src/HOL/Product_Type.thy
author wenzelm
Fri Apr 16 21:28:09 2010 +0200 (2010-04-16)
changeset 36176 3fe7e97ccca8
parent 35831 e31ec41a551b
child 36622 e393a91f86df
permissions -rw-r--r--
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
nipkow@10213
     1
(*  Title:      HOL/Product_Type.thy
nipkow@10213
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
nipkow@10213
     3
    Copyright   1992  University of Cambridge
wenzelm@11777
     4
*)
nipkow@10213
     5
wenzelm@11838
     6
header {* Cartesian products *}
nipkow@10213
     7
nipkow@15131
     8
theory Product_Type
haftmann@33959
     9
imports Typedef Inductive Fun
haftmann@24699
    10
uses
haftmann@24699
    11
  ("Tools/split_rule.ML")
haftmann@31723
    12
  ("Tools/inductive_set.ML")
nipkow@15131
    13
begin
wenzelm@11838
    14
haftmann@24699
    15
subsection {* @{typ bool} is a datatype *}
haftmann@24699
    16
haftmann@27104
    17
rep_datatype True False by (auto intro: bool_induct)
haftmann@24699
    18
haftmann@24699
    19
declare case_split [cases type: bool]
haftmann@24699
    20
  -- "prefer plain propositional version"
haftmann@24699
    21
haftmann@28346
    22
lemma
haftmann@28562
    23
  shows [code]: "eq_class.eq False P \<longleftrightarrow> \<not> P"
haftmann@28562
    24
    and [code]: "eq_class.eq True P \<longleftrightarrow> P" 
haftmann@28562
    25
    and [code]: "eq_class.eq P False \<longleftrightarrow> \<not> P" 
haftmann@28562
    26
    and [code]: "eq_class.eq P True \<longleftrightarrow> P"
haftmann@28346
    27
    and [code nbe]: "eq_class.eq P P \<longleftrightarrow> True"
haftmann@28346
    28
  by (simp_all add: eq)
haftmann@25534
    29
haftmann@28346
    30
code_const "eq_class.eq \<Colon> bool \<Rightarrow> bool \<Rightarrow> bool"
haftmann@25534
    31
  (Haskell infixl 4 "==")
haftmann@25534
    32
haftmann@25534
    33
code_instance bool :: eq
haftmann@25534
    34
  (Haskell -)
haftmann@24699
    35
haftmann@26358
    36
wenzelm@11838
    37
subsection {* Unit *}
wenzelm@11838
    38
wenzelm@11838
    39
typedef unit = "{True}"
wenzelm@11838
    40
proof
haftmann@20588
    41
  show "True : ?unit" ..
wenzelm@11838
    42
qed
wenzelm@11838
    43
haftmann@24699
    44
definition
wenzelm@11838
    45
  Unity :: unit    ("'(')")
haftmann@24699
    46
where
haftmann@24699
    47
  "() = Abs_unit True"
wenzelm@11838
    48
blanchet@35828
    49
lemma unit_eq [no_atp]: "u = ()"
wenzelm@11838
    50
  by (induct u) (simp add: unit_def Unity_def)
wenzelm@11838
    51
wenzelm@11838
    52
text {*
wenzelm@11838
    53
  Simplification procedure for @{thm [source] unit_eq}.  Cannot use
wenzelm@11838
    54
  this rule directly --- it loops!
wenzelm@11838
    55
*}
wenzelm@11838
    56
wenzelm@26480
    57
ML {*
wenzelm@13462
    58
  val unit_eq_proc =
haftmann@24699
    59
    let val unit_meta_eq = mk_meta_eq @{thm unit_eq} in
haftmann@24699
    60
      Simplifier.simproc @{theory} "unit_eq" ["x::unit"]
skalberg@15531
    61
      (fn _ => fn _ => fn t => if HOLogic.is_unit t then NONE else SOME unit_meta_eq)
wenzelm@13462
    62
    end;
wenzelm@11838
    63
wenzelm@11838
    64
  Addsimprocs [unit_eq_proc];
wenzelm@11838
    65
*}
wenzelm@11838
    66
haftmann@27104
    67
rep_datatype "()" by simp
haftmann@24699
    68
wenzelm@11838
    69
lemma unit_all_eq1: "(!!x::unit. PROP P x) == PROP P ()"
wenzelm@11838
    70
  by simp
wenzelm@11838
    71
wenzelm@11838
    72
lemma unit_all_eq2: "(!!x::unit. PROP P) == PROP P"
wenzelm@11838
    73
  by (rule triv_forall_equality)
wenzelm@11838
    74
wenzelm@11838
    75
text {*
wenzelm@11838
    76
  This rewrite counters the effect of @{text unit_eq_proc} on @{term
wenzelm@11838
    77
  [source] "%u::unit. f u"}, replacing it by @{term [source]
wenzelm@11838
    78
  f} rather than by @{term [source] "%u. f ()"}.
wenzelm@11838
    79
*}
wenzelm@11838
    80
blanchet@35828
    81
lemma unit_abs_eta_conv [simp,no_atp]: "(%u::unit. f ()) = f"
wenzelm@11838
    82
  by (rule ext) simp
nipkow@10213
    83
haftmann@30924
    84
instantiation unit :: default
haftmann@30924
    85
begin
haftmann@30924
    86
haftmann@30924
    87
definition "default = ()"
haftmann@30924
    88
haftmann@30924
    89
instance ..
haftmann@30924
    90
haftmann@30924
    91
end
nipkow@10213
    92
haftmann@26358
    93
text {* code generator setup *}
haftmann@26358
    94
haftmann@28562
    95
lemma [code]:
haftmann@28346
    96
  "eq_class.eq (u\<Colon>unit) v \<longleftrightarrow> True" unfolding eq unit_eq [of u] unit_eq [of v] by rule+
haftmann@26358
    97
haftmann@26358
    98
code_type unit
haftmann@26358
    99
  (SML "unit")
haftmann@26358
   100
  (OCaml "unit")
haftmann@26358
   101
  (Haskell "()")
haftmann@34886
   102
  (Scala "Unit")
haftmann@26358
   103
haftmann@26358
   104
code_instance unit :: eq
haftmann@26358
   105
  (Haskell -)
haftmann@26358
   106
haftmann@28346
   107
code_const "eq_class.eq \<Colon> unit \<Rightarrow> unit \<Rightarrow> bool"
haftmann@26358
   108
  (Haskell infixl 4 "==")
haftmann@26358
   109
haftmann@26358
   110
code_const Unity
haftmann@26358
   111
  (SML "()")
haftmann@26358
   112
  (OCaml "()")
haftmann@26358
   113
  (Haskell "()")
haftmann@34886
   114
  (Scala "()")
haftmann@26358
   115
haftmann@26358
   116
code_reserved SML
haftmann@26358
   117
  unit
haftmann@26358
   118
haftmann@26358
   119
code_reserved OCaml
haftmann@26358
   120
  unit
haftmann@26358
   121
haftmann@34886
   122
code_reserved Scala
haftmann@34886
   123
  Unit
haftmann@34886
   124
haftmann@26358
   125
wenzelm@11838
   126
subsection {* Pairs *}
nipkow@10213
   127
haftmann@26358
   128
subsubsection {* Product type, basic operations and concrete syntax *}
nipkow@10213
   129
haftmann@26358
   130
definition
haftmann@26358
   131
  Pair_Rep :: "'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool"
haftmann@26358
   132
where
haftmann@26358
   133
  "Pair_Rep a b = (\<lambda>x y. x = a \<and> y = b)"
nipkow@10213
   134
nipkow@10213
   135
global
nipkow@10213
   136
nipkow@10213
   137
typedef (Prod)
haftmann@22838
   138
  ('a, 'b) "*"    (infixr "*" 20)
haftmann@26358
   139
    = "{f. \<exists>a b. f = Pair_Rep (a\<Colon>'a) (b\<Colon>'b)}"
oheimb@11025
   140
proof
haftmann@26358
   141
  fix a b show "Pair_Rep a b \<in> ?Prod"
haftmann@26358
   142
    by rule+
oheimb@11025
   143
qed
nipkow@10213
   144
wenzelm@35427
   145
type_notation (xsymbols)
wenzelm@35427
   146
  "*"  ("(_ \<times>/ _)" [21, 20] 20)
wenzelm@35427
   147
type_notation (HTML output)
wenzelm@35427
   148
  "*"  ("(_ \<times>/ _)" [21, 20] 20)
nipkow@10213
   149
nipkow@10213
   150
consts
haftmann@26358
   151
  Pair     :: "'a \<Rightarrow> 'b \<Rightarrow> 'a \<times> 'b"
haftmann@26358
   152
  fst      :: "'a \<times> 'b \<Rightarrow> 'a"
haftmann@26358
   153
  snd      :: "'a \<times> 'b \<Rightarrow> 'b"
haftmann@26358
   154
  split    :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c"
haftmann@26358
   155
  curry    :: "('a \<times> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'c"
nipkow@10213
   156
wenzelm@11777
   157
local
nipkow@10213
   158
wenzelm@19535
   159
defs
wenzelm@19535
   160
  Pair_def:     "Pair a b == Abs_Prod (Pair_Rep a b)"
wenzelm@19535
   161
  fst_def:      "fst p == THE a. EX b. p = Pair a b"
wenzelm@19535
   162
  snd_def:      "snd p == THE b. EX a. p = Pair a b"
haftmann@24162
   163
  split_def:    "split == (%c p. c (fst p) (snd p))"
haftmann@24162
   164
  curry_def:    "curry == (%c x y. c (Pair x y))"
wenzelm@19535
   165
wenzelm@11777
   166
text {*
wenzelm@11777
   167
  Patterns -- extends pre-defined type @{typ pttrn} used in
wenzelm@11777
   168
  abstractions.
wenzelm@11777
   169
*}
nipkow@10213
   170
nipkow@10213
   171
nonterminals
nipkow@10213
   172
  tuple_args patterns
nipkow@10213
   173
nipkow@10213
   174
syntax
nipkow@10213
   175
  "_tuple"      :: "'a => tuple_args => 'a * 'b"        ("(1'(_,/ _'))")
nipkow@10213
   176
  "_tuple_arg"  :: "'a => tuple_args"                   ("_")
nipkow@10213
   177
  "_tuple_args" :: "'a => tuple_args => tuple_args"     ("_,/ _")
oheimb@11025
   178
  "_pattern"    :: "[pttrn, patterns] => pttrn"         ("'(_,/ _')")
oheimb@11025
   179
  ""            :: "pttrn => patterns"                  ("_")
oheimb@11025
   180
  "_patterns"   :: "[pttrn, patterns] => patterns"      ("_,/ _")
nipkow@10213
   181
nipkow@10213
   182
translations
wenzelm@35115
   183
  "(x, y)" == "CONST Pair x y"
nipkow@10213
   184
  "_tuple x (_tuple_args y z)" == "_tuple x (_tuple_arg (_tuple y z))"
wenzelm@35115
   185
  "%(x, y, zs). b" == "CONST split (%x (y, zs). b)"
wenzelm@35115
   186
  "%(x, y). b" == "CONST split (%x y. b)"
wenzelm@35115
   187
  "_abs (CONST Pair x y) t" => "%(x, y). t"
nipkow@10213
   188
  (* The last rule accommodates tuples in `case C ... (x,y) ... => ...'
nipkow@10213
   189
     The (x,y) is parsed as `Pair x y' because it is logic, not pttrn *)
nipkow@10213
   190
wenzelm@35115
   191
(*reconstruct pattern from (nested) splits, avoiding eta-contraction of body;
wenzelm@35115
   192
  works best with enclosing "let", if "let" does not avoid eta-contraction*)
schirmer@14359
   193
print_translation {*
wenzelm@35115
   194
let
wenzelm@35115
   195
  fun split_tr' [Abs (x, T, t as (Abs abs))] =
wenzelm@35115
   196
        (* split (%x y. t) => %(x,y) t *)
wenzelm@35115
   197
        let
wenzelm@35115
   198
          val (y, t') = atomic_abs_tr' abs;
wenzelm@35115
   199
          val (x', t'') = atomic_abs_tr' (x, T, t');
wenzelm@35115
   200
        in
wenzelm@35115
   201
          Syntax.const @{syntax_const "_abs"} $
wenzelm@35115
   202
            (Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t''
wenzelm@35115
   203
        end
wenzelm@35115
   204
    | split_tr' [Abs (x, T, (s as Const (@{const_syntax split}, _) $ t))] =
wenzelm@35115
   205
        (* split (%x. (split (%y z. t))) => %(x,y,z). t *)
wenzelm@35115
   206
        let
wenzelm@35115
   207
          val Const (@{syntax_const "_abs"}, _) $
wenzelm@35115
   208
            (Const (@{syntax_const "_pattern"}, _) $ y $ z) $ t' = split_tr' [t];
wenzelm@35115
   209
          val (x', t'') = atomic_abs_tr' (x, T, t');
wenzelm@35115
   210
        in
wenzelm@35115
   211
          Syntax.const @{syntax_const "_abs"} $
wenzelm@35115
   212
            (Syntax.const @{syntax_const "_pattern"} $ x' $
wenzelm@35115
   213
              (Syntax.const @{syntax_const "_patterns"} $ y $ z)) $ t''
wenzelm@35115
   214
        end
wenzelm@35115
   215
    | split_tr' [Const (@{const_syntax split}, _) $ t] =
wenzelm@35115
   216
        (* split (split (%x y z. t)) => %((x, y), z). t *)
wenzelm@35115
   217
        split_tr' [(split_tr' [t])] (* inner split_tr' creates next pattern *)
wenzelm@35115
   218
    | split_tr' [Const (@{syntax_const "_abs"}, _) $ x_y $ Abs abs] =
wenzelm@35115
   219
        (* split (%pttrn z. t) => %(pttrn,z). t *)
wenzelm@35115
   220
        let val (z, t) = atomic_abs_tr' abs in
wenzelm@35115
   221
          Syntax.const @{syntax_const "_abs"} $
wenzelm@35115
   222
            (Syntax.const @{syntax_const "_pattern"} $ x_y $ z) $ t
wenzelm@35115
   223
        end
wenzelm@35115
   224
    | split_tr' _ = raise Match;
wenzelm@35115
   225
in [(@{const_syntax split}, split_tr')] end
schirmer@14359
   226
*}
schirmer@14359
   227
schirmer@15422
   228
(* print "split f" as "\<lambda>(x,y). f x y" and "split (\<lambda>x. f x)" as "\<lambda>(x,y). f x y" *) 
schirmer@15422
   229
typed_print_translation {*
schirmer@15422
   230
let
wenzelm@35115
   231
  fun split_guess_names_tr' _ T [Abs (x, _, Abs _)] = raise Match
wenzelm@35115
   232
    | split_guess_names_tr' _ T [Abs (x, xT, t)] =
schirmer@15422
   233
        (case (head_of t) of
wenzelm@35115
   234
          Const (@{const_syntax split}, _) => raise Match
wenzelm@35115
   235
        | _ =>
wenzelm@35115
   236
          let 
wenzelm@35115
   237
            val (_ :: yT :: _) = binder_types (domain_type T) handle Bind => raise Match;
wenzelm@35115
   238
            val (y, t') = atomic_abs_tr' ("y", yT, incr_boundvars 1 t $ Bound 0);
wenzelm@35115
   239
            val (x', t'') = atomic_abs_tr' (x, xT, t');
wenzelm@35115
   240
          in
wenzelm@35115
   241
            Syntax.const @{syntax_const "_abs"} $
wenzelm@35115
   242
              (Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t''
wenzelm@35115
   243
          end)
schirmer@15422
   244
    | split_guess_names_tr' _ T [t] =
wenzelm@35115
   245
        (case head_of t of
wenzelm@35115
   246
          Const (@{const_syntax split}, _) => raise Match
wenzelm@35115
   247
        | _ =>
wenzelm@35115
   248
          let
wenzelm@35115
   249
            val (xT :: yT :: _) = binder_types (domain_type T) handle Bind => raise Match;
wenzelm@35115
   250
            val (y, t') = atomic_abs_tr' ("y", yT, incr_boundvars 2 t $ Bound 1 $ Bound 0);
wenzelm@35115
   251
            val (x', t'') = atomic_abs_tr' ("x", xT, t');
wenzelm@35115
   252
          in
wenzelm@35115
   253
            Syntax.const @{syntax_const "_abs"} $
wenzelm@35115
   254
              (Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t''
wenzelm@35115
   255
          end)
schirmer@15422
   256
    | split_guess_names_tr' _ _ _ = raise Match;
wenzelm@35115
   257
in [(@{const_syntax split}, split_guess_names_tr')] end
schirmer@15422
   258
*}
schirmer@15422
   259
nipkow@10213
   260
haftmann@26358
   261
text {* Towards a datatype declaration *}
wenzelm@11838
   262
haftmann@26358
   263
lemma surj_pair [simp]: "EX x y. p = (x, y)"
haftmann@26358
   264
  apply (unfold Pair_def)
haftmann@26358
   265
  apply (rule Rep_Prod [unfolded Prod_def, THEN CollectE])
haftmann@26358
   266
  apply (erule exE, erule exE, rule exI, rule exI)
haftmann@26358
   267
  apply (rule Rep_Prod_inverse [symmetric, THEN trans])
haftmann@26358
   268
  apply (erule arg_cong)
haftmann@26358
   269
  done
wenzelm@11838
   270
haftmann@26358
   271
lemma PairE [cases type: *]:
haftmann@26358
   272
  obtains x y where "p = (x, y)"
haftmann@26358
   273
  using surj_pair [of p] by blast
haftmann@26358
   274
haftmann@26358
   275
lemma ProdI: "Pair_Rep a b \<in> Prod"
haftmann@26358
   276
  unfolding Prod_def by rule+
haftmann@26358
   277
haftmann@26358
   278
lemma Pair_Rep_inject: "Pair_Rep a b = Pair_Rep a' b' \<Longrightarrow> a = a' \<and> b = b'"
haftmann@26358
   279
  unfolding Pair_Rep_def by (drule fun_cong, drule fun_cong) blast
nipkow@10213
   280
wenzelm@11838
   281
lemma inj_on_Abs_Prod: "inj_on Abs_Prod Prod"
wenzelm@11838
   282
  apply (rule inj_on_inverseI)
wenzelm@11838
   283
  apply (erule Abs_Prod_inverse)
wenzelm@11838
   284
  done
wenzelm@11838
   285
wenzelm@11838
   286
lemma Pair_inject:
wenzelm@18372
   287
  assumes "(a, b) = (a', b')"
wenzelm@18372
   288
    and "a = a' ==> b = b' ==> R"
wenzelm@18372
   289
  shows R
wenzelm@18372
   290
  apply (insert prems [unfolded Pair_def])
wenzelm@18372
   291
  apply (rule inj_on_Abs_Prod [THEN inj_onD, THEN Pair_Rep_inject, THEN conjE])
wenzelm@18372
   292
  apply (assumption | rule ProdI)+
wenzelm@18372
   293
  done
nipkow@10213
   294
haftmann@27104
   295
rep_datatype (prod) Pair
haftmann@27104
   296
proof -
haftmann@27104
   297
  fix P p
haftmann@27104
   298
  assume "\<And>x y. P (x, y)"
haftmann@27104
   299
  then show "P p" by (cases p) simp
haftmann@27104
   300
qed (auto elim: Pair_inject)
haftmann@27104
   301
haftmann@27104
   302
lemmas Pair_eq = prod.inject
wenzelm@11838
   303
haftmann@22886
   304
lemma fst_conv [simp, code]: "fst (a, b) = a"
wenzelm@19535
   305
  unfolding fst_def by blast
wenzelm@11838
   306
haftmann@22886
   307
lemma snd_conv [simp, code]: "snd (a, b) = b"
wenzelm@19535
   308
  unfolding snd_def by blast
oheimb@11025
   309
haftmann@26358
   310
haftmann@26358
   311
subsubsection {* Basic rules and proof tools *}
haftmann@26358
   312
wenzelm@11838
   313
lemma fst_eqD: "fst (x, y) = a ==> x = a"
wenzelm@11838
   314
  by simp
wenzelm@11838
   315
wenzelm@11838
   316
lemma snd_eqD: "snd (x, y) = a ==> y = a"
wenzelm@11838
   317
  by simp
wenzelm@11838
   318
haftmann@26358
   319
lemma pair_collapse [simp]: "(fst p, snd p) = p"
wenzelm@11838
   320
  by (cases p) simp
wenzelm@11838
   321
haftmann@26358
   322
lemmas surjective_pairing = pair_collapse [symmetric]
wenzelm@11838
   323
wenzelm@11838
   324
lemma split_paired_all: "(!!x. PROP P x) == (!!a b. PROP P (a, b))"
wenzelm@11820
   325
proof
wenzelm@11820
   326
  fix a b
wenzelm@11820
   327
  assume "!!x. PROP P x"
wenzelm@19535
   328
  then show "PROP P (a, b)" .
wenzelm@11820
   329
next
wenzelm@11820
   330
  fix x
wenzelm@11820
   331
  assume "!!a b. PROP P (a, b)"
wenzelm@19535
   332
  from `PROP P (fst x, snd x)` show "PROP P x" by simp
wenzelm@11820
   333
qed
wenzelm@11820
   334
wenzelm@11838
   335
text {*
wenzelm@11838
   336
  The rule @{thm [source] split_paired_all} does not work with the
wenzelm@11838
   337
  Simplifier because it also affects premises in congrence rules,
wenzelm@11838
   338
  where this can lead to premises of the form @{text "!!a b. ... =
wenzelm@11838
   339
  ?P(a, b)"} which cannot be solved by reflexivity.
wenzelm@11838
   340
*}
wenzelm@11838
   341
haftmann@26358
   342
lemmas split_tupled_all = split_paired_all unit_all_eq2
haftmann@26358
   343
wenzelm@26480
   344
ML {*
wenzelm@11838
   345
  (* replace parameters of product type by individual component parameters *)
wenzelm@11838
   346
  val safe_full_simp_tac = generic_simp_tac true (true, false, false);
wenzelm@11838
   347
  local (* filtering with exists_paired_all is an essential optimization *)
wenzelm@16121
   348
    fun exists_paired_all (Const ("all", _) $ Abs (_, T, t)) =
wenzelm@11838
   349
          can HOLogic.dest_prodT T orelse exists_paired_all t
wenzelm@11838
   350
      | exists_paired_all (t $ u) = exists_paired_all t orelse exists_paired_all u
wenzelm@11838
   351
      | exists_paired_all (Abs (_, _, t)) = exists_paired_all t
wenzelm@11838
   352
      | exists_paired_all _ = false;
wenzelm@11838
   353
    val ss = HOL_basic_ss
wenzelm@26340
   354
      addsimps [@{thm split_paired_all}, @{thm unit_all_eq2}, @{thm unit_abs_eta_conv}]
wenzelm@11838
   355
      addsimprocs [unit_eq_proc];
wenzelm@11838
   356
  in
wenzelm@11838
   357
    val split_all_tac = SUBGOAL (fn (t, i) =>
wenzelm@11838
   358
      if exists_paired_all t then safe_full_simp_tac ss i else no_tac);
wenzelm@11838
   359
    val unsafe_split_all_tac = SUBGOAL (fn (t, i) =>
wenzelm@11838
   360
      if exists_paired_all t then full_simp_tac ss i else no_tac);
wenzelm@11838
   361
    fun split_all th =
wenzelm@26340
   362
   if exists_paired_all (Thm.prop_of th) then full_simplify ss th else th;
wenzelm@11838
   363
  end;
wenzelm@26340
   364
*}
wenzelm@11838
   365
wenzelm@26340
   366
declaration {* fn _ =>
wenzelm@26340
   367
  Classical.map_cs (fn cs => cs addSbefore ("split_all_tac", split_all_tac))
wenzelm@16121
   368
*}
wenzelm@11838
   369
wenzelm@11838
   370
lemma split_paired_All [simp]: "(ALL x. P x) = (ALL a b. P (a, b))"
wenzelm@11838
   371
  -- {* @{text "[iff]"} is not a good idea because it makes @{text blast} loop *}
wenzelm@11838
   372
  by fast
wenzelm@11838
   373
haftmann@26358
   374
lemma split_paired_Ex [simp]: "(EX x. P x) = (EX a b. P (a, b))"
haftmann@26358
   375
  by fast
haftmann@26358
   376
haftmann@26358
   377
lemma Pair_fst_snd_eq: "s = t \<longleftrightarrow> fst s = fst t \<and> snd s = snd t"
haftmann@26358
   378
  by (cases s, cases t) simp
haftmann@26358
   379
haftmann@26358
   380
lemma prod_eqI [intro?]: "fst p = fst q \<Longrightarrow> snd p = snd q \<Longrightarrow> p = q"
haftmann@26358
   381
  by (simp add: Pair_fst_snd_eq)
haftmann@26358
   382
haftmann@26358
   383
haftmann@26358
   384
subsubsection {* @{text split} and @{text curry} *}
haftmann@26358
   385
haftmann@28562
   386
lemma split_conv [simp, code]: "split f (a, b) = f a b"
haftmann@26358
   387
  by (simp add: split_def)
haftmann@26358
   388
haftmann@28562
   389
lemma curry_conv [simp, code]: "curry f a b = f (a, b)"
haftmann@26358
   390
  by (simp add: curry_def)
haftmann@26358
   391
haftmann@26358
   392
lemmas split = split_conv  -- {* for backwards compatibility *}
haftmann@26358
   393
haftmann@26358
   394
lemma splitI: "f a b \<Longrightarrow> split f (a, b)"
haftmann@26358
   395
  by (rule split_conv [THEN iffD2])
haftmann@26358
   396
haftmann@26358
   397
lemma splitD: "split f (a, b) \<Longrightarrow> f a b"
haftmann@26358
   398
  by (rule split_conv [THEN iffD1])
haftmann@26358
   399
haftmann@26358
   400
lemma curryI [intro!]: "f (a, b) \<Longrightarrow> curry f a b"
haftmann@26358
   401
  by (simp add: curry_def)
haftmann@26358
   402
haftmann@26358
   403
lemma curryD [dest!]: "curry f a b \<Longrightarrow> f (a, b)"
haftmann@26358
   404
  by (simp add: curry_def)
haftmann@26358
   405
haftmann@26358
   406
lemma curryE: "curry f a b \<Longrightarrow> (f (a, b) \<Longrightarrow> Q) \<Longrightarrow> Q"
haftmann@26358
   407
  by (simp add: curry_def)
haftmann@26358
   408
skalberg@14189
   409
lemma curry_split [simp]: "curry (split f) = f"
skalberg@14189
   410
  by (simp add: curry_def split_def)
skalberg@14189
   411
skalberg@14189
   412
lemma split_curry [simp]: "split (curry f) = f"
skalberg@14189
   413
  by (simp add: curry_def split_def)
skalberg@14189
   414
haftmann@26358
   415
lemma split_Pair [simp]: "(\<lambda>(x, y). (x, y)) = id"
haftmann@26358
   416
  by (simp add: split_def id_def)
wenzelm@11838
   417
haftmann@26358
   418
lemma split_eta: "(\<lambda>(x, y). f (x, y)) = f"
haftmann@31775
   419
  -- {* Subsumes the old @{text split_Pair} when @{term f} is the identity Datatype. *}
haftmann@26358
   420
  by (rule ext) auto
wenzelm@11838
   421
haftmann@26358
   422
lemma split_comp: "split (f \<circ> g) x = f (g (fst x)) (snd x)"
haftmann@26358
   423
  by (cases x) simp
wenzelm@11838
   424
haftmann@26358
   425
lemma split_twice: "split f (split g p) = split (\<lambda>x y. split f (g x y)) p"
haftmann@26358
   426
  unfolding split_def ..
wenzelm@11838
   427
wenzelm@11838
   428
lemma split_paired_The: "(THE x. P x) = (THE (a, b). P (a, b))"
wenzelm@11838
   429
  -- {* Can't be added to simpset: loops! *}
haftmann@26358
   430
  by (simp add: split_eta)
wenzelm@11838
   431
wenzelm@11838
   432
lemma The_split: "The (split P) = (THE xy. P (fst xy) (snd xy))"
wenzelm@11838
   433
  by (simp add: split_def)
wenzelm@11838
   434
haftmann@26358
   435
lemma split_weak_cong: "p = q \<Longrightarrow> split c p = split c q"
wenzelm@11838
   436
  -- {* Prevents simplification of @{term c}: much faster *}
wenzelm@11838
   437
  by (erule arg_cong)
wenzelm@11838
   438
wenzelm@11838
   439
lemma cond_split_eta: "(!!x y. f x y = g (x, y)) ==> (%(x, y). f x y) = g"
wenzelm@11838
   440
  by (simp add: split_eta)
wenzelm@11838
   441
wenzelm@11838
   442
text {*
wenzelm@11838
   443
  Simplification procedure for @{thm [source] cond_split_eta}.  Using
wenzelm@11838
   444
  @{thm [source] split_eta} as a rewrite rule is not general enough,
wenzelm@11838
   445
  and using @{thm [source] cond_split_eta} directly would render some
wenzelm@11838
   446
  existing proofs very inefficient; similarly for @{text
haftmann@26358
   447
  split_beta}.
haftmann@26358
   448
*}
wenzelm@11838
   449
wenzelm@26480
   450
ML {*
wenzelm@11838
   451
local
wenzelm@35364
   452
  val cond_split_eta_ss = HOL_basic_ss addsimps @{thms cond_split_eta};
wenzelm@35364
   453
  fun Pair_pat k 0 (Bound m) = (m = k)
wenzelm@35364
   454
    | Pair_pat k i (Const (@{const_name Pair},  _) $ Bound m $ t) =
wenzelm@35364
   455
        i > 0 andalso m = k + i andalso Pair_pat k (i - 1) t
wenzelm@35364
   456
    | Pair_pat _ _ _ = false;
wenzelm@35364
   457
  fun no_args k i (Abs (_, _, t)) = no_args (k + 1) i t
wenzelm@35364
   458
    | no_args k i (t $ u) = no_args k i t andalso no_args k i u
wenzelm@35364
   459
    | no_args k i (Bound m) = m < k orelse m > k + i
wenzelm@35364
   460
    | no_args _ _ _ = true;
wenzelm@35364
   461
  fun split_pat tp i (Abs  (_, _, t)) = if tp 0 i t then SOME (i, t) else NONE
wenzelm@35364
   462
    | split_pat tp i (Const (@{const_name split}, _) $ Abs (_, _, t)) = split_pat tp (i + 1) t
wenzelm@35364
   463
    | split_pat tp i _ = NONE;
wenzelm@20044
   464
  fun metaeq ss lhs rhs = mk_meta_eq (Goal.prove (Simplifier.the_context ss) [] []
wenzelm@35364
   465
        (HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs)))
wenzelm@18328
   466
        (K (simp_tac (Simplifier.inherit_context ss cond_split_eta_ss) 1)));
wenzelm@11838
   467
wenzelm@35364
   468
  fun beta_term_pat k i (Abs (_, _, t)) = beta_term_pat (k + 1) i t
wenzelm@35364
   469
    | beta_term_pat k i (t $ u) =
wenzelm@35364
   470
        Pair_pat k i (t $ u) orelse (beta_term_pat k i t andalso beta_term_pat k i u)
wenzelm@35364
   471
    | beta_term_pat k i t = no_args k i t;
wenzelm@35364
   472
  fun eta_term_pat k i (f $ arg) = no_args k i f andalso Pair_pat k i arg
wenzelm@35364
   473
    | eta_term_pat _ _ _ = false;
wenzelm@11838
   474
  fun subst arg k i (Abs (x, T, t)) = Abs (x, T, subst arg (k+1) i t)
wenzelm@35364
   475
    | subst arg k i (t $ u) =
wenzelm@35364
   476
        if Pair_pat k i (t $ u) then incr_boundvars k arg
wenzelm@35364
   477
        else (subst arg k i t $ subst arg k i u)
wenzelm@35364
   478
    | subst arg k i t = t;
wenzelm@35364
   479
  fun beta_proc ss (s as Const (@{const_name split}, _) $ Abs (_, _, t) $ arg) =
wenzelm@11838
   480
        (case split_pat beta_term_pat 1 t of
wenzelm@35364
   481
          SOME (i, f) => SOME (metaeq ss s (subst arg 0 i f))
skalberg@15531
   482
        | NONE => NONE)
wenzelm@35364
   483
    | beta_proc _ _ = NONE;
wenzelm@35364
   484
  fun eta_proc ss (s as Const (@{const_name split}, _) $ Abs (_, _, t)) =
wenzelm@11838
   485
        (case split_pat eta_term_pat 1 t of
wenzelm@35364
   486
          SOME (_, ft) => SOME (metaeq ss s (let val (f $ arg) = ft in f end))
skalberg@15531
   487
        | NONE => NONE)
wenzelm@35364
   488
    | eta_proc _ _ = NONE;
wenzelm@11838
   489
in
wenzelm@32010
   490
  val split_beta_proc = Simplifier.simproc @{theory} "split_beta" ["split f z"] (K beta_proc);
wenzelm@32010
   491
  val split_eta_proc = Simplifier.simproc @{theory} "split_eta" ["split f"] (K eta_proc);
wenzelm@11838
   492
end;
wenzelm@11838
   493
wenzelm@11838
   494
Addsimprocs [split_beta_proc, split_eta_proc];
wenzelm@11838
   495
*}
wenzelm@11838
   496
berghofe@26798
   497
lemma split_beta [mono]: "(%(x, y). P x y) z = P (fst z) (snd z)"
wenzelm@11838
   498
  by (subst surjective_pairing, rule split_conv)
wenzelm@11838
   499
blanchet@35828
   500
lemma split_split [no_atp]: "R(split c p) = (ALL x y. p = (x, y) --> R(c x y))"
wenzelm@11838
   501
  -- {* For use with @{text split} and the Simplifier. *}
paulson@15481
   502
  by (insert surj_pair [of p], clarify, simp)
wenzelm@11838
   503
wenzelm@11838
   504
text {*
wenzelm@11838
   505
  @{thm [source] split_split} could be declared as @{text "[split]"}
wenzelm@11838
   506
  done after the Splitter has been speeded up significantly;
wenzelm@11838
   507
  precompute the constants involved and don't do anything unless the
wenzelm@11838
   508
  current goal contains one of those constants.
wenzelm@11838
   509
*}
wenzelm@11838
   510
blanchet@35828
   511
lemma split_split_asm [no_atp]: "R (split c p) = (~(EX x y. p = (x, y) & (~R (c x y))))"
paulson@14208
   512
by (subst split_split, simp)
wenzelm@11838
   513
wenzelm@11838
   514
wenzelm@11838
   515
text {*
wenzelm@11838
   516
  \medskip @{term split} used as a logical connective or set former.
wenzelm@11838
   517
wenzelm@11838
   518
  \medskip These rules are for use with @{text blast}; could instead
wenzelm@11838
   519
  call @{text simp} using @{thm [source] split} as rewrite. *}
wenzelm@11838
   520
wenzelm@11838
   521
lemma splitI2: "!!p. [| !!a b. p = (a, b) ==> c a b |] ==> split c p"
wenzelm@11838
   522
  apply (simp only: split_tupled_all)
wenzelm@11838
   523
  apply (simp (no_asm_simp))
wenzelm@11838
   524
  done
wenzelm@11838
   525
wenzelm@11838
   526
lemma splitI2': "!!p. [| !!a b. (a, b) = p ==> c a b x |] ==> split c p x"
wenzelm@11838
   527
  apply (simp only: split_tupled_all)
wenzelm@11838
   528
  apply (simp (no_asm_simp))
wenzelm@11838
   529
  done
wenzelm@11838
   530
wenzelm@11838
   531
lemma splitE: "split c p ==> (!!x y. p = (x, y) ==> c x y ==> Q) ==> Q"
wenzelm@11838
   532
  by (induct p) (auto simp add: split_def)
wenzelm@11838
   533
wenzelm@11838
   534
lemma splitE': "split c p z ==> (!!x y. p = (x, y) ==> c x y z ==> Q) ==> Q"
wenzelm@11838
   535
  by (induct p) (auto simp add: split_def)
wenzelm@11838
   536
wenzelm@11838
   537
lemma splitE2:
wenzelm@11838
   538
  "[| Q (split P z);  !!x y. [|z = (x, y); Q (P x y)|] ==> R |] ==> R"
wenzelm@11838
   539
proof -
wenzelm@11838
   540
  assume q: "Q (split P z)"
wenzelm@11838
   541
  assume r: "!!x y. [|z = (x, y); Q (P x y)|] ==> R"
wenzelm@11838
   542
  show R
wenzelm@11838
   543
    apply (rule r surjective_pairing)+
wenzelm@11838
   544
    apply (rule split_beta [THEN subst], rule q)
wenzelm@11838
   545
    done
wenzelm@11838
   546
qed
wenzelm@11838
   547
wenzelm@11838
   548
lemma splitD': "split R (a,b) c ==> R a b c"
wenzelm@11838
   549
  by simp
wenzelm@11838
   550
wenzelm@11838
   551
lemma mem_splitI: "z: c a b ==> z: split c (a, b)"
wenzelm@11838
   552
  by simp
wenzelm@11838
   553
wenzelm@11838
   554
lemma mem_splitI2: "!!p. [| !!a b. p = (a, b) ==> z: c a b |] ==> z: split c p"
paulson@14208
   555
by (simp only: split_tupled_all, simp)
wenzelm@11838
   556
wenzelm@18372
   557
lemma mem_splitE:
wenzelm@18372
   558
  assumes major: "z: split c p"
wenzelm@18372
   559
    and cases: "!!x y. [| p = (x,y); z: c x y |] ==> Q"
wenzelm@18372
   560
  shows Q
wenzelm@18372
   561
  by (rule major [unfolded split_def] cases surjective_pairing)+
wenzelm@11838
   562
wenzelm@11838
   563
declare mem_splitI2 [intro!] mem_splitI [intro!] splitI2' [intro!] splitI2 [intro!] splitI [intro!]
wenzelm@11838
   564
declare mem_splitE [elim!] splitE' [elim!] splitE [elim!]
wenzelm@11838
   565
wenzelm@26340
   566
ML {*
wenzelm@11838
   567
local (* filtering with exists_p_split is an essential optimization *)
wenzelm@35364
   568
  fun exists_p_split (Const (@{const_name split},_) $ _ $ (Const (@{const_name Pair},_)$_$_)) = true
wenzelm@11838
   569
    | exists_p_split (t $ u) = exists_p_split t orelse exists_p_split u
wenzelm@11838
   570
    | exists_p_split (Abs (_, _, t)) = exists_p_split t
wenzelm@11838
   571
    | exists_p_split _ = false;
wenzelm@35364
   572
  val ss = HOL_basic_ss addsimps @{thms split_conv};
wenzelm@11838
   573
in
wenzelm@11838
   574
val split_conv_tac = SUBGOAL (fn (t, i) =>
wenzelm@11838
   575
    if exists_p_split t then safe_full_simp_tac ss i else no_tac);
wenzelm@11838
   576
end;
wenzelm@26340
   577
*}
wenzelm@26340
   578
wenzelm@11838
   579
(* This prevents applications of splitE for already splitted arguments leading
wenzelm@11838
   580
   to quite time-consuming computations (in particular for nested tuples) *)
wenzelm@26340
   581
declaration {* fn _ =>
wenzelm@26340
   582
  Classical.map_cs (fn cs => cs addSbefore ("split_conv_tac", split_conv_tac))
wenzelm@16121
   583
*}
wenzelm@11838
   584
blanchet@35828
   585
lemma split_eta_SetCompr [simp,no_atp]: "(%u. EX x y. u = (x, y) & P (x, y)) = P"
wenzelm@18372
   586
  by (rule ext) fast
wenzelm@11838
   587
blanchet@35828
   588
lemma split_eta_SetCompr2 [simp,no_atp]: "(%u. EX x y. u = (x, y) & P x y) = split P"
wenzelm@18372
   589
  by (rule ext) fast
wenzelm@11838
   590
wenzelm@11838
   591
lemma split_part [simp]: "(%(a,b). P & Q a b) = (%ab. P & split Q ab)"
wenzelm@11838
   592
  -- {* Allows simplifications of nested splits in case of independent predicates. *}
wenzelm@18372
   593
  by (rule ext) blast
wenzelm@11838
   594
nipkow@14337
   595
(* Do NOT make this a simp rule as it
nipkow@14337
   596
   a) only helps in special situations
nipkow@14337
   597
   b) can lead to nontermination in the presence of split_def
nipkow@14337
   598
*)
nipkow@14337
   599
lemma split_comp_eq: 
paulson@20415
   600
  fixes f :: "'a => 'b => 'c" and g :: "'d => 'a"
paulson@20415
   601
  shows "(%u. f (g (fst u)) (snd u)) = (split (%x. f (g x)))"
wenzelm@18372
   602
  by (rule ext) auto
oheimb@14101
   603
haftmann@26358
   604
lemma pair_imageI [intro]: "(a, b) : A ==> f a b : (%(a, b). f a b) ` A"
haftmann@26358
   605
  apply (rule_tac x = "(a, b)" in image_eqI)
haftmann@26358
   606
   apply auto
haftmann@26358
   607
  done
haftmann@26358
   608
wenzelm@11838
   609
lemma The_split_eq [simp]: "(THE (x',y'). x = x' & y = y') = (x, y)"
wenzelm@11838
   610
  by blast
wenzelm@11838
   611
wenzelm@11838
   612
(*
wenzelm@11838
   613
the following  would be slightly more general,
wenzelm@11838
   614
but cannot be used as rewrite rule:
wenzelm@11838
   615
### Cannot add premise as rewrite rule because it contains (type) unknowns:
wenzelm@11838
   616
### ?y = .x
wenzelm@11838
   617
Goal "[| P y; !!x. P x ==> x = y |] ==> (@(x',y). x = x' & P y) = (x,y)"
paulson@14208
   618
by (rtac some_equality 1)
paulson@14208
   619
by ( Simp_tac 1)
paulson@14208
   620
by (split_all_tac 1)
paulson@14208
   621
by (Asm_full_simp_tac 1)
wenzelm@11838
   622
qed "The_split_eq";
wenzelm@11838
   623
*)
wenzelm@11838
   624
wenzelm@11838
   625
text {*
wenzelm@11838
   626
  Setup of internal @{text split_rule}.
wenzelm@11838
   627
*}
wenzelm@11838
   628
haftmann@25511
   629
definition
haftmann@25511
   630
  internal_split :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c"
haftmann@25511
   631
where
wenzelm@11032
   632
  "internal_split == split"
wenzelm@11032
   633
wenzelm@11032
   634
lemma internal_split_conv: "internal_split c (a, b) = c a b"
wenzelm@11032
   635
  by (simp only: internal_split_def split_conv)
wenzelm@11032
   636
wenzelm@35364
   637
use "Tools/split_rule.ML"
wenzelm@35365
   638
setup Split_Rule.setup
wenzelm@35364
   639
wenzelm@36176
   640
hide_const internal_split
wenzelm@11032
   641
nipkow@10213
   642
haftmann@24699
   643
lemmas prod_caseI = prod.cases [THEN iffD2, standard]
haftmann@24699
   644
haftmann@24699
   645
lemma prod_caseI2: "!!p. [| !!a b. p = (a, b) ==> c a b |] ==> prod_case c p"
haftmann@24699
   646
  by auto
haftmann@24699
   647
haftmann@24699
   648
lemma prod_caseI2': "!!p. [| !!a b. (a, b) = p ==> c a b x |] ==> prod_case c p x"
haftmann@24699
   649
  by (auto simp: split_tupled_all)
haftmann@24699
   650
haftmann@24699
   651
lemma prod_caseE: "prod_case c p ==> (!!x y. p = (x, y) ==> c x y ==> Q) ==> Q"
haftmann@24699
   652
  by (induct p) auto
haftmann@24699
   653
haftmann@24699
   654
lemma prod_caseE': "prod_case c p z ==> (!!x y. p = (x, y) ==> c x y z ==> Q) ==> Q"
haftmann@24699
   655
  by (induct p) auto
haftmann@24699
   656
haftmann@24699
   657
lemma prod_case_unfold: "prod_case = (%c p. c (fst p) (snd p))"
haftmann@24699
   658
  by (simp add: expand_fun_eq)
haftmann@24699
   659
haftmann@24699
   660
declare prod_caseI2' [intro!] prod_caseI2 [intro!] prod_caseI [intro!]
haftmann@24699
   661
declare prod_caseE' [elim!] prod_caseE [elim!]
haftmann@24699
   662
haftmann@24844
   663
lemma prod_case_split:
haftmann@24699
   664
  "prod_case = split"
haftmann@24699
   665
  by (auto simp add: expand_fun_eq)
haftmann@24699
   666
bulwahn@26143
   667
lemma prod_case_beta:
bulwahn@26143
   668
  "prod_case f p = f (fst p) (snd p)"
bulwahn@26143
   669
  unfolding prod_case_split split_beta ..
bulwahn@26143
   670
haftmann@24699
   671
haftmann@24699
   672
subsection {* Further cases/induct rules for tuples *}
haftmann@24699
   673
haftmann@24699
   674
lemma prod_cases3 [cases type]:
haftmann@24699
   675
  obtains (fields) a b c where "y = (a, b, c)"
haftmann@24699
   676
  by (cases y, case_tac b) blast
haftmann@24699
   677
haftmann@24699
   678
lemma prod_induct3 [case_names fields, induct type]:
haftmann@24699
   679
    "(!!a b c. P (a, b, c)) ==> P x"
haftmann@24699
   680
  by (cases x) blast
haftmann@24699
   681
haftmann@24699
   682
lemma prod_cases4 [cases type]:
haftmann@24699
   683
  obtains (fields) a b c d where "y = (a, b, c, d)"
haftmann@24699
   684
  by (cases y, case_tac c) blast
haftmann@24699
   685
haftmann@24699
   686
lemma prod_induct4 [case_names fields, induct type]:
haftmann@24699
   687
    "(!!a b c d. P (a, b, c, d)) ==> P x"
haftmann@24699
   688
  by (cases x) blast
haftmann@24699
   689
haftmann@24699
   690
lemma prod_cases5 [cases type]:
haftmann@24699
   691
  obtains (fields) a b c d e where "y = (a, b, c, d, e)"
haftmann@24699
   692
  by (cases y, case_tac d) blast
haftmann@24699
   693
haftmann@24699
   694
lemma prod_induct5 [case_names fields, induct type]:
haftmann@24699
   695
    "(!!a b c d e. P (a, b, c, d, e)) ==> P x"
haftmann@24699
   696
  by (cases x) blast
haftmann@24699
   697
haftmann@24699
   698
lemma prod_cases6 [cases type]:
haftmann@24699
   699
  obtains (fields) a b c d e f where "y = (a, b, c, d, e, f)"
haftmann@24699
   700
  by (cases y, case_tac e) blast
haftmann@24699
   701
haftmann@24699
   702
lemma prod_induct6 [case_names fields, induct type]:
haftmann@24699
   703
    "(!!a b c d e f. P (a, b, c, d, e, f)) ==> P x"
haftmann@24699
   704
  by (cases x) blast
haftmann@24699
   705
haftmann@24699
   706
lemma prod_cases7 [cases type]:
haftmann@24699
   707
  obtains (fields) a b c d e f g where "y = (a, b, c, d, e, f, g)"
haftmann@24699
   708
  by (cases y, case_tac f) blast
haftmann@24699
   709
haftmann@24699
   710
lemma prod_induct7 [case_names fields, induct type]:
haftmann@24699
   711
    "(!!a b c d e f g. P (a, b, c, d, e, f, g)) ==> P x"
haftmann@24699
   712
  by (cases x) blast
haftmann@24699
   713
haftmann@24699
   714
haftmann@26358
   715
subsubsection {* Derived operations *}
haftmann@26358
   716
haftmann@26358
   717
text {*
haftmann@26358
   718
  The composition-uncurry combinator.
haftmann@26358
   719
*}
haftmann@26358
   720
haftmann@26588
   721
notation fcomp (infixl "o>" 60)
haftmann@26358
   722
haftmann@26588
   723
definition
haftmann@26588
   724
  scomp :: "('a \<Rightarrow> 'b \<times> 'c) \<Rightarrow> ('b \<Rightarrow> 'c \<Rightarrow> 'd) \<Rightarrow> 'a \<Rightarrow> 'd" (infixl "o\<rightarrow>" 60)
haftmann@26588
   725
where
haftmann@26588
   726
  "f o\<rightarrow> g = (\<lambda>x. split g (f x))"
haftmann@26358
   727
haftmann@26588
   728
lemma scomp_apply:  "(f o\<rightarrow> g) x = split g (f x)"
haftmann@26588
   729
  by (simp add: scomp_def)
haftmann@26358
   730
haftmann@26588
   731
lemma Pair_scomp: "Pair x o\<rightarrow> f = f x"
haftmann@26588
   732
  by (simp add: expand_fun_eq scomp_apply)
haftmann@26358
   733
haftmann@26588
   734
lemma scomp_Pair: "x o\<rightarrow> Pair = x"
haftmann@26588
   735
  by (simp add: expand_fun_eq scomp_apply)
haftmann@26358
   736
haftmann@26588
   737
lemma scomp_scomp: "(f o\<rightarrow> g) o\<rightarrow> h = f o\<rightarrow> (\<lambda>x. g x o\<rightarrow> h)"
haftmann@26588
   738
  by (simp add: expand_fun_eq split_twice scomp_def)
haftmann@26358
   739
haftmann@26588
   740
lemma scomp_fcomp: "(f o\<rightarrow> g) o> h = f o\<rightarrow> (\<lambda>x. g x o> h)"
haftmann@26588
   741
  by (simp add: expand_fun_eq scomp_apply fcomp_def split_def)
haftmann@26358
   742
haftmann@26588
   743
lemma fcomp_scomp: "(f o> g) o\<rightarrow> h = f o> (g o\<rightarrow> h)"
haftmann@26588
   744
  by (simp add: expand_fun_eq scomp_apply fcomp_apply)
haftmann@26358
   745
haftmann@31202
   746
code_const scomp
haftmann@31202
   747
  (Eval infixl 3 "#->")
haftmann@31202
   748
haftmann@26588
   749
no_notation fcomp (infixl "o>" 60)
haftmann@26588
   750
no_notation scomp (infixl "o\<rightarrow>" 60)
haftmann@26358
   751
haftmann@26358
   752
haftmann@26358
   753
text {*
haftmann@26358
   754
  @{term prod_fun} --- action of the product functor upon
haftmann@31775
   755
  Datatypes.
haftmann@26358
   756
*}
haftmann@21195
   757
haftmann@26358
   758
definition prod_fun :: "('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c \<times> 'd" where
haftmann@28562
   759
  [code del]: "prod_fun f g = (\<lambda>(x, y). (f x, g y))"
haftmann@26358
   760
haftmann@28562
   761
lemma prod_fun [simp, code]: "prod_fun f g (a, b) = (f a, g b)"
haftmann@26358
   762
  by (simp add: prod_fun_def)
haftmann@26358
   763
haftmann@26358
   764
lemma prod_fun_compose: "prod_fun (f1 o f2) (g1 o g2) = (prod_fun f1 g1 o prod_fun f2 g2)"
haftmann@26358
   765
  by (rule ext) auto
haftmann@26358
   766
haftmann@26358
   767
lemma prod_fun_ident [simp]: "prod_fun (%x. x) (%y. y) = (%z. z)"
haftmann@26358
   768
  by (rule ext) auto
haftmann@26358
   769
haftmann@26358
   770
lemma prod_fun_imageI [intro]: "(a, b) : r ==> (f a, g b) : prod_fun f g ` r"
haftmann@26358
   771
  apply (rule image_eqI)
haftmann@26358
   772
  apply (rule prod_fun [symmetric], assumption)
haftmann@26358
   773
  done
haftmann@21195
   774
haftmann@26358
   775
lemma prod_fun_imageE [elim!]:
haftmann@26358
   776
  assumes major: "c: (prod_fun f g)`r"
haftmann@26358
   777
    and cases: "!!x y. [| c=(f(x),g(y));  (x,y):r |] ==> P"
haftmann@26358
   778
  shows P
haftmann@26358
   779
  apply (rule major [THEN imageE])
haftmann@26358
   780
  apply (rule_tac p = x in PairE)
haftmann@26358
   781
  apply (rule cases)
haftmann@26358
   782
   apply (blast intro: prod_fun)
haftmann@26358
   783
  apply blast
haftmann@26358
   784
  done
haftmann@26358
   785
haftmann@26358
   786
definition
haftmann@26358
   787
  apfst :: "('a \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c \<times> 'b"
haftmann@26358
   788
where
haftmann@28562
   789
  [code del]: "apfst f = prod_fun f id"
haftmann@26358
   790
haftmann@26358
   791
definition
haftmann@26358
   792
  apsnd :: "('b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'a \<times> 'c"
haftmann@26358
   793
where
haftmann@28562
   794
  [code del]: "apsnd f = prod_fun id f"
haftmann@26358
   795
haftmann@26358
   796
lemma apfst_conv [simp, code]:
haftmann@26358
   797
  "apfst f (x, y) = (f x, y)" 
haftmann@26358
   798
  by (simp add: apfst_def)
haftmann@26358
   799
hoelzl@33638
   800
lemma apsnd_conv [simp, code]:
haftmann@26358
   801
  "apsnd f (x, y) = (x, f y)" 
haftmann@26358
   802
  by (simp add: apsnd_def)
haftmann@21195
   803
haftmann@33594
   804
lemma fst_apfst [simp]:
haftmann@33594
   805
  "fst (apfst f x) = f (fst x)"
haftmann@33594
   806
  by (cases x) simp
haftmann@33594
   807
haftmann@33594
   808
lemma fst_apsnd [simp]:
haftmann@33594
   809
  "fst (apsnd f x) = fst x"
haftmann@33594
   810
  by (cases x) simp
haftmann@33594
   811
haftmann@33594
   812
lemma snd_apfst [simp]:
haftmann@33594
   813
  "snd (apfst f x) = snd x"
haftmann@33594
   814
  by (cases x) simp
haftmann@33594
   815
haftmann@33594
   816
lemma snd_apsnd [simp]:
haftmann@33594
   817
  "snd (apsnd f x) = f (snd x)"
haftmann@33594
   818
  by (cases x) simp
haftmann@33594
   819
haftmann@33594
   820
lemma apfst_compose:
haftmann@33594
   821
  "apfst f (apfst g x) = apfst (f \<circ> g) x"
haftmann@33594
   822
  by (cases x) simp
haftmann@33594
   823
haftmann@33594
   824
lemma apsnd_compose:
haftmann@33594
   825
  "apsnd f (apsnd g x) = apsnd (f \<circ> g) x"
haftmann@33594
   826
  by (cases x) simp
haftmann@33594
   827
haftmann@33594
   828
lemma apfst_apsnd [simp]:
haftmann@33594
   829
  "apfst f (apsnd g x) = (f (fst x), g (snd x))"
haftmann@33594
   830
  by (cases x) simp
haftmann@33594
   831
haftmann@33594
   832
lemma apsnd_apfst [simp]:
haftmann@33594
   833
  "apsnd f (apfst g x) = (g (fst x), f (snd x))"
haftmann@33594
   834
  by (cases x) simp
haftmann@33594
   835
haftmann@33594
   836
lemma apfst_id [simp] :
haftmann@33594
   837
  "apfst id = id"
haftmann@33594
   838
  by (simp add: expand_fun_eq)
haftmann@33594
   839
haftmann@33594
   840
lemma apsnd_id [simp] :
haftmann@33594
   841
  "apsnd id = id"
haftmann@33594
   842
  by (simp add: expand_fun_eq)
haftmann@33594
   843
haftmann@33594
   844
lemma apfst_eq_conv [simp]:
haftmann@33594
   845
  "apfst f x = apfst g x \<longleftrightarrow> f (fst x) = g (fst x)"
haftmann@33594
   846
  by (cases x) simp
haftmann@33594
   847
haftmann@33594
   848
lemma apsnd_eq_conv [simp]:
haftmann@33594
   849
  "apsnd f x = apsnd g x \<longleftrightarrow> f (snd x) = g (snd x)"
haftmann@33594
   850
  by (cases x) simp
haftmann@33594
   851
hoelzl@33638
   852
lemma apsnd_apfst_commute:
hoelzl@33638
   853
  "apsnd f (apfst g p) = apfst g (apsnd f p)"
hoelzl@33638
   854
  by simp
haftmann@21195
   855
haftmann@26358
   856
text {*
haftmann@26358
   857
  Disjoint union of a family of sets -- Sigma.
haftmann@26358
   858
*}
haftmann@26358
   859
haftmann@26358
   860
definition  Sigma :: "['a set, 'a => 'b set] => ('a \<times> 'b) set" where
haftmann@26358
   861
  Sigma_def: "Sigma A B == UN x:A. UN y:B x. {Pair x y}"
haftmann@26358
   862
haftmann@26358
   863
abbreviation
haftmann@26358
   864
  Times :: "['a set, 'b set] => ('a * 'b) set"
haftmann@26358
   865
    (infixr "<*>" 80) where
haftmann@26358
   866
  "A <*> B == Sigma A (%_. B)"
haftmann@26358
   867
haftmann@26358
   868
notation (xsymbols)
haftmann@26358
   869
  Times  (infixr "\<times>" 80)
berghofe@15394
   870
haftmann@26358
   871
notation (HTML output)
haftmann@26358
   872
  Times  (infixr "\<times>" 80)
haftmann@26358
   873
haftmann@26358
   874
syntax
wenzelm@35115
   875
  "_Sigma" :: "[pttrn, 'a set, 'b set] => ('a * 'b) set"  ("(3SIGMA _:_./ _)" [0, 0, 10] 10)
haftmann@26358
   876
translations
wenzelm@35115
   877
  "SIGMA x:A. B" == "CONST Sigma A (%x. B)"
haftmann@26358
   878
haftmann@26358
   879
lemma SigmaI [intro!]: "[| a:A;  b:B(a) |] ==> (a,b) : Sigma A B"
haftmann@26358
   880
  by (unfold Sigma_def) blast
haftmann@26358
   881
haftmann@26358
   882
lemma SigmaE [elim!]:
haftmann@26358
   883
    "[| c: Sigma A B;
haftmann@26358
   884
        !!x y.[| x:A;  y:B(x);  c=(x,y) |] ==> P
haftmann@26358
   885
     |] ==> P"
haftmann@26358
   886
  -- {* The general elimination rule. *}
haftmann@26358
   887
  by (unfold Sigma_def) blast
haftmann@20588
   888
haftmann@26358
   889
text {*
haftmann@26358
   890
  Elimination of @{term "(a, b) : A \<times> B"} -- introduces no
haftmann@26358
   891
  eigenvariables.
haftmann@26358
   892
*}
haftmann@26358
   893
haftmann@26358
   894
lemma SigmaD1: "(a, b) : Sigma A B ==> a : A"
haftmann@26358
   895
  by blast
haftmann@26358
   896
haftmann@26358
   897
lemma SigmaD2: "(a, b) : Sigma A B ==> b : B a"
haftmann@26358
   898
  by blast
haftmann@26358
   899
haftmann@26358
   900
lemma SigmaE2:
haftmann@26358
   901
    "[| (a, b) : Sigma A B;
haftmann@26358
   902
        [| a:A;  b:B(a) |] ==> P
haftmann@26358
   903
     |] ==> P"
haftmann@26358
   904
  by blast
haftmann@20588
   905
haftmann@26358
   906
lemma Sigma_cong:
haftmann@26358
   907
     "\<lbrakk>A = B; !!x. x \<in> B \<Longrightarrow> C x = D x\<rbrakk>
haftmann@26358
   908
      \<Longrightarrow> (SIGMA x: A. C x) = (SIGMA x: B. D x)"
haftmann@26358
   909
  by auto
haftmann@26358
   910
haftmann@26358
   911
lemma Sigma_mono: "[| A <= C; !!x. x:A ==> B x <= D x |] ==> Sigma A B <= Sigma C D"
haftmann@26358
   912
  by blast
haftmann@26358
   913
haftmann@26358
   914
lemma Sigma_empty1 [simp]: "Sigma {} B = {}"
haftmann@26358
   915
  by blast
haftmann@26358
   916
haftmann@26358
   917
lemma Sigma_empty2 [simp]: "A <*> {} = {}"
haftmann@26358
   918
  by blast
haftmann@26358
   919
haftmann@26358
   920
lemma UNIV_Times_UNIV [simp]: "UNIV <*> UNIV = UNIV"
haftmann@26358
   921
  by auto
haftmann@21908
   922
haftmann@26358
   923
lemma Compl_Times_UNIV1 [simp]: "- (UNIV <*> A) = UNIV <*> (-A)"
haftmann@26358
   924
  by auto
haftmann@26358
   925
haftmann@26358
   926
lemma Compl_Times_UNIV2 [simp]: "- (A <*> UNIV) = (-A) <*> UNIV"
haftmann@26358
   927
  by auto
haftmann@26358
   928
haftmann@26358
   929
lemma mem_Sigma_iff [iff]: "((a,b): Sigma A B) = (a:A & b:B(a))"
haftmann@26358
   930
  by blast
haftmann@26358
   931
haftmann@26358
   932
lemma Times_subset_cancel2: "x:C ==> (A <*> C <= B <*> C) = (A <= B)"
haftmann@26358
   933
  by blast
haftmann@26358
   934
haftmann@26358
   935
lemma Times_eq_cancel2: "x:C ==> (A <*> C = B <*> C) = (A = B)"
haftmann@26358
   936
  by (blast elim: equalityE)
haftmann@20588
   937
haftmann@26358
   938
lemma SetCompr_Sigma_eq:
haftmann@26358
   939
    "Collect (split (%x y. P x & Q x y)) = (SIGMA x:Collect P. Collect (Q x))"
haftmann@26358
   940
  by blast
haftmann@26358
   941
haftmann@26358
   942
lemma Collect_split [simp]: "{(a,b). P a & Q b} = Collect P <*> Collect Q"
haftmann@26358
   943
  by blast
haftmann@26358
   944
haftmann@26358
   945
lemma UN_Times_distrib:
haftmann@26358
   946
  "(UN (a,b):(A <*> B). E a <*> F b) = (UNION A E) <*> (UNION B F)"
haftmann@26358
   947
  -- {* Suggested by Pierre Chartier *}
haftmann@26358
   948
  by blast
haftmann@26358
   949
blanchet@35828
   950
lemma split_paired_Ball_Sigma [simp,no_atp]:
haftmann@26358
   951
    "(ALL z: Sigma A B. P z) = (ALL x:A. ALL y: B x. P(x,y))"
haftmann@26358
   952
  by blast
haftmann@26358
   953
blanchet@35828
   954
lemma split_paired_Bex_Sigma [simp,no_atp]:
haftmann@26358
   955
    "(EX z: Sigma A B. P z) = (EX x:A. EX y: B x. P(x,y))"
haftmann@26358
   956
  by blast
haftmann@21908
   957
haftmann@26358
   958
lemma Sigma_Un_distrib1: "(SIGMA i:I Un J. C(i)) = (SIGMA i:I. C(i)) Un (SIGMA j:J. C(j))"
haftmann@26358
   959
  by blast
haftmann@26358
   960
haftmann@26358
   961
lemma Sigma_Un_distrib2: "(SIGMA i:I. A(i) Un B(i)) = (SIGMA i:I. A(i)) Un (SIGMA i:I. B(i))"
haftmann@26358
   962
  by blast
haftmann@26358
   963
haftmann@26358
   964
lemma Sigma_Int_distrib1: "(SIGMA i:I Int J. C(i)) = (SIGMA i:I. C(i)) Int (SIGMA j:J. C(j))"
haftmann@26358
   965
  by blast
haftmann@26358
   966
haftmann@26358
   967
lemma Sigma_Int_distrib2: "(SIGMA i:I. A(i) Int B(i)) = (SIGMA i:I. A(i)) Int (SIGMA i:I. B(i))"
haftmann@26358
   968
  by blast
haftmann@26358
   969
haftmann@26358
   970
lemma Sigma_Diff_distrib1: "(SIGMA i:I - J. C(i)) = (SIGMA i:I. C(i)) - (SIGMA j:J. C(j))"
haftmann@26358
   971
  by blast
haftmann@26358
   972
haftmann@26358
   973
lemma Sigma_Diff_distrib2: "(SIGMA i:I. A(i) - B(i)) = (SIGMA i:I. A(i)) - (SIGMA i:I. B(i))"
haftmann@26358
   974
  by blast
haftmann@21908
   975
haftmann@26358
   976
lemma Sigma_Union: "Sigma (Union X) B = (UN A:X. Sigma A B)"
haftmann@26358
   977
  by blast
haftmann@26358
   978
haftmann@26358
   979
text {*
haftmann@26358
   980
  Non-dependent versions are needed to avoid the need for higher-order
haftmann@26358
   981
  matching, especially when the rules are re-oriented.
haftmann@26358
   982
*}
haftmann@21908
   983
haftmann@26358
   984
lemma Times_Un_distrib1: "(A Un B) <*> C = (A <*> C) Un (B <*> C)"
nipkow@28719
   985
by blast
haftmann@26358
   986
haftmann@26358
   987
lemma Times_Int_distrib1: "(A Int B) <*> C = (A <*> C) Int (B <*> C)"
nipkow@28719
   988
by blast
haftmann@26358
   989
haftmann@26358
   990
lemma Times_Diff_distrib1: "(A - B) <*> C = (A <*> C) - (B <*> C)"
nipkow@28719
   991
by blast
haftmann@26358
   992
nipkow@28719
   993
lemma insert_times_insert[simp]:
nipkow@28719
   994
  "insert a A \<times> insert b B =
nipkow@28719
   995
   insert (a,b) (A \<times> insert b B \<union> insert a A \<times> B)"
nipkow@28719
   996
by blast
haftmann@26358
   997
paulson@33271
   998
lemma vimage_Times: "f -` (A \<times> B) = ((fst \<circ> f) -` A) \<inter> ((snd \<circ> f) -` B)"
paulson@33271
   999
  by (auto, rule_tac p = "f x" in PairE, auto)
paulson@33271
  1000
haftmann@35822
  1001
lemma swap_inj_on:
haftmann@35822
  1002
  "inj_on (%(i, j). (j, i)) (A \<times> B)"
haftmann@35822
  1003
  by (unfold inj_on_def) fast
haftmann@35822
  1004
haftmann@35822
  1005
lemma swap_product:
haftmann@35822
  1006
  "(%(i, j). (j, i)) ` (A \<times> B) = B \<times> A"
haftmann@35822
  1007
  by (simp add: split_def image_def) blast
haftmann@35822
  1008
haftmann@35822
  1009
haftmann@26358
  1010
subsubsection {* Code generator setup *}
haftmann@21908
  1011
haftmann@28562
  1012
lemma [code]:
haftmann@28346
  1013
  "eq_class.eq (x1\<Colon>'a\<Colon>eq, y1\<Colon>'b\<Colon>eq) (x2, y2) \<longleftrightarrow> x1 = x2 \<and> y1 = y2" by (simp add: eq)
haftmann@20588
  1014
haftmann@24844
  1015
lemma split_case_cert:
haftmann@24844
  1016
  assumes "CASE \<equiv> split f"
haftmann@24844
  1017
  shows "CASE (a, b) \<equiv> f a b"
haftmann@24844
  1018
  using assms by simp
haftmann@24844
  1019
haftmann@24844
  1020
setup {*
haftmann@24844
  1021
  Code.add_case @{thm split_case_cert}
haftmann@24844
  1022
*}
haftmann@24844
  1023
haftmann@21908
  1024
code_type *
haftmann@21908
  1025
  (SML infix 2 "*")
haftmann@21908
  1026
  (OCaml infix 2 "*")
haftmann@21908
  1027
  (Haskell "!((_),/ (_))")
haftmann@34900
  1028
  (Scala "((_),/ (_))")
haftmann@21908
  1029
haftmann@20588
  1030
code_instance * :: eq
haftmann@20588
  1031
  (Haskell -)
haftmann@20588
  1032
haftmann@28346
  1033
code_const "eq_class.eq \<Colon> 'a\<Colon>eq \<times> 'b\<Colon>eq \<Rightarrow> 'a \<times> 'b \<Rightarrow> bool"
haftmann@20588
  1034
  (Haskell infixl 4 "==")
haftmann@20588
  1035
haftmann@21908
  1036
code_const Pair
haftmann@21908
  1037
  (SML "!((_),/ (_))")
haftmann@21908
  1038
  (OCaml "!((_),/ (_))")
haftmann@21908
  1039
  (Haskell "!((_),/ (_))")
haftmann@34886
  1040
  (Scala "!((_),/ (_))")
haftmann@20588
  1041
haftmann@22389
  1042
code_const fst and snd
haftmann@22389
  1043
  (Haskell "fst" and "snd")
haftmann@22389
  1044
berghofe@15394
  1045
types_code
berghofe@15394
  1046
  "*"     ("(_ */ _)")
berghofe@16770
  1047
attach (term_of) {*
berghofe@25885
  1048
fun term_of_id_42 aF aT bF bT (x, y) = HOLogic.pair_const aT bT $ aF x $ bF y;
berghofe@16770
  1049
*}
berghofe@16770
  1050
attach (test) {*
berghofe@25885
  1051
fun gen_id_42 aG aT bG bT i =
berghofe@25885
  1052
  let
berghofe@25885
  1053
    val (x, t) = aG i;
berghofe@25885
  1054
    val (y, u) = bG i
berghofe@25885
  1055
  in ((x, y), fn () => HOLogic.pair_const aT bT $ t () $ u ()) end;
berghofe@16770
  1056
*}
berghofe@15394
  1057
berghofe@18706
  1058
consts_code
berghofe@18706
  1059
  "Pair"    ("(_,/ _)")
berghofe@18706
  1060
haftmann@21908
  1061
setup {*
haftmann@21908
  1062
let
haftmann@18013
  1063
haftmann@19039
  1064
fun strip_abs_split 0 t = ([], t)
haftmann@19039
  1065
  | strip_abs_split i (Abs (s, T, t)) =
haftmann@18013
  1066
      let
haftmann@18013
  1067
        val s' = Codegen.new_name t s;
haftmann@18013
  1068
        val v = Free (s', T)
haftmann@19039
  1069
      in apfst (cons v) (strip_abs_split (i-1) (subst_bound (v, t))) end
wenzelm@35364
  1070
  | strip_abs_split i (u as Const (@{const_name split}, _) $ t) =
wenzelm@35364
  1071
      (case strip_abs_split (i+1) t of
berghofe@15394
  1072
        (v :: v' :: vs, u) => (HOLogic.mk_prod (v, v') :: vs, u)
berghofe@15394
  1073
      | _ => ([], u))
berghofe@30604
  1074
  | strip_abs_split i t =
berghofe@30604
  1075
      strip_abs_split i (Abs ("x", hd (binder_types (fastype_of t)), t $ Bound 0));
haftmann@18013
  1076
wenzelm@35364
  1077
fun let_codegen thy defs dep thyname brack t gr =
wenzelm@35364
  1078
  (case strip_comb t of
wenzelm@35364
  1079
    (t1 as Const (@{const_name Let}, _), t2 :: t3 :: ts) =>
berghofe@15394
  1080
    let
wenzelm@35364
  1081
      fun dest_let (l as Const (@{const_name Let}, _) $ t $ u) =
haftmann@19039
  1082
          (case strip_abs_split 1 u of
berghofe@15394
  1083
             ([p], u') => apfst (cons (p, t)) (dest_let u')
berghofe@15394
  1084
           | _ => ([], l))
berghofe@15394
  1085
        | dest_let t = ([], t);
haftmann@28537
  1086
      fun mk_code (l, r) gr =
berghofe@15394
  1087
        let
haftmann@28537
  1088
          val (pl, gr1) = Codegen.invoke_codegen thy defs dep thyname false l gr;
haftmann@28537
  1089
          val (pr, gr2) = Codegen.invoke_codegen thy defs dep thyname false r gr1;
haftmann@28537
  1090
        in ((pl, pr), gr2) end
berghofe@16634
  1091
    in case dest_let (t1 $ t2 $ t3) of
skalberg@15531
  1092
        ([], _) => NONE
berghofe@15394
  1093
      | (ps, u) =>
berghofe@15394
  1094
          let
haftmann@28537
  1095
            val (qs, gr1) = fold_map mk_code ps gr;
haftmann@28537
  1096
            val (pu, gr2) = Codegen.invoke_codegen thy defs dep thyname false u gr1;
haftmann@28537
  1097
            val (pargs, gr3) = fold_map
haftmann@28537
  1098
              (Codegen.invoke_codegen thy defs dep thyname true) ts gr2
berghofe@15394
  1099
          in
haftmann@28537
  1100
            SOME (Codegen.mk_app brack
wenzelm@32952
  1101
              (Pretty.blk (0, [Codegen.str "let ", Pretty.blk (0, flat
berghofe@26975
  1102
                  (separate [Codegen.str ";", Pretty.brk 1] (map (fn (pl, pr) =>
berghofe@26975
  1103
                    [Pretty.block [Codegen.str "val ", pl, Codegen.str " =",
berghofe@16634
  1104
                       Pretty.brk 1, pr]]) qs))),
berghofe@26975
  1105
                Pretty.brk 1, Codegen.str "in ", pu,
haftmann@28537
  1106
                Pretty.brk 1, Codegen.str "end"])) pargs, gr3)
berghofe@15394
  1107
          end
berghofe@15394
  1108
    end
berghofe@16634
  1109
  | _ => NONE);
berghofe@15394
  1110
haftmann@28537
  1111
fun split_codegen thy defs dep thyname brack t gr = (case strip_comb t of
wenzelm@35364
  1112
    (t1 as Const (@{const_name split}, _), t2 :: ts) =>
berghofe@30604
  1113
      let
berghofe@30604
  1114
        val ([p], u) = strip_abs_split 1 (t1 $ t2);
berghofe@30604
  1115
        val (q, gr1) = Codegen.invoke_codegen thy defs dep thyname false p gr;
berghofe@30604
  1116
        val (pu, gr2) = Codegen.invoke_codegen thy defs dep thyname false u gr1;
berghofe@30604
  1117
        val (pargs, gr3) = fold_map
berghofe@30604
  1118
          (Codegen.invoke_codegen thy defs dep thyname true) ts gr2
berghofe@30604
  1119
      in
berghofe@30604
  1120
        SOME (Codegen.mk_app brack
berghofe@30604
  1121
          (Pretty.block [Codegen.str "(fn ", q, Codegen.str " =>",
berghofe@30604
  1122
            Pretty.brk 1, pu, Codegen.str ")"]) pargs, gr2)
berghofe@30604
  1123
      end
berghofe@16634
  1124
  | _ => NONE);
berghofe@15394
  1125
haftmann@21908
  1126
in
haftmann@21908
  1127
haftmann@20105
  1128
  Codegen.add_codegen "let_codegen" let_codegen
haftmann@20105
  1129
  #> Codegen.add_codegen "split_codegen" split_codegen
berghofe@15394
  1130
haftmann@21908
  1131
end
berghofe@15394
  1132
*}
berghofe@15394
  1133
haftmann@24699
  1134
haftmann@24699
  1135
subsection {* Legacy bindings *}
haftmann@24699
  1136
haftmann@21908
  1137
ML {*
paulson@15404
  1138
val Collect_split = thm "Collect_split";
paulson@15404
  1139
val Compl_Times_UNIV1 = thm "Compl_Times_UNIV1";
paulson@15404
  1140
val Compl_Times_UNIV2 = thm "Compl_Times_UNIV2";
paulson@15404
  1141
val PairE = thm "PairE";
paulson@15404
  1142
val Pair_Rep_inject = thm "Pair_Rep_inject";
paulson@15404
  1143
val Pair_def = thm "Pair_def";
haftmann@27104
  1144
val Pair_eq = @{thm "prod.inject"};
paulson@15404
  1145
val Pair_fst_snd_eq = thm "Pair_fst_snd_eq";
paulson@15404
  1146
val ProdI = thm "ProdI";
paulson@15404
  1147
val SetCompr_Sigma_eq = thm "SetCompr_Sigma_eq";
paulson@15404
  1148
val SigmaD1 = thm "SigmaD1";
paulson@15404
  1149
val SigmaD2 = thm "SigmaD2";
paulson@15404
  1150
val SigmaE = thm "SigmaE";
paulson@15404
  1151
val SigmaE2 = thm "SigmaE2";
paulson@15404
  1152
val SigmaI = thm "SigmaI";
paulson@15404
  1153
val Sigma_Diff_distrib1 = thm "Sigma_Diff_distrib1";
paulson@15404
  1154
val Sigma_Diff_distrib2 = thm "Sigma_Diff_distrib2";
paulson@15404
  1155
val Sigma_Int_distrib1 = thm "Sigma_Int_distrib1";
paulson@15404
  1156
val Sigma_Int_distrib2 = thm "Sigma_Int_distrib2";
paulson@15404
  1157
val Sigma_Un_distrib1 = thm "Sigma_Un_distrib1";
paulson@15404
  1158
val Sigma_Un_distrib2 = thm "Sigma_Un_distrib2";
paulson@15404
  1159
val Sigma_Union = thm "Sigma_Union";
paulson@15404
  1160
val Sigma_def = thm "Sigma_def";
paulson@15404
  1161
val Sigma_empty1 = thm "Sigma_empty1";
paulson@15404
  1162
val Sigma_empty2 = thm "Sigma_empty2";
paulson@15404
  1163
val Sigma_mono = thm "Sigma_mono";
paulson@15404
  1164
val The_split = thm "The_split";
paulson@15404
  1165
val The_split_eq = thm "The_split_eq";
paulson@15404
  1166
val The_split_eq = thm "The_split_eq";
paulson@15404
  1167
val Times_Diff_distrib1 = thm "Times_Diff_distrib1";
paulson@15404
  1168
val Times_Int_distrib1 = thm "Times_Int_distrib1";
paulson@15404
  1169
val Times_Un_distrib1 = thm "Times_Un_distrib1";
paulson@15404
  1170
val Times_eq_cancel2 = thm "Times_eq_cancel2";
paulson@15404
  1171
val Times_subset_cancel2 = thm "Times_subset_cancel2";
paulson@15404
  1172
val UNIV_Times_UNIV = thm "UNIV_Times_UNIV";
paulson@15404
  1173
val UN_Times_distrib = thm "UN_Times_distrib";
paulson@15404
  1174
val Unity_def = thm "Unity_def";
paulson@15404
  1175
val cond_split_eta = thm "cond_split_eta";
paulson@15404
  1176
val fst_conv = thm "fst_conv";
paulson@15404
  1177
val fst_def = thm "fst_def";
paulson@15404
  1178
val fst_eqD = thm "fst_eqD";
paulson@15404
  1179
val inj_on_Abs_Prod = thm "inj_on_Abs_Prod";
paulson@15404
  1180
val mem_Sigma_iff = thm "mem_Sigma_iff";
paulson@15404
  1181
val mem_splitE = thm "mem_splitE";
paulson@15404
  1182
val mem_splitI = thm "mem_splitI";
paulson@15404
  1183
val mem_splitI2 = thm "mem_splitI2";
paulson@15404
  1184
val prod_eqI = thm "prod_eqI";
paulson@15404
  1185
val prod_fun = thm "prod_fun";
paulson@15404
  1186
val prod_fun_compose = thm "prod_fun_compose";
paulson@15404
  1187
val prod_fun_def = thm "prod_fun_def";
paulson@15404
  1188
val prod_fun_ident = thm "prod_fun_ident";
paulson@15404
  1189
val prod_fun_imageE = thm "prod_fun_imageE";
paulson@15404
  1190
val prod_fun_imageI = thm "prod_fun_imageI";
haftmann@27104
  1191
val prod_induct = thm "prod.induct";
paulson@15404
  1192
val snd_conv = thm "snd_conv";
paulson@15404
  1193
val snd_def = thm "snd_def";
paulson@15404
  1194
val snd_eqD = thm "snd_eqD";
paulson@15404
  1195
val split = thm "split";
paulson@15404
  1196
val splitD = thm "splitD";
paulson@15404
  1197
val splitD' = thm "splitD'";
paulson@15404
  1198
val splitE = thm "splitE";
paulson@15404
  1199
val splitE' = thm "splitE'";
paulson@15404
  1200
val splitE2 = thm "splitE2";
paulson@15404
  1201
val splitI = thm "splitI";
paulson@15404
  1202
val splitI2 = thm "splitI2";
paulson@15404
  1203
val splitI2' = thm "splitI2'";
paulson@15404
  1204
val split_beta = thm "split_beta";
paulson@15404
  1205
val split_conv = thm "split_conv";
paulson@15404
  1206
val split_def = thm "split_def";
paulson@15404
  1207
val split_eta = thm "split_eta";
paulson@15404
  1208
val split_eta_SetCompr = thm "split_eta_SetCompr";
paulson@15404
  1209
val split_eta_SetCompr2 = thm "split_eta_SetCompr2";
paulson@15404
  1210
val split_paired_All = thm "split_paired_All";
paulson@15404
  1211
val split_paired_Ball_Sigma = thm "split_paired_Ball_Sigma";
paulson@15404
  1212
val split_paired_Bex_Sigma = thm "split_paired_Bex_Sigma";
paulson@15404
  1213
val split_paired_Ex = thm "split_paired_Ex";
paulson@15404
  1214
val split_paired_The = thm "split_paired_The";
paulson@15404
  1215
val split_paired_all = thm "split_paired_all";
paulson@15404
  1216
val split_part = thm "split_part";
paulson@15404
  1217
val split_split = thm "split_split";
paulson@15404
  1218
val split_split_asm = thm "split_split_asm";
paulson@15404
  1219
val split_tupled_all = thms "split_tupled_all";
paulson@15404
  1220
val split_weak_cong = thm "split_weak_cong";
paulson@15404
  1221
val surj_pair = thm "surj_pair";
paulson@15404
  1222
val surjective_pairing = thm "surjective_pairing";
paulson@15404
  1223
val unit_abs_eta_conv = thm "unit_abs_eta_conv";
paulson@15404
  1224
val unit_all_eq1 = thm "unit_all_eq1";
paulson@15404
  1225
val unit_all_eq2 = thm "unit_all_eq2";
paulson@15404
  1226
val unit_eq = thm "unit_eq";
paulson@15404
  1227
*}
paulson@15404
  1228
haftmann@31723
  1229
use "Tools/inductive_set.ML"
haftmann@31723
  1230
setup Inductive_Set.setup
haftmann@24699
  1231
nipkow@10213
  1232
end