src/HOL/Groups.thy
author huffman
Sat Aug 20 13:07:00 2011 -0700 (2011-08-20)
changeset 44348 40101794c52f
parent 42248 04bffad68aa4
child 44433 9fbee4aab115
permissions -rw-r--r--
move lemma add_eq_0_iff to Groups.thy
haftmann@35050
     1
(*  Title:   HOL/Groups.thy
wenzelm@29269
     2
    Author:  Gertrud Bauer, Steven Obua, Lawrence C Paulson, Markus Wenzel, Jeremy Avigad
obua@14738
     3
*)
obua@14738
     4
haftmann@35050
     5
header {* Groups, also combined with orderings *}
obua@14738
     6
haftmann@35050
     7
theory Groups
haftmann@35092
     8
imports Orderings
wenzelm@37986
     9
uses ("Tools/abel_cancel.ML")
nipkow@15131
    10
begin
obua@14738
    11
haftmann@35301
    12
subsection {* Fact collections *}
haftmann@35301
    13
haftmann@35301
    14
ML {*
haftmann@36343
    15
structure Ac_Simps = Named_Thms(
haftmann@36343
    16
  val name = "ac_simps"
haftmann@36343
    17
  val description = "associativity and commutativity simplification rules"
haftmann@36343
    18
)
haftmann@36343
    19
*}
haftmann@36343
    20
haftmann@36343
    21
setup Ac_Simps.setup
haftmann@36343
    22
haftmann@36348
    23
text{* The rewrites accumulated in @{text algebra_simps} deal with the
haftmann@36348
    24
classical algebraic structures of groups, rings and family. They simplify
haftmann@36348
    25
terms by multiplying everything out (in case of a ring) and bringing sums and
haftmann@36348
    26
products into a canonical form (by ordered rewriting). As a result it decides
haftmann@36348
    27
group and ring equalities but also helps with inequalities.
haftmann@36348
    28
haftmann@36348
    29
Of course it also works for fields, but it knows nothing about multiplicative
haftmann@36348
    30
inverses or division. This is catered for by @{text field_simps}. *}
haftmann@36348
    31
haftmann@36343
    32
ML {*
haftmann@35301
    33
structure Algebra_Simps = Named_Thms(
haftmann@35301
    34
  val name = "algebra_simps"
haftmann@35301
    35
  val description = "algebra simplification rules"
haftmann@35301
    36
)
haftmann@35301
    37
*}
haftmann@35301
    38
haftmann@35301
    39
setup Algebra_Simps.setup
haftmann@35301
    40
haftmann@36348
    41
text{* Lemmas @{text field_simps} multiply with denominators in (in)equations
haftmann@36348
    42
if they can be proved to be non-zero (for equations) or positive/negative
haftmann@36348
    43
(for inequations). Can be too aggressive and is therefore separate from the
haftmann@36348
    44
more benign @{text algebra_simps}. *}
haftmann@35301
    45
haftmann@36348
    46
ML {*
haftmann@36348
    47
structure Field_Simps = Named_Thms(
haftmann@36348
    48
  val name = "field_simps"
haftmann@36348
    49
  val description = "algebra simplification rules for fields"
haftmann@36348
    50
)
haftmann@36348
    51
*}
haftmann@36348
    52
haftmann@36348
    53
setup Field_Simps.setup
haftmann@35301
    54
haftmann@35301
    55
haftmann@35301
    56
subsection {* Abstract structures *}
haftmann@35301
    57
haftmann@35301
    58
text {*
haftmann@35301
    59
  These locales provide basic structures for interpretation into
haftmann@35301
    60
  bigger structures;  extensions require careful thinking, otherwise
haftmann@35301
    61
  undesired effects may occur due to interpretation.
haftmann@35301
    62
*}
haftmann@35301
    63
haftmann@35301
    64
locale semigroup =
haftmann@35301
    65
  fixes f :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70)
haftmann@35301
    66
  assumes assoc [ac_simps]: "a * b * c = a * (b * c)"
haftmann@35301
    67
haftmann@35301
    68
locale abel_semigroup = semigroup +
haftmann@35301
    69
  assumes commute [ac_simps]: "a * b = b * a"
haftmann@35301
    70
begin
haftmann@35301
    71
haftmann@35301
    72
lemma left_commute [ac_simps]:
haftmann@35301
    73
  "b * (a * c) = a * (b * c)"
haftmann@35301
    74
proof -
haftmann@35301
    75
  have "(b * a) * c = (a * b) * c"
haftmann@35301
    76
    by (simp only: commute)
haftmann@35301
    77
  then show ?thesis
haftmann@35301
    78
    by (simp only: assoc)
haftmann@35301
    79
qed
haftmann@35301
    80
haftmann@35301
    81
end
haftmann@35301
    82
haftmann@35720
    83
locale monoid = semigroup +
haftmann@35723
    84
  fixes z :: 'a ("1")
haftmann@35723
    85
  assumes left_neutral [simp]: "1 * a = a"
haftmann@35723
    86
  assumes right_neutral [simp]: "a * 1 = a"
haftmann@35720
    87
haftmann@35720
    88
locale comm_monoid = abel_semigroup +
haftmann@35723
    89
  fixes z :: 'a ("1")
haftmann@35723
    90
  assumes comm_neutral: "a * 1 = a"
haftmann@35720
    91
haftmann@35720
    92
sublocale comm_monoid < monoid proof
haftmann@35720
    93
qed (simp_all add: commute comm_neutral)
haftmann@35720
    94
haftmann@35301
    95
haftmann@35267
    96
subsection {* Generic operations *}
haftmann@35267
    97
haftmann@35267
    98
class zero = 
haftmann@35267
    99
  fixes zero :: 'a  ("0")
haftmann@35267
   100
haftmann@35267
   101
class one =
haftmann@35267
   102
  fixes one  :: 'a  ("1")
haftmann@35267
   103
wenzelm@36176
   104
hide_const (open) zero one
haftmann@35267
   105
haftmann@35267
   106
syntax
haftmann@35267
   107
  "_index1"  :: index    ("\<^sub>1")
haftmann@35267
   108
translations
haftmann@35267
   109
  (index) "\<^sub>1" => (index) "\<^bsub>\<struct>\<^esub>"
haftmann@35267
   110
haftmann@35267
   111
lemma Let_0 [simp]: "Let 0 f = f 0"
haftmann@35267
   112
  unfolding Let_def ..
haftmann@35267
   113
haftmann@35267
   114
lemma Let_1 [simp]: "Let 1 f = f 1"
haftmann@35267
   115
  unfolding Let_def ..
haftmann@35267
   116
haftmann@35267
   117
setup {*
haftmann@35267
   118
  Reorient_Proc.add
haftmann@35267
   119
    (fn Const(@{const_name Groups.zero}, _) => true
haftmann@35267
   120
      | Const(@{const_name Groups.one}, _) => true
haftmann@35267
   121
      | _ => false)
haftmann@35267
   122
*}
haftmann@35267
   123
haftmann@35267
   124
simproc_setup reorient_zero ("0 = x") = Reorient_Proc.proc
haftmann@35267
   125
simproc_setup reorient_one ("1 = x") = Reorient_Proc.proc
haftmann@35267
   126
wenzelm@39134
   127
typed_print_translation (advanced) {*
wenzelm@42247
   128
  let
wenzelm@42247
   129
    fun tr' c = (c, fn ctxt => fn T => fn ts =>
wenzelm@42247
   130
      if not (null ts) orelse T = dummyT
wenzelm@42247
   131
        orelse not (Config.get ctxt show_types) andalso can Term.dest_Type T
wenzelm@42247
   132
      then raise Match
wenzelm@42248
   133
      else
wenzelm@42248
   134
        Syntax.const @{syntax_const "_constrain"} $ Syntax.const c $
wenzelm@42248
   135
          Syntax_Phases.term_of_typ ctxt T);
wenzelm@42247
   136
  in map tr' [@{const_syntax Groups.one}, @{const_syntax Groups.zero}] end;
haftmann@35267
   137
*} -- {* show types that are presumably too general *}
haftmann@35267
   138
haftmann@35267
   139
class plus =
haftmann@35267
   140
  fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "+" 65)
haftmann@35267
   141
haftmann@35267
   142
class minus =
haftmann@35267
   143
  fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "-" 65)
haftmann@35267
   144
haftmann@35267
   145
class uminus =
haftmann@35267
   146
  fixes uminus :: "'a \<Rightarrow> 'a"  ("- _" [81] 80)
haftmann@35267
   147
haftmann@35267
   148
class times =
haftmann@35267
   149
  fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "*" 70)
haftmann@35267
   150
haftmann@35092
   151
nipkow@23085
   152
subsection {* Semigroups and Monoids *}
obua@14738
   153
haftmann@22390
   154
class semigroup_add = plus +
haftmann@36348
   155
  assumes add_assoc [algebra_simps, field_simps]: "(a + b) + c = a + (b + c)"
haftmann@34973
   156
haftmann@35723
   157
sublocale semigroup_add < add!: semigroup plus proof
haftmann@34973
   158
qed (fact add_assoc)
haftmann@22390
   159
haftmann@22390
   160
class ab_semigroup_add = semigroup_add +
haftmann@36348
   161
  assumes add_commute [algebra_simps, field_simps]: "a + b = b + a"
haftmann@34973
   162
haftmann@35723
   163
sublocale ab_semigroup_add < add!: abel_semigroup plus proof
haftmann@34973
   164
qed (fact add_commute)
haftmann@34973
   165
haftmann@34973
   166
context ab_semigroup_add
haftmann@25062
   167
begin
obua@14738
   168
haftmann@36348
   169
lemmas add_left_commute [algebra_simps, field_simps] = add.left_commute
haftmann@25062
   170
haftmann@25062
   171
theorems add_ac = add_assoc add_commute add_left_commute
haftmann@25062
   172
haftmann@25062
   173
end
obua@14738
   174
obua@14738
   175
theorems add_ac = add_assoc add_commute add_left_commute
obua@14738
   176
haftmann@22390
   177
class semigroup_mult = times +
haftmann@36348
   178
  assumes mult_assoc [algebra_simps, field_simps]: "(a * b) * c = a * (b * c)"
haftmann@34973
   179
haftmann@35723
   180
sublocale semigroup_mult < mult!: semigroup times proof
haftmann@34973
   181
qed (fact mult_assoc)
obua@14738
   182
haftmann@22390
   183
class ab_semigroup_mult = semigroup_mult +
haftmann@36348
   184
  assumes mult_commute [algebra_simps, field_simps]: "a * b = b * a"
haftmann@34973
   185
haftmann@35723
   186
sublocale ab_semigroup_mult < mult!: abel_semigroup times proof
haftmann@34973
   187
qed (fact mult_commute)
haftmann@34973
   188
haftmann@34973
   189
context ab_semigroup_mult
haftmann@23181
   190
begin
obua@14738
   191
haftmann@36348
   192
lemmas mult_left_commute [algebra_simps, field_simps] = mult.left_commute
haftmann@25062
   193
haftmann@25062
   194
theorems mult_ac = mult_assoc mult_commute mult_left_commute
haftmann@23181
   195
haftmann@23181
   196
end
obua@14738
   197
obua@14738
   198
theorems mult_ac = mult_assoc mult_commute mult_left_commute
obua@14738
   199
nipkow@23085
   200
class monoid_add = zero + semigroup_add +
haftmann@35720
   201
  assumes add_0_left: "0 + a = a"
haftmann@35720
   202
    and add_0_right: "a + 0 = a"
haftmann@35720
   203
haftmann@35723
   204
sublocale monoid_add < add!: monoid plus 0 proof
haftmann@35720
   205
qed (fact add_0_left add_0_right)+
nipkow@23085
   206
haftmann@26071
   207
lemma zero_reorient: "0 = x \<longleftrightarrow> x = 0"
nipkow@29667
   208
by (rule eq_commute)
haftmann@26071
   209
haftmann@22390
   210
class comm_monoid_add = zero + ab_semigroup_add +
haftmann@25062
   211
  assumes add_0: "0 + a = a"
nipkow@23085
   212
haftmann@35723
   213
sublocale comm_monoid_add < add!: comm_monoid plus 0 proof
haftmann@35720
   214
qed (insert add_0, simp add: ac_simps)
haftmann@25062
   215
haftmann@35720
   216
subclass (in comm_monoid_add) monoid_add proof
haftmann@35723
   217
qed (fact add.left_neutral add.right_neutral)+
obua@14738
   218
haftmann@22390
   219
class monoid_mult = one + semigroup_mult +
haftmann@35720
   220
  assumes mult_1_left: "1 * a  = a"
haftmann@35720
   221
    and mult_1_right: "a * 1 = a"
haftmann@35720
   222
haftmann@35723
   223
sublocale monoid_mult < mult!: monoid times 1 proof
haftmann@35720
   224
qed (fact mult_1_left mult_1_right)+
obua@14738
   225
haftmann@26071
   226
lemma one_reorient: "1 = x \<longleftrightarrow> x = 1"
nipkow@29667
   227
by (rule eq_commute)
haftmann@26071
   228
haftmann@22390
   229
class comm_monoid_mult = one + ab_semigroup_mult +
haftmann@25062
   230
  assumes mult_1: "1 * a = a"
obua@14738
   231
haftmann@35723
   232
sublocale comm_monoid_mult < mult!: comm_monoid times 1 proof
haftmann@35720
   233
qed (insert mult_1, simp add: ac_simps)
haftmann@25062
   234
haftmann@35720
   235
subclass (in comm_monoid_mult) monoid_mult proof
haftmann@35723
   236
qed (fact mult.left_neutral mult.right_neutral)+
obua@14738
   237
haftmann@22390
   238
class cancel_semigroup_add = semigroup_add +
haftmann@25062
   239
  assumes add_left_imp_eq: "a + b = a + c \<Longrightarrow> b = c"
haftmann@25062
   240
  assumes add_right_imp_eq: "b + a = c + a \<Longrightarrow> b = c"
huffman@27474
   241
begin
huffman@27474
   242
huffman@27474
   243
lemma add_left_cancel [simp]:
huffman@27474
   244
  "a + b = a + c \<longleftrightarrow> b = c"
nipkow@29667
   245
by (blast dest: add_left_imp_eq)
huffman@27474
   246
huffman@27474
   247
lemma add_right_cancel [simp]:
huffman@27474
   248
  "b + a = c + a \<longleftrightarrow> b = c"
nipkow@29667
   249
by (blast dest: add_right_imp_eq)
huffman@27474
   250
huffman@27474
   251
end
obua@14738
   252
haftmann@22390
   253
class cancel_ab_semigroup_add = ab_semigroup_add +
haftmann@25062
   254
  assumes add_imp_eq: "a + b = a + c \<Longrightarrow> b = c"
haftmann@25267
   255
begin
obua@14738
   256
haftmann@25267
   257
subclass cancel_semigroup_add
haftmann@28823
   258
proof
haftmann@22390
   259
  fix a b c :: 'a
haftmann@22390
   260
  assume "a + b = a + c" 
haftmann@22390
   261
  then show "b = c" by (rule add_imp_eq)
haftmann@22390
   262
next
obua@14738
   263
  fix a b c :: 'a
obua@14738
   264
  assume "b + a = c + a"
haftmann@22390
   265
  then have "a + b = a + c" by (simp only: add_commute)
haftmann@22390
   266
  then show "b = c" by (rule add_imp_eq)
obua@14738
   267
qed
obua@14738
   268
haftmann@25267
   269
end
haftmann@25267
   270
huffman@29904
   271
class cancel_comm_monoid_add = cancel_ab_semigroup_add + comm_monoid_add
huffman@29904
   272
huffman@29904
   273
nipkow@23085
   274
subsection {* Groups *}
nipkow@23085
   275
haftmann@25762
   276
class group_add = minus + uminus + monoid_add +
haftmann@25062
   277
  assumes left_minus [simp]: "- a + a = 0"
haftmann@25062
   278
  assumes diff_minus: "a - b = a + (- b)"
haftmann@25062
   279
begin
nipkow@23085
   280
huffman@34147
   281
lemma minus_unique:
huffman@34147
   282
  assumes "a + b = 0" shows "- a = b"
huffman@34147
   283
proof -
huffman@34147
   284
  have "- a = - a + (a + b)" using assms by simp
huffman@34147
   285
  also have "\<dots> = b" by (simp add: add_assoc [symmetric])
huffman@34147
   286
  finally show ?thesis .
huffman@34147
   287
qed
huffman@34147
   288
haftmann@40368
   289
huffman@34147
   290
lemmas equals_zero_I = minus_unique (* legacy name *)
obua@14738
   291
haftmann@25062
   292
lemma minus_zero [simp]: "- 0 = 0"
obua@14738
   293
proof -
huffman@34147
   294
  have "0 + 0 = 0" by (rule add_0_right)
huffman@34147
   295
  thus "- 0 = 0" by (rule minus_unique)
obua@14738
   296
qed
obua@14738
   297
haftmann@25062
   298
lemma minus_minus [simp]: "- (- a) = a"
nipkow@23085
   299
proof -
huffman@34147
   300
  have "- a + a = 0" by (rule left_minus)
huffman@34147
   301
  thus "- (- a) = a" by (rule minus_unique)
nipkow@23085
   302
qed
obua@14738
   303
haftmann@25062
   304
lemma right_minus [simp]: "a + - a = 0"
obua@14738
   305
proof -
haftmann@25062
   306
  have "a + - a = - (- a) + - a" by simp
haftmann@25062
   307
  also have "\<dots> = 0" by (rule left_minus)
obua@14738
   308
  finally show ?thesis .
obua@14738
   309
qed
obua@14738
   310
haftmann@40368
   311
subclass cancel_semigroup_add
haftmann@40368
   312
proof
haftmann@40368
   313
  fix a b c :: 'a
haftmann@40368
   314
  assume "a + b = a + c"
haftmann@40368
   315
  then have "- a + a + b = - a + a + c"
haftmann@40368
   316
    unfolding add_assoc by simp
haftmann@40368
   317
  then show "b = c" by simp
haftmann@40368
   318
next
haftmann@40368
   319
  fix a b c :: 'a
haftmann@40368
   320
  assume "b + a = c + a"
haftmann@40368
   321
  then have "b + a + - a = c + a  + - a" by simp
haftmann@40368
   322
  then show "b = c" unfolding add_assoc by simp
haftmann@40368
   323
qed
haftmann@40368
   324
huffman@34147
   325
lemma minus_add_cancel: "- a + (a + b) = b"
huffman@34147
   326
by (simp add: add_assoc [symmetric])
huffman@34147
   327
huffman@34147
   328
lemma add_minus_cancel: "a + (- a + b) = b"
huffman@34147
   329
by (simp add: add_assoc [symmetric])
huffman@34147
   330
huffman@34147
   331
lemma minus_add: "- (a + b) = - b + - a"
huffman@34147
   332
proof -
huffman@34147
   333
  have "(a + b) + (- b + - a) = 0"
huffman@34147
   334
    by (simp add: add_assoc add_minus_cancel)
huffman@34147
   335
  thus "- (a + b) = - b + - a"
huffman@34147
   336
    by (rule minus_unique)
huffman@34147
   337
qed
huffman@34147
   338
haftmann@25062
   339
lemma right_minus_eq: "a - b = 0 \<longleftrightarrow> a = b"
obua@14738
   340
proof
nipkow@23085
   341
  assume "a - b = 0"
nipkow@23085
   342
  have "a = (a - b) + b" by (simp add:diff_minus add_assoc)
nipkow@23085
   343
  also have "\<dots> = b" using `a - b = 0` by simp
nipkow@23085
   344
  finally show "a = b" .
obua@14738
   345
next
nipkow@23085
   346
  assume "a = b" thus "a - b = 0" by (simp add: diff_minus)
obua@14738
   347
qed
obua@14738
   348
haftmann@25062
   349
lemma diff_self [simp]: "a - a = 0"
nipkow@29667
   350
by (simp add: diff_minus)
obua@14738
   351
haftmann@25062
   352
lemma diff_0 [simp]: "0 - a = - a"
nipkow@29667
   353
by (simp add: diff_minus)
obua@14738
   354
haftmann@25062
   355
lemma diff_0_right [simp]: "a - 0 = a" 
nipkow@29667
   356
by (simp add: diff_minus)
obua@14738
   357
haftmann@25062
   358
lemma diff_minus_eq_add [simp]: "a - - b = a + b"
nipkow@29667
   359
by (simp add: diff_minus)
obua@14738
   360
haftmann@25062
   361
lemma neg_equal_iff_equal [simp]:
haftmann@25062
   362
  "- a = - b \<longleftrightarrow> a = b" 
obua@14738
   363
proof 
obua@14738
   364
  assume "- a = - b"
nipkow@29667
   365
  hence "- (- a) = - (- b)" by simp
haftmann@25062
   366
  thus "a = b" by simp
obua@14738
   367
next
haftmann@25062
   368
  assume "a = b"
haftmann@25062
   369
  thus "- a = - b" by simp
obua@14738
   370
qed
obua@14738
   371
haftmann@25062
   372
lemma neg_equal_0_iff_equal [simp]:
haftmann@25062
   373
  "- a = 0 \<longleftrightarrow> a = 0"
nipkow@29667
   374
by (subst neg_equal_iff_equal [symmetric], simp)
obua@14738
   375
haftmann@25062
   376
lemma neg_0_equal_iff_equal [simp]:
haftmann@25062
   377
  "0 = - a \<longleftrightarrow> 0 = a"
nipkow@29667
   378
by (subst neg_equal_iff_equal [symmetric], simp)
obua@14738
   379
obua@14738
   380
text{*The next two equations can make the simplifier loop!*}
obua@14738
   381
haftmann@25062
   382
lemma equation_minus_iff:
haftmann@25062
   383
  "a = - b \<longleftrightarrow> b = - a"
obua@14738
   384
proof -
haftmann@25062
   385
  have "- (- a) = - b \<longleftrightarrow> - a = b" by (rule neg_equal_iff_equal)
haftmann@25062
   386
  thus ?thesis by (simp add: eq_commute)
haftmann@25062
   387
qed
haftmann@25062
   388
haftmann@25062
   389
lemma minus_equation_iff:
haftmann@25062
   390
  "- a = b \<longleftrightarrow> - b = a"
haftmann@25062
   391
proof -
haftmann@25062
   392
  have "- a = - (- b) \<longleftrightarrow> a = -b" by (rule neg_equal_iff_equal)
obua@14738
   393
  thus ?thesis by (simp add: eq_commute)
obua@14738
   394
qed
obua@14738
   395
huffman@28130
   396
lemma diff_add_cancel: "a - b + b = a"
nipkow@29667
   397
by (simp add: diff_minus add_assoc)
huffman@28130
   398
huffman@28130
   399
lemma add_diff_cancel: "a + b - b = a"
nipkow@29667
   400
by (simp add: diff_minus add_assoc)
nipkow@29667
   401
haftmann@36348
   402
declare diff_minus[symmetric, algebra_simps, field_simps]
huffman@28130
   403
huffman@29914
   404
lemma eq_neg_iff_add_eq_0: "a = - b \<longleftrightarrow> a + b = 0"
huffman@29914
   405
proof
huffman@29914
   406
  assume "a = - b" then show "a + b = 0" by simp
huffman@29914
   407
next
huffman@29914
   408
  assume "a + b = 0"
huffman@29914
   409
  moreover have "a + (b + - b) = (a + b) + - b"
huffman@29914
   410
    by (simp only: add_assoc)
huffman@29914
   411
  ultimately show "a = - b" by simp
huffman@29914
   412
qed
huffman@29914
   413
huffman@44348
   414
lemma add_eq_0_iff: "x + y = 0 \<longleftrightarrow> y = - x"
huffman@44348
   415
  unfolding eq_neg_iff_add_eq_0 [symmetric]
huffman@44348
   416
  by (rule equation_minus_iff)
huffman@44348
   417
haftmann@25062
   418
end
haftmann@25062
   419
haftmann@25762
   420
class ab_group_add = minus + uminus + comm_monoid_add +
haftmann@25062
   421
  assumes ab_left_minus: "- a + a = 0"
haftmann@25062
   422
  assumes ab_diff_minus: "a - b = a + (- b)"
haftmann@25267
   423
begin
haftmann@25062
   424
haftmann@25267
   425
subclass group_add
haftmann@28823
   426
  proof qed (simp_all add: ab_left_minus ab_diff_minus)
haftmann@25062
   427
huffman@29904
   428
subclass cancel_comm_monoid_add
haftmann@28823
   429
proof
haftmann@25062
   430
  fix a b c :: 'a
haftmann@25062
   431
  assume "a + b = a + c"
haftmann@25062
   432
  then have "- a + a + b = - a + a + c"
haftmann@25062
   433
    unfolding add_assoc by simp
haftmann@25062
   434
  then show "b = c" by simp
haftmann@25062
   435
qed
haftmann@25062
   436
haftmann@36348
   437
lemma uminus_add_conv_diff[algebra_simps, field_simps]:
haftmann@25062
   438
  "- a + b = b - a"
nipkow@29667
   439
by (simp add:diff_minus add_commute)
haftmann@25062
   440
haftmann@25062
   441
lemma minus_add_distrib [simp]:
haftmann@25062
   442
  "- (a + b) = - a + - b"
huffman@34146
   443
by (rule minus_unique) (simp add: add_ac)
haftmann@25062
   444
haftmann@25062
   445
lemma minus_diff_eq [simp]:
haftmann@25062
   446
  "- (a - b) = b - a"
nipkow@29667
   447
by (simp add: diff_minus add_commute)
haftmann@25077
   448
haftmann@36348
   449
lemma add_diff_eq[algebra_simps, field_simps]: "a + (b - c) = (a + b) - c"
nipkow@29667
   450
by (simp add: diff_minus add_ac)
haftmann@25077
   451
haftmann@36348
   452
lemma diff_add_eq[algebra_simps, field_simps]: "(a - b) + c = (a + c) - b"
nipkow@29667
   453
by (simp add: diff_minus add_ac)
haftmann@25077
   454
haftmann@36348
   455
lemma diff_eq_eq[algebra_simps, field_simps]: "a - b = c \<longleftrightarrow> a = c + b"
nipkow@29667
   456
by (auto simp add: diff_minus add_assoc)
haftmann@25077
   457
haftmann@36348
   458
lemma eq_diff_eq[algebra_simps, field_simps]: "a = c - b \<longleftrightarrow> a + b = c"
nipkow@29667
   459
by (auto simp add: diff_minus add_assoc)
haftmann@25077
   460
haftmann@36348
   461
lemma diff_diff_eq[algebra_simps, field_simps]: "(a - b) - c = a - (b + c)"
nipkow@29667
   462
by (simp add: diff_minus add_ac)
haftmann@25077
   463
haftmann@36348
   464
lemma diff_diff_eq2[algebra_simps, field_simps]: "a - (b - c) = (a + c) - b"
nipkow@29667
   465
by (simp add: diff_minus add_ac)
haftmann@25077
   466
haftmann@25077
   467
lemma eq_iff_diff_eq_0: "a = b \<longleftrightarrow> a - b = 0"
nipkow@29667
   468
by (simp add: algebra_simps)
haftmann@25077
   469
huffman@35216
   470
(* FIXME: duplicates right_minus_eq from class group_add *)
huffman@35216
   471
(* but only this one is declared as a simp rule. *)
blanchet@35828
   472
lemma diff_eq_0_iff_eq [simp, no_atp]: "a - b = 0 \<longleftrightarrow> a = b"
huffman@44348
   473
  by (rule right_minus_eq)
huffman@30629
   474
haftmann@37884
   475
lemma diff_eq_diff_eq:
haftmann@37884
   476
  "a - b = c - d \<Longrightarrow> a = b \<longleftrightarrow> c = d"
haftmann@37884
   477
  by (auto simp add: algebra_simps)
haftmann@37884
   478
  
haftmann@25062
   479
end
obua@14738
   480
haftmann@37884
   481
obua@14738
   482
subsection {* (Partially) Ordered Groups *} 
obua@14738
   483
haftmann@35301
   484
text {*
haftmann@35301
   485
  The theory of partially ordered groups is taken from the books:
haftmann@35301
   486
  \begin{itemize}
haftmann@35301
   487
  \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
haftmann@35301
   488
  \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
haftmann@35301
   489
  \end{itemize}
haftmann@35301
   490
  Most of the used notions can also be looked up in 
haftmann@35301
   491
  \begin{itemize}
haftmann@35301
   492
  \item \url{http://www.mathworld.com} by Eric Weisstein et. al.
haftmann@35301
   493
  \item \emph{Algebra I} by van der Waerden, Springer.
haftmann@35301
   494
  \end{itemize}
haftmann@35301
   495
*}
haftmann@35301
   496
haftmann@35028
   497
class ordered_ab_semigroup_add = order + ab_semigroup_add +
haftmann@25062
   498
  assumes add_left_mono: "a \<le> b \<Longrightarrow> c + a \<le> c + b"
haftmann@25062
   499
begin
haftmann@24380
   500
haftmann@25062
   501
lemma add_right_mono:
haftmann@25062
   502
  "a \<le> b \<Longrightarrow> a + c \<le> b + c"
nipkow@29667
   503
by (simp add: add_commute [of _ c] add_left_mono)
obua@14738
   504
obua@14738
   505
text {* non-strict, in both arguments *}
obua@14738
   506
lemma add_mono:
haftmann@25062
   507
  "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> a + c \<le> b + d"
obua@14738
   508
  apply (erule add_right_mono [THEN order_trans])
obua@14738
   509
  apply (simp add: add_commute add_left_mono)
obua@14738
   510
  done
obua@14738
   511
haftmann@25062
   512
end
haftmann@25062
   513
haftmann@35028
   514
class ordered_cancel_ab_semigroup_add =
haftmann@35028
   515
  ordered_ab_semigroup_add + cancel_ab_semigroup_add
haftmann@25062
   516
begin
haftmann@25062
   517
obua@14738
   518
lemma add_strict_left_mono:
haftmann@25062
   519
  "a < b \<Longrightarrow> c + a < c + b"
nipkow@29667
   520
by (auto simp add: less_le add_left_mono)
obua@14738
   521
obua@14738
   522
lemma add_strict_right_mono:
haftmann@25062
   523
  "a < b \<Longrightarrow> a + c < b + c"
nipkow@29667
   524
by (simp add: add_commute [of _ c] add_strict_left_mono)
obua@14738
   525
obua@14738
   526
text{*Strict monotonicity in both arguments*}
haftmann@25062
   527
lemma add_strict_mono:
haftmann@25062
   528
  "a < b \<Longrightarrow> c < d \<Longrightarrow> a + c < b + d"
haftmann@25062
   529
apply (erule add_strict_right_mono [THEN less_trans])
obua@14738
   530
apply (erule add_strict_left_mono)
obua@14738
   531
done
obua@14738
   532
obua@14738
   533
lemma add_less_le_mono:
haftmann@25062
   534
  "a < b \<Longrightarrow> c \<le> d \<Longrightarrow> a + c < b + d"
haftmann@25062
   535
apply (erule add_strict_right_mono [THEN less_le_trans])
haftmann@25062
   536
apply (erule add_left_mono)
obua@14738
   537
done
obua@14738
   538
obua@14738
   539
lemma add_le_less_mono:
haftmann@25062
   540
  "a \<le> b \<Longrightarrow> c < d \<Longrightarrow> a + c < b + d"
haftmann@25062
   541
apply (erule add_right_mono [THEN le_less_trans])
obua@14738
   542
apply (erule add_strict_left_mono) 
obua@14738
   543
done
obua@14738
   544
haftmann@25062
   545
end
haftmann@25062
   546
haftmann@35028
   547
class ordered_ab_semigroup_add_imp_le =
haftmann@35028
   548
  ordered_cancel_ab_semigroup_add +
haftmann@25062
   549
  assumes add_le_imp_le_left: "c + a \<le> c + b \<Longrightarrow> a \<le> b"
haftmann@25062
   550
begin
haftmann@25062
   551
obua@14738
   552
lemma add_less_imp_less_left:
nipkow@29667
   553
  assumes less: "c + a < c + b" shows "a < b"
obua@14738
   554
proof -
obua@14738
   555
  from less have le: "c + a <= c + b" by (simp add: order_le_less)
obua@14738
   556
  have "a <= b" 
obua@14738
   557
    apply (insert le)
obua@14738
   558
    apply (drule add_le_imp_le_left)
obua@14738
   559
    by (insert le, drule add_le_imp_le_left, assumption)
obua@14738
   560
  moreover have "a \<noteq> b"
obua@14738
   561
  proof (rule ccontr)
obua@14738
   562
    assume "~(a \<noteq> b)"
obua@14738
   563
    then have "a = b" by simp
obua@14738
   564
    then have "c + a = c + b" by simp
obua@14738
   565
    with less show "False"by simp
obua@14738
   566
  qed
obua@14738
   567
  ultimately show "a < b" by (simp add: order_le_less)
obua@14738
   568
qed
obua@14738
   569
obua@14738
   570
lemma add_less_imp_less_right:
haftmann@25062
   571
  "a + c < b + c \<Longrightarrow> a < b"
obua@14738
   572
apply (rule add_less_imp_less_left [of c])
obua@14738
   573
apply (simp add: add_commute)  
obua@14738
   574
done
obua@14738
   575
obua@14738
   576
lemma add_less_cancel_left [simp]:
haftmann@25062
   577
  "c + a < c + b \<longleftrightarrow> a < b"
nipkow@29667
   578
by (blast intro: add_less_imp_less_left add_strict_left_mono) 
obua@14738
   579
obua@14738
   580
lemma add_less_cancel_right [simp]:
haftmann@25062
   581
  "a + c < b + c \<longleftrightarrow> a < b"
nipkow@29667
   582
by (blast intro: add_less_imp_less_right add_strict_right_mono)
obua@14738
   583
obua@14738
   584
lemma add_le_cancel_left [simp]:
haftmann@25062
   585
  "c + a \<le> c + b \<longleftrightarrow> a \<le> b"
nipkow@29667
   586
by (auto, drule add_le_imp_le_left, simp_all add: add_left_mono) 
obua@14738
   587
obua@14738
   588
lemma add_le_cancel_right [simp]:
haftmann@25062
   589
  "a + c \<le> b + c \<longleftrightarrow> a \<le> b"
nipkow@29667
   590
by (simp add: add_commute [of a c] add_commute [of b c])
obua@14738
   591
obua@14738
   592
lemma add_le_imp_le_right:
haftmann@25062
   593
  "a + c \<le> b + c \<Longrightarrow> a \<le> b"
nipkow@29667
   594
by simp
haftmann@25062
   595
haftmann@25077
   596
lemma max_add_distrib_left:
haftmann@25077
   597
  "max x y + z = max (x + z) (y + z)"
haftmann@25077
   598
  unfolding max_def by auto
haftmann@25077
   599
haftmann@25077
   600
lemma min_add_distrib_left:
haftmann@25077
   601
  "min x y + z = min (x + z) (y + z)"
haftmann@25077
   602
  unfolding min_def by auto
haftmann@25077
   603
haftmann@25062
   604
end
haftmann@25062
   605
haftmann@25303
   606
subsection {* Support for reasoning about signs *}
haftmann@25303
   607
haftmann@35028
   608
class ordered_comm_monoid_add =
haftmann@35028
   609
  ordered_cancel_ab_semigroup_add + comm_monoid_add
haftmann@25303
   610
begin
haftmann@25303
   611
haftmann@25303
   612
lemma add_pos_nonneg:
nipkow@29667
   613
  assumes "0 < a" and "0 \<le> b" shows "0 < a + b"
haftmann@25303
   614
proof -
haftmann@25303
   615
  have "0 + 0 < a + b" 
haftmann@25303
   616
    using assms by (rule add_less_le_mono)
haftmann@25303
   617
  then show ?thesis by simp
haftmann@25303
   618
qed
haftmann@25303
   619
haftmann@25303
   620
lemma add_pos_pos:
nipkow@29667
   621
  assumes "0 < a" and "0 < b" shows "0 < a + b"
nipkow@29667
   622
by (rule add_pos_nonneg) (insert assms, auto)
haftmann@25303
   623
haftmann@25303
   624
lemma add_nonneg_pos:
nipkow@29667
   625
  assumes "0 \<le> a" and "0 < b" shows "0 < a + b"
haftmann@25303
   626
proof -
haftmann@25303
   627
  have "0 + 0 < a + b" 
haftmann@25303
   628
    using assms by (rule add_le_less_mono)
haftmann@25303
   629
  then show ?thesis by simp
haftmann@25303
   630
qed
haftmann@25303
   631
huffman@36977
   632
lemma add_nonneg_nonneg [simp]:
nipkow@29667
   633
  assumes "0 \<le> a" and "0 \<le> b" shows "0 \<le> a + b"
haftmann@25303
   634
proof -
haftmann@25303
   635
  have "0 + 0 \<le> a + b" 
haftmann@25303
   636
    using assms by (rule add_mono)
haftmann@25303
   637
  then show ?thesis by simp
haftmann@25303
   638
qed
haftmann@25303
   639
huffman@30691
   640
lemma add_neg_nonpos:
nipkow@29667
   641
  assumes "a < 0" and "b \<le> 0" shows "a + b < 0"
haftmann@25303
   642
proof -
haftmann@25303
   643
  have "a + b < 0 + 0"
haftmann@25303
   644
    using assms by (rule add_less_le_mono)
haftmann@25303
   645
  then show ?thesis by simp
haftmann@25303
   646
qed
haftmann@25303
   647
haftmann@25303
   648
lemma add_neg_neg: 
nipkow@29667
   649
  assumes "a < 0" and "b < 0" shows "a + b < 0"
nipkow@29667
   650
by (rule add_neg_nonpos) (insert assms, auto)
haftmann@25303
   651
haftmann@25303
   652
lemma add_nonpos_neg:
nipkow@29667
   653
  assumes "a \<le> 0" and "b < 0" shows "a + b < 0"
haftmann@25303
   654
proof -
haftmann@25303
   655
  have "a + b < 0 + 0"
haftmann@25303
   656
    using assms by (rule add_le_less_mono)
haftmann@25303
   657
  then show ?thesis by simp
haftmann@25303
   658
qed
haftmann@25303
   659
haftmann@25303
   660
lemma add_nonpos_nonpos:
nipkow@29667
   661
  assumes "a \<le> 0" and "b \<le> 0" shows "a + b \<le> 0"
haftmann@25303
   662
proof -
haftmann@25303
   663
  have "a + b \<le> 0 + 0"
haftmann@25303
   664
    using assms by (rule add_mono)
haftmann@25303
   665
  then show ?thesis by simp
haftmann@25303
   666
qed
haftmann@25303
   667
huffman@30691
   668
lemmas add_sign_intros =
huffman@30691
   669
  add_pos_nonneg add_pos_pos add_nonneg_pos add_nonneg_nonneg
huffman@30691
   670
  add_neg_nonpos add_neg_neg add_nonpos_neg add_nonpos_nonpos
huffman@30691
   671
huffman@29886
   672
lemma add_nonneg_eq_0_iff:
huffman@29886
   673
  assumes x: "0 \<le> x" and y: "0 \<le> y"
huffman@29886
   674
  shows "x + y = 0 \<longleftrightarrow> x = 0 \<and> y = 0"
huffman@29886
   675
proof (intro iffI conjI)
huffman@29886
   676
  have "x = x + 0" by simp
huffman@29886
   677
  also have "x + 0 \<le> x + y" using y by (rule add_left_mono)
huffman@29886
   678
  also assume "x + y = 0"
huffman@29886
   679
  also have "0 \<le> x" using x .
huffman@29886
   680
  finally show "x = 0" .
huffman@29886
   681
next
huffman@29886
   682
  have "y = 0 + y" by simp
huffman@29886
   683
  also have "0 + y \<le> x + y" using x by (rule add_right_mono)
huffman@29886
   684
  also assume "x + y = 0"
huffman@29886
   685
  also have "0 \<le> y" using y .
huffman@29886
   686
  finally show "y = 0" .
huffman@29886
   687
next
huffman@29886
   688
  assume "x = 0 \<and> y = 0"
huffman@29886
   689
  then show "x + y = 0" by simp
huffman@29886
   690
qed
huffman@29886
   691
haftmann@25303
   692
end
haftmann@25303
   693
haftmann@35028
   694
class ordered_ab_group_add =
haftmann@35028
   695
  ab_group_add + ordered_ab_semigroup_add
haftmann@25062
   696
begin
haftmann@25062
   697
haftmann@35028
   698
subclass ordered_cancel_ab_semigroup_add ..
haftmann@25062
   699
haftmann@35028
   700
subclass ordered_ab_semigroup_add_imp_le
haftmann@28823
   701
proof
haftmann@25062
   702
  fix a b c :: 'a
haftmann@25062
   703
  assume "c + a \<le> c + b"
haftmann@25062
   704
  hence "(-c) + (c + a) \<le> (-c) + (c + b)" by (rule add_left_mono)
haftmann@25062
   705
  hence "((-c) + c) + a \<le> ((-c) + c) + b" by (simp only: add_assoc)
haftmann@25062
   706
  thus "a \<le> b" by simp
haftmann@25062
   707
qed
haftmann@25062
   708
haftmann@35028
   709
subclass ordered_comm_monoid_add ..
haftmann@25303
   710
haftmann@25077
   711
lemma max_diff_distrib_left:
haftmann@25077
   712
  shows "max x y - z = max (x - z) (y - z)"
nipkow@29667
   713
by (simp add: diff_minus, rule max_add_distrib_left) 
haftmann@25077
   714
haftmann@25077
   715
lemma min_diff_distrib_left:
haftmann@25077
   716
  shows "min x y - z = min (x - z) (y - z)"
nipkow@29667
   717
by (simp add: diff_minus, rule min_add_distrib_left) 
haftmann@25077
   718
haftmann@25077
   719
lemma le_imp_neg_le:
nipkow@29667
   720
  assumes "a \<le> b" shows "-b \<le> -a"
haftmann@25077
   721
proof -
nipkow@29667
   722
  have "-a+a \<le> -a+b" using `a \<le> b` by (rule add_left_mono) 
nipkow@29667
   723
  hence "0 \<le> -a+b" by simp
nipkow@29667
   724
  hence "0 + (-b) \<le> (-a + b) + (-b)" by (rule add_right_mono) 
nipkow@29667
   725
  thus ?thesis by (simp add: add_assoc)
haftmann@25077
   726
qed
haftmann@25077
   727
haftmann@25077
   728
lemma neg_le_iff_le [simp]: "- b \<le> - a \<longleftrightarrow> a \<le> b"
haftmann@25077
   729
proof 
haftmann@25077
   730
  assume "- b \<le> - a"
nipkow@29667
   731
  hence "- (- a) \<le> - (- b)" by (rule le_imp_neg_le)
haftmann@25077
   732
  thus "a\<le>b" by simp
haftmann@25077
   733
next
haftmann@25077
   734
  assume "a\<le>b"
haftmann@25077
   735
  thus "-b \<le> -a" by (rule le_imp_neg_le)
haftmann@25077
   736
qed
haftmann@25077
   737
haftmann@25077
   738
lemma neg_le_0_iff_le [simp]: "- a \<le> 0 \<longleftrightarrow> 0 \<le> a"
nipkow@29667
   739
by (subst neg_le_iff_le [symmetric], simp)
haftmann@25077
   740
haftmann@25077
   741
lemma neg_0_le_iff_le [simp]: "0 \<le> - a \<longleftrightarrow> a \<le> 0"
nipkow@29667
   742
by (subst neg_le_iff_le [symmetric], simp)
haftmann@25077
   743
haftmann@25077
   744
lemma neg_less_iff_less [simp]: "- b < - a \<longleftrightarrow> a < b"
nipkow@29667
   745
by (force simp add: less_le) 
haftmann@25077
   746
haftmann@25077
   747
lemma neg_less_0_iff_less [simp]: "- a < 0 \<longleftrightarrow> 0 < a"
nipkow@29667
   748
by (subst neg_less_iff_less [symmetric], simp)
haftmann@25077
   749
haftmann@25077
   750
lemma neg_0_less_iff_less [simp]: "0 < - a \<longleftrightarrow> a < 0"
nipkow@29667
   751
by (subst neg_less_iff_less [symmetric], simp)
haftmann@25077
   752
haftmann@25077
   753
text{*The next several equations can make the simplifier loop!*}
haftmann@25077
   754
haftmann@25077
   755
lemma less_minus_iff: "a < - b \<longleftrightarrow> b < - a"
haftmann@25077
   756
proof -
haftmann@25077
   757
  have "(- (-a) < - b) = (b < - a)" by (rule neg_less_iff_less)
haftmann@25077
   758
  thus ?thesis by simp
haftmann@25077
   759
qed
haftmann@25077
   760
haftmann@25077
   761
lemma minus_less_iff: "- a < b \<longleftrightarrow> - b < a"
haftmann@25077
   762
proof -
haftmann@25077
   763
  have "(- a < - (-b)) = (- b < a)" by (rule neg_less_iff_less)
haftmann@25077
   764
  thus ?thesis by simp
haftmann@25077
   765
qed
haftmann@25077
   766
haftmann@25077
   767
lemma le_minus_iff: "a \<le> - b \<longleftrightarrow> b \<le> - a"
haftmann@25077
   768
proof -
haftmann@25077
   769
  have mm: "!! a (b::'a). (-(-a)) < -b \<Longrightarrow> -(-b) < -a" by (simp only: minus_less_iff)
haftmann@25077
   770
  have "(- (- a) <= -b) = (b <= - a)" 
haftmann@25077
   771
    apply (auto simp only: le_less)
haftmann@25077
   772
    apply (drule mm)
haftmann@25077
   773
    apply (simp_all)
haftmann@25077
   774
    apply (drule mm[simplified], assumption)
haftmann@25077
   775
    done
haftmann@25077
   776
  then show ?thesis by simp
haftmann@25077
   777
qed
haftmann@25077
   778
haftmann@25077
   779
lemma minus_le_iff: "- a \<le> b \<longleftrightarrow> - b \<le> a"
nipkow@29667
   780
by (auto simp add: le_less minus_less_iff)
haftmann@25077
   781
haftmann@37884
   782
lemma diff_less_0_iff_less [simp, no_atp]:
haftmann@37884
   783
  "a - b < 0 \<longleftrightarrow> a < b"
haftmann@25077
   784
proof -
haftmann@37884
   785
  have "a - b < 0 \<longleftrightarrow> a + (- b) < b + (- b)" by (simp add: diff_minus)
haftmann@37884
   786
  also have "... \<longleftrightarrow> a < b" by (simp only: add_less_cancel_right)
haftmann@25077
   787
  finally show ?thesis .
haftmann@25077
   788
qed
haftmann@25077
   789
haftmann@37884
   790
lemmas less_iff_diff_less_0 = diff_less_0_iff_less [symmetric]
haftmann@37884
   791
haftmann@36348
   792
lemma diff_less_eq[algebra_simps, field_simps]: "a - b < c \<longleftrightarrow> a < c + b"
haftmann@25077
   793
apply (subst less_iff_diff_less_0 [of a])
haftmann@25077
   794
apply (rule less_iff_diff_less_0 [of _ c, THEN ssubst])
haftmann@25077
   795
apply (simp add: diff_minus add_ac)
haftmann@25077
   796
done
haftmann@25077
   797
haftmann@36348
   798
lemma less_diff_eq[algebra_simps, field_simps]: "a < c - b \<longleftrightarrow> a + b < c"
haftmann@36302
   799
apply (subst less_iff_diff_less_0 [of "a + b"])
haftmann@25077
   800
apply (subst less_iff_diff_less_0 [of a])
haftmann@25077
   801
apply (simp add: diff_minus add_ac)
haftmann@25077
   802
done
haftmann@25077
   803
haftmann@36348
   804
lemma diff_le_eq[algebra_simps, field_simps]: "a - b \<le> c \<longleftrightarrow> a \<le> c + b"
nipkow@29667
   805
by (auto simp add: le_less diff_less_eq diff_add_cancel add_diff_cancel)
haftmann@25077
   806
haftmann@36348
   807
lemma le_diff_eq[algebra_simps, field_simps]: "a \<le> c - b \<longleftrightarrow> a + b \<le> c"
nipkow@29667
   808
by (auto simp add: le_less less_diff_eq diff_add_cancel add_diff_cancel)
haftmann@25077
   809
haftmann@37884
   810
lemma diff_le_0_iff_le [simp, no_atp]:
haftmann@37884
   811
  "a - b \<le> 0 \<longleftrightarrow> a \<le> b"
haftmann@37884
   812
  by (simp add: algebra_simps)
haftmann@37884
   813
haftmann@37884
   814
lemmas le_iff_diff_le_0 = diff_le_0_iff_le [symmetric]
haftmann@37884
   815
haftmann@37884
   816
lemma diff_eq_diff_less:
haftmann@37884
   817
  "a - b = c - d \<Longrightarrow> a < b \<longleftrightarrow> c < d"
haftmann@37884
   818
  by (auto simp only: less_iff_diff_less_0 [of a b] less_iff_diff_less_0 [of c d])
haftmann@37884
   819
haftmann@37889
   820
lemma diff_eq_diff_less_eq:
haftmann@37889
   821
  "a - b = c - d \<Longrightarrow> a \<le> b \<longleftrightarrow> c \<le> d"
haftmann@37889
   822
  by (auto simp only: le_iff_diff_le_0 [of a b] le_iff_diff_le_0 [of c d])
haftmann@25077
   823
haftmann@25077
   824
end
haftmann@25077
   825
wenzelm@37986
   826
use "Tools/abel_cancel.ML"
haftmann@37884
   827
haftmann@37889
   828
simproc_setup abel_cancel_sum
haftmann@37889
   829
  ("a + b::'a::ab_group_add" | "a - b::'a::ab_group_add") =
haftmann@37889
   830
  {* fn phi => Abel_Cancel.sum_proc *}
haftmann@37889
   831
haftmann@37889
   832
simproc_setup abel_cancel_relation
haftmann@37889
   833
  ("a < (b::'a::ordered_ab_group_add)" | "a \<le> (b::'a::ordered_ab_group_add)" | "c = (d::'b::ab_group_add)") =
haftmann@37889
   834
  {* fn phi => Abel_Cancel.rel_proc *}
haftmann@37884
   835
haftmann@35028
   836
class linordered_ab_semigroup_add =
haftmann@35028
   837
  linorder + ordered_ab_semigroup_add
haftmann@25062
   838
haftmann@35028
   839
class linordered_cancel_ab_semigroup_add =
haftmann@35028
   840
  linorder + ordered_cancel_ab_semigroup_add
haftmann@25267
   841
begin
haftmann@25062
   842
haftmann@35028
   843
subclass linordered_ab_semigroup_add ..
haftmann@25062
   844
haftmann@35028
   845
subclass ordered_ab_semigroup_add_imp_le
haftmann@28823
   846
proof
haftmann@25062
   847
  fix a b c :: 'a
haftmann@25062
   848
  assume le: "c + a <= c + b"  
haftmann@25062
   849
  show "a <= b"
haftmann@25062
   850
  proof (rule ccontr)
haftmann@25062
   851
    assume w: "~ a \<le> b"
haftmann@25062
   852
    hence "b <= a" by (simp add: linorder_not_le)
haftmann@25062
   853
    hence le2: "c + b <= c + a" by (rule add_left_mono)
haftmann@25062
   854
    have "a = b" 
haftmann@25062
   855
      apply (insert le)
haftmann@25062
   856
      apply (insert le2)
haftmann@25062
   857
      apply (drule antisym, simp_all)
haftmann@25062
   858
      done
haftmann@25062
   859
    with w show False 
haftmann@25062
   860
      by (simp add: linorder_not_le [symmetric])
haftmann@25062
   861
  qed
haftmann@25062
   862
qed
haftmann@25062
   863
haftmann@25267
   864
end
haftmann@25267
   865
haftmann@35028
   866
class linordered_ab_group_add = linorder + ordered_ab_group_add
haftmann@25267
   867
begin
haftmann@25230
   868
haftmann@35028
   869
subclass linordered_cancel_ab_semigroup_add ..
haftmann@25230
   870
haftmann@35036
   871
lemma neg_less_eq_nonneg [simp]:
haftmann@25303
   872
  "- a \<le> a \<longleftrightarrow> 0 \<le> a"
haftmann@25303
   873
proof
haftmann@25303
   874
  assume A: "- a \<le> a" show "0 \<le> a"
haftmann@25303
   875
  proof (rule classical)
haftmann@25303
   876
    assume "\<not> 0 \<le> a"
haftmann@25303
   877
    then have "a < 0" by auto
haftmann@25303
   878
    with A have "- a < 0" by (rule le_less_trans)
haftmann@25303
   879
    then show ?thesis by auto
haftmann@25303
   880
  qed
haftmann@25303
   881
next
haftmann@25303
   882
  assume A: "0 \<le> a" show "- a \<le> a"
haftmann@25303
   883
  proof (rule order_trans)
haftmann@25303
   884
    show "- a \<le> 0" using A by (simp add: minus_le_iff)
haftmann@25303
   885
  next
haftmann@25303
   886
    show "0 \<le> a" using A .
haftmann@25303
   887
  qed
haftmann@25303
   888
qed
haftmann@35036
   889
haftmann@35036
   890
lemma neg_less_nonneg [simp]:
haftmann@35036
   891
  "- a < a \<longleftrightarrow> 0 < a"
haftmann@35036
   892
proof
haftmann@35036
   893
  assume A: "- a < a" show "0 < a"
haftmann@35036
   894
  proof (rule classical)
haftmann@35036
   895
    assume "\<not> 0 < a"
haftmann@35036
   896
    then have "a \<le> 0" by auto
haftmann@35036
   897
    with A have "- a < 0" by (rule less_le_trans)
haftmann@35036
   898
    then show ?thesis by auto
haftmann@35036
   899
  qed
haftmann@35036
   900
next
haftmann@35036
   901
  assume A: "0 < a" show "- a < a"
haftmann@35036
   902
  proof (rule less_trans)
haftmann@35036
   903
    show "- a < 0" using A by (simp add: minus_le_iff)
haftmann@35036
   904
  next
haftmann@35036
   905
    show "0 < a" using A .
haftmann@35036
   906
  qed
haftmann@35036
   907
qed
haftmann@35036
   908
haftmann@35036
   909
lemma less_eq_neg_nonpos [simp]:
haftmann@25303
   910
  "a \<le> - a \<longleftrightarrow> a \<le> 0"
haftmann@25303
   911
proof
haftmann@25303
   912
  assume A: "a \<le> - a" show "a \<le> 0"
haftmann@25303
   913
  proof (rule classical)
haftmann@25303
   914
    assume "\<not> a \<le> 0"
haftmann@25303
   915
    then have "0 < a" by auto
haftmann@25303
   916
    then have "0 < - a" using A by (rule less_le_trans)
haftmann@25303
   917
    then show ?thesis by auto
haftmann@25303
   918
  qed
haftmann@25303
   919
next
haftmann@25303
   920
  assume A: "a \<le> 0" show "a \<le> - a"
haftmann@25303
   921
  proof (rule order_trans)
haftmann@25303
   922
    show "0 \<le> - a" using A by (simp add: minus_le_iff)
haftmann@25303
   923
  next
haftmann@25303
   924
    show "a \<le> 0" using A .
haftmann@25303
   925
  qed
haftmann@25303
   926
qed
haftmann@25303
   927
haftmann@35036
   928
lemma equal_neg_zero [simp]:
haftmann@25303
   929
  "a = - a \<longleftrightarrow> a = 0"
haftmann@25303
   930
proof
haftmann@25303
   931
  assume "a = 0" then show "a = - a" by simp
haftmann@25303
   932
next
haftmann@25303
   933
  assume A: "a = - a" show "a = 0"
haftmann@25303
   934
  proof (cases "0 \<le> a")
haftmann@25303
   935
    case True with A have "0 \<le> - a" by auto
haftmann@25303
   936
    with le_minus_iff have "a \<le> 0" by simp
haftmann@25303
   937
    with True show ?thesis by (auto intro: order_trans)
haftmann@25303
   938
  next
haftmann@25303
   939
    case False then have B: "a \<le> 0" by auto
haftmann@25303
   940
    with A have "- a \<le> 0" by auto
haftmann@25303
   941
    with B show ?thesis by (auto intro: order_trans)
haftmann@25303
   942
  qed
haftmann@25303
   943
qed
haftmann@25303
   944
haftmann@35036
   945
lemma neg_equal_zero [simp]:
haftmann@25303
   946
  "- a = a \<longleftrightarrow> a = 0"
haftmann@35036
   947
  by (auto dest: sym)
haftmann@35036
   948
haftmann@35036
   949
lemma double_zero [simp]:
haftmann@35036
   950
  "a + a = 0 \<longleftrightarrow> a = 0"
haftmann@35036
   951
proof
haftmann@35036
   952
  assume assm: "a + a = 0"
haftmann@35036
   953
  then have a: "- a = a" by (rule minus_unique)
huffman@35216
   954
  then show "a = 0" by (simp only: neg_equal_zero)
haftmann@35036
   955
qed simp
haftmann@35036
   956
haftmann@35036
   957
lemma double_zero_sym [simp]:
haftmann@35036
   958
  "0 = a + a \<longleftrightarrow> a = 0"
haftmann@35036
   959
  by (rule, drule sym) simp_all
haftmann@35036
   960
haftmann@35036
   961
lemma zero_less_double_add_iff_zero_less_single_add [simp]:
haftmann@35036
   962
  "0 < a + a \<longleftrightarrow> 0 < a"
haftmann@35036
   963
proof
haftmann@35036
   964
  assume "0 < a + a"
haftmann@35036
   965
  then have "0 - a < a" by (simp only: diff_less_eq)
haftmann@35036
   966
  then have "- a < a" by simp
huffman@35216
   967
  then show "0 < a" by (simp only: neg_less_nonneg)
haftmann@35036
   968
next
haftmann@35036
   969
  assume "0 < a"
haftmann@35036
   970
  with this have "0 + 0 < a + a"
haftmann@35036
   971
    by (rule add_strict_mono)
haftmann@35036
   972
  then show "0 < a + a" by simp
haftmann@35036
   973
qed
haftmann@35036
   974
haftmann@35036
   975
lemma zero_le_double_add_iff_zero_le_single_add [simp]:
haftmann@35036
   976
  "0 \<le> a + a \<longleftrightarrow> 0 \<le> a"
haftmann@35036
   977
  by (auto simp add: le_less)
haftmann@35036
   978
haftmann@35036
   979
lemma double_add_less_zero_iff_single_add_less_zero [simp]:
haftmann@35036
   980
  "a + a < 0 \<longleftrightarrow> a < 0"
haftmann@35036
   981
proof -
haftmann@35036
   982
  have "\<not> a + a < 0 \<longleftrightarrow> \<not> a < 0"
haftmann@35036
   983
    by (simp add: not_less)
haftmann@35036
   984
  then show ?thesis by simp
haftmann@35036
   985
qed
haftmann@35036
   986
haftmann@35036
   987
lemma double_add_le_zero_iff_single_add_le_zero [simp]:
haftmann@35036
   988
  "a + a \<le> 0 \<longleftrightarrow> a \<le> 0" 
haftmann@35036
   989
proof -
haftmann@35036
   990
  have "\<not> a + a \<le> 0 \<longleftrightarrow> \<not> a \<le> 0"
haftmann@35036
   991
    by (simp add: not_le)
haftmann@35036
   992
  then show ?thesis by simp
haftmann@35036
   993
qed
haftmann@35036
   994
haftmann@35036
   995
lemma le_minus_self_iff:
haftmann@35036
   996
  "a \<le> - a \<longleftrightarrow> a \<le> 0"
haftmann@35036
   997
proof -
haftmann@35036
   998
  from add_le_cancel_left [of "- a" "a + a" 0]
haftmann@35036
   999
  have "a \<le> - a \<longleftrightarrow> a + a \<le> 0" 
haftmann@35036
  1000
    by (simp add: add_assoc [symmetric])
haftmann@35036
  1001
  thus ?thesis by simp
haftmann@35036
  1002
qed
haftmann@35036
  1003
haftmann@35036
  1004
lemma minus_le_self_iff:
haftmann@35036
  1005
  "- a \<le> a \<longleftrightarrow> 0 \<le> a"
haftmann@35036
  1006
proof -
haftmann@35036
  1007
  from add_le_cancel_left [of "- a" 0 "a + a"]
haftmann@35036
  1008
  have "- a \<le> a \<longleftrightarrow> 0 \<le> a + a" 
haftmann@35036
  1009
    by (simp add: add_assoc [symmetric])
haftmann@35036
  1010
  thus ?thesis by simp
haftmann@35036
  1011
qed
haftmann@35036
  1012
haftmann@35036
  1013
lemma minus_max_eq_min:
haftmann@35036
  1014
  "- max x y = min (-x) (-y)"
haftmann@35036
  1015
  by (auto simp add: max_def min_def)
haftmann@35036
  1016
haftmann@35036
  1017
lemma minus_min_eq_max:
haftmann@35036
  1018
  "- min x y = max (-x) (-y)"
haftmann@35036
  1019
  by (auto simp add: max_def min_def)
haftmann@25303
  1020
haftmann@25267
  1021
end
haftmann@25267
  1022
haftmann@36302
  1023
context ordered_comm_monoid_add
haftmann@36302
  1024
begin
obua@14738
  1025
paulson@15234
  1026
lemma add_increasing:
haftmann@36302
  1027
  "0 \<le> a \<Longrightarrow> b \<le> c \<Longrightarrow> b \<le> a + c"
haftmann@36302
  1028
  by (insert add_mono [of 0 a b c], simp)
obua@14738
  1029
nipkow@15539
  1030
lemma add_increasing2:
haftmann@36302
  1031
  "0 \<le> c \<Longrightarrow> b \<le> a \<Longrightarrow> b \<le> a + c"
haftmann@36302
  1032
  by (simp add: add_increasing add_commute [of a])
nipkow@15539
  1033
paulson@15234
  1034
lemma add_strict_increasing:
haftmann@36302
  1035
  "0 < a \<Longrightarrow> b \<le> c \<Longrightarrow> b < a + c"
haftmann@36302
  1036
  by (insert add_less_le_mono [of 0 a b c], simp)
paulson@15234
  1037
paulson@15234
  1038
lemma add_strict_increasing2:
haftmann@36302
  1039
  "0 \<le> a \<Longrightarrow> b < c \<Longrightarrow> b < a + c"
haftmann@36302
  1040
  by (insert add_le_less_mono [of 0 a b c], simp)
haftmann@36302
  1041
haftmann@36302
  1042
end
paulson@15234
  1043
haftmann@35092
  1044
class abs =
haftmann@35092
  1045
  fixes abs :: "'a \<Rightarrow> 'a"
haftmann@35092
  1046
begin
haftmann@35092
  1047
haftmann@35092
  1048
notation (xsymbols)
haftmann@35092
  1049
  abs  ("\<bar>_\<bar>")
haftmann@35092
  1050
haftmann@35092
  1051
notation (HTML output)
haftmann@35092
  1052
  abs  ("\<bar>_\<bar>")
haftmann@35092
  1053
haftmann@35092
  1054
end
haftmann@35092
  1055
haftmann@35092
  1056
class sgn =
haftmann@35092
  1057
  fixes sgn :: "'a \<Rightarrow> 'a"
haftmann@35092
  1058
haftmann@35092
  1059
class abs_if = minus + uminus + ord + zero + abs +
haftmann@35092
  1060
  assumes abs_if: "\<bar>a\<bar> = (if a < 0 then - a else a)"
haftmann@35092
  1061
haftmann@35092
  1062
class sgn_if = minus + uminus + zero + one + ord + sgn +
haftmann@35092
  1063
  assumes sgn_if: "sgn x = (if x = 0 then 0 else if 0 < x then 1 else - 1)"
haftmann@35092
  1064
begin
haftmann@35092
  1065
haftmann@35092
  1066
lemma sgn0 [simp]: "sgn 0 = 0"
haftmann@35092
  1067
  by (simp add:sgn_if)
haftmann@35092
  1068
haftmann@35092
  1069
end
obua@14738
  1070
haftmann@35028
  1071
class ordered_ab_group_add_abs = ordered_ab_group_add + abs +
haftmann@25303
  1072
  assumes abs_ge_zero [simp]: "\<bar>a\<bar> \<ge> 0"
haftmann@25303
  1073
    and abs_ge_self: "a \<le> \<bar>a\<bar>"
haftmann@25303
  1074
    and abs_leI: "a \<le> b \<Longrightarrow> - a \<le> b \<Longrightarrow> \<bar>a\<bar> \<le> b"
haftmann@25303
  1075
    and abs_minus_cancel [simp]: "\<bar>-a\<bar> = \<bar>a\<bar>"
haftmann@25303
  1076
    and abs_triangle_ineq: "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"
haftmann@25303
  1077
begin
haftmann@25303
  1078
haftmann@25307
  1079
lemma abs_minus_le_zero: "- \<bar>a\<bar> \<le> 0"
haftmann@25307
  1080
  unfolding neg_le_0_iff_le by simp
haftmann@25307
  1081
haftmann@25307
  1082
lemma abs_of_nonneg [simp]:
nipkow@29667
  1083
  assumes nonneg: "0 \<le> a" shows "\<bar>a\<bar> = a"
haftmann@25307
  1084
proof (rule antisym)
haftmann@25307
  1085
  from nonneg le_imp_neg_le have "- a \<le> 0" by simp
haftmann@25307
  1086
  from this nonneg have "- a \<le> a" by (rule order_trans)
haftmann@25307
  1087
  then show "\<bar>a\<bar> \<le> a" by (auto intro: abs_leI)
haftmann@25307
  1088
qed (rule abs_ge_self)
haftmann@25307
  1089
haftmann@25307
  1090
lemma abs_idempotent [simp]: "\<bar>\<bar>a\<bar>\<bar> = \<bar>a\<bar>"
nipkow@29667
  1091
by (rule antisym)
haftmann@36302
  1092
   (auto intro!: abs_ge_self abs_leI order_trans [of "- \<bar>a\<bar>" 0 "\<bar>a\<bar>"])
haftmann@25307
  1093
haftmann@25307
  1094
lemma abs_eq_0 [simp]: "\<bar>a\<bar> = 0 \<longleftrightarrow> a = 0"
haftmann@25307
  1095
proof -
haftmann@25307
  1096
  have "\<bar>a\<bar> = 0 \<Longrightarrow> a = 0"
haftmann@25307
  1097
  proof (rule antisym)
haftmann@25307
  1098
    assume zero: "\<bar>a\<bar> = 0"
haftmann@25307
  1099
    with abs_ge_self show "a \<le> 0" by auto
haftmann@25307
  1100
    from zero have "\<bar>-a\<bar> = 0" by simp
haftmann@36302
  1101
    with abs_ge_self [of "- a"] have "- a \<le> 0" by auto
haftmann@25307
  1102
    with neg_le_0_iff_le show "0 \<le> a" by auto
haftmann@25307
  1103
  qed
haftmann@25307
  1104
  then show ?thesis by auto
haftmann@25307
  1105
qed
haftmann@25307
  1106
haftmann@25303
  1107
lemma abs_zero [simp]: "\<bar>0\<bar> = 0"
nipkow@29667
  1108
by simp
avigad@16775
  1109
blanchet@35828
  1110
lemma abs_0_eq [simp, no_atp]: "0 = \<bar>a\<bar> \<longleftrightarrow> a = 0"
haftmann@25303
  1111
proof -
haftmann@25303
  1112
  have "0 = \<bar>a\<bar> \<longleftrightarrow> \<bar>a\<bar> = 0" by (simp only: eq_ac)
haftmann@25303
  1113
  thus ?thesis by simp
haftmann@25303
  1114
qed
haftmann@25303
  1115
haftmann@25303
  1116
lemma abs_le_zero_iff [simp]: "\<bar>a\<bar> \<le> 0 \<longleftrightarrow> a = 0" 
haftmann@25303
  1117
proof
haftmann@25303
  1118
  assume "\<bar>a\<bar> \<le> 0"
haftmann@25303
  1119
  then have "\<bar>a\<bar> = 0" by (rule antisym) simp
haftmann@25303
  1120
  thus "a = 0" by simp
haftmann@25303
  1121
next
haftmann@25303
  1122
  assume "a = 0"
haftmann@25303
  1123
  thus "\<bar>a\<bar> \<le> 0" by simp
haftmann@25303
  1124
qed
haftmann@25303
  1125
haftmann@25303
  1126
lemma zero_less_abs_iff [simp]: "0 < \<bar>a\<bar> \<longleftrightarrow> a \<noteq> 0"
nipkow@29667
  1127
by (simp add: less_le)
haftmann@25303
  1128
haftmann@25303
  1129
lemma abs_not_less_zero [simp]: "\<not> \<bar>a\<bar> < 0"
haftmann@25303
  1130
proof -
haftmann@25303
  1131
  have a: "\<And>x y. x \<le> y \<Longrightarrow> \<not> y < x" by auto
haftmann@25303
  1132
  show ?thesis by (simp add: a)
haftmann@25303
  1133
qed
avigad@16775
  1134
haftmann@25303
  1135
lemma abs_ge_minus_self: "- a \<le> \<bar>a\<bar>"
haftmann@25303
  1136
proof -
haftmann@25303
  1137
  have "- a \<le> \<bar>-a\<bar>" by (rule abs_ge_self)
haftmann@25303
  1138
  then show ?thesis by simp
haftmann@25303
  1139
qed
haftmann@25303
  1140
haftmann@25303
  1141
lemma abs_minus_commute: 
haftmann@25303
  1142
  "\<bar>a - b\<bar> = \<bar>b - a\<bar>"
haftmann@25303
  1143
proof -
haftmann@25303
  1144
  have "\<bar>a - b\<bar> = \<bar>- (a - b)\<bar>" by (simp only: abs_minus_cancel)
haftmann@25303
  1145
  also have "... = \<bar>b - a\<bar>" by simp
haftmann@25303
  1146
  finally show ?thesis .
haftmann@25303
  1147
qed
haftmann@25303
  1148
haftmann@25303
  1149
lemma abs_of_pos: "0 < a \<Longrightarrow> \<bar>a\<bar> = a"
nipkow@29667
  1150
by (rule abs_of_nonneg, rule less_imp_le)
avigad@16775
  1151
haftmann@25303
  1152
lemma abs_of_nonpos [simp]:
nipkow@29667
  1153
  assumes "a \<le> 0" shows "\<bar>a\<bar> = - a"
haftmann@25303
  1154
proof -
haftmann@25303
  1155
  let ?b = "- a"
haftmann@25303
  1156
  have "- ?b \<le> 0 \<Longrightarrow> \<bar>- ?b\<bar> = - (- ?b)"
haftmann@25303
  1157
  unfolding abs_minus_cancel [of "?b"]
haftmann@25303
  1158
  unfolding neg_le_0_iff_le [of "?b"]
haftmann@25303
  1159
  unfolding minus_minus by (erule abs_of_nonneg)
haftmann@25303
  1160
  then show ?thesis using assms by auto
haftmann@25303
  1161
qed
haftmann@25303
  1162
  
haftmann@25303
  1163
lemma abs_of_neg: "a < 0 \<Longrightarrow> \<bar>a\<bar> = - a"
nipkow@29667
  1164
by (rule abs_of_nonpos, rule less_imp_le)
haftmann@25303
  1165
haftmann@25303
  1166
lemma abs_le_D1: "\<bar>a\<bar> \<le> b \<Longrightarrow> a \<le> b"
nipkow@29667
  1167
by (insert abs_ge_self, blast intro: order_trans)
haftmann@25303
  1168
haftmann@25303
  1169
lemma abs_le_D2: "\<bar>a\<bar> \<le> b \<Longrightarrow> - a \<le> b"
haftmann@36302
  1170
by (insert abs_le_D1 [of "- a"], simp)
haftmann@25303
  1171
haftmann@25303
  1172
lemma abs_le_iff: "\<bar>a\<bar> \<le> b \<longleftrightarrow> a \<le> b \<and> - a \<le> b"
nipkow@29667
  1173
by (blast intro: abs_leI dest: abs_le_D1 abs_le_D2)
haftmann@25303
  1174
haftmann@25303
  1175
lemma abs_triangle_ineq2: "\<bar>a\<bar> - \<bar>b\<bar> \<le> \<bar>a - b\<bar>"
haftmann@36302
  1176
proof -
haftmann@36302
  1177
  have "\<bar>a\<bar> = \<bar>b + (a - b)\<bar>"
haftmann@36302
  1178
    by (simp add: algebra_simps add_diff_cancel)
haftmann@36302
  1179
  then have "\<bar>a\<bar> \<le> \<bar>b\<bar> + \<bar>a - b\<bar>"
haftmann@36302
  1180
    by (simp add: abs_triangle_ineq)
haftmann@36302
  1181
  then show ?thesis
haftmann@36302
  1182
    by (simp add: algebra_simps)
haftmann@36302
  1183
qed
haftmann@36302
  1184
haftmann@36302
  1185
lemma abs_triangle_ineq2_sym: "\<bar>a\<bar> - \<bar>b\<bar> \<le> \<bar>b - a\<bar>"
haftmann@36302
  1186
  by (simp only: abs_minus_commute [of b] abs_triangle_ineq2)
avigad@16775
  1187
haftmann@25303
  1188
lemma abs_triangle_ineq3: "\<bar>\<bar>a\<bar> - \<bar>b\<bar>\<bar> \<le> \<bar>a - b\<bar>"
haftmann@36302
  1189
  by (simp add: abs_le_iff abs_triangle_ineq2 abs_triangle_ineq2_sym)
avigad@16775
  1190
haftmann@25303
  1191
lemma abs_triangle_ineq4: "\<bar>a - b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"
haftmann@25303
  1192
proof -
haftmann@36302
  1193
  have "\<bar>a - b\<bar> = \<bar>a + - b\<bar>" by (subst diff_minus, rule refl)
haftmann@36302
  1194
  also have "... \<le> \<bar>a\<bar> + \<bar>- b\<bar>" by (rule abs_triangle_ineq)
nipkow@29667
  1195
  finally show ?thesis by simp
haftmann@25303
  1196
qed
avigad@16775
  1197
haftmann@25303
  1198
lemma abs_diff_triangle_ineq: "\<bar>a + b - (c + d)\<bar> \<le> \<bar>a - c\<bar> + \<bar>b - d\<bar>"
haftmann@25303
  1199
proof -
haftmann@25303
  1200
  have "\<bar>a + b - (c+d)\<bar> = \<bar>(a-c) + (b-d)\<bar>" by (simp add: diff_minus add_ac)
haftmann@25303
  1201
  also have "... \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>" by (rule abs_triangle_ineq)
haftmann@25303
  1202
  finally show ?thesis .
haftmann@25303
  1203
qed
avigad@16775
  1204
haftmann@25303
  1205
lemma abs_add_abs [simp]:
haftmann@25303
  1206
  "\<bar>\<bar>a\<bar> + \<bar>b\<bar>\<bar> = \<bar>a\<bar> + \<bar>b\<bar>" (is "?L = ?R")
haftmann@25303
  1207
proof (rule antisym)
haftmann@25303
  1208
  show "?L \<ge> ?R" by(rule abs_ge_self)
haftmann@25303
  1209
next
haftmann@25303
  1210
  have "?L \<le> \<bar>\<bar>a\<bar>\<bar> + \<bar>\<bar>b\<bar>\<bar>" by(rule abs_triangle_ineq)
haftmann@25303
  1211
  also have "\<dots> = ?R" by simp
haftmann@25303
  1212
  finally show "?L \<le> ?R" .
haftmann@25303
  1213
qed
haftmann@25303
  1214
haftmann@25303
  1215
end
obua@14738
  1216
obua@15178
  1217
haftmann@25090
  1218
subsection {* Tools setup *}
haftmann@25090
  1219
blanchet@35828
  1220
lemma add_mono_thms_linordered_semiring [no_atp]:
haftmann@35028
  1221
  fixes i j k :: "'a\<Colon>ordered_ab_semigroup_add"
haftmann@25077
  1222
  shows "i \<le> j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l"
haftmann@25077
  1223
    and "i = j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l"
haftmann@25077
  1224
    and "i \<le> j \<and> k = l \<Longrightarrow> i + k \<le> j + l"
haftmann@25077
  1225
    and "i = j \<and> k = l \<Longrightarrow> i + k = j + l"
haftmann@25077
  1226
by (rule add_mono, clarify+)+
haftmann@25077
  1227
blanchet@35828
  1228
lemma add_mono_thms_linordered_field [no_atp]:
haftmann@35028
  1229
  fixes i j k :: "'a\<Colon>ordered_cancel_ab_semigroup_add"
haftmann@25077
  1230
  shows "i < j \<and> k = l \<Longrightarrow> i + k < j + l"
haftmann@25077
  1231
    and "i = j \<and> k < l \<Longrightarrow> i + k < j + l"
haftmann@25077
  1232
    and "i < j \<and> k \<le> l \<Longrightarrow> i + k < j + l"
haftmann@25077
  1233
    and "i \<le> j \<and> k < l \<Longrightarrow> i + k < j + l"
haftmann@25077
  1234
    and "i < j \<and> k < l \<Longrightarrow> i + k < j + l"
haftmann@25077
  1235
by (auto intro: add_strict_right_mono add_strict_left_mono
haftmann@25077
  1236
  add_less_le_mono add_le_less_mono add_strict_mono)
haftmann@25077
  1237
haftmann@33364
  1238
code_modulename SML
haftmann@35050
  1239
  Groups Arith
haftmann@33364
  1240
haftmann@33364
  1241
code_modulename OCaml
haftmann@35050
  1242
  Groups Arith
haftmann@33364
  1243
haftmann@33364
  1244
code_modulename Haskell
haftmann@35050
  1245
  Groups Arith
haftmann@33364
  1246
haftmann@37889
  1247
haftmann@37889
  1248
text {* Legacy *}
haftmann@37889
  1249
haftmann@37889
  1250
lemmas diff_def = diff_minus
haftmann@37889
  1251
obua@14738
  1252
end