src/HOL/Tools/Predicate_Compile/predicate_compile_aux.ML
author wenzelm
Wed Feb 12 13:33:05 2014 +0100 (2014-02-12)
changeset 55437 3fd63b92ea3b
parent 54742 7a86358a3c0b
child 55440 721b4561007a
permissions -rw-r--r--
tuned whitespace;
wenzelm@33265
     1
(*  Title:      HOL/Tools/Predicate_Compile/predicate_compile_aux.ML
wenzelm@33265
     2
    Author:     Lukas Bulwahn, TU Muenchen
bulwahn@33250
     3
wenzelm@33265
     4
Auxilary functions for predicate compiler.
bulwahn@33250
     5
*)
bulwahn@33250
     6
bulwahn@36047
     7
signature PREDICATE_COMPILE_AUX =
bulwahn@36047
     8
sig
bulwahn@36047
     9
  (* general functions *)
bulwahn@36047
    10
  val apfst3 : ('a -> 'd) -> 'a * 'b * 'c -> 'd * 'b * 'c
bulwahn@36047
    11
  val apsnd3 : ('b -> 'd) -> 'a * 'b * 'c -> 'a * 'd * 'c
bulwahn@36047
    12
  val aptrd3 : ('c -> 'd) -> 'a * 'b * 'c -> 'a * 'b * 'd
bulwahn@36047
    13
  val find_indices : ('a -> bool) -> 'a list -> int list
bulwahn@36047
    14
  (* mode *)
bulwahn@36047
    15
  datatype mode = Bool | Input | Output | Pair of mode * mode | Fun of mode * mode
bulwahn@36047
    16
  val eq_mode : mode * mode -> bool
bulwahn@39311
    17
  val mode_ord: mode * mode -> order
bulwahn@36047
    18
  val list_fun_mode : mode list -> mode
bulwahn@36047
    19
  val strip_fun_mode : mode -> mode list
bulwahn@36047
    20
  val dest_fun_mode : mode -> mode list
bulwahn@36047
    21
  val dest_tuple_mode : mode -> mode list
bulwahn@36047
    22
  val all_modes_of_typ : typ -> mode list
bulwahn@36047
    23
  val all_smodes_of_typ : typ -> mode list
bulwahn@36047
    24
  val fold_map_aterms_prodT : ('a -> 'a -> 'a) -> (typ -> 'b -> 'a * 'b) -> typ -> 'b -> 'a * 'b
bulwahn@36047
    25
  val map_filter_prod : (term -> term option) -> term -> term option
bulwahn@36047
    26
  val replace_ho_args : mode -> term list -> term list -> term list
bulwahn@36047
    27
  val ho_arg_modes_of : mode -> mode list
bulwahn@36047
    28
  val ho_argsT_of : mode -> typ list -> typ list
bulwahn@36047
    29
  val ho_args_of : mode -> term list -> term list
bulwahn@39299
    30
  val ho_args_of_typ : typ -> term list -> term list
bulwahn@39299
    31
  val ho_argsT_of_typ : typ list -> typ list
bulwahn@36047
    32
  val split_map_mode : (mode -> term -> term option * term option)
bulwahn@36047
    33
    -> mode -> term list -> term list * term list
bulwahn@36047
    34
  val split_map_modeT : (mode -> typ -> typ option * typ option)
bulwahn@36047
    35
    -> mode -> typ list -> typ list * typ list
bulwahn@36047
    36
  val split_mode : mode -> term list -> term list * term list
bulwahn@40139
    37
  val split_modeT : mode -> typ list -> typ list * typ list
bulwahn@36047
    38
  val string_of_mode : mode -> string
bulwahn@36047
    39
  val ascii_string_of_mode : mode -> string
bulwahn@36047
    40
  (* premises *)
bulwahn@36047
    41
  datatype indprem = Prem of term | Negprem of term | Sidecond of term
bulwahn@36047
    42
    | Generator of (string * typ)
bulwahn@36251
    43
  val dest_indprem : indprem -> term
bulwahn@36254
    44
  val map_indprem : (term -> term) -> indprem -> indprem
bulwahn@36047
    45
  (* general syntactic functions *)
bulwahn@36047
    46
  val is_equationlike : thm -> bool
bulwahn@36047
    47
  val is_pred_equation : thm -> bool
bulwahn@36047
    48
  val is_intro : string -> thm -> bool
bulwahn@36047
    49
  val is_predT : typ -> bool
bulwahn@36047
    50
  val is_constrt : theory -> term -> bool
bulwahn@36047
    51
  val is_constr : Proof.context -> string -> bool
bulwahn@42094
    52
  val strip_ex : term -> (string * typ) list * term
bulwahn@36047
    53
  val focus_ex : term -> Name.context -> ((string * typ) list * term) * Name.context
bulwahn@36047
    54
  val strip_all : term -> (string * typ) list * term
bulwahn@40101
    55
  val strip_intro_concl : thm -> term * term list
bulwahn@36047
    56
  (* introduction rule combinators *)
bulwahn@36047
    57
  val map_atoms : (term -> term) -> term -> term
bulwahn@36047
    58
  val fold_atoms : (term -> 'a -> 'a) -> term -> 'a -> 'a
bulwahn@36047
    59
  val fold_map_atoms : (term -> 'a -> term * 'a) -> term -> 'a -> term * 'a
bulwahn@36047
    60
  val maps_premises : (term -> term list) -> term -> term
bulwahn@36047
    61
  val map_concl : (term -> term) -> term -> term
bulwahn@36047
    62
  val map_term : theory -> (term -> term) -> thm -> thm
bulwahn@36047
    63
  (* split theorems of case expressions *)
bulwahn@36047
    64
  val prepare_split_thm : Proof.context -> thm -> thm
bulwahn@36047
    65
  val find_split_thm : theory -> term -> thm option
bulwahn@36047
    66
  (* datastructures and setup for generic compilation *)
bulwahn@36047
    67
  datatype compilation_funs = CompilationFuns of {
bulwahn@45461
    68
    mk_monadT : typ -> typ,
bulwahn@45461
    69
    dest_monadT : typ -> typ,
bulwahn@45461
    70
    mk_empty : typ -> term,
bulwahn@36047
    71
    mk_single : term -> term,
bulwahn@36047
    72
    mk_bind : term * term -> term,
bulwahn@45461
    73
    mk_plus : term * term -> term,
bulwahn@36047
    74
    mk_if : term -> term,
bulwahn@36049
    75
    mk_iterate_upto : typ -> term * term * term -> term,
bulwahn@36047
    76
    mk_not : term -> term,
bulwahn@36047
    77
    mk_map : typ -> typ -> term -> term -> term
bulwahn@36047
    78
  };
bulwahn@45461
    79
  val mk_monadT : compilation_funs -> typ -> typ
bulwahn@45461
    80
  val dest_monadT : compilation_funs -> typ -> typ
bulwahn@45461
    81
  val mk_empty : compilation_funs -> typ -> term
bulwahn@36047
    82
  val mk_single : compilation_funs -> term -> term
bulwahn@36047
    83
  val mk_bind : compilation_funs -> term * term -> term
bulwahn@45461
    84
  val mk_plus : compilation_funs -> term * term -> term
bulwahn@36047
    85
  val mk_if : compilation_funs -> term -> term
bulwahn@36049
    86
  val mk_iterate_upto : compilation_funs -> typ -> term * term * term -> term
bulwahn@36047
    87
  val mk_not : compilation_funs -> term -> term
bulwahn@36047
    88
  val mk_map : compilation_funs -> typ -> typ -> term -> term -> term
bulwahn@36047
    89
  val funT_of : compilation_funs -> mode -> typ -> typ
bulwahn@36047
    90
  (* Different compilations *)
bulwahn@36047
    91
  datatype compilation = Pred | Depth_Limited | Random | Depth_Limited_Random | DSeq | Annotated
wenzelm@55437
    92
    | Pos_Random_DSeq | Neg_Random_DSeq | New_Pos_Random_DSeq | New_Neg_Random_DSeq
bulwahn@45450
    93
    | Pos_Generator_DSeq | Neg_Generator_DSeq | Pos_Generator_CPS | Neg_Generator_CPS
bulwahn@36047
    94
  val negative_compilation_of : compilation -> compilation
bulwahn@36047
    95
  val compilation_for_polarity : bool -> compilation -> compilation
wenzelm@55437
    96
  val is_depth_limited_compilation : compilation -> bool
bulwahn@36047
    97
  val string_of_compilation : compilation -> string
bulwahn@36047
    98
  val compilation_names : (string * compilation) list
bulwahn@36047
    99
  val non_random_compilations : compilation list
bulwahn@36047
   100
  val random_compilations : compilation list
bulwahn@36047
   101
  (* Different options for compiler *)
wenzelm@55437
   102
  datatype options = Options of {
bulwahn@36047
   103
    expected_modes : (string * mode list) option,
bulwahn@39382
   104
    proposed_modes : (string * mode list) list,
bulwahn@36047
   105
    proposed_names : ((string * mode) * string) list,
bulwahn@36047
   106
    show_steps : bool,
bulwahn@36047
   107
    show_proof_trace : bool,
bulwahn@36047
   108
    show_intermediate_results : bool,
bulwahn@36047
   109
    show_mode_inference : bool,
bulwahn@36047
   110
    show_modes : bool,
bulwahn@36047
   111
    show_compilation : bool,
bulwahn@36047
   112
    show_caught_failures : bool,
bulwahn@39383
   113
    show_invalid_clauses : bool,
bulwahn@36047
   114
    skip_proof : bool,
bulwahn@36047
   115
    no_topmost_reordering : bool,
bulwahn@36047
   116
    function_flattening : bool,
bulwahn@36047
   117
    fail_safe_function_flattening : bool,
bulwahn@36248
   118
    specialise : bool,
bulwahn@36047
   119
    no_higher_order_predicate : string list,
bulwahn@36047
   120
    inductify : bool,
bulwahn@36254
   121
    detect_switches : bool,
bulwahn@40048
   122
    smart_depth_limiting : bool,
bulwahn@36047
   123
    compilation : compilation
bulwahn@36047
   124
  };
bulwahn@36047
   125
  val expected_modes : options -> (string * mode list) option
bulwahn@39382
   126
  val proposed_modes : options -> string -> mode list option
bulwahn@36047
   127
  val proposed_names : options -> string -> mode -> string option
bulwahn@36047
   128
  val show_steps : options -> bool
bulwahn@36047
   129
  val show_proof_trace : options -> bool
bulwahn@36047
   130
  val show_intermediate_results : options -> bool
bulwahn@36047
   131
  val show_mode_inference : options -> bool
bulwahn@36047
   132
  val show_modes : options -> bool
bulwahn@36047
   133
  val show_compilation : options -> bool
bulwahn@36047
   134
  val show_caught_failures : options -> bool
bulwahn@39383
   135
  val show_invalid_clauses : options -> bool
bulwahn@36047
   136
  val skip_proof : options -> bool
bulwahn@36047
   137
  val no_topmost_reordering : options -> bool
bulwahn@36047
   138
  val function_flattening : options -> bool
bulwahn@36047
   139
  val fail_safe_function_flattening : options -> bool
bulwahn@36248
   140
  val specialise : options -> bool
bulwahn@36047
   141
  val no_higher_order_predicate : options -> string list
bulwahn@36047
   142
  val is_inductify : options -> bool
bulwahn@36254
   143
  val detect_switches : options -> bool
bulwahn@40048
   144
  val smart_depth_limiting : options -> bool
bulwahn@36047
   145
  val compilation : options -> compilation
bulwahn@36047
   146
  val default_options : options
bulwahn@36047
   147
  val bool_options : string list
bulwahn@36047
   148
  val print_step : options -> string -> unit
bulwahn@39657
   149
  (* conversions *)
bulwahn@39657
   150
  val imp_prems_conv : conv -> conv
bulwahn@36047
   151
  (* simple transformations *)
bulwahn@39787
   152
  val split_conjuncts_in_assms : Proof.context -> thm -> thm
bulwahn@40052
   153
  val dest_conjunct_prem : thm -> thm list
bulwahn@36047
   154
  val expand_tuples : theory -> thm -> thm
bulwahn@39802
   155
  val case_betapply : theory -> term -> term
bulwahn@36047
   156
  val eta_contract_ho_arguments : theory -> thm -> thm
bulwahn@36047
   157
  val remove_equalities : theory -> thm -> thm
bulwahn@36246
   158
  val remove_pointless_clauses : thm -> thm list
bulwahn@36246
   159
  val peephole_optimisation : theory -> thm -> thm option
bulwahn@40101
   160
  (* auxillary *)
bulwahn@40101
   161
  val unify_consts : theory -> term list -> term list -> (term list * term list)
bulwahn@40101
   162
  val mk_casesrule : Proof.context -> term -> thm list -> term
bulwahn@40101
   163
  val preprocess_intro : theory -> thm -> thm
wenzelm@55437
   164
bulwahn@39541
   165
  val define_quickcheck_predicate :
bulwahn@40052
   166
    term -> theory -> (((string * typ) * (string * typ) list) * thm) * theory
bulwahn@36047
   167
end;
bulwahn@34948
   168
bulwahn@36047
   169
structure Predicate_Compile_Aux : PREDICATE_COMPILE_AUX =
bulwahn@33250
   170
struct
bulwahn@33250
   171
bulwahn@34948
   172
(* general functions *)
bulwahn@34948
   173
bulwahn@34948
   174
fun apfst3 f (x, y, z) = (f x, y, z)
bulwahn@34948
   175
fun apsnd3 f (x, y, z) = (x, f y, z)
bulwahn@34948
   176
fun aptrd3 f (x, y, z) = (x, y, f z)
bulwahn@34948
   177
bulwahn@34948
   178
fun comb_option f (SOME x1, SOME x2) = SOME (f (x1, x2))
bulwahn@34948
   179
  | comb_option f (NONE, SOME x2) = SOME x2
bulwahn@34948
   180
  | comb_option f (SOME x1, NONE) = SOME x1
bulwahn@34948
   181
  | comb_option f (NONE, NONE) = NONE
bulwahn@34948
   182
bulwahn@35885
   183
fun map2_optional f (x :: xs) (y :: ys) = f x (SOME y) :: (map2_optional f xs ys)
bulwahn@34948
   184
  | map2_optional f (x :: xs) [] = (f x NONE) :: (map2_optional f xs [])
bulwahn@34948
   185
  | map2_optional f [] [] = []
bulwahn@34948
   186
bulwahn@34948
   187
fun find_indices f xs =
haftmann@46662
   188
  map_filter (fn (i, true) => SOME i | (_, false) => NONE) (map_index (apsnd f) xs)
bulwahn@33328
   189
bulwahn@33328
   190
(* mode *)
bulwahn@33328
   191
bulwahn@34948
   192
datatype mode = Bool | Input | Output | Pair of mode * mode | Fun of mode * mode
bulwahn@33619
   193
bulwahn@33623
   194
(* equality of instantiatedness with respect to equivalences:
bulwahn@33623
   195
  Pair Input Input == Input and Pair Output Output == Output *)
bulwahn@34948
   196
fun eq_mode (Fun (m1, m2), Fun (m3, m4)) = eq_mode (m1, m3) andalso eq_mode (m2, m4)
bulwahn@34948
   197
  | eq_mode (Pair (m1, m2), Pair (m3, m4)) = eq_mode (m1, m3) andalso eq_mode (m2, m4)
bulwahn@34948
   198
  | eq_mode (Pair (m1, m2), Input) = eq_mode (m1, Input) andalso eq_mode (m2, Input)
bulwahn@34948
   199
  | eq_mode (Pair (m1, m2), Output) = eq_mode (m1, Output) andalso eq_mode (m2, Output)
bulwahn@34948
   200
  | eq_mode (Input, Pair (m1, m2)) = eq_mode (Input, m1) andalso eq_mode (Input, m2)
bulwahn@34948
   201
  | eq_mode (Output, Pair (m1, m2)) = eq_mode (Output, m1) andalso eq_mode (Output, m2)
bulwahn@34948
   202
  | eq_mode (Input, Input) = true
bulwahn@34948
   203
  | eq_mode (Output, Output) = true
bulwahn@34948
   204
  | eq_mode (Bool, Bool) = true
bulwahn@34948
   205
  | eq_mode _ = false
bulwahn@33623
   206
bulwahn@39311
   207
fun mode_ord (Input, Output) = LESS
bulwahn@39311
   208
  | mode_ord (Output, Input) = GREATER
bulwahn@39311
   209
  | mode_ord (Input, Input) = EQUAL
bulwahn@39311
   210
  | mode_ord (Output, Output) = EQUAL
bulwahn@39311
   211
  | mode_ord (Bool, Bool) = EQUAL
bulwahn@39311
   212
  | mode_ord (Pair (m1, m2), Pair (m3, m4)) = prod_ord mode_ord mode_ord ((m1, m2), (m3, m4))
bulwahn@39311
   213
  | mode_ord (Fun (m1, m2), Fun (m3, m4)) = prod_ord mode_ord mode_ord ((m1, m2), (m3, m4))
wenzelm@55437
   214
bulwahn@36035
   215
fun list_fun_mode [] = Bool
bulwahn@36035
   216
  | list_fun_mode (m :: ms) = Fun (m, list_fun_mode ms)
bulwahn@36035
   217
bulwahn@33619
   218
(* name: binder_modes? *)
bulwahn@33619
   219
fun strip_fun_mode (Fun (mode, mode')) = mode :: strip_fun_mode mode'
bulwahn@33619
   220
  | strip_fun_mode Bool = []
bulwahn@35885
   221
  | strip_fun_mode _ = raise Fail "Bad mode for strip_fun_mode"
bulwahn@33619
   222
bulwahn@36047
   223
(* name: strip_fun_mode? *)
bulwahn@33619
   224
fun dest_fun_mode (Fun (mode, mode')) = mode :: dest_fun_mode mode'
bulwahn@33619
   225
  | dest_fun_mode mode = [mode]
bulwahn@33619
   226
bulwahn@33619
   227
fun dest_tuple_mode (Pair (mode, mode')) = mode :: dest_tuple_mode mode'
bulwahn@33619
   228
  | dest_tuple_mode _ = []
bulwahn@33619
   229
wenzelm@55437
   230
fun all_modes_of_typ' (T as Type ("fun", _)) =
bulwahn@35324
   231
  let
bulwahn@35324
   232
    val (S, U) = strip_type T
bulwahn@35324
   233
  in
bulwahn@35324
   234
    if U = HOLogic.boolT then
bulwahn@35324
   235
      fold_rev (fn m1 => fn m2 => map_product (curry Fun) m1 m2)
bulwahn@35324
   236
        (map all_modes_of_typ' S) [Bool]
bulwahn@35324
   237
    else
bulwahn@35324
   238
      [Input, Output]
bulwahn@35324
   239
  end
wenzelm@55437
   240
  | all_modes_of_typ' (Type (@{type_name Product_Type.prod}, [T1, T2])) =
bulwahn@35324
   241
    map_product (curry Pair) (all_modes_of_typ' T1) (all_modes_of_typ' T2)
bulwahn@35324
   242
  | all_modes_of_typ' _ = [Input, Output]
bulwahn@35324
   243
bulwahn@35324
   244
fun all_modes_of_typ (T as Type ("fun", _)) =
bulwahn@35885
   245
    let
bulwahn@35885
   246
      val (S, U) = strip_type T
bulwahn@35885
   247
    in
bulwahn@35885
   248
      if U = @{typ bool} then
bulwahn@35885
   249
        fold_rev (fn m1 => fn m2 => map_product (curry Fun) m1 m2)
bulwahn@35885
   250
          (map all_modes_of_typ' S) [Bool]
bulwahn@35885
   251
      else
bulwahn@39192
   252
        raise Fail "Invocation of all_modes_of_typ with a non-predicate type"
bulwahn@35885
   253
    end
bulwahn@35885
   254
  | all_modes_of_typ @{typ bool} = [Bool]
haftmann@46662
   255
  | all_modes_of_typ _ =
bulwahn@39192
   256
    raise Fail "Invocation of all_modes_of_typ with a non-predicate type"
bulwahn@34948
   257
bulwahn@35324
   258
fun all_smodes_of_typ (T as Type ("fun", _)) =
bulwahn@35324
   259
  let
bulwahn@35324
   260
    val (S, U) = strip_type T
wenzelm@55437
   261
    fun all_smodes (Type (@{type_name Product_Type.prod}, [T1, T2])) =
bulwahn@35324
   262
      map_product (curry Pair) (all_smodes T1) (all_smodes T2)
bulwahn@35324
   263
      | all_smodes _ = [Input, Output]
bulwahn@35324
   264
  in
bulwahn@35324
   265
    if U = HOLogic.boolT then
bulwahn@35324
   266
      fold_rev (fn m1 => fn m2 => map_product (curry Fun) m1 m2) (map all_smodes S) [Bool]
bulwahn@35324
   267
    else
bulwahn@36047
   268
      raise Fail "invalid type for predicate"
bulwahn@35324
   269
  end
bulwahn@35885
   270
bulwahn@34948
   271
fun ho_arg_modes_of mode =
bulwahn@34948
   272
  let
bulwahn@34948
   273
    fun ho_arg_mode (m as Fun _) =  [m]
bulwahn@34948
   274
      | ho_arg_mode (Pair (m1, m2)) = ho_arg_mode m1 @ ho_arg_mode m2
bulwahn@34948
   275
      | ho_arg_mode _ = []
bulwahn@34948
   276
  in
bulwahn@34948
   277
    maps ho_arg_mode (strip_fun_mode mode)
bulwahn@34948
   278
  end
bulwahn@34948
   279
bulwahn@34948
   280
fun ho_args_of mode ts =
bulwahn@34948
   281
  let
bulwahn@34948
   282
    fun ho_arg (Fun _) (SOME t) = [t]
bulwahn@36047
   283
      | ho_arg (Fun _) NONE = raise Fail "mode and term do not match"
bulwahn@35885
   284
      | ho_arg (Pair (m1, m2)) (SOME (Const (@{const_name Pair}, _) $ t1 $ t2)) =
bulwahn@34948
   285
          ho_arg m1 (SOME t1) @ ho_arg m2 (SOME t2)
bulwahn@34948
   286
      | ho_arg (Pair (m1, m2)) NONE = ho_arg m1 NONE @ ho_arg m2 NONE
bulwahn@34948
   287
      | ho_arg _ _ = []
bulwahn@34948
   288
  in
bulwahn@34948
   289
    flat (map2_optional ho_arg (strip_fun_mode mode) ts)
bulwahn@34948
   290
  end
bulwahn@34948
   291
bulwahn@39299
   292
fun ho_args_of_typ T ts =
bulwahn@39299
   293
  let
wenzelm@55437
   294
    fun ho_arg (T as Type ("fun", [_, _])) (SOME t) =
wenzelm@55437
   295
          if body_type T = @{typ bool} then [t] else []
wenzelm@55437
   296
      | ho_arg (Type ("fun", [_, _])) NONE = raise Fail "mode and term do not match"
bulwahn@39299
   297
      | ho_arg (Type(@{type_name "Product_Type.prod"}, [T1, T2]))
bulwahn@39299
   298
         (SOME (Const (@{const_name Pair}, _) $ t1 $ t2)) =
bulwahn@39299
   299
          ho_arg T1 (SOME t1) @ ho_arg T2 (SOME t2)
bulwahn@39299
   300
      | ho_arg (Type(@{type_name "Product_Type.prod"}, [T1, T2])) NONE =
bulwahn@39299
   301
          ho_arg T1 NONE @ ho_arg T2 NONE
bulwahn@39299
   302
      | ho_arg _ _ = []
bulwahn@39299
   303
  in
bulwahn@39299
   304
    flat (map2_optional ho_arg (binder_types T) ts)
bulwahn@39299
   305
  end
bulwahn@39299
   306
bulwahn@39299
   307
fun ho_argsT_of_typ Ts =
bulwahn@39299
   308
  let
bulwahn@39312
   309
    fun ho_arg (T as Type("fun", [_,_])) = if body_type T = @{typ bool} then [T] else []
wenzelm@55437
   310
      | ho_arg (Type (@{type_name "Product_Type.prod"}, [T1, T2])) =
bulwahn@39299
   311
          ho_arg T1 @ ho_arg T2
bulwahn@39299
   312
      | ho_arg _ = []
bulwahn@39299
   313
  in
bulwahn@39299
   314
    maps ho_arg Ts
bulwahn@39299
   315
  end
wenzelm@55437
   316
bulwahn@39299
   317
bulwahn@34948
   318
(* temporary function should be replaced by unsplit_input or so? *)
bulwahn@34948
   319
fun replace_ho_args mode hoargs ts =
bulwahn@34948
   320
  let
bulwahn@34948
   321
    fun replace (Fun _, _) (arg' :: hoargs') = (arg', hoargs')
haftmann@37391
   322
      | replace (Pair (m1, m2), Const (@{const_name Pair}, T) $ t1 $ t2) hoargs =
wenzelm@55437
   323
          let
wenzelm@55437
   324
            val (t1', hoargs') = replace (m1, t1) hoargs
wenzelm@55437
   325
            val (t2', hoargs'') = replace (m2, t2) hoargs'
wenzelm@55437
   326
          in
wenzelm@55437
   327
            (Const (@{const_name Pair}, T) $ t1' $ t2', hoargs'')
wenzelm@55437
   328
          end
bulwahn@34948
   329
      | replace (_, t) hoargs = (t, hoargs)
bulwahn@34948
   330
  in
bulwahn@35885
   331
    fst (fold_map replace (strip_fun_mode mode ~~ ts) hoargs)
bulwahn@34948
   332
  end
bulwahn@34948
   333
bulwahn@34948
   334
fun ho_argsT_of mode Ts =
bulwahn@34948
   335
  let
bulwahn@34948
   336
    fun ho_arg (Fun _) T = [T]
wenzelm@55437
   337
      | ho_arg (Pair (m1, m2)) (Type (@{type_name Product_Type.prod}, [T1, T2])) =
wenzelm@55437
   338
          ho_arg m1 T1 @ ho_arg m2 T2
bulwahn@34948
   339
      | ho_arg _ _ = []
bulwahn@34948
   340
  in
bulwahn@34948
   341
    flat (map2 ho_arg (strip_fun_mode mode) Ts)
bulwahn@34948
   342
  end
bulwahn@34948
   343
bulwahn@34948
   344
(* splits mode and maps function to higher-order argument types *)
bulwahn@34948
   345
fun split_map_mode f mode ts =
bulwahn@34948
   346
  let
bulwahn@34948
   347
    fun split_arg_mode' (m as Fun _) t = f m t
haftmann@37391
   348
      | split_arg_mode' (Pair (m1, m2)) (Const (@{const_name Pair}, _) $ t1 $ t2) =
bulwahn@34948
   349
        let
bulwahn@34948
   350
          val (i1, o1) = split_arg_mode' m1 t1
bulwahn@34948
   351
          val (i2, o2) = split_arg_mode' m2 t2
bulwahn@34948
   352
        in
bulwahn@34948
   353
          (comb_option HOLogic.mk_prod (i1, i2), comb_option HOLogic.mk_prod (o1, o2))
bulwahn@34948
   354
        end
bulwahn@35324
   355
      | split_arg_mode' m t =
bulwahn@35324
   356
        if eq_mode (m, Input) then (SOME t, NONE)
bulwahn@35324
   357
        else if eq_mode (m, Output) then (NONE,  SOME t)
bulwahn@35885
   358
        else raise Fail "split_map_mode: mode and term do not match"
bulwahn@34948
   359
  in
bulwahn@34948
   360
    (pairself (map_filter I) o split_list) (map2 split_arg_mode' (strip_fun_mode mode) ts)
bulwahn@34948
   361
  end
bulwahn@34948
   362
bulwahn@34948
   363
(* splits mode and maps function to higher-order argument types *)
bulwahn@34948
   364
fun split_map_modeT f mode Ts =
bulwahn@34948
   365
  let
bulwahn@34948
   366
    fun split_arg_mode' (m as Fun _) T = f m T
haftmann@37678
   367
      | split_arg_mode' (Pair (m1, m2)) (Type (@{type_name Product_Type.prod}, [T1, T2])) =
bulwahn@34948
   368
        let
bulwahn@34948
   369
          val (i1, o1) = split_arg_mode' m1 T1
bulwahn@34948
   370
          val (i2, o2) = split_arg_mode' m2 T2
bulwahn@34948
   371
        in
bulwahn@34948
   372
          (comb_option HOLogic.mk_prodT (i1, i2), comb_option HOLogic.mk_prodT (o1, o2))
bulwahn@34948
   373
        end
bulwahn@34948
   374
      | split_arg_mode' Input T = (SOME T, NONE)
bulwahn@34948
   375
      | split_arg_mode' Output T = (NONE,  SOME T)
bulwahn@35885
   376
      | split_arg_mode' _ _ = raise Fail "split_modeT': mode and type do not match"
bulwahn@34948
   377
  in
bulwahn@34948
   378
    (pairself (map_filter I) o split_list) (map2 split_arg_mode' (strip_fun_mode mode) Ts)
bulwahn@34948
   379
  end
bulwahn@34948
   380
bulwahn@34948
   381
fun split_mode mode ts = split_map_mode (fn _ => fn _ => (NONE, NONE)) mode ts
bulwahn@34948
   382
haftmann@37678
   383
fun fold_map_aterms_prodT comb f (Type (@{type_name Product_Type.prod}, [T1, T2])) s =
wenzelm@55437
   384
      let
wenzelm@55437
   385
        val (x1, s') = fold_map_aterms_prodT comb f T1 s
wenzelm@55437
   386
        val (x2, s'') = fold_map_aterms_prodT comb f T2 s'
wenzelm@55437
   387
      in
wenzelm@55437
   388
        (comb x1 x2, s'')
wenzelm@55437
   389
      end
wenzelm@55437
   390
  | fold_map_aterms_prodT _ f T s = f T s
bulwahn@34948
   391
haftmann@37391
   392
fun map_filter_prod f (Const (@{const_name Pair}, _) $ t1 $ t2) =
wenzelm@55437
   393
      comb_option HOLogic.mk_prod (map_filter_prod f t1, map_filter_prod f t2)
bulwahn@34948
   394
  | map_filter_prod f t = f t
wenzelm@55437
   395
bulwahn@40139
   396
fun split_modeT mode Ts =
bulwahn@34948
   397
  let
haftmann@46662
   398
    fun split_arg_mode (Fun _) _ = ([], [])
bulwahn@40139
   399
      | split_arg_mode (Pair (m1, m2)) (Type (@{type_name Product_Type.prod}, [T1, T2])) =
wenzelm@55437
   400
          let
wenzelm@55437
   401
            val (i1, o1) = split_arg_mode m1 T1
wenzelm@55437
   402
            val (i2, o2) = split_arg_mode m2 T2
wenzelm@55437
   403
          in
wenzelm@55437
   404
            (i1 @ i2, o1 @ o2)
wenzelm@55437
   405
          end
bulwahn@40139
   406
      | split_arg_mode Input T = ([T], [])
bulwahn@40139
   407
      | split_arg_mode Output T = ([], [T])
bulwahn@40139
   408
      | split_arg_mode _ _ = raise Fail "split_modeT: mode and type do not match"
bulwahn@34948
   409
  in
bulwahn@40139
   410
    (pairself flat o split_list) (map2 split_arg_mode (strip_fun_mode mode) Ts)
bulwahn@34948
   411
  end
bulwahn@34948
   412
bulwahn@34948
   413
fun string_of_mode mode =
bulwahn@33619
   414
  let
bulwahn@33619
   415
    fun string_of_mode1 Input = "i"
bulwahn@33619
   416
      | string_of_mode1 Output = "o"
bulwahn@33619
   417
      | string_of_mode1 Bool = "bool"
bulwahn@33619
   418
      | string_of_mode1 mode = "(" ^ (string_of_mode3 mode) ^ ")"
bulwahn@33626
   419
    and string_of_mode2 (Pair (m1, m2)) = string_of_mode3 m1 ^ " * " ^  string_of_mode2 m2
bulwahn@33619
   420
      | string_of_mode2 mode = string_of_mode1 mode
bulwahn@33619
   421
    and string_of_mode3 (Fun (m1, m2)) = string_of_mode2 m1 ^ " => " ^ string_of_mode3 m2
bulwahn@33619
   422
      | string_of_mode3 mode = string_of_mode2 mode
bulwahn@34948
   423
  in string_of_mode3 mode end
bulwahn@33619
   424
bulwahn@34948
   425
fun ascii_string_of_mode mode' =
bulwahn@33626
   426
  let
bulwahn@33626
   427
    fun ascii_string_of_mode' Input = "i"
bulwahn@33626
   428
      | ascii_string_of_mode' Output = "o"
bulwahn@33626
   429
      | ascii_string_of_mode' Bool = "b"
bulwahn@33626
   430
      | ascii_string_of_mode' (Pair (m1, m2)) =
bulwahn@33626
   431
          "P" ^ ascii_string_of_mode' m1 ^ ascii_string_of_mode'_Pair m2
wenzelm@55437
   432
      | ascii_string_of_mode' (Fun (m1, m2)) =
bulwahn@33626
   433
          "F" ^ ascii_string_of_mode' m1 ^ ascii_string_of_mode'_Fun m2 ^ "B"
bulwahn@33626
   434
    and ascii_string_of_mode'_Fun (Fun (m1, m2)) =
bulwahn@33626
   435
          ascii_string_of_mode' m1 ^ (if m2 = Bool then "" else "_" ^ ascii_string_of_mode'_Fun m2)
bulwahn@33626
   436
      | ascii_string_of_mode'_Fun Bool = "B"
bulwahn@33626
   437
      | ascii_string_of_mode'_Fun m = ascii_string_of_mode' m
bulwahn@33626
   438
    and ascii_string_of_mode'_Pair (Pair (m1, m2)) =
bulwahn@33626
   439
          ascii_string_of_mode' m1 ^ ascii_string_of_mode'_Pair m2
bulwahn@33626
   440
      | ascii_string_of_mode'_Pair m = ascii_string_of_mode' m
bulwahn@33626
   441
  in ascii_string_of_mode'_Fun mode' end
bulwahn@33626
   442
wenzelm@55437
   443
bulwahn@34948
   444
(* premises *)
bulwahn@33619
   445
wenzelm@55437
   446
datatype indprem =
wenzelm@55437
   447
  Prem of term | Negprem of term | Sidecond of term | Generator of (string * typ)
bulwahn@33619
   448
bulwahn@36251
   449
fun dest_indprem (Prem t) = t
bulwahn@36251
   450
  | dest_indprem (Negprem t) = t
bulwahn@36251
   451
  | dest_indprem (Sidecond t) = t
bulwahn@36251
   452
  | dest_indprem (Generator _) = raise Fail "cannot destruct generator"
bulwahn@36251
   453
bulwahn@36254
   454
fun map_indprem f (Prem t) = Prem (f t)
bulwahn@36254
   455
  | map_indprem f (Negprem t) = Negprem (f t)
bulwahn@36254
   456
  | map_indprem f (Sidecond t) = Sidecond (f t)
bulwahn@36254
   457
  | map_indprem f (Generator (v, T)) = Generator (dest_Free (f (Free (v, T))))
bulwahn@36254
   458
wenzelm@55437
   459
bulwahn@33250
   460
(* general syntactic functions *)
bulwahn@33250
   461
bulwahn@33250
   462
fun is_equationlike_term (Const ("==", _) $ _ $ _) = true
wenzelm@55437
   463
  | is_equationlike_term
wenzelm@55437
   464
      (Const (@{const_name Trueprop}, _) $ (Const (@{const_name HOL.eq}, _) $ _ $ _)) = true
bulwahn@33250
   465
  | is_equationlike_term _ = false
wenzelm@55437
   466
wenzelm@55437
   467
val is_equationlike = is_equationlike_term o prop_of
bulwahn@33250
   468
bulwahn@33250
   469
fun is_pred_equation_term (Const ("==", _) $ u $ v) =
wenzelm@55437
   470
      (fastype_of u = @{typ bool}) andalso (fastype_of v = @{typ bool})
bulwahn@33250
   471
  | is_pred_equation_term _ = false
wenzelm@55437
   472
wenzelm@55437
   473
val is_pred_equation = is_pred_equation_term o prop_of
bulwahn@33250
   474
bulwahn@33250
   475
fun is_intro_term constname t =
wenzelm@55437
   476
  the_default false (try (fn t =>
wenzelm@55437
   477
    case fst (strip_comb (HOLogic.dest_Trueprop (Logic.strip_imp_concl t))) of
wenzelm@55437
   478
      Const (c, _) => c = constname
wenzelm@55437
   479
    | _ => false) t)
wenzelm@55437
   480
bulwahn@33250
   481
fun is_intro constname t = is_intro_term constname (prop_of t)
bulwahn@33250
   482
wenzelm@40844
   483
fun is_predT (T as Type("fun", [_, _])) = (body_type T = @{typ bool})
bulwahn@33250
   484
  | is_predT _ = false
bulwahn@33250
   485
bulwahn@33250
   486
(*** check if a term contains only constructor functions ***)
bulwahn@34948
   487
(* TODO: another copy in the core! *)
bulwahn@33623
   488
(* FIXME: constructor terms are supposed to be seen in the way the code generator
bulwahn@33623
   489
  sees constructors.*)
bulwahn@33250
   490
fun is_constrt thy =
bulwahn@33250
   491
  let
bulwahn@33250
   492
    val cnstrs = flat (maps
bulwahn@33250
   493
      (map (fn (_, (Tname, _, cs)) => map (apsnd (rpair Tname o length)) cs) o #descr o snd)
bulwahn@33250
   494
      (Symtab.dest (Datatype.get_all thy)));
wenzelm@55437
   495
    fun check t =
wenzelm@55437
   496
      (case strip_comb t of
bulwahn@36032
   497
        (Var _, []) => true
bulwahn@36032
   498
      | (Free _, []) => true
wenzelm@55437
   499
      | (Const (s, T), ts) =>
wenzelm@55437
   500
          (case (AList.lookup (op =) cnstrs s, body_type T) of
wenzelm@55437
   501
            (SOME (i, Tname), Type (Tname', _)) =>
wenzelm@55437
   502
              length ts = i andalso Tname = Tname' andalso forall check ts
bulwahn@33250
   503
          | _ => false)
bulwahn@33250
   504
      | _ => false)
wenzelm@55437
   505
  in check end
bulwahn@34948
   506
bulwahn@34948
   507
(* returns true if t is an application of an datatype constructor *)
bulwahn@34948
   508
(* which then consequently would be splitted *)
bulwahn@34948
   509
(* else false *)
bulwahn@34948
   510
(*
bulwahn@34948
   511
fun is_constructor thy t =
bulwahn@34948
   512
  if (is_Type (fastype_of t)) then
bulwahn@34948
   513
    (case DatatypePackage.get_datatype thy ((fst o dest_Type o fastype_of) t) of
bulwahn@34948
   514
      NONE => false
bulwahn@34948
   515
    | SOME info => (let
bulwahn@34948
   516
      val constr_consts = maps (fn (_, (_, _, constrs)) => map fst constrs) (#descr info)
bulwahn@34948
   517
      val (c, _) = strip_comb t
bulwahn@34948
   518
      in (case c of
bulwahn@34948
   519
        Const (name, _) => name mem_string constr_consts
bulwahn@34948
   520
        | _ => false) end))
bulwahn@34948
   521
  else false
bulwahn@34948
   522
*)
bulwahn@34948
   523
wenzelm@55437
   524
val is_constr = Code.is_constr o Proof_Context.theory_of
bulwahn@34948
   525
bulwahn@36047
   526
fun strip_all t = (Term.strip_all_vars t, Term.strip_all_body t)
bulwahn@36047
   527
haftmann@38558
   528
fun strip_ex (Const (@{const_name Ex}, _) $ Abs (x, T, t)) =
wenzelm@55437
   529
      let
wenzelm@55437
   530
        val (xTs, t') = strip_ex t
wenzelm@55437
   531
      in
wenzelm@55437
   532
        ((x, T) :: xTs, t')
wenzelm@55437
   533
      end
bulwahn@33250
   534
  | strip_ex t = ([], t)
bulwahn@33250
   535
bulwahn@33250
   536
fun focus_ex t nctxt =
bulwahn@33250
   537
  let
wenzelm@55437
   538
    val ((xs, Ts), t') = apfst split_list (strip_ex t)
wenzelm@43326
   539
    val (xs', nctxt') = fold_map Name.variant xs nctxt;
bulwahn@33250
   540
    val ps' = xs' ~~ Ts;
bulwahn@33250
   541
    val vs = map Free ps';
bulwahn@33250
   542
    val t'' = Term.subst_bounds (rev vs, t');
wenzelm@55437
   543
  in ((ps', t''), nctxt') end
bulwahn@33250
   544
wenzelm@55437
   545
val strip_intro_concl = strip_comb o HOLogic.dest_Trueprop o Logic.strip_imp_concl o prop_of
wenzelm@55437
   546
wenzelm@55437
   547
bulwahn@33250
   548
(* introduction rule combinators *)
bulwahn@33250
   549
wenzelm@55437
   550
fun map_atoms f intro =
bulwahn@33250
   551
  let
bulwahn@33250
   552
    val (literals, head) = Logic.strip_horn intro
wenzelm@55437
   553
    fun appl t =
wenzelm@55437
   554
      (case t of
bulwahn@35885
   555
        (@{term Not} $ t') => HOLogic.mk_not (f t')
bulwahn@33250
   556
      | _ => f t)
bulwahn@33250
   557
  in
bulwahn@33250
   558
    Logic.list_implies
bulwahn@33250
   559
      (map (HOLogic.mk_Trueprop o appl o HOLogic.dest_Trueprop) literals, head)
bulwahn@33250
   560
  end
bulwahn@33250
   561
bulwahn@33250
   562
fun fold_atoms f intro s =
bulwahn@33250
   563
  let
haftmann@46662
   564
    val (literals, _) = Logic.strip_horn intro
wenzelm@55437
   565
    fun appl t s =
wenzelm@55437
   566
      (case t of
wenzelm@55437
   567
        (@{term Not} $ t') => f t' s
bulwahn@33250
   568
      | _ => f t s)
bulwahn@33250
   569
  in fold appl (map HOLogic.dest_Trueprop literals) s end
bulwahn@33250
   570
bulwahn@33250
   571
fun fold_map_atoms f intro s =
bulwahn@33250
   572
  let
bulwahn@33250
   573
    val (literals, head) = Logic.strip_horn intro
wenzelm@55437
   574
    fun appl t s =
wenzelm@55437
   575
      (case t of
wenzelm@55437
   576
        (@{term Not} $ t') => apfst HOLogic.mk_not (f t' s)
bulwahn@33250
   577
      | _ => f t s)
bulwahn@33250
   578
    val (literals', s') = fold_map appl (map HOLogic.dest_Trueprop literals) s
bulwahn@33250
   579
  in
bulwahn@33250
   580
    (Logic.list_implies (map HOLogic.mk_Trueprop literals', head), s')
bulwahn@33250
   581
  end;
bulwahn@33250
   582
bulwahn@36246
   583
fun map_filter_premises f intro =
bulwahn@36246
   584
  let
bulwahn@36246
   585
    val (premises, head) = Logic.strip_horn intro
bulwahn@36246
   586
  in
bulwahn@36246
   587
    Logic.list_implies (map_filter f premises, head)
bulwahn@36246
   588
  end
bulwahn@36246
   589
bulwahn@33250
   590
fun maps_premises f intro =
bulwahn@33250
   591
  let
bulwahn@33250
   592
    val (premises, head) = Logic.strip_horn intro
bulwahn@33250
   593
  in
bulwahn@33250
   594
    Logic.list_implies (maps f premises, head)
bulwahn@33250
   595
  end
bulwahn@35324
   596
bulwahn@35875
   597
fun map_concl f intro =
bulwahn@35875
   598
  let
bulwahn@35875
   599
    val (premises, head) = Logic.strip_horn intro
bulwahn@35875
   600
  in
bulwahn@35875
   601
    Logic.list_implies (premises, f head)
bulwahn@35875
   602
  end
bulwahn@35875
   603
wenzelm@55437
   604
bulwahn@35875
   605
(* combinators to apply a function to all basic parts of nested products *)
bulwahn@35875
   606
haftmann@37391
   607
fun map_products f (Const (@{const_name Pair}, T) $ t1 $ t2) =
haftmann@37391
   608
  Const (@{const_name Pair}, T) $ map_products f t1 $ map_products f t2
bulwahn@35875
   609
  | map_products f t = f t
bulwahn@35324
   610
wenzelm@55437
   611
bulwahn@35324
   612
(* split theorems of case expressions *)
bulwahn@35324
   613
bulwahn@35324
   614
fun prepare_split_thm ctxt split_thm =
bulwahn@35324
   615
    (split_thm RS @{thm iffD2})
wenzelm@35624
   616
    |> Local_Defs.unfold ctxt [@{thm atomize_conjL[symmetric]},
bulwahn@35324
   617
      @{thm atomize_all[symmetric]}, @{thm atomize_imp[symmetric]}]
bulwahn@35324
   618
haftmann@46662
   619
fun find_split_thm thy (Const (name, _)) = Option.map #split (Datatype.info_of_case thy name)
wenzelm@55437
   620
  | find_split_thm _ _ = NONE
wenzelm@55437
   621
bulwahn@35324
   622
bulwahn@33250
   623
(* lifting term operations to theorems *)
bulwahn@33250
   624
bulwahn@33250
   625
fun map_term thy f th =
bulwahn@33250
   626
  Skip_Proof.make_thm thy (f (prop_of th))
bulwahn@33250
   627
bulwahn@33250
   628
(*
bulwahn@33250
   629
fun equals_conv lhs_cv rhs_cv ct =
bulwahn@33250
   630
  case Thm.term_of ct of
wenzelm@55437
   631
    Const ("==", _) $ _ $ _ => Conv.arg_conv cv ct
wenzelm@55437
   632
  | _ => error "equals_conv"
bulwahn@33250
   633
*)
bulwahn@33250
   634
wenzelm@55437
   635
bulwahn@36038
   636
(* Different compilations *)
bulwahn@33250
   637
bulwahn@35881
   638
datatype compilation = Pred | Depth_Limited | Random | Depth_Limited_Random | DSeq | Annotated
bulwahn@40051
   639
  | Pos_Random_DSeq | Neg_Random_DSeq | New_Pos_Random_DSeq | New_Neg_Random_DSeq |
bulwahn@45450
   640
    Pos_Generator_DSeq | Neg_Generator_DSeq | Pos_Generator_CPS | Neg_Generator_CPS
bulwahn@35324
   641
bulwahn@35324
   642
fun negative_compilation_of Pos_Random_DSeq = Neg_Random_DSeq
bulwahn@35324
   643
  | negative_compilation_of Neg_Random_DSeq = Pos_Random_DSeq
bulwahn@36018
   644
  | negative_compilation_of New_Pos_Random_DSeq = New_Neg_Random_DSeq
bulwahn@36018
   645
  | negative_compilation_of New_Neg_Random_DSeq = New_Pos_Random_DSeq
bulwahn@40051
   646
  | negative_compilation_of Pos_Generator_DSeq = Neg_Generator_DSeq
bulwahn@45450
   647
  | negative_compilation_of Neg_Generator_DSeq = Pos_Generator_DSeq
bulwahn@45450
   648
  | negative_compilation_of Pos_Generator_CPS = Neg_Generator_CPS
wenzelm@55437
   649
  | negative_compilation_of Neg_Generator_CPS = Pos_Generator_CPS
bulwahn@35324
   650
  | negative_compilation_of c = c
wenzelm@55437
   651
bulwahn@35324
   652
fun compilation_for_polarity false Pos_Random_DSeq = Neg_Random_DSeq
bulwahn@36018
   653
  | compilation_for_polarity false New_Pos_Random_DSeq = New_Neg_Random_DSeq
bulwahn@35324
   654
  | compilation_for_polarity _ c = c
bulwahn@34948
   655
bulwahn@40049
   656
fun is_depth_limited_compilation c =
bulwahn@40051
   657
  (c = New_Pos_Random_DSeq) orelse (c = New_Neg_Random_DSeq) orelse
bulwahn@40051
   658
  (c = Pos_Generator_DSeq) orelse (c = Pos_Generator_DSeq)
bulwahn@40049
   659
bulwahn@35885
   660
fun string_of_compilation c =
wenzelm@55437
   661
  (case c of
bulwahn@34948
   662
    Pred => ""
bulwahn@34948
   663
  | Random => "random"
bulwahn@34948
   664
  | Depth_Limited => "depth limited"
bulwahn@35881
   665
  | Depth_Limited_Random => "depth limited random"
bulwahn@34948
   666
  | DSeq => "dseq"
bulwahn@34948
   667
  | Annotated => "annotated"
bulwahn@35324
   668
  | Pos_Random_DSeq => "pos_random dseq"
bulwahn@35324
   669
  | Neg_Random_DSeq => "neg_random_dseq"
bulwahn@36018
   670
  | New_Pos_Random_DSeq => "new_pos_random dseq"
bulwahn@36018
   671
  | New_Neg_Random_DSeq => "new_neg_random_dseq"
bulwahn@40051
   672
  | Pos_Generator_DSeq => "pos_generator_dseq"
bulwahn@40051
   673
  | Neg_Generator_DSeq => "neg_generator_dseq"
bulwahn@45450
   674
  | Pos_Generator_CPS => "pos_generator_cps"
wenzelm@55437
   675
  | Neg_Generator_CPS => "neg_generator_cps")
wenzelm@55437
   676
wenzelm@55437
   677
val compilation_names =
wenzelm@55437
   678
 [("pred", Pred),
bulwahn@36018
   679
  ("random", Random),
bulwahn@36018
   680
  ("depth_limited", Depth_Limited),
bulwahn@36018
   681
  ("depth_limited_random", Depth_Limited_Random),
bulwahn@36018
   682
  (*("annotated", Annotated),*)
bulwahn@40054
   683
  ("dseq", DSeq),
bulwahn@40054
   684
  ("random_dseq", Pos_Random_DSeq),
bulwahn@40051
   685
  ("new_random_dseq", New_Pos_Random_DSeq),
bulwahn@45450
   686
  ("generator_dseq", Pos_Generator_DSeq),
bulwahn@45450
   687
  ("generator_cps", Pos_Generator_CPS)]
bulwahn@36038
   688
bulwahn@36038
   689
val non_random_compilations = [Pred, Depth_Limited, DSeq, Annotated]
bulwahn@36038
   690
bulwahn@36038
   691
bulwahn@36038
   692
val random_compilations = [Random, Depth_Limited_Random,
bulwahn@48221
   693
  Pos_Random_DSeq, Neg_Random_DSeq, New_Pos_Random_DSeq, New_Neg_Random_DSeq,
bulwahn@48221
   694
  Pos_Generator_CPS, Neg_Generator_CPS]
bulwahn@36038
   695
wenzelm@55437
   696
bulwahn@36046
   697
(* datastructures and setup for generic compilation *)
bulwahn@36046
   698
bulwahn@36046
   699
datatype compilation_funs = CompilationFuns of {
bulwahn@45461
   700
  mk_monadT : typ -> typ,
bulwahn@45461
   701
  dest_monadT : typ -> typ,
bulwahn@45461
   702
  mk_empty : typ -> term,
bulwahn@36046
   703
  mk_single : term -> term,
bulwahn@36046
   704
  mk_bind : term * term -> term,
bulwahn@45461
   705
  mk_plus : term * term -> term,
bulwahn@36046
   706
  mk_if : term -> term,
bulwahn@36049
   707
  mk_iterate_upto : typ -> term * term * term -> term,
bulwahn@36046
   708
  mk_not : term -> term,
bulwahn@36046
   709
  mk_map : typ -> typ -> term -> term -> term
wenzelm@55437
   710
}
bulwahn@36038
   711
bulwahn@45461
   712
fun mk_monadT (CompilationFuns funs) = #mk_monadT funs
bulwahn@45461
   713
fun dest_monadT (CompilationFuns funs) = #dest_monadT funs
bulwahn@45461
   714
fun mk_empty (CompilationFuns funs) = #mk_empty funs
bulwahn@36046
   715
fun mk_single (CompilationFuns funs) = #mk_single funs
bulwahn@36046
   716
fun mk_bind (CompilationFuns funs) = #mk_bind funs
bulwahn@45461
   717
fun mk_plus (CompilationFuns funs) = #mk_plus funs
bulwahn@36046
   718
fun mk_if (CompilationFuns funs) = #mk_if funs
bulwahn@36049
   719
fun mk_iterate_upto (CompilationFuns funs) = #mk_iterate_upto funs
bulwahn@36046
   720
fun mk_not (CompilationFuns funs) = #mk_not funs
bulwahn@36046
   721
fun mk_map (CompilationFuns funs) = #mk_map funs
bulwahn@36046
   722
wenzelm@55437
   723
bulwahn@36046
   724
(** function types and names of different compilations **)
bulwahn@36046
   725
bulwahn@36046
   726
fun funT_of compfuns mode T =
bulwahn@36046
   727
  let
bulwahn@36046
   728
    val Ts = binder_types T
wenzelm@55437
   729
    val (inTs, outTs) =
wenzelm@55437
   730
      split_map_modeT (fn m => fn T => (SOME (funT_of compfuns m T), NONE)) mode Ts
bulwahn@36046
   731
  in
bulwahn@45461
   732
    inTs ---> (mk_monadT compfuns (HOLogic.mk_tupleT outTs))
wenzelm@55437
   733
  end
wenzelm@55437
   734
bulwahn@36046
   735
bulwahn@36046
   736
(* Different options for compiler *)
bulwahn@34948
   737
wenzelm@55437
   738
datatype options = Options of {
bulwahn@34948
   739
  expected_modes : (string * mode list) option,
bulwahn@39382
   740
  proposed_modes : (string * mode list) list,
bulwahn@34948
   741
  proposed_names : ((string * mode) * string) list,
bulwahn@33250
   742
  show_steps : bool,
bulwahn@33250
   743
  show_proof_trace : bool,
bulwahn@33250
   744
  show_intermediate_results : bool,
bulwahn@33251
   745
  show_mode_inference : bool,
bulwahn@33251
   746
  show_modes : bool,
bulwahn@33250
   747
  show_compilation : bool,
bulwahn@35324
   748
  show_caught_failures : bool,
bulwahn@39383
   749
  show_invalid_clauses : bool,
bulwahn@33250
   750
  skip_proof : bool,
bulwahn@35324
   751
  no_topmost_reordering : bool,
bulwahn@35324
   752
  function_flattening : bool,
bulwahn@36248
   753
  specialise : bool,
bulwahn@35324
   754
  fail_safe_function_flattening : bool,
bulwahn@35324
   755
  no_higher_order_predicate : string list,
bulwahn@33250
   756
  inductify : bool,
bulwahn@36254
   757
  detect_switches : bool,
bulwahn@40048
   758
  smart_depth_limiting : bool,
bulwahn@34948
   759
  compilation : compilation
wenzelm@55437
   760
}
bulwahn@33250
   761
bulwahn@33250
   762
fun expected_modes (Options opt) = #expected_modes opt
bulwahn@39382
   763
fun proposed_modes (Options opt) = AList.lookup (op =) (#proposed_modes opt)
bulwahn@34948
   764
fun proposed_names (Options opt) name mode = AList.lookup (eq_pair (op =) eq_mode)
bulwahn@33623
   765
  (#proposed_names opt) (name, mode)
bulwahn@33620
   766
bulwahn@33250
   767
fun show_steps (Options opt) = #show_steps opt
bulwahn@33250
   768
fun show_intermediate_results (Options opt) = #show_intermediate_results opt
bulwahn@33250
   769
fun show_proof_trace (Options opt) = #show_proof_trace opt
bulwahn@33251
   770
fun show_modes (Options opt) = #show_modes opt
bulwahn@33251
   771
fun show_mode_inference (Options opt) = #show_mode_inference opt
bulwahn@33250
   772
fun show_compilation (Options opt) = #show_compilation opt
bulwahn@35324
   773
fun show_caught_failures (Options opt) = #show_caught_failures opt
bulwahn@39383
   774
fun show_invalid_clauses (Options opt) = #show_invalid_clauses opt
bulwahn@33250
   775
fun skip_proof (Options opt) = #skip_proof opt
bulwahn@33250
   776
bulwahn@35324
   777
fun function_flattening (Options opt) = #function_flattening opt
bulwahn@35324
   778
fun fail_safe_function_flattening (Options opt) = #fail_safe_function_flattening opt
bulwahn@36248
   779
fun specialise (Options opt) = #specialise opt
bulwahn@35324
   780
fun no_topmost_reordering (Options opt) = #no_topmost_reordering opt
bulwahn@35324
   781
fun no_higher_order_predicate (Options opt) = #no_higher_order_predicate opt
bulwahn@35324
   782
bulwahn@33250
   783
fun is_inductify (Options opt) = #inductify opt
bulwahn@34948
   784
bulwahn@34948
   785
fun compilation (Options opt) = #compilation opt
bulwahn@33250
   786
bulwahn@36254
   787
fun detect_switches (Options opt) = #detect_switches opt
bulwahn@36254
   788
bulwahn@40048
   789
fun smart_depth_limiting (Options opt) = #smart_depth_limiting opt
bulwahn@40048
   790
bulwahn@33250
   791
val default_options = Options {
bulwahn@33250
   792
  expected_modes = NONE,
bulwahn@39382
   793
  proposed_modes = [],
bulwahn@33623
   794
  proposed_names = [],
bulwahn@33250
   795
  show_steps = false,
bulwahn@33250
   796
  show_intermediate_results = false,
bulwahn@33250
   797
  show_proof_trace = false,
bulwahn@33251
   798
  show_modes = false,
bulwahn@33250
   799
  show_mode_inference = false,
bulwahn@33250
   800
  show_compilation = false,
bulwahn@35324
   801
  show_caught_failures = false,
bulwahn@39383
   802
  show_invalid_clauses = false,
bulwahn@34948
   803
  skip_proof = true,
bulwahn@35324
   804
  no_topmost_reordering = false,
bulwahn@35324
   805
  function_flattening = false,
bulwahn@36248
   806
  specialise = false,
bulwahn@35324
   807
  fail_safe_function_flattening = false,
bulwahn@35324
   808
  no_higher_order_predicate = [],
bulwahn@33250
   809
  inductify = false,
bulwahn@36254
   810
  detect_switches = true,
bulwahn@40048
   811
  smart_depth_limiting = false,
bulwahn@34948
   812
  compilation = Pred
bulwahn@33250
   813
}
bulwahn@33250
   814
bulwahn@34948
   815
val bool_options = ["show_steps", "show_intermediate_results", "show_proof_trace", "show_modes",
bulwahn@39383
   816
  "show_mode_inference", "show_compilation", "show_invalid_clauses", "skip_proof", "inductify",
bulwahn@40048
   817
  "no_function_flattening", "detect_switches", "specialise", "no_topmost_reordering",
bulwahn@40048
   818
  "smart_depth_limiting"]
bulwahn@34948
   819
bulwahn@33250
   820
fun print_step options s =
bulwahn@33250
   821
  if show_steps options then tracing s else ()
bulwahn@33250
   822
wenzelm@55437
   823
bulwahn@36047
   824
(* simple transformations *)
bulwahn@36047
   825
bulwahn@36047
   826
(** tuple processing **)
bulwahn@33250
   827
bulwahn@39657
   828
fun rewrite_args [] (pats, intro_t, ctxt) = (pats, intro_t, ctxt)
wenzelm@55437
   829
  | rewrite_args (arg::args) (pats, intro_t, ctxt) =
wenzelm@55437
   830
      (case HOLogic.strip_tupleT (fastype_of arg) of
wenzelm@55437
   831
        (_ :: _ :: _) =>
wenzelm@55437
   832
        let
wenzelm@55437
   833
          fun rewrite_arg'
wenzelm@55437
   834
                (Const (@{const_name Pair}, _) $ _ $ t2, Type (@{type_name Product_Type.prod}, [_, T2]))
wenzelm@55437
   835
                (args, (pats, intro_t, ctxt)) =
wenzelm@55437
   836
                rewrite_arg' (t2, T2) (args, (pats, intro_t, ctxt))
wenzelm@55437
   837
            | rewrite_arg'
wenzelm@55437
   838
                (t, Type (@{type_name Product_Type.prod}, [T1, T2])) (args, (pats, intro_t, ctxt)) =
wenzelm@55437
   839
                let
wenzelm@55437
   840
                  val thy = Proof_Context.theory_of ctxt
wenzelm@55437
   841
                  val ([x, y], ctxt') = Variable.variant_fixes ["x", "y"] ctxt
wenzelm@55437
   842
                  val pat = (t, HOLogic.mk_prod (Free (x, T1), Free (y, T2)))
wenzelm@55437
   843
                  val intro_t' = Pattern.rewrite_term thy [pat] [] intro_t
wenzelm@55437
   844
                  val args' = map (Pattern.rewrite_term thy [pat] []) args
wenzelm@55437
   845
                in
wenzelm@55437
   846
                  rewrite_arg' (Free (y, T2), T2) (args', (pat::pats, intro_t', ctxt'))
wenzelm@55437
   847
                end
wenzelm@55437
   848
            | rewrite_arg' _ (args, (pats, intro_t, ctxt)) = (args, (pats, intro_t, ctxt))
wenzelm@55437
   849
          val (args', (pats, intro_t', ctxt')) =
wenzelm@55437
   850
            rewrite_arg' (arg, fastype_of arg) (args, (pats, intro_t, ctxt))
wenzelm@55437
   851
        in
wenzelm@55437
   852
          rewrite_args args' (pats, intro_t', ctxt')
wenzelm@55437
   853
        end
bulwahn@39657
   854
  | _ => rewrite_args args (pats, intro_t, ctxt))
bulwahn@39657
   855
bulwahn@39657
   856
fun rewrite_prem atom =
bulwahn@39657
   857
  let
bulwahn@39657
   858
    val (_, args) = strip_comb atom
bulwahn@39657
   859
  in rewrite_args args end
bulwahn@39657
   860
bulwahn@39787
   861
fun split_conjuncts_in_assms ctxt th =
bulwahn@39787
   862
  let
wenzelm@55437
   863
    val ((_, [fixed_th]), ctxt') = Variable.import false [th] ctxt
bulwahn@39787
   864
    fun split_conjs i nprems th =
bulwahn@39787
   865
      if i > nprems then th
bulwahn@39787
   866
      else
wenzelm@55437
   867
        (case try Drule.RSN (@{thm conjI}, (i, th)) of
wenzelm@55437
   868
          SOME th' => split_conjs i (nprems + 1) th'
wenzelm@55437
   869
        | NONE => split_conjs (i + 1) nprems th)
bulwahn@39787
   870
  in
wenzelm@55437
   871
    singleton (Variable.export ctxt' ctxt)
wenzelm@55437
   872
      (split_conjs 1 (Thm.nprems_of fixed_th) fixed_th)
bulwahn@39787
   873
  end
bulwahn@40052
   874
bulwahn@40052
   875
fun dest_conjunct_prem th =
wenzelm@55437
   876
  (case HOLogic.dest_Trueprop (prop_of th) of
haftmann@46662
   877
    (Const (@{const_name HOL.conj}, _) $ _ $ _) =>
bulwahn@40052
   878
      dest_conjunct_prem (th RS @{thm conjunct1})
bulwahn@40052
   879
        @ dest_conjunct_prem (th RS @{thm conjunct2})
wenzelm@55437
   880
   | _ => [th])
bulwahn@40052
   881
bulwahn@33250
   882
fun expand_tuples thy intro =
bulwahn@33250
   883
  let
wenzelm@42361
   884
    val ctxt = Proof_Context.init_global thy
bulwahn@33250
   885
    val (((T_insts, t_insts), [intro']), ctxt1) = Variable.import false [intro] ctxt
bulwahn@33250
   886
    val intro_t = prop_of intro'
bulwahn@33250
   887
    val concl = Logic.strip_imp_concl intro_t
haftmann@46662
   888
    val (_, args) = strip_comb (HOLogic.dest_Trueprop concl)
bulwahn@33250
   889
    val (pats', intro_t', ctxt2) = rewrite_args args ([], intro_t, ctxt1)
haftmann@46662
   890
    val (pats', _, ctxt3) = fold_atoms rewrite_prem intro_t' (pats', intro_t', ctxt2)
bulwahn@33250
   891
    fun rewrite_pat (ct1, ct2) =
bulwahn@33250
   892
      (ct1, cterm_of thy (Pattern.rewrite_term thy pats' [] (term_of ct2)))
bulwahn@33250
   893
    val t_insts' = map rewrite_pat t_insts
bulwahn@33250
   894
    val intro'' = Thm.instantiate (T_insts, t_insts') intro
bulwahn@33250
   895
    val [intro'''] = Variable.export ctxt3 ctxt [intro'']
wenzelm@51717
   896
    val intro'''' =
wenzelm@51717
   897
      Simplifier.full_simplify
wenzelm@51717
   898
        (put_simpset HOL_basic_ss ctxt
wenzelm@51717
   899
          addsimps [@{thm fst_conv}, @{thm snd_conv}, @{thm Pair_eq}])
bulwahn@33250
   900
      intro'''
bulwahn@33250
   901
    (* splitting conjunctions introduced by Pair_eq*)
bulwahn@39787
   902
    val intro''''' = split_conjuncts_in_assms ctxt intro''''
bulwahn@33250
   903
  in
bulwahn@33250
   904
    intro'''''
bulwahn@33250
   905
  end
bulwahn@33250
   906
wenzelm@55437
   907
bulwahn@39802
   908
(** making case distributivity rules **)
bulwahn@39802
   909
(*** this should be part of the datatype package ***)
bulwahn@39802
   910
bulwahn@39802
   911
fun datatype_names_of_case_name thy case_name =
wenzelm@45906
   912
  map (#1 o #2) (#descr (the (Datatype.info_of_case thy case_name)))
bulwahn@39802
   913
wenzelm@45879
   914
fun make_case_distribs case_names descr thy =
bulwahn@39802
   915
  let
wenzelm@45879
   916
    val case_combs = Datatype_Prop.make_case_combs case_names descr thy "f";
bulwahn@39802
   917
    fun make comb =
bulwahn@39802
   918
      let
wenzelm@55437
   919
        val Type ("fun", [T, T']) = fastype_of comb
bulwahn@39802
   920
        val (Const (case_name, _), fs) = strip_comb comb
bulwahn@39802
   921
        val used = Term.add_tfree_names comb []
wenzelm@43324
   922
        val U = TFree (singleton (Name.variant_list used) "'t", HOLogic.typeS)
bulwahn@39802
   923
        val x = Free ("x", T)
bulwahn@39802
   924
        val f = Free ("f", T' --> U)
bulwahn@39802
   925
        fun apply_f f' =
bulwahn@39802
   926
          let
bulwahn@39802
   927
            val Ts = binder_types (fastype_of f')
bulwahn@39802
   928
            val bs = map Bound ((length Ts - 1) downto 0)
bulwahn@39802
   929
          in
wenzelm@44241
   930
            fold_rev absdummy Ts (f $ (list_comb (f', bs)))
bulwahn@39802
   931
          end
bulwahn@39802
   932
        val fs' = map apply_f fs
bulwahn@39802
   933
        val case_c' = Const (case_name, (map fastype_of fs') @ [T] ---> U)
bulwahn@39802
   934
      in
bulwahn@39802
   935
        HOLogic.mk_eq (f $ (comb $ x), list_comb (case_c', fs') $ x)
bulwahn@39802
   936
      end
bulwahn@39802
   937
  in
bulwahn@39802
   938
    map make case_combs
bulwahn@39802
   939
  end
bulwahn@39802
   940
bulwahn@39802
   941
fun case_rewrites thy Tcon =
bulwahn@39802
   942
  let
wenzelm@45879
   943
    val {descr, case_name, ...} = Datatype.the_info thy Tcon
bulwahn@39802
   944
  in
bulwahn@39802
   945
    map (Drule.export_without_context o Skip_Proof.make_thm thy o HOLogic.mk_Trueprop)
wenzelm@45879
   946
      (make_case_distribs [case_name] [descr] thy)
bulwahn@39802
   947
  end
bulwahn@39802
   948
bulwahn@39802
   949
fun instantiated_case_rewrites thy Tcon =
bulwahn@39802
   950
  let
bulwahn@39802
   951
    val rew_ths = case_rewrites thy Tcon
wenzelm@42361
   952
    val ctxt = Proof_Context.init_global thy
bulwahn@39802
   953
    fun instantiate th =
bulwahn@39802
   954
    let
bulwahn@39802
   955
      val f = (fst (strip_comb (fst (HOLogic.dest_eq (HOLogic.dest_Trueprop (prop_of th))))))
bulwahn@39802
   956
      val Type ("fun", [uninst_T, uninst_T']) = fastype_of f
haftmann@50056
   957
      val ([_, tname', uname, yname], ctxt') = Variable.add_fixes ["'t", "'t'", "'u", "y"] ctxt
bulwahn@39802
   958
      val T' = TFree (tname', HOLogic.typeS)
bulwahn@39802
   959
      val U = TFree (uname, HOLogic.typeS)
bulwahn@39802
   960
      val y = Free (yname, U)
wenzelm@44241
   961
      val f' = absdummy (U --> T') (Bound 0 $ y)
bulwahn@39802
   962
      val th' = Thm.certify_instantiate
bulwahn@39802
   963
        ([(dest_TVar uninst_T, U --> T'), (dest_TVar uninst_T', T')],
bulwahn@39802
   964
         [((fst (dest_Var f), (U --> T') --> T'), f')]) th
bulwahn@39802
   965
      val [th'] = Variable.export ctxt' ctxt [th']
bulwahn@39802
   966
   in
bulwahn@39802
   967
     th'
bulwahn@39802
   968
   end
bulwahn@39802
   969
 in
bulwahn@39802
   970
   map instantiate rew_ths
bulwahn@39802
   971
 end
bulwahn@39802
   972
bulwahn@39802
   973
fun case_betapply thy t =
bulwahn@39802
   974
  let
bulwahn@39802
   975
    val case_name = fst (dest_Const (fst (strip_comb t)))
bulwahn@39802
   976
    val Tcons = datatype_names_of_case_name thy case_name
bulwahn@39802
   977
    val ths = maps (instantiated_case_rewrites thy) Tcons
bulwahn@39802
   978
  in
wenzelm@41228
   979
    Raw_Simplifier.rewrite_term thy
bulwahn@39802
   980
      (map (fn th => th RS @{thm eq_reflection}) ths) [] t
bulwahn@39802
   981
  end
bulwahn@39802
   982
wenzelm@55437
   983
bulwahn@39657
   984
(*** conversions ***)
bulwahn@39657
   985
bulwahn@39657
   986
fun imp_prems_conv cv ct =
wenzelm@55437
   987
  (case Thm.term_of ct of
bulwahn@39657
   988
    Const ("==>", _) $ _ $ _ => Conv.combination_conv (Conv.arg_conv cv) (imp_prems_conv cv) ct
wenzelm@55437
   989
  | _ => Conv.all_conv ct)
wenzelm@55437
   990
bulwahn@39657
   991
bulwahn@36047
   992
(** eta contract higher-order arguments **)
bulwahn@35875
   993
bulwahn@35875
   994
fun eta_contract_ho_arguments thy intro =
bulwahn@35875
   995
  let
bulwahn@35875
   996
    fun f atom = list_comb (apsnd ((map o map_products) Envir.eta_contract) (strip_comb atom))
bulwahn@35875
   997
  in
bulwahn@35875
   998
    map_term thy (map_concl f o map_atoms f) intro
bulwahn@35875
   999
  end
bulwahn@35875
  1000
wenzelm@55437
  1001
bulwahn@36047
  1002
(** remove equalities **)
bulwahn@36022
  1003
bulwahn@36022
  1004
fun remove_equalities thy intro =
bulwahn@36022
  1005
  let
bulwahn@36022
  1006
    fun remove_eqs intro_t =
bulwahn@36022
  1007
      let
bulwahn@36022
  1008
        val (prems, concl) = Logic.strip_horn intro_t
bulwahn@36022
  1009
        fun remove_eq (prems, concl) =
bulwahn@36022
  1010
          let
bulwahn@36022
  1011
            fun removable_eq prem =
wenzelm@55437
  1012
              (case try (HOLogic.dest_eq o HOLogic.dest_Trueprop) prem of
wenzelm@55437
  1013
                SOME (lhs, rhs) =>
wenzelm@55437
  1014
                  (case lhs of
wenzelm@55437
  1015
                    Var _ => true
bulwahn@36022
  1016
                  | _ => (case rhs of Var _ => true | _ => false))
wenzelm@55437
  1017
              | NONE => false)
bulwahn@36022
  1018
          in
wenzelm@55437
  1019
            (case find_first removable_eq prems of
bulwahn@36022
  1020
              NONE => (prems, concl)
bulwahn@36022
  1021
            | SOME eq =>
wenzelm@55437
  1022
                let
wenzelm@55437
  1023
                  val (lhs, rhs) = HOLogic.dest_eq (HOLogic.dest_Trueprop eq)
wenzelm@55437
  1024
                  val prems' = remove (op =) eq prems
wenzelm@55437
  1025
                  val subst =
wenzelm@55437
  1026
                    (case lhs of
wenzelm@55437
  1027
                      (v as Var _) =>
wenzelm@55437
  1028
                        (fn t => if t = v then rhs else t)
wenzelm@55437
  1029
                    | _ => (case rhs of (v as Var _) => (fn t => if t = v then lhs else t)))
wenzelm@55437
  1030
                in
wenzelm@55437
  1031
                  remove_eq (map (map_aterms subst) prems', map_aterms subst concl)
wenzelm@55437
  1032
                end)
bulwahn@36022
  1033
          end
bulwahn@36022
  1034
      in
bulwahn@36022
  1035
        Logic.list_implies (remove_eq (prems, concl))
bulwahn@36022
  1036
      end
bulwahn@36022
  1037
  in
bulwahn@36022
  1038
    map_term thy remove_eqs intro
bulwahn@36022
  1039
  end
bulwahn@35875
  1040
wenzelm@55437
  1041
bulwahn@36246
  1042
(* Some last processing *)
bulwahn@36246
  1043
bulwahn@36246
  1044
fun remove_pointless_clauses intro =
bulwahn@36246
  1045
  if Logic.strip_imp_prems (prop_of intro) = [@{prop "False"}] then
bulwahn@36246
  1046
    []
bulwahn@36246
  1047
  else [intro]
bulwahn@36246
  1048
wenzelm@55437
  1049
bulwahn@36246
  1050
(* some peephole optimisations *)
bulwahn@36246
  1051
bulwahn@36246
  1052
fun peephole_optimisation thy intro =
bulwahn@36246
  1053
  let
wenzelm@54742
  1054
    val ctxt = Proof_Context.init_global thy  (* FIXME proper context!? *)
wenzelm@36610
  1055
    val process =
wenzelm@54742
  1056
      rewrite_rule ctxt (Predicate_Compile_Simps.get ctxt)
bulwahn@36246
  1057
    fun process_False intro_t =
wenzelm@55437
  1058
      if member (op =) (Logic.strip_imp_prems intro_t) @{prop "False"}
wenzelm@55437
  1059
      then NONE else SOME intro_t
bulwahn@36246
  1060
    fun process_True intro_t =
bulwahn@36246
  1061
      map_filter_premises (fn p => if p = @{prop True} then NONE else SOME p) intro_t
bulwahn@36246
  1062
  in
bulwahn@36246
  1063
    Option.map (Skip_Proof.make_thm thy)
bulwahn@36246
  1064
      (process_False (process_True (prop_of (process intro))))
bulwahn@36246
  1065
  end
bulwahn@36246
  1066
bulwahn@40101
  1067
bulwahn@40101
  1068
(* importing introduction rules *)
bulwahn@40101
  1069
bulwahn@40101
  1070
fun import_intros inp_pred [] ctxt =
wenzelm@55437
  1071
      let
wenzelm@55437
  1072
        val ([outp_pred], ctxt') = Variable.import_terms true [inp_pred] ctxt
wenzelm@55437
  1073
        val T = fastype_of outp_pred
wenzelm@55437
  1074
        val paramTs = ho_argsT_of_typ (binder_types T)
wenzelm@55437
  1075
        val (param_names, _) = Variable.variant_fixes
wenzelm@55437
  1076
          (map (fn i => "p" ^ (string_of_int i)) (1 upto (length paramTs))) ctxt'
wenzelm@55437
  1077
        val params = map2 (curry Free) param_names paramTs
wenzelm@55437
  1078
      in
wenzelm@55437
  1079
        (((outp_pred, params), []), ctxt')
wenzelm@55437
  1080
      end
bulwahn@40101
  1081
  | import_intros inp_pred (th :: ths) ctxt =
wenzelm@55437
  1082
      let
wenzelm@55437
  1083
        val ((_, [th']), ctxt') = Variable.import true [th] ctxt
wenzelm@55437
  1084
        val thy = Proof_Context.theory_of ctxt'
wenzelm@55437
  1085
        val (pred, args) = strip_intro_concl th'
wenzelm@55437
  1086
        val T = fastype_of pred
wenzelm@55437
  1087
        val ho_args = ho_args_of_typ T args
wenzelm@55437
  1088
        fun subst_of (pred', pred) =
wenzelm@55437
  1089
          let
wenzelm@55437
  1090
            val subst = Sign.typ_match thy (fastype_of pred', fastype_of pred) Vartab.empty
wenzelm@55437
  1091
              handle Type.TYPE_MATCH =>
wenzelm@55437
  1092
                error ("Type mismatch of predicate " ^ fst (dest_Const pred) ^
wenzelm@55437
  1093
                  " (trying to match " ^ Syntax.string_of_typ ctxt (fastype_of pred') ^
wenzelm@55437
  1094
                  " and " ^ Syntax.string_of_typ ctxt (fastype_of pred) ^ ")" ^
wenzelm@55437
  1095
                  " in " ^ Display.string_of_thm ctxt th)
wenzelm@55437
  1096
          in map (fn (indexname, (s, T)) => ((indexname, s), T)) (Vartab.dest subst) end
wenzelm@55437
  1097
        fun instantiate_typ th =
wenzelm@55437
  1098
          let
wenzelm@55437
  1099
            val (pred', _) = strip_intro_concl th
wenzelm@55437
  1100
            val _ =
wenzelm@55437
  1101
              if not (fst (dest_Const pred) = fst (dest_Const pred')) then
wenzelm@55437
  1102
                raise Fail "Trying to instantiate another predicate"
wenzelm@55437
  1103
              else ()
wenzelm@55437
  1104
          in Thm.certify_instantiate (subst_of (pred', pred), []) th end
wenzelm@55437
  1105
        fun instantiate_ho_args th =
wenzelm@55437
  1106
          let
wenzelm@55437
  1107
            val (_, args') =
wenzelm@55437
  1108
              (strip_comb o HOLogic.dest_Trueprop o Logic.strip_imp_concl o prop_of) th
wenzelm@55437
  1109
            val ho_args' = map dest_Var (ho_args_of_typ T args')
wenzelm@55437
  1110
          in Thm.certify_instantiate ([], ho_args' ~~ ho_args) th end
wenzelm@55437
  1111
        val outp_pred =
wenzelm@55437
  1112
          Term_Subst.instantiate (subst_of (inp_pred, pred), []) inp_pred
wenzelm@55437
  1113
        val ((_, ths'), ctxt1) =
wenzelm@55437
  1114
          Variable.import false (map (instantiate_typ #> instantiate_ho_args) ths) ctxt'
wenzelm@55437
  1115
      in
wenzelm@55437
  1116
        (((outp_pred, ho_args), th' :: ths'), ctxt1)
wenzelm@55437
  1117
      end
wenzelm@55437
  1118
wenzelm@55437
  1119
bulwahn@40101
  1120
(* generation of case rules from user-given introduction rules *)
bulwahn@40101
  1121
bulwahn@40101
  1122
fun mk_args2 (Type (@{type_name Product_Type.prod}, [T1, T2])) st =
wenzelm@55437
  1123
      let
wenzelm@55437
  1124
        val (t1, st') = mk_args2 T1 st
wenzelm@55437
  1125
        val (t2, st'') = mk_args2 T2 st'
wenzelm@55437
  1126
      in
wenzelm@55437
  1127
        (HOLogic.mk_prod (t1, t2), st'')
wenzelm@55437
  1128
      end
wenzelm@55437
  1129
  (*| mk_args2 (T as Type ("fun", _)) (params, ctxt) =
bulwahn@40101
  1130
    let
bulwahn@40101
  1131
      val (S, U) = strip_type T
bulwahn@40101
  1132
    in
bulwahn@40101
  1133
      if U = HOLogic.boolT then
bulwahn@40101
  1134
        (hd params, (tl params, ctxt))
bulwahn@40101
  1135
      else
bulwahn@40101
  1136
        let
bulwahn@40101
  1137
          val ([x], ctxt') = Variable.variant_fixes ["x"] ctxt
bulwahn@40101
  1138
        in
bulwahn@40101
  1139
          (Free (x, T), (params, ctxt'))
bulwahn@40101
  1140
        end
bulwahn@40101
  1141
    end*)
bulwahn@40101
  1142
  | mk_args2 T (params, ctxt) =
wenzelm@55437
  1143
      let
wenzelm@55437
  1144
        val ([x], ctxt') = Variable.variant_fixes ["x"] ctxt
wenzelm@55437
  1145
      in
wenzelm@55437
  1146
        (Free (x, T), (params, ctxt'))
wenzelm@55437
  1147
      end
bulwahn@40101
  1148
bulwahn@40101
  1149
fun mk_casesrule ctxt pred introrules =
bulwahn@40101
  1150
  let
bulwahn@40101
  1151
    (* TODO: can be simplified if parameters are not treated specially ? *)
bulwahn@40101
  1152
    val (((pred, params), intros_th), ctxt1) = import_intros pred introrules ctxt
bulwahn@40101
  1153
    (* TODO: distinct required ? -- test case with more than one parameter! *)
bulwahn@40101
  1154
    val params = distinct (op aconv) params
bulwahn@40101
  1155
    val intros = map prop_of intros_th
bulwahn@40101
  1156
    val ([propname], ctxt2) = Variable.variant_fixes ["thesis"] ctxt1
bulwahn@40101
  1157
    val prop = HOLogic.mk_Trueprop (Free (propname, HOLogic.boolT))
bulwahn@40101
  1158
    val argsT = binder_types (fastype_of pred)
bulwahn@40101
  1159
    (* TODO: can be simplified if parameters are not treated specially ? <-- see uncommented code! *)
bulwahn@40101
  1160
    val (argvs, _) = fold_map mk_args2 argsT (params, ctxt2)
bulwahn@40101
  1161
    fun mk_case intro =
bulwahn@40101
  1162
      let
bulwahn@40101
  1163
        val (_, args) = (strip_comb o HOLogic.dest_Trueprop o Logic.strip_imp_concl) intro
bulwahn@40101
  1164
        val prems = Logic.strip_imp_prems intro
bulwahn@40101
  1165
        val eqprems =
bulwahn@40101
  1166
          map2 (HOLogic.mk_Trueprop oo (curry HOLogic.mk_eq)) argvs args
bulwahn@40101
  1167
        val frees = map Free (fold Term.add_frees (args @ prems) [])
bulwahn@40101
  1168
      in fold Logic.all frees (Logic.list_implies (eqprems @ prems, prop)) end
bulwahn@40101
  1169
    val assm = HOLogic.mk_Trueprop (list_comb (pred, argvs))
bulwahn@40101
  1170
    val cases = map mk_case intros
bulwahn@40101
  1171
  in Logic.list_implies (assm :: cases, prop) end;
wenzelm@55437
  1172
bulwahn@40101
  1173
bulwahn@40101
  1174
(* unifying constants to have the same type variables *)
bulwahn@40101
  1175
bulwahn@40101
  1176
fun unify_consts thy cs intr_ts =
wenzelm@55437
  1177
  let
bulwahn@40101
  1178
     val add_term_consts_2 = fold_aterms (fn Const c => insert (op =) c | _ => I);
bulwahn@40101
  1179
     fun varify (t, (i, ts)) =
bulwahn@40101
  1180
       let val t' = map_types (Logic.incr_tvar (i + 1)) (#2 (Type.varify_global [] t))
wenzelm@55437
  1181
       in (maxidx_of_term t', t' :: ts) end
wenzelm@55437
  1182
     val (i, cs') = List.foldr varify (~1, []) cs
wenzelm@55437
  1183
     val (i', intr_ts') = List.foldr varify (i, []) intr_ts
wenzelm@55437
  1184
     val rec_consts = fold add_term_consts_2 cs' []
wenzelm@55437
  1185
     val intr_consts = fold add_term_consts_2 intr_ts' []
bulwahn@40101
  1186
     fun unify (cname, cT) =
bulwahn@40101
  1187
       let val consts = map snd (filter (fn c => fst c = cname) intr_consts)
wenzelm@55437
  1188
       in fold (Sign.typ_unify thy) ((replicate (length consts) cT) ~~ consts) end
wenzelm@55437
  1189
     val (env, _) = fold unify rec_consts (Vartab.empty, i')
bulwahn@40101
  1190
     val subst = map_types (Envir.norm_type env)
bulwahn@40101
  1191
   in (map subst cs', map subst intr_ts')
wenzelm@55437
  1192
   end handle Type.TUNIFY =>
wenzelm@55437
  1193
     (warning "Occurrences of recursive constant have non-unifiable types"; (cs, intr_ts))
wenzelm@55437
  1194
bulwahn@40101
  1195
bulwahn@40101
  1196
(* preprocessing rules *)
bulwahn@40101
  1197
bulwahn@40101
  1198
fun preprocess_equality thy rule =
bulwahn@40101
  1199
  Conv.fconv_rule
bulwahn@40101
  1200
    (imp_prems_conv
wenzelm@51314
  1201
      (HOLogic.Trueprop_conv
wenzelm@51314
  1202
        (Conv.try_conv (Conv.rewr_conv (Thm.symmetric @{thm Predicate.eq_is_eq})))))
bulwahn@40101
  1203
    (Thm.transfer thy rule)
bulwahn@40101
  1204
bulwahn@40101
  1205
fun preprocess_intro thy = expand_tuples thy #> preprocess_equality thy
bulwahn@40101
  1206
wenzelm@55437
  1207
bulwahn@39541
  1208
(* defining a quickcheck predicate *)
bulwahn@39541
  1209
bulwahn@39541
  1210
fun strip_imp_prems (Const(@{const_name HOL.implies}, _) $ A $ B) = A :: strip_imp_prems B
bulwahn@39541
  1211
  | strip_imp_prems _ = [];
bulwahn@39541
  1212
haftmann@46662
  1213
fun strip_imp_concl (Const(@{const_name HOL.implies}, _) $ _ $ B) = strip_imp_concl B
haftmann@46662
  1214
  | strip_imp_concl A = A;
bulwahn@39541
  1215
wenzelm@55437
  1216
fun strip_horn A = (strip_imp_prems A, strip_imp_concl A)
bulwahn@39541
  1217
bulwahn@39541
  1218
fun define_quickcheck_predicate t thy =
bulwahn@39541
  1219
  let
bulwahn@39541
  1220
    val (vs, t') = strip_abs t
wenzelm@51552
  1221
    val vs' = Variable.variant_frees (Proof_Context.init_global thy) [] vs (* FIXME proper context!? *)
bulwahn@39541
  1222
    val t'' = subst_bounds (map Free (rev vs'), t')
bulwahn@39541
  1223
    val (prems, concl) = strip_horn t''
bulwahn@39541
  1224
    val constname = "quickcheck"
bulwahn@39541
  1225
    val full_constname = Sign.full_bname thy constname
bulwahn@39541
  1226
    val constT = map snd vs' ---> @{typ bool}
bulwahn@39541
  1227
    val thy1 = Sign.add_consts_i [(Binding.name constname, constT, NoSyn)] thy
bulwahn@39541
  1228
    val const = Const (full_constname, constT)
wenzelm@55437
  1229
    val t =
wenzelm@55437
  1230
      Logic.list_implies
wenzelm@55437
  1231
        (map HOLogic.mk_Trueprop (prems @ [HOLogic.mk_not concl]),
wenzelm@55437
  1232
          HOLogic.mk_Trueprop (list_comb (const, map Free vs')))
wenzelm@51552
  1233
    val intro =
wenzelm@51552
  1234
      Goal.prove (Proof_Context.init_global thy1) (map fst vs') [] t
wenzelm@51552
  1235
        (fn _ => ALLGOALS Skip_Proof.cheat_tac)
bulwahn@39541
  1236
  in
bulwahn@39541
  1237
    ((((full_constname, constT), vs'), intro), thy1)
bulwahn@39541
  1238
  end
bulwahn@39541
  1239
wenzelm@55437
  1240
end