
declare sgn_integer.rep_eq [simp]
haftmann@51143
   188
haftmann@51143
   189
lift_definition less_eq_integer :: "integer \<Rightarrow> integer \<Rightarrow> bool"
haftmann@51143
   190
  is "less_eq :: int \<Rightarrow> int \<Rightarrow> bool"
haftmann@51143
   191
  .
haftmann@51143
   192
haftmann@64592
   193
haftmann@51143
   194
lift_definition less_integer :: "integer \<Rightarrow> integer \<Rightarrow> bool"
haftmann@51143
   195
  is "less :: int \<Rightarrow> int \<Rightarrow> bool"
haftmann@51143
   196
  .
haftmann@51143
   197
haftmann@51143
   198
lift_definition equal_integer :: "integer \<Rightarrow> integer \<Rightarrow> bool"
haftmann@51143
   199
  is "HOL.equal :: int \<Rightarrow> int \<Rightarrow> bool"
haftmann@51143
   200
  .
haftmann@51143
   201
haftmann@64592
   202
instance
haftmann@64592
   203
  by standard (transfer, simp add: algebra_simps equal less_le_not_le [symmetric] mult_strict_right_mono linear)+
haftmann@26140
   204
haftmann@26140
   205
end
haftmann@26140
   206
haftmann@51143
   207
lemma [transfer_rule]:
blanchet@55945
   208
  "rel_fun pcr_integer (rel_fun pcr_integer pcr_integer) (min :: _ \<Rightarrow> _ \<Rightarrow> int) (min :: _ \<Rightarrow> _ \<Rightarrow> integer)"
haftmann@51143
   209
  by (unfold min_def [abs_def]) transfer_prover
haftmann@51143
   210
haftmann@51143
   211
lemma [transfer_rule]:
blanchet@55945
   212
  "rel_fun pcr_integer (rel_fun pcr_integer pcr_integer) (max :: _ \<Rightarrow> _ \<Rightarrow> int) (max :: _ \<Rightarrow> _ \<Rightarrow> integer)"
haftmann@51143
   213
  by (unfold max_def [abs_def]) transfer_prover
haftmann@51143
   214
haftmann@51143
   215
lemma int_of_integer_min [simp]:
haftmann@51143
   216
  "int_of_integer (min k l) = min (int_of_integer k) (int_of_integer l)"
haftmann@51143
   217
  by transfer rule
haftmann@51143
   218
haftmann@51143
   219
lemma int_of_integer_max [simp]:
haftmann@51143
   220
  "int_of_integer (max k l) = max (int_of_integer k) (int_of_integer l)"
haftmann@51143
   221
  by transfer rule
haftmann@26140
   222
haftmann@51143
   223
lemma nat_of_integer_non_positive [simp]:
haftmann@51143
   224
  "k \<le> 0 \<Longrightarrow> nat_of_integer k = 0"
haftmann@51143
   225
  by transfer simp
haftmann@51143
   226
haftmann@51143
   227
lemma of_nat_of_integer [simp]:
haftmann@51143
   228
  "of_nat (nat_of_integer k) = max 0 k"
haftmann@51143
   229
  by transfer auto
haftmann@51143
   230
haftmann@66817
   231
instantiation integer :: unique_euclidean_ring
haftmann@64592
   232
begin
haftmann@64592
   233
haftmann@64592
   234
lift_definition divide_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer"
haftmann@64592
   235
  is "divide :: int \<Rightarrow> int \<Rightarrow> int"
haftmann@64592
   236
  .
haftmann@64592
   237
haftmann@64592
   238
declare divide_integer.rep_eq [simp]
haftmann@64592
   239
haftmann@64592
   240
lift_definition modulo_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer"
haftmann@64592
   241
  is "modulo :: int \<Rightarrow> int \<Rightarrow> int"
haftmann@64592
   242
  .
haftmann@64592
   243
haftmann@64592
   244
declare modulo_integer.rep_eq [simp]
haftmann@64592
   245
haftmann@66806
   246
lift_definition euclidean_size_integer :: "integer \<Rightarrow> nat"
haftmann@66806
   247
  is "euclidean_size :: int \<Rightarrow> nat"
haftmann@66806
   248
  .
haftmann@66806
   249
haftmann@66806
   250
declare euclidean_size_integer.rep_eq [simp]
haftmann@66806
   251
haftmann@66838
   252
lift_definition division_segment_integer :: "integer \<Rightarrow> integer"
haftmann@66838
   253
  is "division_segment :: int \<Rightarrow> int"
haftmann@66806
   254
  .
haftmann@66806
   255
haftmann@66838
   256
declare division_segment_integer.rep_eq [simp]
haftmann@66806
   257
haftmann@64592
   258
instance
haftmann@66806
   259
  by (standard; transfer)
haftmann@66838
   260
    (use mult_le_mono2 [of 1] in \<open>auto simp add: sgn_mult_abs abs_mult sgn_mult abs_mod_less sgn_mod nat_mult_distrib
haftmann@66838
   261
     division_segment_mult division_segment_mod intro: div_eqI\<close>)
haftmann@64592
   262
haftmann@64592
   263
end
haftmann@64592
   264
haftmann@66806
   265
lemma [code]:
haftmann@66806
   266
  "euclidean_size = nat_of_integer \<circ> abs"
haftmann@66806
   267
  by (simp add: fun_eq_iff nat_of_integer.rep_eq)
haftmann@66806
   268
haftmann@66806
   269
lemma [code]:
haftmann@66838
   270
  "division_segment (k :: integer) = (if k \<ge> 0 then 1 else - 1)"
haftmann@66838
   271
  by transfer (simp add: division_segment_int_def)
haftmann@66806
   272
haftmann@66815
   273
instance integer :: ring_parity
haftmann@66839
   274
  by (standard; transfer) (simp_all add: of_nat_div division_segment_int_def)
haftmann@66815
   275
haftmann@68010
   276
lemma [transfer_rule]:
haftmann@68010
   277
  "rel_fun (=) (rel_fun pcr_integer pcr_integer) (push_bit :: _ \<Rightarrow> _ \<Rightarrow> int) (push_bit :: _ \<Rightarrow> _ \<Rightarrow> integer)"
haftmann@68010
   278
  by (unfold push_bit_eq_mult [abs_def]) transfer_prover
haftmann@68010
   279
haftmann@68010
   280
lemma [transfer_rule]:
haftmann@68010
   281
  "rel_fun (=) (rel_fun pcr_integer pcr_integer) (take_bit :: _ \<Rightarrow> _ \<Rightarrow> int) (take_bit :: _ \<Rightarrow> _ \<Rightarrow> integer)"
haftmann@68010
   282
  by (unfold take_bit_eq_mod [abs_def]) transfer_prover
haftmann@68010
   283
haftmann@68010
   284
lemma [transfer_rule]:
haftmann@68010
   285
  "rel_fun (=) (rel_fun pcr_integer pcr_integer) (drop_bit :: _ \<Rightarrow> _ \<Rightarrow> int) (drop_bit :: _ \<Rightarrow> _ \<Rightarrow> integer)"
haftmann@68010
   286
  by (unfold drop_bit_eq_div [abs_def]) transfer_prover
haftmann@68010
   287
haftmann@66806
   288
instantiation integer :: unique_euclidean_semiring_numeral
haftmann@61275
   289
begin
haftmann@61275
   290
haftmann@61275
   291
definition divmod_integer :: "num \<Rightarrow> num \<Rightarrow> integer \<times> integer"
haftmann@61275
   292
where
haftmann@61275
   293
  divmod_integer'_def: "divmod_integer m n = (numeral m div numeral n, numeral m mod numeral n)"
haftmann@61275
   294
haftmann@61275
   295
definition divmod_step_integer :: "num \<Rightarrow> integer \<times> integer \<Rightarrow> integer \<times> integer"
haftmann@61275
   296
where
haftmann@61275
   297
  "divmod_step_integer l qr = (let (q, r) = qr
haftmann@61275
   298
    in if r \<ge> numeral l then (2 * q + 1, r - numeral l)
haftmann@61275
   299
    else (2 * q, r))"
haftmann@61275
   300
haftmann@61275
   301
instance proof
haftmann@61275
   302
  show "divmod m n = (numeral m div numeral n :: integer, numeral m mod numeral n)"
haftmann@61275
   303
    for m n by (fact divmod_integer'_def)
haftmann@61275
   304
  show "divmod_step l qr = (let (q, r) = qr
haftmann@61275
   305
    in if r \<ge> numeral l then (2 * q + 1, r - numeral l)
haftmann@61275
   306
    else (2 * q, r))" for l and qr :: "integer \<times> integer"
haftmann@61275
   307
    by (fact divmod_step_integer_def)
haftmann@61275
   308
qed (transfer,
haftmann@61275
   309
  fact le_add_diff_inverse2
haftmann@66806
   310
  unique_euclidean_semiring_numeral_class.div_less
haftmann@66806
   311
  unique_euclidean_semiring_numeral_class.mod_less
haftmann@66806
   312
  unique_euclidean_semiring_numeral_class.div_positive
haftmann@66806
   313
  unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
haftmann@66806
   314
  unique_euclidean_semiring_numeral_class.pos_mod_bound
haftmann@66806
   315
  unique_euclidean_semiring_numeral_class.pos_mod_sign
haftmann@66806
   316
  unique_euclidean_semiring_numeral_class.mod_mult2_eq
haftmann@66806
   317
  unique_euclidean_semiring_numeral_class.div_mult2_eq
haftmann@66806
   318
  unique_euclidean_semiring_numeral_class.discrete)+
haftmann@61275
   319
haftmann@61275
   320
end
haftmann@61275
   321
haftmann@61275
   322
declare divmod_algorithm_code [where ?'a = integer,
haftmann@66190
   323
  folded integer_of_num_def, unfolded integer_of_num_triv, 
haftmann@61275
   324
  code]
haftmann@53069
   325
Andreas@55427
   326
lemma integer_of_nat_0: "integer_of_nat 0 = 0"
Andreas@55427
   327
by transfer simp
Andreas@55427
   328
Andreas@55427
   329
lemma integer_of_nat_1: "integer_of_nat 1 = 1"
Andreas@55427
   330
by transfer simp
Andreas@55427
   331
Andreas@55427
   332
lemma integer_of_nat_numeral:
Andreas@55427
   333
  "integer_of_nat (numeral n) = numeral n"
Andreas@55427
   334
by transfer simp
haftmann@26140
   335
haftmann@68010
   336
wenzelm@60758
   337
subsection \<open>Code theorems for target language integers\<close>
haftmann@51143
   338
wenzelm@60758
   339
text \<open>Constructors\<close>
haftmann@26140
   340
haftmann@51143
   341
definition Pos :: "num \<Rightarrow> integer"
haftmann@51143
   342
where
haftmann@61274
   343
  [simp, code_post]: "Pos = numeral"
haftmann@51143
   344
haftmann@51143
   345
lemma [transfer_rule]:
blanchet@55945
   346
  "rel_fun HOL.eq pcr_integer numeral Pos"
haftmann@51143
   347
  by simp transfer_prover
haftmann@30245
   348
haftmann@61274
   349
lemma Pos_fold [code_unfold]:
haftmann@61274
   350
  "numeral Num.One = Pos Num.One"
haftmann@61274
   351
  "numeral (Num.Bit0 k) = Pos (Num.Bit0 k)"
haftmann@61274
   352
  "numeral (Num.Bit1 k) = Pos (Num.Bit1 k)"
haftmann@61274
   353
  by simp_all
haftmann@61274
   354
haftmann@51143
   355
definition Neg :: "num \<Rightarrow> integer"
haftmann@51143
   356
where
haftmann@54489
   357
  [simp, code_abbrev]: "Neg n = - Pos n"
haftmann@51143
   358
haftmann@51143
   359
lemma [transfer_rule]:
blanchet@55945
   360
  "rel_fun HOL.eq pcr_integer (\<lambda>n. - numeral n) Neg"
haftmann@54489
   361
  by (simp add: Neg_def [abs_def]) transfer_prover
haftmann@51143
   362
haftmann@51143
   363
code_datatype "0::integer" Pos Neg
haftmann@51143
   364
haftmann@64994
   365
  
haftmann@64994
   366
text \<open>A further pair of constructors for generated computations\<close>
haftmann@64994
   367
haftmann@64994
   368
context
haftmann@64994
   369
begin  
haftmann@64994
   370
haftmann@64994
   371
qualified definition positive :: "num \<Rightarrow> integer"
haftmann@64994
   372
  where [simp]: "positive = numeral"
haftmann@64994
   373
haftmann@64994
   374
qualified definition negative :: "num \<Rightarrow> integer"
haftmann@64994
   375
  where [simp]: "negative = uminus \<circ> numeral"
haftmann@64994
   376
haftmann@64994
   377
lemma [code_computation_unfold]:
haftmann@64994
   378
  "numeral = positive"
haftmann@64994
   379
  "Pos = positive"
haftmann@64994
   380
  "Neg = negative"
haftmann@64994
   381
  by (simp_all add: fun_eq_iff)
haftmann@64994
   382
haftmann@64994
   383
end
haftmann@64994
   384
haftmann@51143
   385
wenzelm@60758
   386
text \<open>Auxiliary operations\<close>
haftmann@51143
   387
haftmann@51143
   388
lift_definition dup :: "integer \<Rightarrow> integer"
haftmann@51143
   389
  is "\<lambda>k::int. k + k"
haftmann@51143
   390
  .
haftmann@26140
   391
haftmann@51143
   392
lemma dup_code [code]:
haftmann@51143
   393
  "dup 0 = 0"
haftmann@51143
   394
  "dup (Pos n) = Pos (Num.Bit0 n)"
haftmann@51143
   395
  "dup (Neg n) = Neg (Num.Bit0 n)"
haftmann@54489
   396
  by (transfer, simp only: numeral_Bit0 minus_add_distrib)+
haftmann@51143
   397
haftmann@51143
   398
lift_definition sub :: "num \<Rightarrow> num \<Rightarrow> integer"
haftmann@51143
   399
  is "\<lambda>m n. numeral m - numeral n :: int"
haftmann@51143
   400
  .
haftmann@26140
   401
haftmann@51143
   402
lemma sub_code [code]:
haftmann@51143
   403
  "sub Num.One Num.One = 0"
haftmann@51143
   404
  "sub (Num.Bit0 m) Num.One = Pos (Num.BitM m)"
haftmann@51143
   405
  "sub (Num.Bit1 m) Num.One = Pos (Num.Bit0 m)"
haftmann@51143
   406
  "sub Num.One (Num.Bit0 n) = Neg (Num.BitM n)"
haftmann@51143
   407
  "sub Num.One (Num.Bit1 n) = Neg (Num.Bit0 n)"
haftmann@51143
   408
  "sub (Num.Bit0 m) (Num.Bit0 n) = dup (sub m n)"
haftmann@51143
   409
  "sub (Num.Bit1 m) (Num.Bit1 n) = dup (sub m n)"
haftmann@51143
   410
  "sub (Num.Bit1 m) (Num.Bit0 n) = dup (sub m n) + 1"
haftmann@51143
   411
  "sub (Num.Bit0 m) (Num.Bit1 n) = dup (sub m n) - 1"
haftmann@51143
   412
  by (transfer, simp add: dbl_def dbl_inc_def dbl_dec_def)+
haftmann@28351
   413
haftmann@24999
   414
wenzelm@60758
   415
text \<open>Implementations\<close>
haftmann@24999
   416
haftmann@51143
   417
lemma one_integer_code [code, code_unfold]:
haftmann@51143
   418
  "1 = Pos Num.One"
haftmann@51143
   419
  by simp
haftmann@24999
   420
haftmann@51143
   421
lemma plus_integer_code [code]:
haftmann@51143
   422
  "k + 0 = (k::integer)"
haftmann@51143
   423
  "0 + l = (l::integer)"
haftmann@51143
   424
  "Pos m + Pos n = Pos (m + n)"
haftmann@51143
   425
  "Pos m + Neg n = sub m n"
haftmann@51143
   426
  "Neg m + Pos n = sub n m"
haftmann@51143
   427
  "Neg m + Neg n = Neg (m + n)"
haftmann@51143
   428
  by (transfer, simp)+
haftmann@24999
   429
haftmann@51143
   430
lemma uminus_integer_code [code]:
haftmann@51143
   431
  "uminus 0 = (0::integer)"
haftmann@51143
   432
  "uminus (Pos m) = Neg m"
haftmann@51143
   433
  "uminus (Neg m) = Pos m"
haftmann@51143
   434
  by simp_all
haftmann@28708
   435
haftmann@51143
   436
lemma minus_integer_code [code]:
haftmann@51143
   437
  "k - 0 = (k::integer)"
haftmann@51143
   438
  "0 - l = uminus (l::integer)"
haftmann@51143
   439
  "Pos m - Pos n = sub m n"
haftmann@51143
   440
  "Pos m - Neg n = Pos (m + n)"
haftmann@51143
   441
  "Neg m - Pos n = Neg (m + n)"
haftmann@51143
   442
  "Neg m - Neg n = sub n m"
haftmann@51143
   443
  by (transfer, simp)+
haftmann@46028
   444
haftmann@51143
   445
lemma abs_integer_code [code]:
haftmann@51143
   446
  "\<bar>k\<bar> = (if (k::integer) < 0 then - k else k)"
haftmann@51143
   447
  by simp
huffman@47108
   448
haftmann@51143
   449
lemma sgn_integer_code [code]:
haftmann@51143
   450
  "sgn k = (if k = 0 then 0 else if (k::integer) < 0 then - 1 else 1)"
huffman@47108
   451
  by simp
haftmann@46028
   452
haftmann@51143
   453
lemma times_integer_code [code]:
haftmann@51143
   454
  "k * 0 = (0::integer)"
haftmann@51143
   455
  "0 * l = (0::integer)"
haftmann@51143
   456
  "Pos m * Pos n = Pos (m * n)"
haftmann@51143
   457
  "Pos m * Neg n = Neg (m * n)"
haftmann@51143
   458
  "Neg m * Pos n = Neg (m * n)"
haftmann@51143
   459
  "Neg m * Neg n = Pos (m * n)"
haftmann@51143
   460
  by simp_all
haftmann@51143
   461
haftmann@51143
   462
definition divmod_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer \<times> integer"
haftmann@51143
   463
where
haftmann@51143
   464
  "divmod_integer k l = (k div l, k mod l)"
haftmann@51143
   465
haftmann@66801
   466
lemma fst_divmod_integer [simp]:
haftmann@51143
   467
  "fst (divmod_integer k l) = k div l"
haftmann@51143
   468
  by (simp add: divmod_integer_def)
haftmann@51143
   469
haftmann@66801
   470
lemma snd_divmod_integer [simp]:
haftmann@51143
   471
  "snd (divmod_integer k l) = k mod l"
haftmann@51143
   472
  by (simp add: divmod_integer_def)
haftmann@51143
   473
haftmann@51143
   474
definition divmod_abs :: "integer \<Rightarrow> integer \<Rightarrow> integer \<times> integer"
haftmann@51143
   475
where
haftmann@51143
   476
  "divmod_abs k l = (\<bar>k\<bar> div \<bar>l\<bar>, \<bar>k\<bar> mod \<bar>l\<bar>)"
haftmann@51143
   477
haftmann@51143
   478
lemma fst_divmod_abs [simp]:
haftmann@51143
   479
  "fst (divmod_abs k l) = \<bar>k\<bar> div \<bar>l\<bar>"
haftmann@51143
   480
  by (simp add: divmod_abs_def)
haftmann@51143
   481
haftmann@51143
   482
lemma snd_divmod_abs [simp]:
haftmann@51143
   483
  "snd (divmod_abs k l) = \<bar>k\<bar> mod \<bar>l\<bar>"
haftmann@51143
   484
  by (simp add: divmod_abs_def)
haftmann@28708
   485
haftmann@53069
   486
lemma divmod_abs_code [code]:
haftmann@53069
   487
  "divmod_abs (Pos k) (Pos l) = divmod k l"
haftmann@53069
   488
  "divmod_abs (Neg k) (Neg l) = divmod k l"
haftmann@53069
   489
  "divmod_abs (Neg k) (Pos l) = divmod k l"
haftmann@53069
   490
  "divmod_abs (Pos k) (Neg l) = divmod k l"
haftmann@51143
   491
  "divmod_abs j 0 = (0, \<bar>j\<bar>)"
haftmann@51143
   492
  "divmod_abs 0 j = (0, 0)"
haftmann@51143
   493
  by (simp_all add: prod_eq_iff)
haftmann@51143
   494
haftmann@51143
   495
lemma divmod_integer_code [code]:
haftmann@51143
   496
  "divmod_integer k l =
haftmann@51143
   497
    (if k = 0 then (0, 0) else if l = 0 then (0, k) else
haftmann@51143
   498
    (apsnd \<circ> times \<circ> sgn) l (if sgn k = sgn l
haftmann@51143
   499
      then divmod_abs k l
haftmann@51143
   500
      else (let (r, s) = divmod_abs k l in
haftmann@51143
   501
        if s = 0 then (- r, 0) else (- r - 1, \<bar>l\<bar> - s))))"
haftmann@51143
   502
proof -
haftmann@51143
   503
  have aux1: "\<And>k l::int. sgn k = sgn l \<longleftrightarrow> k = 0 \<and> l = 0 \<or> 0 < l \<and> 0 < k \<or> l < 0 \<and> k < 0"
haftmann@51143
   504
    by (auto simp add: sgn_if)
haftmann@51143
   505
  have aux2: "\<And>q::int. - int_of_integer k = int_of_integer l * q \<longleftrightarrow> int_of_integer k = int_of_integer l * - q" by auto
haftmann@51143
   506
  show ?thesis
blanchet@55414
   507
    by (simp add: prod_eq_iff integer_eq_iff case_prod_beta aux1)
haftmann@51143
   508
      (auto simp add: zdiv_zminus1_eq_if zmod_zminus1_eq_if div_minus_right mod_minus_right aux2)
haftmann@51143
   509
qed
haftmann@51143
   510
haftmann@51143
   511
lemma div_integer_code [code]:
haftmann@51143
   512
  "k div l = fst (divmod_integer k l)"
haftmann@28708
   513
  by simp
haftmann@28708
   514
haftmann@51143
   515
lemma mod_integer_code [code]:
haftmann@51143
   516
  "k mod l = snd (divmod_integer k l)"
haftmann@25767
   517
  by simp
haftmann@24999
   518
haftmann@51143
   519
lemma equal_integer_code [code]:
haftmann@51143
   520
  "HOL.equal 0 (0::integer) \<longleftrightarrow> True"
haftmann@51143
   521
  "HOL.equal 0 (Pos l) \<longleftrightarrow> False"
haftmann@51143
   522
  "HOL.equal 0 (Neg l) \<longleftrightarrow> False"
haftmann@51143
   523
  "HOL.equal (Pos k) 0 \<longleftrightarrow> False"
haftmann@51143
   524
  "HOL.equal (Pos k) (Pos l) \<longleftrightarrow> HOL.equal k l"
haftmann@51143
   525
  "HOL.equal (Pos k) (Neg l) \<longleftrightarrow> False"
haftmann@51143
   526
  "HOL.equal (Neg k) 0 \<longleftrightarrow> False"
haftmann@51143
   527
  "HOL.equal (Neg k) (Pos l) \<longleftrightarrow> False"
haftmann@51143
   528
  "HOL.equal (Neg k) (Neg l) \<longleftrightarrow> HOL.equal k l"
haftmann@51143
   529
  by (simp_all add: equal)
haftmann@51143
   530
haftmann@51143
   531
lemma equal_integer_refl [code nbe]:
haftmann@51143
   532
  "HOL.equal (k::integer) k \<longleftrightarrow> True"
haftmann@51143
   533
  by (fact equal_refl)
haftmann@31266
   534
haftmann@51143
   535
lemma less_eq_integer_code [code]:
haftmann@51143
   536
  "0 \<le> (0::integer) \<longleftrightarrow> True"
haftmann@51143
   537
  "0 \<le> Pos l \<longleftrightarrow> True"
haftmann@51143
   538
  "0 \<le> Neg l \<longleftrightarrow> False"
haftmann@51143
   539
  "Pos k \<le> 0 \<longleftrightarrow> False"
haftmann@51143
   540
  "Pos k \<le> Pos l \<longleftrightarrow> k \<le> l"
haftmann@51143
   541
  "Pos k \<le> Neg l \<longleftrightarrow> False"
haftmann@51143
   542
  "Neg k \<le> 0 \<longleftrightarrow> True"
haftmann@51143
   543
  "Neg k \<le> Pos l \<longleftrightarrow> True"
haftmann@51143
   544
  "Neg k \<le> Neg l \<longleftrightarrow> l \<le> k"
haftmann@51143
   545
  by simp_all
haftmann@51143
   546
haftmann@51143
   547
lemma less_integer_code [code]:
haftmann@51143
   548
  "0 < (0::integer) \<longleftrightarrow> False"
haftmann@51143
   549
  "0 < Pos l \<longleftrightarrow> True"
haftmann@51143
   550
  "0 < Neg l \<longleftrightarrow> False"
haftmann@51143
   551
  "Pos k < 0 \<longleftrightarrow> False"
haftmann@51143
   552
  "Pos k < Pos l \<longleftrightarrow> k < l"
haftmann@51143
   553
  "Pos k < Neg l \<longleftrightarrow> False"
haftmann@51143
   554
  "Neg k < 0 \<longleftrightarrow> True"
haftmann@51143
   555
  "Neg k < Pos l \<longleftrightarrow> True"
haftmann@51143
   556
  "Neg k < Neg l \<longleftrightarrow> l < k"
haftmann@51143
   557
  by simp_all
haftmann@26140
   558
haftmann@51143
   559
lift_definition num_of_integer :: "integer \<Rightarrow> num"
haftmann@51143
   560
  is "num_of_nat \<circ> nat"
haftmann@51143
   561
  .
haftmann@51143
   562
haftmann@51143
   563
lemma num_of_integer_code [code]:
haftmann@51143
   564
  "num_of_integer k = (if k \<le> 1 then Num.One
haftmann@51143
   565
     else let
haftmann@51143
   566
       (l, j) = divmod_integer k 2;
haftmann@51143
   567
       l' = num_of_integer l;
haftmann@51143
   568
       l'' = l' + l'
haftmann@51143
   569
     in if j = 0 then l'' else l'' + Num.One)"
haftmann@51143
   570
proof -
haftmann@51143
   571
  {
haftmann@51143
   572
    assume "int_of_integer k mod 2 = 1"
haftmann@51143
   573
    then have "nat (int_of_integer k mod 2) = nat 1" by simp
haftmann@51143
   574
    moreover assume *: "1 < int_of_integer k"
haftmann@51143
   575
    ultimately have **: "nat (int_of_integer k) mod 2 = 1" by (simp add: nat_mod_distrib)
haftmann@51143
   576
    have "num_of_nat (nat (int_of_integer k)) =
haftmann@51143
   577
      num_of_nat (2 * (nat (int_of_integer k) div 2) + nat (int_of_integer k) mod 2)"
haftmann@51143
   578
      by simp
haftmann@51143
   579
    then have "num_of_nat (nat (int_of_integer k)) =
haftmann@51143
   580
      num_of_nat (nat (int_of_integer k) div 2 + nat (int_of_integer k) div 2 + nat (int_of_integer k) mod 2)"
haftmann@51143
   581
      by (simp add: mult_2)
haftmann@51143
   582
    with ** have "num_of_nat (nat (int_of_integer k)) =
haftmann@51143
   583
      num_of_nat (nat (int_of_integer k) div 2 + nat (int_of_integer k) div 2 + 1)"
haftmann@51143
   584
      by simp
haftmann@51143
   585
  }
haftmann@51143
   586
  note aux = this
haftmann@51143
   587
  show ?thesis
blanchet@55414
   588
    by (auto simp add: num_of_integer_def nat_of_integer_def Let_def case_prod_beta
haftmann@51143
   589
      not_le integer_eq_iff less_eq_integer_def
haftmann@51143
   590
      nat_mult_distrib nat_div_distrib num_of_nat_One num_of_nat_plus_distrib
haftmann@51143
   591
       mult_2 [where 'a=nat] aux add_One)
haftmann@25918
   592
qed
haftmann@25918
   593
haftmann@51143
   594
lemma nat_of_integer_code [code]:
haftmann@51143
   595
  "nat_of_integer k = (if k \<le> 0 then 0
haftmann@51143
   596
     else let
haftmann@51143
   597
       (l, j) = divmod_integer k 2;
haftmann@51143
   598
       l' = nat_of_integer l;
haftmann@51143
   599
       l'' = l' + l'
haftmann@51143
   600
     in if j = 0 then l'' else l'' + 1)"
haftmann@33340
   601
proof -
haftmann@66886
   602
  obtain j where k: "k = integer_of_int j"
haftmann@51143
   603
  proof
haftmann@51143
   604
    show "k = integer_of_int (int_of_integer k)" by simp
haftmann@51143
   605
  qed
haftmann@66886
   606
  have *: "nat j mod 2 = nat_of_integer (of_int j mod 2)" if "j \<ge> 0"
haftmann@66886
   607
    using that by transfer (simp add: nat_mod_distrib)
haftmann@66886
   608
  from k show ?thesis
haftmann@66886
   609
    by (auto simp add: split_def Let_def nat_of_integer_def nat_div_distrib mult_2 [symmetric]
haftmann@66886
   610
      minus_mod_eq_mult_div [symmetric] *)
haftmann@33340
   611
qed
haftmann@28708
   612
haftmann@51143
   613
lemma int_of_integer_code [code]:
haftmann@51143
   614
  "int_of_integer k = (if k < 0 then - (int_of_integer (- k))
haftmann@51143
   615
     else if k = 0 then 0
haftmann@51143
   616
     else let
haftmann@51143
   617
       (l, j) = divmod_integer k 2;
haftmann@51143
   618
       l' = 2 * int_of_integer l
haftmann@51143
   619
     in if j = 0 then l' else l' + 1)"
haftmann@64246
   620
  by (auto simp add: split_def Let_def integer_eq_iff minus_mod_eq_mult_div [symmetric])
haftmann@28708
   621
haftmann@51143
   622
lemma integer_of_int_code [code]:
haftmann@51143
   623
  "integer_of_int k = (if k < 0 then - (integer_of_int (- k))
haftmann@51143
   624
     else if k = 0 then 0
haftmann@51143
   625
     else let
haftmann@60868
   626
       l = 2 * integer_of_int (k div 2);
haftmann@60868
   627
       j = k mod 2
haftmann@60868
   628
     in if j = 0 then l else l + 1)"
haftmann@64246
   629
  by (auto simp add: split_def Let_def integer_eq_iff minus_mod_eq_mult_div [symmetric])
haftmann@51143
   630
haftmann@51143
   631
hide_const (open) Pos Neg sub dup divmod_abs
huffman@46547
   632
haftmann@28708
   633
wenzelm@60758
   634
subsection \<open>Serializer setup for target language integers\<close>
haftmann@24999
   635
haftmann@51143
   636
code_reserved Eval int Integer abs
haftmann@25767
   637
haftmann@52435
   638
code_printing
haftmann@52435
   639
  type_constructor integer \<rightharpoonup>
haftmann@52435
   640
    (SML) "IntInf.int"
haftmann@52435
   641
    and (OCaml) "Big'_int.big'_int"
haftmann@52435
   642
    and (Haskell) "Integer"
haftmann@52435
   643
    and (Scala) "BigInt"
haftmann@52435
   644
    and (Eval) "int"
haftmann@52435
   645
| class_instance integer :: equal \<rightharpoonup>
haftmann@52435
   646
    (Haskell) -
haftmann@24999
   647
haftmann@52435
   648
code_printing
haftmann@52435
   649
  constant "0::integer" \<rightharpoonup>
haftmann@58400
   650
    (SML) "!(0/ :/ IntInf.int)"
haftmann@52435
   651
    and (OCaml) "Big'_int.zero'_big'_int"
haftmann@58400
   652
    and (Haskell) "!(0/ ::/ Integer)"
haftmann@52435
   653
    and (Scala) "BigInt(0)"
huffman@47108
   654
wenzelm@60758
   655
setup \<open>
haftmann@58399
   656
  fold (fn target =>
haftmann@58399
   657
    Numeral.add_code @{const_name Code_Numeral.Pos} I Code_Printer.literal_numeral target
nipkow@67399
   658
    #> Numeral.add_code @{const_name Code_Numeral.Neg} (~) Code_Printer.literal_numeral target)
haftmann@58399
   659
    ["SML", "OCaml", "Haskell", "Scala"]
wenzelm@60758
   660
\<close>
haftmann@51143
   661
haftmann@52435
   662
code_printing
haftmann@52435
   663
  constant "plus :: integer \<Rightarrow> _ \<Rightarrow> _" \<rightharpoonup>
haftmann@52435
   664
    (SML) "IntInf.+ ((_), (_))"
haftmann@52435
   665
    and (OCaml) "Big'_int.add'_big'_int"
haftmann@52435
   666
    and (Haskell) infixl 6 "+"
haftmann@52435
   667
    and (Scala) infixl 7 "+"
haftmann@52435
   668
    and (Eval) infixl 8 "+"
haftmann@52435
   669
| constant "uminus :: integer \<Rightarrow> _" \<rightharpoonup>
haftmann@52435
   670
    (SML) "IntInf.~"
haftmann@52435
   671
    and (OCaml) "Big'_int.minus'_big'_int"
haftmann@52435
   672
    and (Haskell) "negate"
haftmann@52435
   673
    and (Scala) "!(- _)"
haftmann@52435
   674
    and (Eval) "~/ _"
haftmann@52435
   675
| constant "minus :: integer \<Rightarrow> _" \<rightharpoonup>
haftmann@52435
   676
    (SML) "IntInf.- ((_), (_))"
haftmann@52435
   677
    and (OCaml) "Big'_int.sub'_big'_int"
haftmann@52435
   678
    and (Haskell) infixl 6 "-"
haftmann@52435
   679
    and (Scala) infixl 7 "-"
haftmann@52435
   680
    and (Eval) infixl 8 "-"
haftmann@52435
   681
| constant Code_Numeral.dup \<rightharpoonup>
haftmann@52435
   682
    (SML) "IntInf.*/ (2,/ (_))"
haftmann@52435
   683
    and (OCaml) "Big'_int.mult'_big'_int/ (Big'_int.big'_int'_of'_int/ 2)"
haftmann@52435
   684
    and (Haskell) "!(2 * _)"
haftmann@52435
   685
    and (Scala) "!(2 * _)"
haftmann@52435
   686
    and (Eval) "!(2 * _)"
haftmann@52435
   687
| constant Code_Numeral.sub \<rightharpoonup>
haftmann@52435
   688
    (SML) "!(raise/ Fail/ \"sub\")"
haftmann@52435
   689
    and (OCaml) "failwith/ \"sub\""
haftmann@52435
   690
    and (Haskell) "error/ \"sub\""
haftmann@52435
   691
    and (Scala) "!sys.error(\"sub\")"
haftmann@52435
   692
| constant "times :: integer \<Rightarrow> _ \<Rightarrow> _" \<rightharpoonup>
haftmann@52435
   693
    (SML) "IntInf.* ((_), (_))"
haftmann@52435
   694
    and (OCaml) "Big'_int.mult'_big'_int"
haftmann@52435
   695
    and (Haskell) infixl 7 "*"
haftmann@52435
   696
    and (Scala) infixl 8 "*"
haftmann@52435
   697
    and (Eval) infixl 9 "*"
haftmann@52435
   698
| constant Code_Numeral.divmod_abs \<rightharpoonup>
haftmann@52435
   699
    (SML) "IntInf.divMod/ (IntInf.abs _,/ IntInf.abs _)"
haftmann@52435
   700
    and (OCaml) "Big'_int.quomod'_big'_int/ (Big'_int.abs'_big'_int _)/ (Big'_int.abs'_big'_int _)"
haftmann@52435
   701
    and (Haskell) "divMod/ (abs _)/ (abs _)"
haftmann@52435
   702
    and (Scala) "!((k: BigInt) => (l: BigInt) =>/ if (l == 0)/ (BigInt(0), k) else/ (k.abs '/% l.abs))"
haftmann@52435
   703
    and (Eval) "Integer.div'_mod/ (abs _)/ (abs _)"
haftmann@52435
   704
| constant "HOL.equal :: integer \<Rightarrow> _ \<Rightarrow> bool" \<rightharpoonup>
haftmann@52435
   705
    (SML) "!((_ : IntInf.int) = _)"
haftmann@52435
   706
    and (OCaml) "Big'_int.eq'_big'_int"
haftmann@52435
   707
    and (Haskell) infix 4 "=="
haftmann@52435
   708
    and (Scala) infixl 5 "=="
haftmann@52435
   709
    and (Eval) infixl 6 "="
haftmann@52435
   710
| constant "less_eq :: integer \<Rightarrow> _ \<Rightarrow> bool" \<rightharpoonup>
haftmann@52435
   711
    (SML) "IntInf.<= ((_), (_))"
haftmann@52435
   712
    and (OCaml) "Big'_int.le'_big'_int"
haftmann@52435
   713
    and (Haskell) infix 4 "<="
haftmann@52435
   714
    and (Scala) infixl 4 "<="
haftmann@52435
   715
    and (Eval) infixl 6 "<="
haftmann@52435
   716
| constant "less :: integer \<Rightarrow> _ \<Rightarrow> bool" \<rightharpoonup>
haftmann@52435
   717
    (SML) "IntInf.< ((_), (_))"
haftmann@52435
   718
    and (OCaml) "Big'_int.lt'_big'_int"
haftmann@52435
   719
    and (Haskell) infix 4 "<"
haftmann@52435
   720
    and (Scala) infixl 4 "<"
haftmann@52435
   721
    and (Eval) infixl 6 "<"
Andreas@61857
   722
| constant "abs :: integer \<Rightarrow> _" \<rightharpoonup>
Andreas@61857
   723
    (SML) "IntInf.abs"
Andreas@61857
   724
    and (OCaml) "Big'_int.abs'_big'_int"
Andreas@61857
   725
    and (Haskell) "Prelude.abs"
Andreas@61857
   726
    and (Scala) "_.abs"
Andreas@61857
   727
    and (Eval) "abs"
haftmann@51143
   728
haftmann@52435
   729
code_identifier
haftmann@52435
   730
  code_module Code_Numeral \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith
huffman@46547
   731
haftmann@51143
   732
wenzelm@60758
   733
subsection \<open>Type of target language naturals\<close>
haftmann@51143
   734
wenzelm@61076
   735
typedef natural = "UNIV :: nat set"
haftmann@51143
   736
  morphisms nat_of_natural natural_of_nat ..
haftmann@51143
   737
haftmann@59487
   738
setup_lifting type_definition_natural
haftmann@51143
   739
haftmann@51143
   740
lemma natural_eq_iff [termination_simp]:
haftmann@51143
   741
  "m = n \<longleftrightarrow> nat_of_natural m = nat_of_natural n"
haftmann@51143
   742
  by transfer rule
haftmann@51143
   743
haftmann@51143
   744
lemma natural_eqI:
haftmann@51143
   745
  "nat_of_natural m = nat_of_natural n \<Longrightarrow> m = n"
haftmann@51143
   746
  using natural_eq_iff [of m n] by simp
haftmann@51143
   747
haftmann@51143
   748
lemma nat_of_natural_of_nat_inverse [simp]:
haftmann@51143
   749
  "nat_of_natural (natural_of_nat n) = n"
haftmann@51143
   750
  by transfer rule
haftmann@51143
   751
haftmann@51143
   752
lemma natural_of_nat_of_natural_inverse [simp]:
haftmann@51143
   753
  "natural_of_nat (nat_of_natural n) = n"
haftmann@51143
   754
  by transfer rule
haftmann@51143
   755
haftmann@51143
   756
instantiation natural :: "{comm_monoid_diff, semiring_1}"
haftmann@51143
   757
begin
haftmann@51143
   758
haftmann@51143
   759
lift_definition zero_natural :: natural
haftmann@51143
   760
  is "0 :: nat"
haftmann@51143
   761
  .
haftmann@51143
   762
haftmann@51143
   763
declare zero_natural.rep_eq [simp]
haftmann@51143
   764
haftmann@51143
   765
lift_definition one_natural :: natural
haftmann@51143
   766
  is "1 :: nat"
haftmann@51143
   767
  .
haftmann@51143
   768
haftmann@51143
   769
declare one_natural.rep_eq [simp]
haftmann@51143
   770
haftmann@51143
   771
lift_definition plus_natural :: "natural \<Rightarrow> natural \<Rightarrow> natural"
haftmann@51143
   772
  is "plus :: nat \<Rightarrow> nat \<Rightarrow> nat"
haftmann@51143
   773
  .
haftmann@51143
   774
haftmann@51143
   775
declare plus_natural.rep_eq [simp]
haftmann@51143
   776
haftmann@51143
   777
lift_definition minus_natural :: "natural \<Rightarrow> natural \<Rightarrow> natural"
haftmann@51143
   778
  is "minus :: nat \<Rightarrow> nat \<Rightarrow> nat"
haftmann@51143
   779
  .
haftmann@51143
   780
haftmann@51143
   781
declare minus_natural.rep_eq [simp]
haftmann@51143
   782
haftmann@51143
   783
lift_definition times_natural :: "natural \<Rightarrow> natural \<Rightarrow> natural"
haftmann@51143
   784
  is "times :: nat \<Rightarrow> nat \<Rightarrow> nat"
haftmann@51143
   785
  .
haftmann@51143
   786
haftmann@51143
   787
declare times_natural.rep_eq [simp]
haftmann@51143
   788
haftmann@51143
   789
instance proof
haftmann@51143
   790
qed (transfer, simp add: algebra_simps)+
haftmann@51143
   791
haftmann@51143
   792
end
haftmann@51143
   793
haftmann@64241
   794
instance natural :: Rings.dvd ..
haftmann@64241
   795
haftmann@64241
   796
lemma [transfer_rule]:
haftmann@64241
   797
  "rel_fun pcr_natural (rel_fun pcr_natural HOL.iff) Rings.dvd Rings.dvd"
haftmann@64241
   798
  unfolding dvd_def by transfer_prover
haftmann@64241
   799
haftmann@51143
   800
lemma [transfer_rule]:
haftmann@68010
   801
  "rel_fun (=) pcr_natural (of_bool :: bool \<Rightarrow> nat) (of_bool :: bool \<Rightarrow> natural)"
haftmann@68010
   802
  by (unfold of_bool_def [abs_def]) transfer_prover
haftmann@68010
   803
haftmann@68010
   804
lemma [transfer_rule]:
blanchet@55945
   805
  "rel_fun HOL.eq pcr_natural (\<lambda>n::nat. n) (of_nat :: nat \<Rightarrow> natural)"
haftmann@51143
   806
proof -
blanchet@55945
   807
  have "rel_fun HOL.eq pcr_natural (of_nat :: nat \<Rightarrow> nat) (of_nat :: nat \<Rightarrow> natural)"
haftmann@51143
   808
    by (unfold of_nat_def [abs_def]) transfer_prover
haftmann@51143
   809
  then show ?thesis by (simp add: id_def)
haftmann@51143
   810
qed
haftmann@51143
   811
haftmann@51143
   812
lemma [transfer_rule]:
blanchet@55945
   813
  "rel_fun HOL.eq pcr_natural (numeral :: num \<Rightarrow> nat) (numeral :: num \<Rightarrow> natural)"
haftmann@51143
   814
proof -
blanchet@55945
   815
  have "rel_fun HOL.eq pcr_natural (numeral :: num \<Rightarrow> nat) (\<lambda>n. of_nat (numeral n))"
haftmann@51143
   816
    by transfer_prover
haftmann@51143
   817
  then show ?thesis by simp
haftmann@51143
   818
qed
haftmann@51143
   819
haftmann@68010
   820
lemma [transfer_rule]:
haftmann@68010
   821
  "rel_fun pcr_natural (rel_fun (=) pcr_natural) (power :: _ \<Rightarrow> _ \<Rightarrow> nat) (power :: _ \<Rightarrow> _ \<Rightarrow> natural)"
haftmann@68010
   822
  by (unfold power_def [abs_def]) transfer_prover
haftmann@68010
   823
haftmann@51143
   824
lemma nat_of_natural_of_nat [simp]:
haftmann@51143
   825
  "nat_of_natural (of_nat n) = n"
haftmann@51143
   826
  by transfer rule
haftmann@51143
   827
haftmann@51143
   828
lemma natural_of_nat_of_nat [simp, code_abbrev]:
haftmann@51143
   829
  "natural_of_nat = of_nat"
haftmann@51143
   830
  by transfer rule
haftmann@51143
   831
haftmann@51143
   832
lemma of_nat_of_natural [simp]:
haftmann@51143
   833
  "of_nat (nat_of_natural n) = n"
haftmann@51143
   834
  by transfer rule
haftmann@51143
   835
haftmann@51143
   836
lemma nat_of_natural_numeral [simp]:
haftmann@51143
   837
  "nat_of_natural (numeral k) = numeral k"
haftmann@51143
   838
  by transfer rule
haftmann@51143
   839
haftmann@64592
   840
instantiation natural :: "{linordered_semiring, equal}"
haftmann@51143
   841
begin
haftmann@51143
   842
haftmann@51143
   843
lift_definition less_eq_natural :: "natural \<Rightarrow> natural \<Rightarrow> bool"
haftmann@51143
   844
  is "less_eq :: nat \<Rightarrow> nat \<Rightarrow> bool"
haftmann@51143
   845
  .
haftmann@51143
   846
haftmann@51143
   847
declare less_eq_natural.rep_eq [termination_simp]
haftmann@51143
   848
haftmann@51143
   849
lift_definition less_natural :: "natural \<Rightarrow> natural \<Rightarrow> bool"
haftmann@51143
   850
  is "less :: nat \<Rightarrow> nat \<Rightarrow> bool"
haftmann@51143
   851
  .
haftmann@51143
   852
haftmann@51143
   853
declare less_natural.rep_eq [termination_simp]
haftmann@51143
   854
haftmann@51143
   855
lift_definition equal_natural :: "natural \<Rightarrow> natural \<Rightarrow> bool"
haftmann@51143
   856
  is "HOL.equal :: nat \<Rightarrow> nat \<Rightarrow> bool"
haftmann@51143
   857
  .
haftmann@51143
   858
haftmann@51143
   859
instance proof
haftmann@51143
   860
qed (transfer, simp add: algebra_simps equal less_le_not_le [symmetric] linear)+
haftmann@51143
   861
haftmann@24999
   862
end
haftmann@46664
   863
haftmann@51143
   864
lemma [transfer_rule]:
blanchet@55945
   865
  "rel_fun pcr_natural (rel_fun pcr_natural pcr_natural) (min :: _ \<Rightarrow> _ \<Rightarrow> nat) (min :: _ \<Rightarrow> _ \<Rightarrow> natural)"
haftmann@51143
   866
  by (unfold min_def [abs_def]) transfer_prover
haftmann@51143
   867
haftmann@51143
   868
lemma [transfer_rule]:
blanchet@55945
   869
  "rel_fun pcr_natural (rel_fun pcr_natural pcr_natural) (max :: _ \<Rightarrow> _ \<Rightarrow> nat) (max :: _ \<Rightarrow> _ \<Rightarrow> natural)"
haftmann@51143
   870
  by (unfold max_def [abs_def]) transfer_prover
haftmann@51143
   871
haftmann@51143
   872
lemma nat_of_natural_min [simp]:
haftmann@51143
   873
  "nat_of_natural (min k l) = min (nat_of_natural k) (nat_of_natural l)"
haftmann@51143
   874
  by transfer rule
haftmann@51143
   875
haftmann@51143
   876
lemma nat_of_natural_max [simp]:
haftmann@51143
   877
  "nat_of_natural (max k l) = max (nat_of_natural k) (nat_of_natural l)"
haftmann@51143
   878
  by transfer rule
haftmann@51143
   879
haftmann@66806
   880
instantiation natural :: unique_euclidean_semiring
haftmann@64592
   881
begin
haftmann@64592
   882
haftmann@64592
   883
lift_definition divide_natural :: "natural \<Rightarrow> natural \<Rightarrow> natural"
haftmann@64592
   884
  is "divide :: nat \<Rightarrow> nat \<Rightarrow> nat"
haftmann@64592
   885
  .
haftmann@64592
   886
haftmann@64592
   887
declare divide_natural.rep_eq [simp]
haftmann@64592
   888
haftmann@64592
   889
lift_definition modulo_natural :: "natural \<Rightarrow> natural \<Rightarrow> natural"
haftmann@64592
   890
  is "modulo :: nat \<Rightarrow> nat \<Rightarrow> nat"
haftmann@64592
   891
  .
haftmann@64592
   892
haftmann@64592
   893
declare modulo_natural.rep_eq [simp]
haftmann@64592
   894
haftmann@66806
   895
lift_definition euclidean_size_natural :: "natural \<Rightarrow> nat"
haftmann@66806
   896
  is "euclidean_size :: nat \<Rightarrow> nat"
haftmann@66806
   897
  .
haftmann@66806
   898
haftmann@66806
   899
declare euclidean_size_natural.rep_eq [simp]
haftmann@66806
   900
haftmann@66838
   901
lift_definition division_segment_natural :: "natural \<Rightarrow> natural"
haftmann@66838
   902
  is "division_segment :: nat \<Rightarrow> nat"
haftmann@66806
   903
  .
haftmann@66806
   904
haftmann@66838
   905
declare division_segment_natural.rep_eq [simp]
haftmann@66806
   906
haftmann@64592
   907
instance
haftmann@66806
   908
  by (standard; transfer)
haftmann@66806
   909
    (auto simp add: algebra_simps unit_factor_nat_def gr0_conv_Suc)
haftmann@64592
   910
haftmann@64592
   911
end
haftmann@64592
   912
haftmann@66806
   913
lemma [code]:
haftmann@66806
   914
  "euclidean_size = nat_of_natural"
haftmann@66806
   915
  by (simp add: fun_eq_iff)
haftmann@66806
   916
haftmann@66806
   917
lemma [code]:
haftmann@66838
   918
  "division_segment (n::natural) = 1"
haftmann@66838
   919
  by (simp add: natural_eq_iff)
haftmann@66806
   920
haftmann@67905
   921
instance natural :: linordered_semidom
haftmann@67905
   922
  by (standard; transfer) simp_all
haftmann@67905
   923
haftmann@66815
   924
instance natural :: semiring_parity
haftmann@66839
   925
  by (standard; transfer) simp_all
haftmann@66815
   926
haftmann@68010
   927
lemma [transfer_rule]:
haftmann@68010
   928
  "rel_fun (=) (rel_fun pcr_natural pcr_natural) (push_bit :: _ \<Rightarrow> _ \<Rightarrow> nat) (push_bit :: _ \<Rightarrow> _ \<Rightarrow> natural)"
haftmann@68010
   929
  by (unfold push_bit_eq_mult [abs_def]) transfer_prover
haftmann@68010
   930
haftmann@68010
   931
lemma [transfer_rule]:
haftmann@68010
   932
  "rel_fun (=) (rel_fun pcr_natural pcr_natural) (take_bit :: _ \<Rightarrow> _ \<Rightarrow> nat) (take_bit :: _ \<Rightarrow> _ \<Rightarrow> natural)"
haftmann@68010
   933
  by (unfold take_bit_eq_mod [abs_def]) transfer_prover
haftmann@68010
   934
haftmann@68010
   935
lemma [transfer_rule]:
haftmann@68010
   936
  "rel_fun (=) (rel_fun pcr_natural pcr_natural) (drop_bit :: _ \<Rightarrow> _ \<Rightarrow> nat) (drop_bit :: _ \<Rightarrow> _ \<Rightarrow> natural)"
haftmann@68010
   937
  by (unfold drop_bit_eq_div [abs_def]) transfer_prover
haftmann@68010
   938
haftmann@51143
   939
lift_definition natural_of_integer :: "integer \<Rightarrow> natural"
haftmann@51143
   940
  is "nat :: int \<Rightarrow> nat"
haftmann@51143
   941
  .
haftmann@51143
   942
haftmann@51143
   943
lift_definition integer_of_natural :: "natural \<Rightarrow> integer"
haftmann@51143
   944
  is "of_nat :: nat \<Rightarrow> int"
haftmann@51143
   945
  .
haftmann@51143
   946
haftmann@51143
   947
lemma natural_of_integer_of_natural [simp]:
haftmann@51143
   948
  "natural_of_integer (integer_of_natural n) = n"
haftmann@51143
   949
  by transfer simp
haftmann@51143
   950
haftmann@51143
   951
lemma integer_of_natural_of_integer [simp]:
haftmann@51143
   952
  "integer_of_natural (natural_of_integer k) = max 0 k"
haftmann@51143
   953
  by transfer auto
haftmann@51143
   954
haftmann@51143
   955
lemma int_of_integer_of_natural [simp]:
haftmann@51143
   956
  "int_of_integer (integer_of_natural n) = of_nat (nat_of_natural n)"
haftmann@51143
   957
  by transfer rule
haftmann@51143
   958
haftmann@51143
   959
lemma integer_of_natural_of_nat [simp]:
haftmann@51143
   960
  "integer_of_natural (of_nat n) = of_nat n"
haftmann@51143
   961
  by transfer rule
haftmann@51143
   962
haftmann@51143
   963
lemma [measure_function]:
haftmann@51143
   964
  "is_measure nat_of_natural"
haftmann@51143
   965
  by (rule is_measure_trivial)
haftmann@51143
   966
haftmann@51143
   967
wenzelm@60758
   968
subsection \<open>Inductive representation of target language naturals\<close>
haftmann@51143
   969
haftmann@51143
   970
lift_definition Suc :: "natural \<Rightarrow> natural"
haftmann@51143
   971
  is Nat.Suc
haftmann@51143
   972
  .
haftmann@51143
   973
haftmann@51143
   974
declare Suc.rep_eq [simp]
haftmann@51143
   975
blanchet@58306
   976
old_rep_datatype "0::natural" Suc
haftmann@51143
   977
  by (transfer, fact nat.induct nat.inject nat.distinct)+
haftmann@51143
   978
blanchet@55416
   979
lemma natural_cases [case_names nat, cases type: natural]:
haftmann@51143
   980
  fixes m :: natural
haftmann@51143
   981
  assumes "\<And>n. m = of_nat n \<Longrightarrow> P"
haftmann@51143
   982
  shows P
haftmann@51143
   983
  using assms by transfer blast
haftmann@51143
   984
blanchet@67332
   985
instantiation natural :: size
blanchet@67332
   986
begin
blanchet@58379
   987
blanchet@67332
   988
definition size_nat where [simp, code]: "size_nat = nat_of_natural"
blanchet@67332
   989
blanchet@67332
   990
instance ..
blanchet@67332
   991
blanchet@67332
   992
end
blanchet@58379
   993
haftmann@51143
   994
lemma natural_decr [termination_simp]:
haftmann@51143
   995
  "n \<noteq> 0 \<Longrightarrow> nat_of_natural n - Nat.Suc 0 < nat_of_natural n"
haftmann@51143
   996
  by transfer simp
haftmann@51143
   997
blanchet@58379
   998
lemma natural_zero_minus_one: "(0::natural) - 1 = 0"
blanchet@58379
   999
  by (rule zero_diff)
haftmann@51143
  1000
blanchet@58379
  1001
lemma Suc_natural_minus_one: "Suc n - 1 = n"
haftmann@51143
  1002
  by transfer simp
haftmann@51143
  1003
haftmann@51143
  1004
hide_const (open) Suc
haftmann@51143
  1005
haftmann@51143
  1006
wenzelm@60758
  1007
subsection \<open>Code refinement for target language naturals\<close>
haftmann@51143
  1008
haftmann@51143
  1009
lift_definition Nat :: "integer \<Rightarrow> natural"
haftmann@51143
  1010
  is nat
haftmann@51143
  1011
  .
haftmann@51143
  1012
haftmann@51143
  1013
lemma [code_post]:
haftmann@51143
  1014
  "Nat 0 = 0"
haftmann@51143
  1015
  "Nat 1 = 1"
haftmann@51143
  1016
  "Nat (numeral k) = numeral k"
haftmann@51143
  1017
  by (transfer, simp)+
haftmann@51143
  1018
haftmann@51143
  1019
lemma [code abstype]:
haftmann@51143
  1020
  "Nat (integer_of_natural n) = n"
haftmann@51143
  1021
  by transfer simp
haftmann@51143
  1022
haftmann@63174
  1023
lemma [code]:
haftmann@63174
  1024
  "natural_of_nat n = natural_of_integer (integer_of_nat n)"
haftmann@63174
  1025
  by transfer simp
haftmann@51143
  1026
haftmann@51143
  1027
lemma [code abstract]:
haftmann@51143
  1028
  "integer_of_natural (natural_of_integer k) = max 0 k"
haftmann@51143
  1029
  by simp
haftmann@51143
  1030
haftmann@51143
  1031
lemma [code_abbrev]:
haftmann@51143
  1032
  "natural_of_integer (Code_Numeral.Pos k) = numeral k"
haftmann@51143
  1033
  by transfer simp
haftmann@51143
  1034
haftmann@51143
  1035
lemma [code abstract]:
haftmann@51143
  1036
  "integer_of_natural 0 = 0"
haftmann@51143
  1037
  by transfer simp
haftmann@51143
  1038
haftmann@51143
  1039
lemma [code abstract]:
haftmann@51143
  1040
  "integer_of_natural 1 = 1"
haftmann@51143
  1041
  by transfer simp
haftmann@51143
  1042
haftmann@51143
  1043
lemma [code abstract]:
haftmann@51143
  1044
  "integer_of_natural (Code_Numeral.Suc n) = integer_of_natural n + 1"
haftmann@51143
  1045
  by transfer simp
haftmann@51143
  1046
haftmann@51143
  1047
lemma [code]:
haftmann@51143
  1048
  "nat_of_natural = nat_of_integer \<circ> integer_of_natural"
haftmann@51143
  1049
  by transfer (simp add: fun_eq_iff)
haftmann@51143
  1050
haftmann@51143
  1051
lemma [code, code_unfold]:
blanchet@55416
  1052
  "case_natural f g n = (if n = 0 then f else g (n - 1))"
haftmann@51143
  1053
  by (cases n rule: natural.exhaust) (simp_all, simp add: Suc_def)
haftmann@51143
  1054
blanchet@55642
  1055
declare natural.rec [code del]
haftmann@51143
  1056
haftmann@51143
  1057
lemma [code abstract]:
haftmann@51143
  1058
  "integer_of_natural (m + n) = integer_of_natural m + integer_of_natural n"
haftmann@51143
  1059
  by transfer simp
haftmann@51143
  1060
haftmann@51143
  1061
lemma [code abstract]:
haftmann@51143
  1062
  "integer_of_natural (m - n) = max 0 (integer_of_natural m - integer_of_natural n)"
haftmann@51143
  1063
  by transfer simp
haftmann@51143
  1064
haftmann@51143
  1065
lemma [code abstract]:
haftmann@51143
  1066
  "integer_of_natural (m * n) = integer_of_natural m * integer_of_natural n"
haftmann@64592
  1067
  by transfer simp
haftmann@64592
  1068
haftmann@51143
  1069
lemma [code abstract]:
haftmann@51143
  1070
  "integer_of_natural (m div n) = integer_of_natural m div integer_of_natural n"
haftmann@51143
  1071
  by transfer (simp add: zdiv_int)
haftmann@51143
  1072
haftmann@51143
  1073
lemma [code abstract]:
haftmann@51143
  1074
  "integer_of_natural (m mod n) = integer_of_natural m mod integer_of_natural n"
haftmann@51143
  1075
  by transfer (simp add: zmod_int)
haftmann@51143
  1076
haftmann@51143
  1077
lemma [code]:
haftmann@51143
  1078
  "HOL.equal m n \<longleftrightarrow> HOL.equal (integer_of_natural m) (integer_of_natural n)"
haftmann@51143
  1079
  by transfer (simp add: equal)
haftmann@51143
  1080
blanchet@58379
  1081
lemma [code nbe]: "HOL.equal n (n::natural) \<longleftrightarrow> True"
blanchet@58379
  1082
  by (rule equal_class.equal_refl)
haftmann@51143
  1083
blanchet@58379
  1084
lemma [code]: "m \<le> n \<longleftrightarrow> integer_of_natural m \<le> integer_of_natural n"
haftmann@51143
  1085
  by transfer simp
haftmann@51143
  1086
blanchet@58379
  1087
lemma [code]: "m < n \<longleftrightarrow> integer_of_natural m < integer_of_natural n"
haftmann@51143
  1088
  by transfer simp
haftmann@51143
  1089
haftmann@51143
  1090
hide_const (open) Nat
haftmann@51143
  1091
kuncar@55736
  1092
lifting_update integer.lifting
kuncar@55736
  1093
lifting_forget integer.lifting
kuncar@55736
  1094
kuncar@55736
  1095
lifting_update natural.lifting
kuncar@55736
  1096
lifting_forget natural.lifting
haftmann@51143
  1097
haftmann@51143
  1098
code_reflect Code_Numeral
haftmann@63174
  1099
  datatypes natural
haftmann@63174
  1100
  functions "Code_Numeral.Suc" "0 :: natural" "1 :: natural"
haftmann@63174
  1101
    "plus :: natural \<Rightarrow> _" "minus :: natural \<Rightarrow> _"
haftmann@63174
  1102
    "times :: natural \<Rightarrow> _" "divide :: natural \<Rightarrow> _"
haftmann@63950
  1103
    "modulo :: natural \<Rightarrow> _"
haftmann@63174
  1104
    integer_of_natural natural_of_integer
haftmann@51143
  1105
haftmann@51143
  1106
end