src/HOL/Orderings.thy
author haftmann
Wed Nov 08 19:46:10 2006 +0100 (2006-11-08)
changeset 21248 3fd22b0939ff
parent 21216 1c8580913738
child 21259 63ab016c99ca
permissions -rw-r--r--
abstract ordering theories
nipkow@15524
     1
(*  Title:      HOL/Orderings.thy
nipkow@15524
     2
    ID:         $Id$
nipkow@15524
     3
    Author:     Tobias Nipkow, Markus Wenzel, and Larry Paulson
nipkow@15524
     4
*)
nipkow@15524
     5
haftmann@21083
     6
header {* Abstract orderings *}
nipkow@15524
     7
nipkow@15524
     8
theory Orderings
haftmann@21216
     9
imports Code_Generator
nipkow@15524
    10
begin
nipkow@15524
    11
haftmann@21083
    12
section {* Abstract orderings *}
haftmann@21083
    13
haftmann@21083
    14
subsection {* Order signatures *}
nipkow@15524
    15
haftmann@21194
    16
class ord =
haftmann@20588
    17
  fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
wenzelm@21204
    18
    and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
wenzelm@21204
    19
begin
wenzelm@21204
    20
wenzelm@21204
    21
notation
wenzelm@21204
    22
  less_eq  ("op \<^loc><=")
wenzelm@21204
    23
  less_eq  ("(_/ \<^loc><= _)" [50, 51] 50)
wenzelm@21204
    24
  less  ("op \<^loc><")
wenzelm@21204
    25
  less  ("(_/ \<^loc>< _)"  [50, 51] 50)
wenzelm@21204
    26
wenzelm@21204
    27
notation (xsymbols)
wenzelm@21204
    28
  less_eq  ("op \<^loc>\<le>")
wenzelm@21204
    29
  less_eq  ("(_/ \<^loc>\<le> _)"  [50, 51] 50)
nipkow@15524
    30
wenzelm@21204
    31
notation (HTML output)
wenzelm@21204
    32
  less_eq  ("op \<^loc>\<le>")
wenzelm@21204
    33
  less_eq  ("(_/ \<^loc>\<le> _)"  [50, 51] 50)
wenzelm@21204
    34
wenzelm@21204
    35
abbreviation (input)
wenzelm@21204
    36
  greater  (infix "\<^loc>>" 50)
wenzelm@21204
    37
  "x \<^loc>> y \<equiv> y \<^loc>< x"
wenzelm@21204
    38
  greater_eq  (infix "\<^loc>>=" 50)
wenzelm@21204
    39
  "x \<^loc>>= y \<equiv> y \<^loc><= x"
wenzelm@21204
    40
wenzelm@21204
    41
notation (xsymbols)
wenzelm@21204
    42
  greater_eq  (infixl "\<^loc>\<ge>" 50)
wenzelm@21204
    43
wenzelm@21204
    44
end
wenzelm@21204
    45
wenzelm@21204
    46
notation
wenzelm@19656
    47
  less_eq  ("op <=")
wenzelm@19656
    48
  less_eq  ("(_/ <= _)" [50, 51] 50)
wenzelm@21204
    49
  less  ("op <")
wenzelm@21204
    50
  less  ("(_/ < _)"  [50, 51] 50)
wenzelm@21204
    51
  
wenzelm@21204
    52
notation (xsymbols)
wenzelm@19656
    53
  less_eq  ("op \<le>")
wenzelm@19656
    54
  less_eq  ("(_/ \<le> _)"  [50, 51] 50)
nipkow@15524
    55
wenzelm@21204
    56
notation (HTML output)
wenzelm@21204
    57
  less_eq  ("op \<le>")
wenzelm@21204
    58
  less_eq  ("(_/ \<le> _)"  [50, 51] 50)
haftmann@20714
    59
wenzelm@19536
    60
abbreviation (input)
wenzelm@19536
    61
  greater  (infixl ">" 50)
haftmann@20714
    62
  "x > y \<equiv> y < x"
wenzelm@19536
    63
  greater_eq  (infixl ">=" 50)
haftmann@20714
    64
  "x >= y \<equiv> y <= x"
haftmann@20714
    65
  
wenzelm@21204
    66
notation (xsymbols)
wenzelm@19656
    67
  greater_eq  (infixl "\<ge>" 50)
nipkow@15524
    68
nipkow@15524
    69
haftmann@21083
    70
subsection {* Partial orderings *}
nipkow@15524
    71
haftmann@21216
    72
locale partial_order =
haftmann@21216
    73
  fixes below :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infixl "\<sqsubseteq>" 50)
haftmann@21216
    74
  fixes less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infixl "\<sqsubset>" 50)
haftmann@21216
    75
  assumes refl [iff]: "x \<sqsubseteq> x"
haftmann@21216
    76
  and trans: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> z"
haftmann@21216
    77
  and antisym: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> x \<Longrightarrow> x = y"
haftmann@21248
    78
  and less_le: "x \<sqsubset> y \<longleftrightarrow> x \<sqsubseteq> y \<and> x \<noteq> y"
haftmann@21248
    79
begin
haftmann@21248
    80
haftmann@21248
    81
abbreviation (input)
haftmann@21248
    82
  greater_eq (infixl "\<sqsupseteq>" 50)
haftmann@21248
    83
  "x \<sqsupseteq> y \<equiv> y \<sqsubseteq> x"
haftmann@21248
    84
haftmann@21248
    85
abbreviation (input)
haftmann@21248
    86
  greater (infixl "\<sqsupset>" 50)
haftmann@21248
    87
  "x \<sqsupset> y \<equiv> y \<sqsubset> x"
haftmann@21248
    88
haftmann@21248
    89
end
haftmann@21216
    90
nipkow@15524
    91
axclass order < ord
nipkow@15524
    92
  order_refl [iff]: "x <= x"
nipkow@15524
    93
  order_trans: "x <= y ==> y <= z ==> x <= z"
nipkow@15524
    94
  order_antisym: "x <= y ==> y <= x ==> x = y"
nipkow@15524
    95
  order_less_le: "(x < y) = (x <= y & x ~= y)"
nipkow@15524
    96
ballarin@15837
    97
interpretation order:
haftmann@21216
    98
  partial_order ["op \<le> \<Colon> 'a\<Colon>order \<Rightarrow> 'a \<Rightarrow> bool" "op < \<Colon> 'a\<Colon>order \<Rightarrow> 'a \<Rightarrow> bool"]
nipkow@15524
    99
apply(rule partial_order.intro)
haftmann@21216
   100
apply(rule order_refl, erule (1) order_trans, erule (1) order_antisym, rule order_less_le)
nipkow@15524
   101
done
nipkow@15524
   102
haftmann@21248
   103
context partial_order
haftmann@21248
   104
begin
haftmann@21248
   105
nipkow@15524
   106
text {* Reflexivity. *}
nipkow@15524
   107
haftmann@21248
   108
lemma eq_refl: "x = y \<Longrightarrow> x \<sqsubseteq> y"
nipkow@15524
   109
    -- {* This form is useful with the classical reasoner. *}
haftmann@21248
   110
  by (erule ssubst) (rule refl)
nipkow@15524
   111
haftmann@21248
   112
lemma less_irrefl [iff]: "\<not> x \<sqsubset> x"
haftmann@21248
   113
  by (simp add: less_le)
nipkow@15524
   114
haftmann@21248
   115
lemma le_less: "x \<sqsubseteq> y \<longleftrightarrow> x \<sqsubset> y \<or> x = y"
nipkow@15524
   116
    -- {* NOT suitable for iff, since it can cause PROOF FAILED. *}
haftmann@21248
   117
  by (simp add: less_le) blast
nipkow@15524
   118
haftmann@21248
   119
lemma le_imp_less_or_eq: "x \<sqsubseteq> y \<Longrightarrow> x \<sqsubset> y \<or> x = y"
haftmann@21248
   120
  unfolding less_le by blast
nipkow@15524
   121
haftmann@21248
   122
lemma less_imp_le: "x \<sqsubset> y \<Longrightarrow> x \<sqsubseteq> y"
haftmann@21248
   123
  unfolding less_le by blast
haftmann@21248
   124
nipkow@15524
   125
nipkow@15524
   126
text {* Asymmetry. *}
nipkow@15524
   127
haftmann@21248
   128
lemma less_not_sym: "x \<sqsubset> y \<Longrightarrow> \<not> (y \<sqsubset> x)"
haftmann@21248
   129
  by (simp add: less_le antisym)
nipkow@15524
   130
haftmann@21248
   131
lemma less_asym: "x \<sqsubset> y \<Longrightarrow> (\<not> P \<Longrightarrow> y \<sqsubset> x) \<Longrightarrow> P"
haftmann@21248
   132
  by (drule less_not_sym, erule contrapos_np) simp
nipkow@15524
   133
haftmann@21248
   134
lemma eq_iff: "x = y \<longleftrightarrow> x \<sqsubseteq> y \<and> y \<sqsubseteq> x"
haftmann@21248
   135
  by (blast intro: antisym)
nipkow@15524
   136
haftmann@21248
   137
lemma antisym_conv: "y \<sqsubseteq> x \<Longrightarrow> x \<sqsubseteq> y \<longleftrightarrow> x = y"
haftmann@21248
   138
  by (blast intro: antisym)
nipkow@15524
   139
haftmann@21248
   140
lemma less_imp_neq: "x \<sqsubset> y \<Longrightarrow> x \<noteq> y"
haftmann@21248
   141
  by (erule contrapos_pn, erule subst, rule less_irrefl)
haftmann@21248
   142
haftmann@21083
   143
nipkow@15524
   144
text {* Transitivity. *}
nipkow@15524
   145
haftmann@21248
   146
lemma less_trans: "\<lbrakk> x \<sqsubset> y; y \<sqsubset> z \<rbrakk> \<Longrightarrow> x \<sqsubset> z"
haftmann@21248
   147
  by (simp add: less_le) (blast intro: trans antisym)
nipkow@15524
   148
haftmann@21248
   149
lemma le_less_trans: "\<lbrakk> x \<sqsubseteq> y; y \<sqsubset> z \<rbrakk> \<Longrightarrow> x \<sqsubset> z"
haftmann@21248
   150
  by (simp add: less_le) (blast intro: trans antisym)
nipkow@15524
   151
haftmann@21248
   152
lemma less_le_trans: "\<lbrakk> x \<sqsubset> y; y \<sqsubseteq> z \<rbrakk> \<Longrightarrow> x \<sqsubset> z"
haftmann@21248
   153
  by (simp add: less_le) (blast intro: trans antisym)
nipkow@15524
   154
nipkow@15524
   155
nipkow@15524
   156
text {* Useful for simplification, but too risky to include by default. *}
nipkow@15524
   157
haftmann@21248
   158
lemma less_imp_not_less: "x \<sqsubset> y \<Longrightarrow> (\<not> y \<sqsubset> x) \<longleftrightarrow> True"
haftmann@21248
   159
  by (blast elim: less_asym)
nipkow@15524
   160
haftmann@21248
   161
lemma less_imp_triv: "x \<sqsubset> y \<Longrightarrow> (y \<sqsubset> x \<longrightarrow> P) \<longleftrightarrow> True"
haftmann@21248
   162
  by (blast elim: less_asym)
nipkow@15524
   163
haftmann@21248
   164
lemma less_imp_not_eq: "x \<sqsubset> y \<Longrightarrow> (x = y) \<longleftrightarrow> False"
nipkow@15524
   165
  by auto
nipkow@15524
   166
haftmann@21248
   167
lemma less_imp_not_eq2: "x \<sqsubset> y \<Longrightarrow> (y = x) \<longleftrightarrow> False"
nipkow@15524
   168
  by auto
nipkow@15524
   169
haftmann@21248
   170
haftmann@21083
   171
text {* Transitivity rules for calculational reasoning *}
nipkow@15524
   172
haftmann@21248
   173
lemma neq_le_trans: "\<lbrakk> a \<noteq> b; a \<sqsubseteq> b \<rbrakk> \<Longrightarrow> a \<sqsubset> b"
haftmann@21248
   174
  by (simp add: less_le)
nipkow@15524
   175
haftmann@21248
   176
lemma le_neq_trans: "\<lbrakk> a \<sqsubseteq> b; a \<noteq> b \<rbrakk> \<Longrightarrow> a \<sqsubset> b"
haftmann@21248
   177
  by (simp add: less_le)
nipkow@15524
   178
haftmann@21248
   179
lemma less_asym': "\<lbrakk> a \<sqsubset> b; b \<sqsubset> a \<rbrakk> \<Longrightarrow> P"
haftmann@21248
   180
  by (rule less_asym)
haftmann@21248
   181
haftmann@21248
   182
end
nipkow@15524
   183
nipkow@15524
   184
haftmann@21216
   185
subsection {* Linear (total) orderings *}
haftmann@21216
   186
haftmann@21216
   187
locale linear_order = partial_order +
haftmann@21216
   188
  assumes linear: "x \<sqsubseteq> y \<or> y \<sqsubseteq> x"
nipkow@15524
   189
nipkow@15524
   190
axclass linorder < order
nipkow@15524
   191
  linorder_linear: "x <= y | y <= x"
nipkow@15524
   192
haftmann@21216
   193
interpretation linorder:
haftmann@21216
   194
  linear_order ["op \<le> \<Colon> 'a\<Colon>linorder \<Rightarrow> 'a \<Rightarrow> bool" "op < \<Colon> 'a\<Colon>linorder \<Rightarrow> 'a \<Rightarrow> bool"]
haftmann@21216
   195
  by unfold_locales (rule linorder_linear)
haftmann@21216
   196
haftmann@21248
   197
context linear_order
haftmann@21248
   198
begin
haftmann@21248
   199
haftmann@21248
   200
lemma trichotomy: "x \<sqsubset> y \<or> x = y \<or> y \<sqsubset> x"
haftmann@21248
   201
  unfolding less_le using less_le linear by blast 
haftmann@21248
   202
haftmann@21248
   203
lemma le_less_linear: "x \<sqsubseteq> y \<or> y \<sqsubset> x"
haftmann@21248
   204
  by (simp add: le_less trichotomy)
haftmann@21248
   205
haftmann@21248
   206
lemma le_cases [case_names le ge]:
haftmann@21248
   207
  "\<lbrakk> x \<sqsubseteq> y \<Longrightarrow> P; y \<sqsubseteq> x \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
haftmann@21248
   208
  using linear by blast
haftmann@21248
   209
haftmann@21248
   210
lemma cases [case_names less equal greater]:
haftmann@21248
   211
    "\<lbrakk> x \<sqsubset> y \<Longrightarrow> P; x = y \<Longrightarrow> P; y \<sqsubset> x \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
haftmann@21248
   212
  using trichotomy by blast
haftmann@21248
   213
haftmann@21248
   214
lemma not_less: "\<not> x \<sqsubset> y \<longleftrightarrow> y \<sqsubseteq> x"
haftmann@21248
   215
  apply (simp add: less_le)
haftmann@21248
   216
  using linear apply (blast intro: antisym)
nipkow@15524
   217
  done
nipkow@15524
   218
haftmann@21248
   219
lemma not_le: "\<not> x \<sqsubseteq> y \<longleftrightarrow> y \<sqsubset> x"
haftmann@21248
   220
  apply (simp add: less_le)
haftmann@21248
   221
  using linear apply (blast intro: antisym)
nipkow@15524
   222
  done
nipkow@15524
   223
haftmann@21248
   224
lemma neq_iff: "x \<noteq> y \<longleftrightarrow> x \<sqsubset> y \<or> y \<sqsubset> x"
haftmann@21248
   225
  by (cut_tac x = x and y = y in trichotomy, auto)
nipkow@15524
   226
haftmann@21248
   227
lemma neqE: "\<lbrakk> x \<noteq> y; x \<sqsubset> y \<Longrightarrow> R; y \<sqsubset> x \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R"
haftmann@21248
   228
  by (simp add: neq_iff) blast
nipkow@15524
   229
haftmann@21248
   230
lemma antisym_conv1: "\<not> x \<sqsubset> y \<Longrightarrow> x \<sqsubseteq> y \<longleftrightarrow> x = y"
haftmann@21248
   231
  by (blast intro: antisym dest: not_less [THEN iffD1])
nipkow@15524
   232
haftmann@21248
   233
lemma antisym_conv2: "x \<sqsubseteq> y \<Longrightarrow> \<not> x \<sqsubset> y \<longleftrightarrow> x = y"
haftmann@21248
   234
  by (blast intro: antisym dest: not_less [THEN iffD1])
nipkow@15524
   235
haftmann@21248
   236
lemma antisym_conv3: "\<not> y \<sqsubset> x \<Longrightarrow> \<not> x \<sqsubset> y \<longleftrightarrow> x = y"
haftmann@21248
   237
  by (blast intro: antisym dest: not_less [THEN iffD1])
nipkow@15524
   238
paulson@16796
   239
text{*Replacing the old Nat.leI*}
haftmann@21248
   240
lemma leI: "\<not> x \<sqsubset> y \<Longrightarrow> y \<sqsubseteq> x"
haftmann@21248
   241
  unfolding not_less .
paulson@16796
   242
haftmann@21248
   243
lemma leD: "y \<sqsubseteq> x \<Longrightarrow> \<not> x \<sqsubset> y"
haftmann@21248
   244
  unfolding not_less .
paulson@16796
   245
paulson@16796
   246
(*FIXME inappropriate name (or delete altogether)*)
haftmann@21248
   247
lemma not_leE: "\<not> y \<sqsubseteq> x \<Longrightarrow> x \<sqsubset> y"
haftmann@21248
   248
  unfolding not_le .
haftmann@21248
   249
haftmann@21248
   250
end
haftmann@21248
   251
haftmann@21248
   252
haftmann@21248
   253
subsection {* Name duplicates *}
haftmann@21248
   254
haftmann@21248
   255
lemmas order_eq_refl [where 'b = "?'a::order"] = order.eq_refl
haftmann@21248
   256
lemmas order_less_irrefl [where 'b = "?'a::order"] = order.less_irrefl
haftmann@21248
   257
lemmas order_le_less [where 'b = "?'a::order"] = order.le_less
haftmann@21248
   258
lemmas order_le_imp_less_or_eq [where 'b = "?'a::order"] = order.le_imp_less_or_eq
haftmann@21248
   259
lemmas order_less_imp_le [where 'b = "?'a::order"] = order.less_imp_le
haftmann@21248
   260
lemmas order_less_not_sym [where 'b = "?'a::order"] = order.less_not_sym
haftmann@21248
   261
lemmas order_less_asym [where 'b = "?'a::order"] = order.less_asym
haftmann@21248
   262
lemmas order_eq_iff [where 'b = "?'a::order"] = order.eq_iff
haftmann@21248
   263
lemmas order_antisym_conv [where 'b = "?'a::order"] = order.antisym_conv
haftmann@21248
   264
lemmas less_imp_neq [where 'b = "?'a::order"] = order.less_imp_neq
haftmann@21248
   265
lemmas order_less_trans [where 'b = "?'a::order"] = order.less_trans
haftmann@21248
   266
lemmas order_le_less_trans [where 'b = "?'a::order"] = order.le_less_trans
haftmann@21248
   267
lemmas order_less_le_trans [where 'b = "?'a::order"] = order.less_le_trans
haftmann@21248
   268
lemmas order_less_imp_not_less [where 'b = "?'a::order"] = order.less_imp_not_less
haftmann@21248
   269
lemmas order_less_imp_triv [where 'b = "?'a::order"] = order.less_imp_triv
haftmann@21248
   270
lemmas order_less_imp_not_eq [where 'b = "?'a::order"] = order.less_imp_not_eq
haftmann@21248
   271
lemmas order_less_imp_not_eq2 [where 'b = "?'a::order"] = order.less_imp_not_eq2
haftmann@21248
   272
lemmas order_neq_le_trans [where 'b = "?'a::order"] = order.neq_le_trans
haftmann@21248
   273
lemmas order_le_neq_trans [where 'b = "?'a::order"] = order.le_neq_trans
haftmann@21248
   274
lemmas order_less_asym' [where 'b = "?'a::order"] = order.less_asym'
haftmann@21248
   275
lemmas linorder_less_linear [where 'b = "?'a::linorder"] = linorder.trichotomy
haftmann@21248
   276
lemmas linorder_le_less_linear [where 'b = "?'a::linorder"] = linorder.le_less_linear
haftmann@21248
   277
lemmas linorder_le_cases [where 'b = "?'a::linorder"] = linorder.le_cases
haftmann@21248
   278
lemmas linorder_cases [where 'b = "?'a::linorder"] = linorder.cases
haftmann@21248
   279
lemmas linorder_not_less [where 'b = "?'a::linorder"] = linorder.not_less
haftmann@21248
   280
lemmas linorder_not_le [where 'b = "?'a::linorder"] = linorder.not_le
haftmann@21248
   281
lemmas linorder_neq_iff [where 'b = "?'a::linorder"] = linorder.neq_iff
haftmann@21248
   282
lemmas linorder_neqE [where 'b = "?'a::linorder"] = linorder.neqE
haftmann@21248
   283
lemmas linorder_antisym_conv1 [where 'b = "?'a::linorder"] = linorder.antisym_conv1
haftmann@21248
   284
lemmas linorder_antisym_conv2 [where 'b = "?'a::linorder"] = linorder.antisym_conv2
haftmann@21248
   285
lemmas linorder_antisym_conv3 [where 'b = "?'a::linorder"] = linorder.antisym_conv3
haftmann@21248
   286
lemmas leI [where 'b = "?'a::linorder"] = linorder.leI
haftmann@21248
   287
lemmas leD [where 'b = "?'a::linorder"] = linorder.leD
haftmann@21248
   288
lemmas not_leE [where 'b = "?'a::linorder"] = linorder.not_leE
paulson@16796
   289
haftmann@21083
   290
haftmann@21083
   291
subsection {* Reasoning tools setup *}
haftmann@21083
   292
haftmann@21091
   293
ML {*
haftmann@21091
   294
local
haftmann@21091
   295
haftmann@21091
   296
fun decomp_gen sort thy (Trueprop $ t) =
haftmann@21248
   297
  let
haftmann@21248
   298
    fun of_sort t =
haftmann@21248
   299
      let
haftmann@21248
   300
        val T = type_of t
haftmann@21248
   301
      in
haftmann@21091
   302
        (* exclude numeric types: linear arithmetic subsumes transitivity *)
haftmann@21248
   303
        T <> HOLogic.natT andalso T <> HOLogic.intT
haftmann@21248
   304
          andalso T <> HOLogic.realT andalso Sign.of_sort thy (T, sort)
haftmann@21248
   305
      end;
haftmann@21248
   306
    fun dec (Const ("Not", _) $ t) = (case dec t
haftmann@21248
   307
          of NONE => NONE
haftmann@21248
   308
           | SOME (t1, rel, t2) => SOME (t1, "~" ^ rel, t2))
haftmann@21248
   309
      | dec (Const ("op =",  _) $ t1 $ t2) =
haftmann@21248
   310
          if of_sort t1
haftmann@21248
   311
          then SOME (t1, "=", t2)
haftmann@21248
   312
          else NONE
haftmann@21248
   313
      | dec (Const ("Orderings.less_eq",  _) $ t1 $ t2) =
haftmann@21248
   314
          if of_sort t1
haftmann@21248
   315
          then SOME (t1, "<=", t2)
haftmann@21248
   316
          else NONE
haftmann@21248
   317
      | dec (Const ("Orderings.less",  _) $ t1 $ t2) =
haftmann@21248
   318
          if of_sort t1
haftmann@21248
   319
          then SOME (t1, "<", t2)
haftmann@21248
   320
          else NONE
haftmann@21248
   321
      | dec _ = NONE;
haftmann@21091
   322
  in dec t end;
haftmann@21091
   323
haftmann@21091
   324
in
haftmann@21091
   325
haftmann@21091
   326
(* The setting up of Quasi_Tac serves as a demo.  Since there is no
haftmann@21091
   327
   class for quasi orders, the tactics Quasi_Tac.trans_tac and
haftmann@21091
   328
   Quasi_Tac.quasi_tac are not of much use. *)
haftmann@21091
   329
haftmann@21248
   330
structure Quasi_Tac = Quasi_Tac_Fun (
haftmann@21248
   331
struct
haftmann@21248
   332
  val le_trans = thm "order_trans";
haftmann@21248
   333
  val le_refl = thm "order_refl";
haftmann@21248
   334
  val eqD1 = thm "order_eq_refl";
haftmann@21248
   335
  val eqD2 = thm "sym" RS thm "order_eq_refl";
haftmann@21248
   336
  val less_reflE = thm "order_less_irrefl" RS thm "notE";
haftmann@21248
   337
  val less_imp_le = thm "order_less_imp_le";
haftmann@21248
   338
  val le_neq_trans = thm "order_le_neq_trans";
haftmann@21248
   339
  val neq_le_trans = thm "order_neq_le_trans";
haftmann@21248
   340
  val less_imp_neq = thm "less_imp_neq";
haftmann@21248
   341
  val decomp_trans = decomp_gen ["Orderings.order"];
haftmann@21248
   342
  val decomp_quasi = decomp_gen ["Orderings.order"];
haftmann@21248
   343
end);
haftmann@21091
   344
haftmann@21091
   345
structure Order_Tac = Order_Tac_Fun (
haftmann@21248
   346
struct
haftmann@21248
   347
  val less_reflE = thm "order_less_irrefl" RS thm "notE";
haftmann@21248
   348
  val le_refl = thm "order_refl";
haftmann@21248
   349
  val less_imp_le = thm "order_less_imp_le";
haftmann@21248
   350
  val not_lessI = thm "linorder_not_less" RS thm "iffD2";
haftmann@21248
   351
  val not_leI = thm "linorder_not_le" RS thm "iffD2";
haftmann@21248
   352
  val not_lessD = thm "linorder_not_less" RS thm "iffD1";
haftmann@21248
   353
  val not_leD = thm "linorder_not_le" RS thm "iffD1";
haftmann@21248
   354
  val eqI = thm "order_antisym";
haftmann@21248
   355
  val eqD1 = thm "order_eq_refl";
haftmann@21248
   356
  val eqD2 = thm "sym" RS thm "order_eq_refl";
haftmann@21248
   357
  val less_trans = thm "order_less_trans";
haftmann@21248
   358
  val less_le_trans = thm "order_less_le_trans";
haftmann@21248
   359
  val le_less_trans = thm "order_le_less_trans";
haftmann@21248
   360
  val le_trans = thm "order_trans";
haftmann@21248
   361
  val le_neq_trans = thm "order_le_neq_trans";
haftmann@21248
   362
  val neq_le_trans = thm "order_neq_le_trans";
haftmann@21248
   363
  val less_imp_neq = thm "less_imp_neq";
haftmann@21248
   364
  val eq_neq_eq_imp_neq = thm "eq_neq_eq_imp_neq";
haftmann@21248
   365
  val not_sym = thm "not_sym";
haftmann@21248
   366
  val decomp_part = decomp_gen ["Orderings.order"];
haftmann@21248
   367
  val decomp_lin = decomp_gen ["Orderings.linorder"];
haftmann@21248
   368
end);
haftmann@21091
   369
haftmann@21091
   370
end;
haftmann@21091
   371
*}
haftmann@21091
   372
haftmann@21083
   373
setup {*
haftmann@21083
   374
let
haftmann@21083
   375
haftmann@21083
   376
val order_antisym_conv = thm "order_antisym_conv"
haftmann@21083
   377
val linorder_antisym_conv1 = thm "linorder_antisym_conv1"
haftmann@21083
   378
val linorder_antisym_conv2 = thm "linorder_antisym_conv2"
haftmann@21083
   379
val linorder_antisym_conv3 = thm "linorder_antisym_conv3"
haftmann@21083
   380
haftmann@21083
   381
fun prp t thm = (#prop (rep_thm thm) = t);
nipkow@15524
   382
haftmann@21083
   383
fun prove_antisym_le sg ss ((le as Const(_,T)) $ r $ s) =
haftmann@21083
   384
  let val prems = prems_of_ss ss;
haftmann@21083
   385
      val less = Const("Orderings.less",T);
haftmann@21083
   386
      val t = HOLogic.mk_Trueprop(le $ s $ r);
haftmann@21083
   387
  in case find_first (prp t) prems of
haftmann@21083
   388
       NONE =>
haftmann@21083
   389
         let val t = HOLogic.mk_Trueprop(HOLogic.Not $ (less $ r $ s))
haftmann@21083
   390
         in case find_first (prp t) prems of
haftmann@21083
   391
              NONE => NONE
haftmann@21083
   392
            | SOME thm => SOME(mk_meta_eq(thm RS linorder_antisym_conv1))
haftmann@21083
   393
         end
haftmann@21083
   394
     | SOME thm => SOME(mk_meta_eq(thm RS order_antisym_conv))
haftmann@21083
   395
  end
haftmann@21083
   396
  handle THM _ => NONE;
nipkow@15524
   397
haftmann@21083
   398
fun prove_antisym_less sg ss (NotC $ ((less as Const(_,T)) $ r $ s)) =
haftmann@21083
   399
  let val prems = prems_of_ss ss;
haftmann@21083
   400
      val le = Const("Orderings.less_eq",T);
haftmann@21083
   401
      val t = HOLogic.mk_Trueprop(le $ r $ s);
haftmann@21083
   402
  in case find_first (prp t) prems of
haftmann@21083
   403
       NONE =>
haftmann@21083
   404
         let val t = HOLogic.mk_Trueprop(NotC $ (less $ s $ r))
haftmann@21083
   405
         in case find_first (prp t) prems of
haftmann@21083
   406
              NONE => NONE
haftmann@21083
   407
            | SOME thm => SOME(mk_meta_eq(thm RS linorder_antisym_conv3))
haftmann@21083
   408
         end
haftmann@21083
   409
     | SOME thm => SOME(mk_meta_eq(thm RS linorder_antisym_conv2))
haftmann@21083
   410
  end
haftmann@21083
   411
  handle THM _ => NONE;
nipkow@15524
   412
haftmann@21248
   413
fun add_simprocs procs thy =
haftmann@21248
   414
  (Simplifier.change_simpset_of thy (fn ss => ss
haftmann@21248
   415
    addsimprocs (map (fn (name, raw_ts, proc) =>
haftmann@21248
   416
      Simplifier.simproc thy name raw_ts proc)) procs); thy);
haftmann@21248
   417
fun add_solver name tac thy =
haftmann@21248
   418
  (Simplifier.change_simpset_of thy (fn ss => ss addSolver
haftmann@21248
   419
    (mk_solver name (K tac))); thy);
haftmann@21083
   420
haftmann@21083
   421
in
haftmann@21248
   422
  add_simprocs [
haftmann@21248
   423
       ("antisym le", ["(x::'a::order) <= y"], prove_antisym_le),
haftmann@21248
   424
       ("antisym less", ["~ (x::'a::linorder) < y"], prove_antisym_less)
haftmann@21248
   425
     ]
haftmann@21248
   426
  #> add_solver "Trans_linear" Order_Tac.linear_tac
haftmann@21248
   427
  #> add_solver "Trans_partial" Order_Tac.partial_tac
haftmann@21248
   428
  (* Adding the transitivity reasoners also as safe solvers showed a slight
haftmann@21248
   429
     speed up, but the reasoning strength appears to be not higher (at least
haftmann@21248
   430
     no breaking of additional proofs in the entire HOL distribution, as
haftmann@21248
   431
     of 5 March 2004, was observed). *)
haftmann@21083
   432
end
haftmann@21083
   433
*}
nipkow@15524
   434
nipkow@15524
   435
haftmann@21083
   436
subsection {* Bounded quantifiers *}
haftmann@21083
   437
haftmann@21083
   438
syntax
wenzelm@21180
   439
  "_All_less" :: "[idt, 'a, bool] => bool"    ("(3ALL _<_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   440
  "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3EX _<_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   441
  "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _<=_./ _)" [0, 0, 10] 10)
wenzelm@21180
   442
  "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _<=_./ _)" [0, 0, 10] 10)
haftmann@21083
   443
wenzelm@21180
   444
  "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3ALL _>_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   445
  "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3EX _>_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   446
  "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _>=_./ _)" [0, 0, 10] 10)
wenzelm@21180
   447
  "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _>=_./ _)" [0, 0, 10] 10)
haftmann@21083
   448
haftmann@21083
   449
syntax (xsymbols)
wenzelm@21180
   450
  "_All_less" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   451
  "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   452
  "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
wenzelm@21180
   453
  "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
haftmann@21083
   454
wenzelm@21180
   455
  "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   456
  "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   457
  "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
wenzelm@21180
   458
  "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
haftmann@21083
   459
haftmann@21083
   460
syntax (HOL)
wenzelm@21180
   461
  "_All_less" :: "[idt, 'a, bool] => bool"    ("(3! _<_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   462
  "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3? _<_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   463
  "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3! _<=_./ _)" [0, 0, 10] 10)
wenzelm@21180
   464
  "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3? _<=_./ _)" [0, 0, 10] 10)
haftmann@21083
   465
haftmann@21083
   466
syntax (HTML output)
wenzelm@21180
   467
  "_All_less" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   468
  "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   469
  "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
wenzelm@21180
   470
  "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
haftmann@21083
   471
wenzelm@21180
   472
  "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   473
  "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   474
  "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
wenzelm@21180
   475
  "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
haftmann@21083
   476
haftmann@21083
   477
translations
haftmann@21083
   478
  "ALL x<y. P"   =>  "ALL x. x < y \<longrightarrow> P"
haftmann@21083
   479
  "EX x<y. P"    =>  "EX x. x < y \<and> P"
haftmann@21083
   480
  "ALL x<=y. P"  =>  "ALL x. x <= y \<longrightarrow> P"
haftmann@21083
   481
  "EX x<=y. P"   =>  "EX x. x <= y \<and> P"
haftmann@21083
   482
  "ALL x>y. P"   =>  "ALL x. x > y \<longrightarrow> P"
haftmann@21083
   483
  "EX x>y. P"    =>  "EX x. x > y \<and> P"
haftmann@21083
   484
  "ALL x>=y. P"  =>  "ALL x. x >= y \<longrightarrow> P"
haftmann@21083
   485
  "EX x>=y. P"   =>  "EX x. x >= y \<and> P"
haftmann@21083
   486
haftmann@21083
   487
print_translation {*
haftmann@21083
   488
let
wenzelm@21180
   489
  val syntax_name = Sign.const_syntax_name (the_context ());
wenzelm@21180
   490
  val impl = syntax_name "op -->";
wenzelm@21180
   491
  val conj = syntax_name "op &";
wenzelm@21180
   492
  val less = syntax_name "Orderings.less";
wenzelm@21180
   493
  val less_eq = syntax_name "Orderings.less_eq";
wenzelm@21180
   494
wenzelm@21180
   495
  val trans =
wenzelm@21180
   496
   [(("ALL ", impl, less), ("_All_less", "_All_greater")),
wenzelm@21180
   497
    (("ALL ", impl, less_eq), ("_All_less_eq", "_All_greater_eq")),
wenzelm@21180
   498
    (("EX ", conj, less), ("_Ex_less", "_Ex_greater")),
wenzelm@21180
   499
    (("EX ", conj, less_eq), ("_Ex_less_eq", "_Ex_greater_eq"))];
wenzelm@21180
   500
haftmann@21083
   501
  fun mk v v' c n P =
wenzelm@21180
   502
    if v = v' andalso not (Term.exists_subterm (fn Free (x, _) => x = v | _ => false) n)
haftmann@21083
   503
    then Syntax.const c $ Syntax.mark_bound v' $ n $ P else raise Match;
wenzelm@21180
   504
wenzelm@21180
   505
  fun tr' q = (q,
wenzelm@21180
   506
    fn [Const ("_bound", _) $ Free (v, _), Const (c, _) $ (Const (d, _) $ t $ u) $ P] =>
wenzelm@21180
   507
      (case AList.lookup (op =) trans (q, c, d) of
wenzelm@21180
   508
        NONE => raise Match
wenzelm@21180
   509
      | SOME (l, g) =>
wenzelm@21180
   510
          (case (t, u) of
wenzelm@21180
   511
            (Const ("_bound", _) $ Free (v', _), n) => mk v v' l n P
wenzelm@21180
   512
          | (n, Const ("_bound", _) $ Free (v', _)) => mk v v' g n P
wenzelm@21180
   513
          | _ => raise Match))
wenzelm@21180
   514
     | _ => raise Match);
wenzelm@21180
   515
in [tr' "ALL ", tr' "EX "] end
haftmann@21083
   516
*}
haftmann@21083
   517
haftmann@21083
   518
haftmann@21083
   519
subsection {* Transitivity reasoning on decreasing inequalities *}
haftmann@21083
   520
wenzelm@21180
   521
(* FIXME cleanup *)
wenzelm@21180
   522
haftmann@21083
   523
text {* These support proving chains of decreasing inequalities
haftmann@21083
   524
    a >= b >= c ... in Isar proofs. *}
haftmann@21083
   525
haftmann@21083
   526
lemma xt1:
haftmann@21083
   527
  "a = b ==> b > c ==> a > c"
haftmann@21083
   528
  "a > b ==> b = c ==> a > c"
haftmann@21083
   529
  "a = b ==> b >= c ==> a >= c"
haftmann@21083
   530
  "a >= b ==> b = c ==> a >= c"
haftmann@21083
   531
  "(x::'a::order) >= y ==> y >= x ==> x = y"
haftmann@21083
   532
  "(x::'a::order) >= y ==> y >= z ==> x >= z"
haftmann@21083
   533
  "(x::'a::order) > y ==> y >= z ==> x > z"
haftmann@21083
   534
  "(x::'a::order) >= y ==> y > z ==> x > z"
haftmann@21083
   535
  "(a::'a::order) > b ==> b > a ==> ?P"
haftmann@21083
   536
  "(x::'a::order) > y ==> y > z ==> x > z"
haftmann@21083
   537
  "(a::'a::order) >= b ==> a ~= b ==> a > b"
haftmann@21083
   538
  "(a::'a::order) ~= b ==> a >= b ==> a > b"
haftmann@21083
   539
  "a = f b ==> b > c ==> (!!x y. x > y ==> f x > f y) ==> a > f c" 
haftmann@21083
   540
  "a > b ==> f b = c ==> (!!x y. x > y ==> f x > f y) ==> f a > c"
haftmann@21083
   541
  "a = f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c"
haftmann@21083
   542
  "a >= b ==> f b = c ==> (!! x y. x >= y ==> f x >= f y) ==> f a >= c"
haftmann@21083
   543
by auto
haftmann@21083
   544
haftmann@21083
   545
lemma xt2:
haftmann@21083
   546
  "(a::'a::order) >= f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c"
haftmann@21083
   547
by (subgoal_tac "f b >= f c", force, force)
haftmann@21083
   548
haftmann@21083
   549
lemma xt3: "(a::'a::order) >= b ==> (f b::'b::order) >= c ==> 
haftmann@21083
   550
    (!!x y. x >= y ==> f x >= f y) ==> f a >= c"
haftmann@21083
   551
by (subgoal_tac "f a >= f b", force, force)
haftmann@21083
   552
haftmann@21083
   553
lemma xt4: "(a::'a::order) > f b ==> (b::'b::order) >= c ==>
haftmann@21083
   554
  (!!x y. x >= y ==> f x >= f y) ==> a > f c"
haftmann@21083
   555
by (subgoal_tac "f b >= f c", force, force)
haftmann@21083
   556
haftmann@21083
   557
lemma xt5: "(a::'a::order) > b ==> (f b::'b::order) >= c==>
haftmann@21083
   558
    (!!x y. x > y ==> f x > f y) ==> f a > c"
haftmann@21083
   559
by (subgoal_tac "f a > f b", force, force)
haftmann@21083
   560
haftmann@21083
   561
lemma xt6: "(a::'a::order) >= f b ==> b > c ==>
haftmann@21083
   562
    (!!x y. x > y ==> f x > f y) ==> a > f c"
haftmann@21083
   563
by (subgoal_tac "f b > f c", force, force)
haftmann@21083
   564
haftmann@21083
   565
lemma xt7: "(a::'a::order) >= b ==> (f b::'b::order) > c ==>
haftmann@21083
   566
    (!!x y. x >= y ==> f x >= f y) ==> f a > c"
haftmann@21083
   567
by (subgoal_tac "f a >= f b", force, force)
haftmann@21083
   568
haftmann@21083
   569
lemma xt8: "(a::'a::order) > f b ==> (b::'b::order) > c ==>
haftmann@21083
   570
    (!!x y. x > y ==> f x > f y) ==> a > f c"
haftmann@21083
   571
by (subgoal_tac "f b > f c", force, force)
haftmann@21083
   572
haftmann@21083
   573
lemma xt9: "(a::'a::order) > b ==> (f b::'b::order) > c ==>
haftmann@21083
   574
    (!!x y. x > y ==> f x > f y) ==> f a > c"
haftmann@21083
   575
by (subgoal_tac "f a > f b", force, force)
haftmann@21083
   576
haftmann@21083
   577
lemmas xtrans = xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9
haftmann@21083
   578
haftmann@21083
   579
(* 
haftmann@21083
   580
  Since "a >= b" abbreviates "b <= a", the abbreviation "..." stands
haftmann@21083
   581
  for the wrong thing in an Isar proof.
haftmann@21083
   582
haftmann@21083
   583
  The extra transitivity rules can be used as follows: 
haftmann@21083
   584
haftmann@21083
   585
lemma "(a::'a::order) > z"
haftmann@21083
   586
proof -
haftmann@21083
   587
  have "a >= b" (is "_ >= ?rhs")
haftmann@21083
   588
    sorry
haftmann@21083
   589
  also have "?rhs >= c" (is "_ >= ?rhs")
haftmann@21083
   590
    sorry
haftmann@21083
   591
  also (xtrans) have "?rhs = d" (is "_ = ?rhs")
haftmann@21083
   592
    sorry
haftmann@21083
   593
  also (xtrans) have "?rhs >= e" (is "_ >= ?rhs")
haftmann@21083
   594
    sorry
haftmann@21083
   595
  also (xtrans) have "?rhs > f" (is "_ > ?rhs")
haftmann@21083
   596
    sorry
haftmann@21083
   597
  also (xtrans) have "?rhs > z"
haftmann@21083
   598
    sorry
haftmann@21083
   599
  finally (xtrans) show ?thesis .
haftmann@21083
   600
qed
haftmann@21083
   601
haftmann@21083
   602
  Alternatively, one can use "declare xtrans [trans]" and then
haftmann@21083
   603
  leave out the "(xtrans)" above.
haftmann@21083
   604
*)
haftmann@21083
   605
haftmann@21216
   606
subsection {* Monotonicity, syntactic least value operator and syntactic min/max *}
haftmann@21083
   607
haftmann@21216
   608
locale mono =
haftmann@21216
   609
  fixes f
haftmann@21216
   610
  assumes mono: "A \<le> B \<Longrightarrow> f A \<le> f B"
haftmann@21216
   611
haftmann@21216
   612
lemmas monoI [intro?] = mono.intro
haftmann@21216
   613
  and monoD [dest?] = mono.mono
haftmann@21083
   614
haftmann@21083
   615
constdefs
haftmann@21083
   616
  Least :: "('a::ord => bool) => 'a"               (binder "LEAST " 10)
haftmann@21083
   617
  "Least P == THE x. P x & (ALL y. P y --> x <= y)"
haftmann@21083
   618
    -- {* We can no longer use LeastM because the latter requires Hilbert-AC. *}
haftmann@21083
   619
haftmann@21083
   620
constdefs
haftmann@21083
   621
  min :: "['a::ord, 'a] => 'a"
haftmann@21083
   622
  "min a b == (if a <= b then a else b)"
haftmann@21083
   623
  max :: "['a::ord, 'a] => 'a"
haftmann@21083
   624
  "max a b == (if a <= b then b else a)"
haftmann@21083
   625
nipkow@15524
   626
end