src/HOL/Real/Rational.thy
author haftmann
Thu Aug 09 15:52:53 2007 +0200 (2007-08-09)
changeset 24198 4031da6d8ba3
parent 24075 366d4d234814
child 24506 020db6ec334a
permissions -rw-r--r--
adaptions for code generation
paulson@14365
     1
(*  Title: HOL/Library/Rational.thy
paulson@14365
     2
    ID:    $Id$
paulson@14365
     3
    Author: Markus Wenzel, TU Muenchen
paulson@14365
     4
*)
paulson@14365
     5
wenzelm@14691
     6
header {* Rational numbers *}
paulson@14365
     7
nipkow@15131
     8
theory Rational
huffman@18913
     9
imports Main
haftmann@16417
    10
uses ("rat_arith.ML")
nipkow@15131
    11
begin
paulson@14365
    12
huffman@18913
    13
subsection {* Rational numbers *}
paulson@14365
    14
paulson@14365
    15
subsubsection {* Equivalence of fractions *}
paulson@14365
    16
wenzelm@19765
    17
definition
wenzelm@21404
    18
  fraction :: "(int \<times> int) set" where
wenzelm@19765
    19
  "fraction = {x. snd x \<noteq> 0}"
huffman@18913
    20
wenzelm@21404
    21
definition
wenzelm@21404
    22
  ratrel :: "((int \<times> int) \<times> (int \<times> int)) set" where
wenzelm@19765
    23
  "ratrel = {(x,y). snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x}"
paulson@14365
    24
huffman@18913
    25
lemma fraction_iff [simp]: "(x \<in> fraction) = (snd x \<noteq> 0)"
huffman@18913
    26
by (simp add: fraction_def)
paulson@14365
    27
huffman@18913
    28
lemma ratrel_iff [simp]:
huffman@18913
    29
  "((x,y) \<in> ratrel) =
huffman@18913
    30
   (snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x)"
huffman@18913
    31
by (simp add: ratrel_def)
paulson@14365
    32
huffman@18913
    33
lemma refl_ratrel: "refl fraction ratrel"
huffman@18913
    34
by (auto simp add: refl_def fraction_def ratrel_def)
huffman@18913
    35
huffman@18913
    36
lemma sym_ratrel: "sym ratrel"
huffman@18913
    37
by (simp add: ratrel_def sym_def)
huffman@18913
    38
huffman@18913
    39
lemma trans_ratrel_lemma:
huffman@18913
    40
  assumes 1: "a * b' = a' * b"
huffman@18913
    41
  assumes 2: "a' * b'' = a'' * b'"
huffman@18913
    42
  assumes 3: "b' \<noteq> (0::int)"
huffman@18913
    43
  shows "a * b'' = a'' * b"
huffman@18913
    44
proof -
huffman@18913
    45
  have "b' * (a * b'') = b'' * (a * b')" by simp
huffman@18913
    46
  also note 1
huffman@18913
    47
  also have "b'' * (a' * b) = b * (a' * b'')" by simp
huffman@18913
    48
  also note 2
huffman@18913
    49
  also have "b * (a'' * b') = b' * (a'' * b)" by simp
huffman@18913
    50
  finally have "b' * (a * b'') = b' * (a'' * b)" .
huffman@18913
    51
  with 3 show "a * b'' = a'' * b" by simp
paulson@14365
    52
qed
paulson@14365
    53
huffman@18913
    54
lemma trans_ratrel: "trans ratrel"
huffman@18913
    55
by (auto simp add: trans_def elim: trans_ratrel_lemma)
huffman@18913
    56
huffman@18913
    57
lemma equiv_ratrel: "equiv fraction ratrel"
huffman@18913
    58
by (rule equiv.intro [OF refl_ratrel sym_ratrel trans_ratrel])
huffman@18913
    59
huffman@18913
    60
lemmas equiv_ratrel_iff [iff] = eq_equiv_class_iff [OF equiv_ratrel]
huffman@18913
    61
huffman@18913
    62
lemma equiv_ratrel_iff2:
huffman@18913
    63
  "\<lbrakk>snd x \<noteq> 0; snd y \<noteq> 0\<rbrakk>
huffman@18913
    64
    \<Longrightarrow> (ratrel `` {x} = ratrel `` {y}) = ((x,y) \<in> ratrel)"
huffman@18913
    65
by (rule eq_equiv_class_iff [OF equiv_ratrel], simp_all)
paulson@14365
    66
paulson@14365
    67
huffman@18913
    68
subsubsection {* The type of rational numbers *}
paulson@14365
    69
huffman@18913
    70
typedef (Rat) rat = "fraction//ratrel"
huffman@18913
    71
proof
huffman@18913
    72
  have "(0,1) \<in> fraction" by (simp add: fraction_def)
huffman@18913
    73
  thus "ratrel``{(0,1)} \<in> fraction//ratrel" by (rule quotientI)
paulson@14365
    74
qed
paulson@14365
    75
huffman@18913
    76
lemma ratrel_in_Rat [simp]: "snd x \<noteq> 0 \<Longrightarrow> ratrel``{x} \<in> Rat"
huffman@18913
    77
by (simp add: Rat_def quotientI)
huffman@18913
    78
huffman@18913
    79
declare Abs_Rat_inject [simp]  Abs_Rat_inverse [simp]
huffman@18913
    80
huffman@18913
    81
wenzelm@19765
    82
definition
wenzelm@21404
    83
  Fract :: "int \<Rightarrow> int \<Rightarrow> rat" where
haftmann@24198
    84
  [code func del]: "Fract a b = Abs_Rat (ratrel``{(a,b)})"
haftmann@24198
    85
haftmann@24198
    86
lemma Fract_zero:
haftmann@24198
    87
  "Fract k 0 = Fract l 0"
haftmann@24198
    88
  by (simp add: Fract_def ratrel_def)
huffman@18913
    89
huffman@18913
    90
theorem Rat_cases [case_names Fract, cases type: rat]:
wenzelm@21404
    91
    "(!!a b. q = Fract a b ==> b \<noteq> 0 ==> C) ==> C"
wenzelm@21404
    92
  by (cases q) (clarsimp simp add: Fract_def Rat_def fraction_def quotient_def)
huffman@18913
    93
huffman@18913
    94
theorem Rat_induct [case_names Fract, induct type: rat]:
huffman@18913
    95
    "(!!a b. b \<noteq> 0 ==> P (Fract a b)) ==> P q"
huffman@18913
    96
  by (cases q) simp
huffman@18913
    97
huffman@18913
    98
huffman@18913
    99
subsubsection {* Congruence lemmas *}
paulson@14365
   100
huffman@18913
   101
lemma add_congruent2:
huffman@18913
   102
     "(\<lambda>x y. ratrel``{(fst x * snd y + fst y * snd x, snd x * snd y)})
huffman@18913
   103
      respects2 ratrel"
huffman@18913
   104
apply (rule equiv_ratrel [THEN congruent2_commuteI])
huffman@18913
   105
apply (simp_all add: left_distrib)
huffman@18913
   106
done
huffman@18913
   107
huffman@18913
   108
lemma minus_congruent:
huffman@18913
   109
  "(\<lambda>x. ratrel``{(- fst x, snd x)}) respects ratrel"
huffman@18913
   110
by (simp add: congruent_def)
huffman@18913
   111
huffman@18913
   112
lemma mult_congruent2:
huffman@18913
   113
  "(\<lambda>x y. ratrel``{(fst x * fst y, snd x * snd y)}) respects2 ratrel"
huffman@18913
   114
by (rule equiv_ratrel [THEN congruent2_commuteI], simp_all)
huffman@18913
   115
huffman@18913
   116
lemma inverse_congruent:
huffman@18913
   117
  "(\<lambda>x. ratrel``{if fst x=0 then (0,1) else (snd x, fst x)}) respects ratrel"
huffman@18913
   118
by (auto simp add: congruent_def mult_commute)
huffman@18913
   119
huffman@18913
   120
lemma le_congruent2:
huffman@18982
   121
  "(\<lambda>x y. {(fst x * snd y)*(snd x * snd y) \<le> (fst y * snd x)*(snd x * snd y)})
huffman@18913
   122
   respects2 ratrel"
huffman@18913
   123
proof (clarsimp simp add: congruent2_def)
huffman@18913
   124
  fix a b a' b' c d c' d'::int
paulson@14365
   125
  assume neq: "b \<noteq> 0"  "b' \<noteq> 0"  "d \<noteq> 0"  "d' \<noteq> 0"
huffman@18913
   126
  assume eq1: "a * b' = a' * b"
huffman@18913
   127
  assume eq2: "c * d' = c' * d"
paulson@14365
   128
paulson@14365
   129
  let ?le = "\<lambda>a b c d. ((a * d) * (b * d) \<le> (c * b) * (b * d))"
paulson@14365
   130
  {
paulson@14365
   131
    fix a b c d x :: int assume x: "x \<noteq> 0"
paulson@14365
   132
    have "?le a b c d = ?le (a * x) (b * x) c d"
paulson@14365
   133
    proof -
paulson@14365
   134
      from x have "0 < x * x" by (auto simp add: zero_less_mult_iff)
paulson@14365
   135
      hence "?le a b c d =
paulson@14365
   136
          ((a * d) * (b * d) * (x * x) \<le> (c * b) * (b * d) * (x * x))"
paulson@14365
   137
        by (simp add: mult_le_cancel_right)
paulson@14365
   138
      also have "... = ?le (a * x) (b * x) c d"
paulson@14365
   139
        by (simp add: mult_ac)
paulson@14365
   140
      finally show ?thesis .
paulson@14365
   141
    qed
paulson@14365
   142
  } note le_factor = this
paulson@14365
   143
paulson@14365
   144
  let ?D = "b * d" and ?D' = "b' * d'"
paulson@14365
   145
  from neq have D: "?D \<noteq> 0" by simp
paulson@14365
   146
  from neq have "?D' \<noteq> 0" by simp
paulson@14365
   147
  hence "?le a b c d = ?le (a * ?D') (b * ?D') c d"
paulson@14365
   148
    by (rule le_factor)
paulson@14365
   149
  also have "... = ((a * b') * ?D * ?D' * d * d' \<le> (c * d') * ?D * ?D' * b * b')"
paulson@14365
   150
    by (simp add: mult_ac)
paulson@14365
   151
  also have "... = ((a' * b) * ?D * ?D' * d * d' \<le> (c' * d) * ?D * ?D' * b * b')"
paulson@14365
   152
    by (simp only: eq1 eq2)
paulson@14365
   153
  also have "... = ?le (a' * ?D) (b' * ?D) c' d'"
paulson@14365
   154
    by (simp add: mult_ac)
paulson@14365
   155
  also from D have "... = ?le a' b' c' d'"
paulson@14365
   156
    by (rule le_factor [symmetric])
huffman@18913
   157
  finally show "?le a b c d = ?le a' b' c' d'" .
paulson@14365
   158
qed
paulson@14365
   159
huffman@18913
   160
lemmas UN_ratrel = UN_equiv_class [OF equiv_ratrel]
huffman@18913
   161
lemmas UN_ratrel2 = UN_equiv_class2 [OF equiv_ratrel equiv_ratrel]
paulson@14365
   162
paulson@14365
   163
paulson@14365
   164
subsubsection {* Standard operations on rational numbers *}
paulson@14365
   165
haftmann@23879
   166
instance rat :: zero
haftmann@23879
   167
  Zero_rat_def: "0 == Fract 0 1" ..
haftmann@24198
   168
lemmas [code func del] = Zero_rat_def
paulson@14365
   169
haftmann@23879
   170
instance rat :: one
haftmann@23879
   171
  One_rat_def: "1 == Fract 1 1" ..
haftmann@24198
   172
lemmas [code func del] = One_rat_def
huffman@18913
   173
haftmann@23879
   174
instance rat :: plus
huffman@18913
   175
  add_rat_def:
huffman@18913
   176
   "q + r ==
huffman@18913
   177
       Abs_Rat (\<Union>x \<in> Rep_Rat q. \<Union>y \<in> Rep_Rat r.
haftmann@23879
   178
           ratrel``{(fst x * snd y + fst y * snd x, snd x * snd y)})" ..
haftmann@23879
   179
lemmas [code func del] = add_rat_def
huffman@18913
   180
haftmann@23879
   181
instance rat :: minus
huffman@18913
   182
  minus_rat_def:
huffman@18913
   183
    "- q == Abs_Rat (\<Union>x \<in> Rep_Rat q. ratrel``{(- fst x, snd x)})"
haftmann@23879
   184
  diff_rat_def:  "q - r == q + - (r::rat)" ..
haftmann@24198
   185
lemmas [code func del] = minus_rat_def diff_rat_def
huffman@18913
   186
haftmann@23879
   187
instance rat :: times
huffman@18913
   188
  mult_rat_def:
huffman@18913
   189
   "q * r ==
huffman@18913
   190
       Abs_Rat (\<Union>x \<in> Rep_Rat q. \<Union>y \<in> Rep_Rat r.
haftmann@23879
   191
           ratrel``{(fst x * fst y, snd x * snd y)})" ..
haftmann@23879
   192
lemmas [code func del] = mult_rat_def
huffman@18913
   193
haftmann@23879
   194
instance rat :: inverse
huffman@18913
   195
  inverse_rat_def:
huffman@18913
   196
    "inverse q ==
huffman@18913
   197
        Abs_Rat (\<Union>x \<in> Rep_Rat q.
huffman@18913
   198
            ratrel``{if fst x=0 then (0,1) else (snd x, fst x)})"
haftmann@23879
   199
  divide_rat_def:  "q / r == q * inverse (r::rat)" ..
haftmann@24198
   200
lemmas [code func del] = inverse_rat_def divide_rat_def
huffman@18913
   201
haftmann@23879
   202
instance rat :: ord
huffman@18913
   203
  le_rat_def:
huffman@18982
   204
   "q \<le> r == contents (\<Union>x \<in> Rep_Rat q. \<Union>y \<in> Rep_Rat r.
huffman@18982
   205
      {(fst x * snd y)*(snd x * snd y) \<le> (fst y * snd x)*(snd x * snd y)})"
haftmann@23879
   206
  less_rat_def: "(z < (w::rat)) == (z \<le> w & z \<noteq> w)" ..
haftmann@23879
   207
lemmas [code func del] = le_rat_def less_rat_def
huffman@18913
   208
haftmann@23879
   209
instance rat :: abs
haftmann@23879
   210
  abs_rat_def: "\<bar>q\<bar> == if q < 0 then -q else (q::rat)" ..
huffman@18913
   211
haftmann@23879
   212
instance rat :: power ..
paulson@14365
   213
huffman@20522
   214
primrec (rat)
huffman@20522
   215
  rat_power_0:   "q ^ 0       = 1"
huffman@20522
   216
  rat_power_Suc: "q ^ (Suc n) = (q::rat) * (q ^ n)"
huffman@20522
   217
huffman@18913
   218
theorem eq_rat: "b \<noteq> 0 ==> d \<noteq> 0 ==>
huffman@18913
   219
  (Fract a b = Fract c d) = (a * d = c * b)"
huffman@18913
   220
by (simp add: Fract_def)
paulson@14365
   221
paulson@14365
   222
theorem add_rat: "b \<noteq> 0 ==> d \<noteq> 0 ==>
paulson@14365
   223
  Fract a b + Fract c d = Fract (a * d + c * b) (b * d)"
huffman@18913
   224
by (simp add: Fract_def add_rat_def add_congruent2 UN_ratrel2)
paulson@14365
   225
paulson@14365
   226
theorem minus_rat: "b \<noteq> 0 ==> -(Fract a b) = Fract (-a) b"
huffman@18913
   227
by (simp add: Fract_def minus_rat_def minus_congruent UN_ratrel)
paulson@14365
   228
paulson@14365
   229
theorem diff_rat: "b \<noteq> 0 ==> d \<noteq> 0 ==>
paulson@14365
   230
    Fract a b - Fract c d = Fract (a * d - c * b) (b * d)"
huffman@18913
   231
by (simp add: diff_rat_def add_rat minus_rat)
paulson@14365
   232
paulson@14365
   233
theorem mult_rat: "b \<noteq> 0 ==> d \<noteq> 0 ==>
paulson@14365
   234
  Fract a b * Fract c d = Fract (a * c) (b * d)"
huffman@18913
   235
by (simp add: Fract_def mult_rat_def mult_congruent2 UN_ratrel2)
paulson@14365
   236
huffman@18913
   237
theorem inverse_rat: "a \<noteq> 0 ==> b \<noteq> 0 ==>
paulson@14365
   238
  inverse (Fract a b) = Fract b a"
huffman@18913
   239
by (simp add: Fract_def inverse_rat_def inverse_congruent UN_ratrel)
paulson@14365
   240
huffman@18913
   241
theorem divide_rat: "c \<noteq> 0 ==> b \<noteq> 0 ==> d \<noteq> 0 ==>
paulson@14365
   242
  Fract a b / Fract c d = Fract (a * d) (b * c)"
huffman@18913
   243
by (simp add: divide_rat_def inverse_rat mult_rat)
paulson@14365
   244
paulson@14365
   245
theorem le_rat: "b \<noteq> 0 ==> d \<noteq> 0 ==>
paulson@14365
   246
  (Fract a b \<le> Fract c d) = ((a * d) * (b * d) \<le> (c * b) * (b * d))"
huffman@18982
   247
by (simp add: Fract_def le_rat_def le_congruent2 UN_ratrel2)
paulson@14365
   248
paulson@14365
   249
theorem less_rat: "b \<noteq> 0 ==> d \<noteq> 0 ==>
paulson@14365
   250
    (Fract a b < Fract c d) = ((a * d) * (b * d) < (c * b) * (b * d))"
huffman@18913
   251
by (simp add: less_rat_def le_rat eq_rat order_less_le)
paulson@14365
   252
paulson@14365
   253
theorem abs_rat: "b \<noteq> 0 ==> \<bar>Fract a b\<bar> = Fract \<bar>a\<bar> \<bar>b\<bar>"
haftmann@23879
   254
  by (simp add: abs_rat_def minus_rat Zero_rat_def less_rat eq_rat)
wenzelm@14691
   255
     (auto simp add: mult_less_0_iff zero_less_mult_iff order_le_less
paulson@14365
   256
                split: abs_split)
paulson@14365
   257
paulson@14365
   258
paulson@14365
   259
subsubsection {* The ordered field of rational numbers *}
paulson@14365
   260
paulson@14365
   261
instance rat :: field
paulson@14365
   262
proof
paulson@14365
   263
  fix q r s :: rat
paulson@14365
   264
  show "(q + r) + s = q + (r + s)"
huffman@18913
   265
    by (induct q, induct r, induct s)
huffman@18913
   266
       (simp add: add_rat add_ac mult_ac int_distrib)
paulson@14365
   267
  show "q + r = r + q"
paulson@14365
   268
    by (induct q, induct r) (simp add: add_rat add_ac mult_ac)
paulson@14365
   269
  show "0 + q = q"
haftmann@23879
   270
    by (induct q) (simp add: Zero_rat_def add_rat)
paulson@14365
   271
  show "(-q) + q = 0"
haftmann@23879
   272
    by (induct q) (simp add: Zero_rat_def minus_rat add_rat eq_rat)
paulson@14365
   273
  show "q - r = q + (-r)"
paulson@14365
   274
    by (induct q, induct r) (simp add: add_rat minus_rat diff_rat)
paulson@14365
   275
  show "(q * r) * s = q * (r * s)"
paulson@14365
   276
    by (induct q, induct r, induct s) (simp add: mult_rat mult_ac)
paulson@14365
   277
  show "q * r = r * q"
paulson@14365
   278
    by (induct q, induct r) (simp add: mult_rat mult_ac)
paulson@14365
   279
  show "1 * q = q"
haftmann@23879
   280
    by (induct q) (simp add: One_rat_def mult_rat)
paulson@14365
   281
  show "(q + r) * s = q * s + r * s"
wenzelm@14691
   282
    by (induct q, induct r, induct s)
paulson@14365
   283
       (simp add: add_rat mult_rat eq_rat int_distrib)
paulson@14365
   284
  show "q \<noteq> 0 ==> inverse q * q = 1"
haftmann@23879
   285
    by (induct q) (simp add: inverse_rat mult_rat One_rat_def Zero_rat_def eq_rat)
paulson@14430
   286
  show "q / r = q * inverse r"
wenzelm@14691
   287
    by (simp add: divide_rat_def)
paulson@14365
   288
  show "0 \<noteq> (1::rat)"
haftmann@23879
   289
    by (simp add: Zero_rat_def One_rat_def eq_rat)
paulson@14365
   290
qed
paulson@14365
   291
paulson@14365
   292
instance rat :: linorder
paulson@14365
   293
proof
paulson@14365
   294
  fix q r s :: rat
paulson@14365
   295
  {
paulson@14365
   296
    assume "q \<le> r" and "r \<le> s"
paulson@14365
   297
    show "q \<le> s"
paulson@14365
   298
    proof (insert prems, induct q, induct r, induct s)
paulson@14365
   299
      fix a b c d e f :: int
paulson@14365
   300
      assume neq: "b \<noteq> 0"  "d \<noteq> 0"  "f \<noteq> 0"
paulson@14365
   301
      assume 1: "Fract a b \<le> Fract c d" and 2: "Fract c d \<le> Fract e f"
paulson@14365
   302
      show "Fract a b \<le> Fract e f"
paulson@14365
   303
      proof -
paulson@14365
   304
        from neq obtain bb: "0 < b * b" and dd: "0 < d * d" and ff: "0 < f * f"
paulson@14365
   305
          by (auto simp add: zero_less_mult_iff linorder_neq_iff)
paulson@14365
   306
        have "(a * d) * (b * d) * (f * f) \<le> (c * b) * (b * d) * (f * f)"
paulson@14365
   307
        proof -
paulson@14365
   308
          from neq 1 have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
paulson@14365
   309
            by (simp add: le_rat)
paulson@14365
   310
          with ff show ?thesis by (simp add: mult_le_cancel_right)
paulson@14365
   311
        qed
paulson@14365
   312
        also have "... = (c * f) * (d * f) * (b * b)"
paulson@14365
   313
          by (simp only: mult_ac)
paulson@14365
   314
        also have "... \<le> (e * d) * (d * f) * (b * b)"
paulson@14365
   315
        proof -
paulson@14365
   316
          from neq 2 have "(c * f) * (d * f) \<le> (e * d) * (d * f)"
paulson@14365
   317
            by (simp add: le_rat)
paulson@14365
   318
          with bb show ?thesis by (simp add: mult_le_cancel_right)
paulson@14365
   319
        qed
paulson@14365
   320
        finally have "(a * f) * (b * f) * (d * d) \<le> e * b * (b * f) * (d * d)"
paulson@14365
   321
          by (simp only: mult_ac)
paulson@14365
   322
        with dd have "(a * f) * (b * f) \<le> (e * b) * (b * f)"
paulson@14365
   323
          by (simp add: mult_le_cancel_right)
paulson@14365
   324
        with neq show ?thesis by (simp add: le_rat)
paulson@14365
   325
      qed
paulson@14365
   326
    qed
paulson@14365
   327
  next
paulson@14365
   328
    assume "q \<le> r" and "r \<le> q"
paulson@14365
   329
    show "q = r"
paulson@14365
   330
    proof (insert prems, induct q, induct r)
paulson@14365
   331
      fix a b c d :: int
paulson@14365
   332
      assume neq: "b \<noteq> 0"  "d \<noteq> 0"
paulson@14365
   333
      assume 1: "Fract a b \<le> Fract c d" and 2: "Fract c d \<le> Fract a b"
paulson@14365
   334
      show "Fract a b = Fract c d"
paulson@14365
   335
      proof -
paulson@14365
   336
        from neq 1 have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
paulson@14365
   337
          by (simp add: le_rat)
paulson@14365
   338
        also have "... \<le> (a * d) * (b * d)"
paulson@14365
   339
        proof -
paulson@14365
   340
          from neq 2 have "(c * b) * (d * b) \<le> (a * d) * (d * b)"
paulson@14365
   341
            by (simp add: le_rat)
paulson@14365
   342
          thus ?thesis by (simp only: mult_ac)
paulson@14365
   343
        qed
paulson@14365
   344
        finally have "(a * d) * (b * d) = (c * b) * (b * d)" .
paulson@14365
   345
        moreover from neq have "b * d \<noteq> 0" by simp
paulson@14365
   346
        ultimately have "a * d = c * b" by simp
paulson@14365
   347
        with neq show ?thesis by (simp add: eq_rat)
paulson@14365
   348
      qed
paulson@14365
   349
    qed
paulson@14365
   350
  next
paulson@14365
   351
    show "q \<le> q"
paulson@14365
   352
      by (induct q) (simp add: le_rat)
paulson@14365
   353
    show "(q < r) = (q \<le> r \<and> q \<noteq> r)"
paulson@14365
   354
      by (simp only: less_rat_def)
paulson@14365
   355
    show "q \<le> r \<or> r \<le> q"
huffman@18913
   356
      by (induct q, induct r)
huffman@18913
   357
         (simp add: le_rat mult_commute, rule linorder_linear)
paulson@14365
   358
  }
paulson@14365
   359
qed
paulson@14365
   360
haftmann@22456
   361
instance rat :: distrib_lattice
haftmann@22456
   362
  "inf r s \<equiv> min r s"
haftmann@22456
   363
  "sup r s \<equiv> max r s"
haftmann@22456
   364
  by default (auto simp add: min_max.sup_inf_distrib1 inf_rat_def sup_rat_def)
haftmann@22456
   365
paulson@14365
   366
instance rat :: ordered_field
paulson@14365
   367
proof
paulson@14365
   368
  fix q r s :: rat
paulson@14365
   369
  show "q \<le> r ==> s + q \<le> s + r"
paulson@14365
   370
  proof (induct q, induct r, induct s)
paulson@14365
   371
    fix a b c d e f :: int
paulson@14365
   372
    assume neq: "b \<noteq> 0"  "d \<noteq> 0"  "f \<noteq> 0"
paulson@14365
   373
    assume le: "Fract a b \<le> Fract c d"
paulson@14365
   374
    show "Fract e f + Fract a b \<le> Fract e f + Fract c d"
paulson@14365
   375
    proof -
paulson@14365
   376
      let ?F = "f * f" from neq have F: "0 < ?F"
paulson@14365
   377
        by (auto simp add: zero_less_mult_iff)
paulson@14365
   378
      from neq le have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
paulson@14365
   379
        by (simp add: le_rat)
paulson@14365
   380
      with F have "(a * d) * (b * d) * ?F * ?F \<le> (c * b) * (b * d) * ?F * ?F"
paulson@14365
   381
        by (simp add: mult_le_cancel_right)
paulson@14365
   382
      with neq show ?thesis by (simp add: add_rat le_rat mult_ac int_distrib)
paulson@14365
   383
    qed
paulson@14365
   384
  qed
paulson@14365
   385
  show "q < r ==> 0 < s ==> s * q < s * r"
paulson@14365
   386
  proof (induct q, induct r, induct s)
paulson@14365
   387
    fix a b c d e f :: int
paulson@14365
   388
    assume neq: "b \<noteq> 0"  "d \<noteq> 0"  "f \<noteq> 0"
paulson@14365
   389
    assume le: "Fract a b < Fract c d"
paulson@14365
   390
    assume gt: "0 < Fract e f"
paulson@14365
   391
    show "Fract e f * Fract a b < Fract e f * Fract c d"
paulson@14365
   392
    proof -
paulson@14365
   393
      let ?E = "e * f" and ?F = "f * f"
paulson@14365
   394
      from neq gt have "0 < ?E"
haftmann@23879
   395
        by (auto simp add: Zero_rat_def less_rat le_rat order_less_le eq_rat)
paulson@14365
   396
      moreover from neq have "0 < ?F"
paulson@14365
   397
        by (auto simp add: zero_less_mult_iff)
paulson@14365
   398
      moreover from neq le have "(a * d) * (b * d) < (c * b) * (b * d)"
paulson@14365
   399
        by (simp add: less_rat)
paulson@14365
   400
      ultimately have "(a * d) * (b * d) * ?E * ?F < (c * b) * (b * d) * ?E * ?F"
paulson@14365
   401
        by (simp add: mult_less_cancel_right)
paulson@14365
   402
      with neq show ?thesis
paulson@14365
   403
        by (simp add: less_rat mult_rat mult_ac)
paulson@14365
   404
    qed
paulson@14365
   405
  qed
paulson@14365
   406
  show "\<bar>q\<bar> = (if q < 0 then -q else q)"
paulson@14365
   407
    by (simp only: abs_rat_def)
haftmann@22456
   408
qed auto
paulson@14365
   409
paulson@14365
   410
instance rat :: division_by_zero
paulson@14365
   411
proof
huffman@18913
   412
  show "inverse 0 = (0::rat)"
haftmann@23879
   413
    by (simp add: Zero_rat_def Fract_def inverse_rat_def
huffman@18913
   414
                  inverse_congruent UN_ratrel)
paulson@14365
   415
qed
paulson@14365
   416
huffman@20522
   417
instance rat :: recpower
huffman@20522
   418
proof
huffman@20522
   419
  fix q :: rat
huffman@20522
   420
  fix n :: nat
huffman@20522
   421
  show "q ^ 0 = 1" by simp
huffman@20522
   422
  show "q ^ (Suc n) = q * (q ^ n)" by simp
huffman@20522
   423
qed
huffman@20522
   424
paulson@14365
   425
paulson@14365
   426
subsection {* Various Other Results *}
paulson@14365
   427
paulson@14365
   428
lemma minus_rat_cancel [simp]: "b \<noteq> 0 ==> Fract (-a) (-b) = Fract a b"
huffman@18913
   429
by (simp add: eq_rat)
paulson@14365
   430
paulson@14365
   431
theorem Rat_induct_pos [case_names Fract, induct type: rat]:
paulson@14365
   432
  assumes step: "!!a b. 0 < b ==> P (Fract a b)"
paulson@14365
   433
    shows "P q"
paulson@14365
   434
proof (cases q)
paulson@14365
   435
  have step': "!!a b. b < 0 ==> P (Fract a b)"
paulson@14365
   436
  proof -
paulson@14365
   437
    fix a::int and b::int
paulson@14365
   438
    assume b: "b < 0"
paulson@14365
   439
    hence "0 < -b" by simp
paulson@14365
   440
    hence "P (Fract (-a) (-b))" by (rule step)
paulson@14365
   441
    thus "P (Fract a b)" by (simp add: order_less_imp_not_eq [OF b])
paulson@14365
   442
  qed
paulson@14365
   443
  case (Fract a b)
paulson@14365
   444
  thus "P q" by (force simp add: linorder_neq_iff step step')
paulson@14365
   445
qed
paulson@14365
   446
paulson@14365
   447
lemma zero_less_Fract_iff:
paulson@14365
   448
     "0 < b ==> (0 < Fract a b) = (0 < a)"
haftmann@23879
   449
by (simp add: Zero_rat_def less_rat order_less_imp_not_eq2 zero_less_mult_iff)
paulson@14365
   450
paulson@14378
   451
lemma Fract_add_one: "n \<noteq> 0 ==> Fract (m + n) n = Fract m n + 1"
paulson@14378
   452
apply (insert add_rat [of concl: m n 1 1])
haftmann@23879
   453
apply (simp add: One_rat_def [symmetric])
paulson@14378
   454
done
paulson@14378
   455
huffman@23429
   456
lemma of_nat_rat: "of_nat k = Fract (of_nat k) 1"
haftmann@23879
   457
by (induct k) (simp_all add: Zero_rat_def One_rat_def add_rat)
huffman@23429
   458
huffman@23429
   459
lemma of_int_rat: "of_int k = Fract k 1"
huffman@23429
   460
by (cases k rule: int_diff_cases, simp add: of_nat_rat diff_rat)
huffman@23429
   461
paulson@14378
   462
lemma Fract_of_nat_eq: "Fract (of_nat k) 1 = of_nat k"
huffman@23429
   463
by (rule of_nat_rat [symmetric])
paulson@14378
   464
paulson@14378
   465
lemma Fract_of_int_eq: "Fract k 1 = of_int k"
huffman@23429
   466
by (rule of_int_rat [symmetric])
paulson@14378
   467
haftmann@24198
   468
lemma Fract_of_int_quotient: "Fract k l = (if l = 0 then Fract 1 0 else of_int k / of_int l)"
haftmann@24198
   469
by (auto simp add: Fract_zero Fract_of_int_eq [symmetric] divide_rat)
haftmann@24198
   470
paulson@14378
   471
wenzelm@14691
   472
subsection {* Numerals and Arithmetic *}
paulson@14387
   473
haftmann@22456
   474
instance rat :: number
haftmann@22456
   475
  rat_number_of_def: "(number_of w :: rat) \<equiv> of_int w" ..
paulson@14387
   476
paulson@14387
   477
instance rat :: number_ring
wenzelm@19765
   478
  by default (simp add: rat_number_of_def) 
paulson@14387
   479
paulson@14387
   480
use "rat_arith.ML"
wenzelm@24075
   481
declaration {* K rat_arith_setup *}
paulson@14387
   482
huffman@23342
   483
huffman@23342
   484
subsection {* Embedding from Rationals to other Fields *}
huffman@23342
   485
haftmann@24198
   486
class field_char_0 = field + ring_char_0
huffman@23342
   487
huffman@23342
   488
instance ordered_field < field_char_0 ..
huffman@23342
   489
huffman@23342
   490
definition
huffman@23342
   491
  of_rat :: "rat \<Rightarrow> 'a::field_char_0"
huffman@23342
   492
where
haftmann@24198
   493
  [code func del]: "of_rat q = contents (\<Union>(a,b) \<in> Rep_Rat q. {of_int a / of_int b})"
huffman@23342
   494
huffman@23342
   495
lemma of_rat_congruent:
huffman@23342
   496
  "(\<lambda>(a, b). {of_int a / of_int b::'a::field_char_0}) respects ratrel"
huffman@23342
   497
apply (rule congruent.intro)
huffman@23342
   498
apply (clarsimp simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq)
huffman@23342
   499
apply (simp only: of_int_mult [symmetric])
huffman@23342
   500
done
huffman@23342
   501
huffman@23342
   502
lemma of_rat_rat:
huffman@23342
   503
  "b \<noteq> 0 \<Longrightarrow> of_rat (Fract a b) = of_int a / of_int b"
huffman@23342
   504
unfolding Fract_def of_rat_def
huffman@23342
   505
by (simp add: UN_ratrel of_rat_congruent)
huffman@23342
   506
huffman@23342
   507
lemma of_rat_0 [simp]: "of_rat 0 = 0"
huffman@23342
   508
by (simp add: Zero_rat_def of_rat_rat)
huffman@23342
   509
huffman@23342
   510
lemma of_rat_1 [simp]: "of_rat 1 = 1"
huffman@23342
   511
by (simp add: One_rat_def of_rat_rat)
huffman@23342
   512
huffman@23342
   513
lemma of_rat_add: "of_rat (a + b) = of_rat a + of_rat b"
huffman@23342
   514
by (induct a, induct b, simp add: add_rat of_rat_rat add_frac_eq)
huffman@23342
   515
huffman@23343
   516
lemma of_rat_minus: "of_rat (- a) = - of_rat a"
huffman@23343
   517
by (induct a, simp add: minus_rat of_rat_rat)
huffman@23343
   518
huffman@23343
   519
lemma of_rat_diff: "of_rat (a - b) = of_rat a - of_rat b"
huffman@23343
   520
by (simp only: diff_minus of_rat_add of_rat_minus)
huffman@23343
   521
huffman@23342
   522
lemma of_rat_mult: "of_rat (a * b) = of_rat a * of_rat b"
huffman@23342
   523
apply (induct a, induct b, simp add: mult_rat of_rat_rat)
huffman@23342
   524
apply (simp add: divide_inverse nonzero_inverse_mult_distrib mult_ac)
huffman@23342
   525
done
huffman@23342
   526
huffman@23342
   527
lemma nonzero_of_rat_inverse:
huffman@23342
   528
  "a \<noteq> 0 \<Longrightarrow> of_rat (inverse a) = inverse (of_rat a)"
huffman@23343
   529
apply (rule inverse_unique [symmetric])
huffman@23343
   530
apply (simp add: of_rat_mult [symmetric])
huffman@23342
   531
done
huffman@23342
   532
huffman@23342
   533
lemma of_rat_inverse:
huffman@23342
   534
  "(of_rat (inverse a)::'a::{field_char_0,division_by_zero}) =
huffman@23342
   535
   inverse (of_rat a)"
huffman@23342
   536
by (cases "a = 0", simp_all add: nonzero_of_rat_inverse)
huffman@23342
   537
huffman@23342
   538
lemma nonzero_of_rat_divide:
huffman@23342
   539
  "b \<noteq> 0 \<Longrightarrow> of_rat (a / b) = of_rat a / of_rat b"
huffman@23342
   540
by (simp add: divide_inverse of_rat_mult nonzero_of_rat_inverse)
huffman@23342
   541
huffman@23342
   542
lemma of_rat_divide:
huffman@23342
   543
  "(of_rat (a / b)::'a::{field_char_0,division_by_zero})
huffman@23342
   544
   = of_rat a / of_rat b"
huffman@23342
   545
by (cases "b = 0", simp_all add: nonzero_of_rat_divide)
huffman@23342
   546
huffman@23343
   547
lemma of_rat_power:
huffman@23343
   548
  "(of_rat (a ^ n)::'a::{field_char_0,recpower}) = of_rat a ^ n"
huffman@23343
   549
by (induct n) (simp_all add: of_rat_mult power_Suc)
huffman@23343
   550
huffman@23343
   551
lemma of_rat_eq_iff [simp]: "(of_rat a = of_rat b) = (a = b)"
huffman@23343
   552
apply (induct a, induct b)
huffman@23343
   553
apply (simp add: of_rat_rat eq_rat)
huffman@23343
   554
apply (simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq)
huffman@23343
   555
apply (simp only: of_int_mult [symmetric] of_int_eq_iff)
huffman@23343
   556
done
huffman@23343
   557
huffman@23343
   558
lemmas of_rat_eq_0_iff [simp] = of_rat_eq_iff [of _ 0, simplified]
huffman@23343
   559
huffman@23343
   560
lemma of_rat_eq_id [simp]: "of_rat = (id :: rat \<Rightarrow> rat)"
huffman@23343
   561
proof
huffman@23343
   562
  fix a
huffman@23343
   563
  show "of_rat a = id a"
huffman@23343
   564
  by (induct a)
huffman@23343
   565
     (simp add: of_rat_rat divide_rat Fract_of_int_eq [symmetric])
huffman@23343
   566
qed
huffman@23343
   567
huffman@23343
   568
text{*Collapse nested embeddings*}
huffman@23343
   569
lemma of_rat_of_nat_eq [simp]: "of_rat (of_nat n) = of_nat n"
huffman@23343
   570
by (induct n) (simp_all add: of_rat_add)
huffman@23343
   571
huffman@23343
   572
lemma of_rat_of_int_eq [simp]: "of_rat (of_int z) = of_int z"
huffman@23365
   573
by (cases z rule: int_diff_cases, simp add: of_rat_diff)
huffman@23343
   574
huffman@23343
   575
lemma of_rat_number_of_eq [simp]:
huffman@23343
   576
  "of_rat (number_of w) = (number_of w :: 'a::{number_ring,field_char_0})"
huffman@23343
   577
by (simp add: number_of_eq)
huffman@23343
   578
haftmann@23879
   579
lemmas zero_rat = Zero_rat_def
haftmann@23879
   580
lemmas one_rat = One_rat_def
haftmann@23879
   581
haftmann@24198
   582
abbreviation
haftmann@24198
   583
  rat_of_nat :: "nat \<Rightarrow> rat"
haftmann@24198
   584
where
haftmann@24198
   585
  "rat_of_nat \<equiv> of_nat"
haftmann@24198
   586
haftmann@24198
   587
abbreviation
haftmann@24198
   588
  rat_of_int :: "int \<Rightarrow> rat"
haftmann@24198
   589
where
haftmann@24198
   590
  "rat_of_int \<equiv> of_int"
haftmann@24198
   591
paulson@14365
   592
end