src/HOLCF/Cfun.thy
author huffman
Mon Oct 10 05:46:17 2005 +0200 (2005-10-10)
changeset 17817 405fb812e738
parent 17816 9942c5ed866a
child 17832 e18fc1a9a0e0
permissions -rw-r--r--
add names to infix declarations
huffman@15600
     1
(*  Title:      HOLCF/Cfun.thy
huffman@15576
     2
    ID:         $Id$
huffman@15576
     3
    Author:     Franz Regensburger
huffman@15576
     4
huffman@15576
     5
Definition of the type ->  of continuous functions.
huffman@15576
     6
*)
huffman@15576
     7
huffman@15576
     8
header {* The type of continuous functions *}
huffman@15576
     9
huffman@15577
    10
theory Cfun
huffman@16699
    11
imports Pcpodef
haftmann@16417
    12
uses ("cont_proc.ML")
huffman@15577
    13
begin
huffman@15576
    14
huffman@15576
    15
defaultsort cpo
huffman@15576
    16
huffman@15589
    17
subsection {* Definition of continuous function type *}
huffman@15589
    18
huffman@16699
    19
lemma Ex_cont: "\<exists>f. cont f"
huffman@16699
    20
by (rule exI, rule cont_const)
huffman@16699
    21
huffman@16699
    22
lemma adm_cont: "adm cont"
huffman@16699
    23
by (rule admI, rule cont_lub_fun)
huffman@16699
    24
huffman@17817
    25
cpodef (CFun)  ('a, 'b) "->" (infixr "->" 0) = "{f::'a => 'b. cont f}"
huffman@16699
    26
by (simp add: Ex_cont adm_cont)
huffman@15576
    27
huffman@17816
    28
syntax (xsymbols)
huffman@17816
    29
  "->"     :: "[type, type] => type"      ("(_ \<rightarrow>/ _)" [1,0]0)
huffman@17816
    30
huffman@15576
    31
syntax
huffman@17816
    32
  Rep_CFun :: "('a \<rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)" ("_$_" [999,1000] 999)
huffman@17816
    33
  "_Lambda" :: "[pttrns, 'a] \<Rightarrow> logic"  ("(3LAM _./ _)" [0, 10] 10)
huffman@15576
    34
huffman@15576
    35
syntax (xsymbols)
huffman@17816
    36
  "_Lambda"   :: "[pttrns, 'a] \<Rightarrow> logic" ("(3\<Lambda>_./ _)" [0, 10] 10)
huffman@17816
    37
  Rep_CFun :: "('a \<rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)" ("(_\<cdot>_)" [999,1000] 999)
huffman@15576
    38
huffman@15576
    39
syntax (HTML output)
huffman@17816
    40
  Rep_CFun :: "('a \<rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)" ("(_\<cdot>_)" [999,1000] 999)
huffman@17816
    41
huffman@17816
    42
syntax
huffman@17816
    43
  "_cabs" :: "[pttrn, 'a] \<Rightarrow> logic"
huffman@17816
    44
translations
huffman@17816
    45
  "_cabs x t" == "Abs_CFun (%x. t)"
huffman@17816
    46
huffman@17816
    47
(* To avoid eta-contraction of body: *)
huffman@17816
    48
print_translation {*
huffman@17816
    49
let
huffman@17816
    50
  fun cabs_tr' [Abs abs] =
huffman@17816
    51
    let val (x,t) = atomic_abs_tr' abs
huffman@17816
    52
    in Syntax.const "_cabs" $ x $ t end
huffman@17816
    53
in [("Abs_CFun", cabs_tr')] end
huffman@17816
    54
*}
huffman@17816
    55
huffman@17816
    56
parse_ast_translation {*
huffman@17816
    57
(* rewrites (LAM x y z. t) --> (LAM x. LAM y. LAM z. t) *)
huffman@17816
    58
(* c.f. Syntax.lambda_ast_tr from Syntax/syn_trans.ML *)
huffman@17816
    59
let
huffman@17816
    60
  fun Lambda_ast_tr [pats, body] =
huffman@17816
    61
        Syntax.fold_ast_p "_cabs" (Syntax.unfold_ast "_pttrns" pats, body)
huffman@17816
    62
    | Lambda_ast_tr asts = raise Syntax.AST ("lambda_ast_tr", asts);
huffman@17816
    63
in [("_Lambda", Lambda_ast_tr)] end
huffman@17816
    64
*}
huffman@17816
    65
huffman@17816
    66
print_ast_translation {*
huffman@17816
    67
(* rewrites (LAM x. LAM y. LAM z. t) --> (LAM x y z. t) *)
huffman@17816
    68
(* c.f. Syntax.abs_ast_tr' from Syntax/syn_trans.ML *)
huffman@17816
    69
let
huffman@17816
    70
  fun cabs_ast_tr' asts =
huffman@17816
    71
    (case Syntax.unfold_ast_p "_cabs"
huffman@17816
    72
        (Syntax.Appl (Syntax.Constant "_cabs" :: asts)) of
huffman@17816
    73
      ([], _) => raise Syntax.AST ("abs_ast_tr'", asts)
huffman@17816
    74
    | (xs, body) => Syntax.Appl
huffman@17816
    75
        [Syntax.Constant "_Lambda", Syntax.fold_ast "_pttrns" xs, body]);
huffman@17816
    76
in [("_cabs", cabs_ast_tr')] end
huffman@17816
    77
*}
huffman@15641
    78
huffman@16098
    79
subsection {* Class instances *}
huffman@15589
    80
huffman@16098
    81
lemma UU_CFun: "\<bottom> \<in> CFun"
huffman@16098
    82
by (simp add: CFun_def inst_fun_pcpo cont_const)
huffman@16098
    83
huffman@16098
    84
instance "->" :: (cpo, pcpo) pcpo
huffman@16920
    85
by (rule typedef_pcpo [OF type_definition_CFun less_CFun_def UU_CFun])
huffman@16098
    86
huffman@16209
    87
lemmas Rep_CFun_strict =
huffman@16699
    88
  typedef_Rep_strict [OF type_definition_CFun less_CFun_def UU_CFun]
huffman@16209
    89
huffman@16209
    90
lemmas Abs_CFun_strict =
huffman@16699
    91
  typedef_Abs_strict [OF type_definition_CFun less_CFun_def UU_CFun]
huffman@16098
    92
huffman@16209
    93
text {* Additional lemma about the isomorphism between
huffman@16209
    94
        @{typ "'a -> 'b"} and @{term CFun} *}
huffman@16209
    95
huffman@16209
    96
lemma Abs_CFun_inverse2: "cont f \<Longrightarrow> Rep_CFun (Abs_CFun f) = f"
huffman@16209
    97
by (simp add: Abs_CFun_inverse CFun_def)
huffman@16098
    98
huffman@16209
    99
text {* Beta-equality for continuous functions *}
huffman@16209
   100
huffman@16209
   101
lemma beta_cfun [simp]: "cont f \<Longrightarrow> (\<Lambda> x. f x)\<cdot>u = f u"
huffman@16209
   102
by (simp add: Abs_CFun_inverse2)
huffman@16209
   103
huffman@16209
   104
text {* Eta-equality for continuous functions *}
huffman@16209
   105
huffman@16209
   106
lemma eta_cfun: "(\<Lambda> x. f\<cdot>x) = f"
huffman@16209
   107
by (rule Rep_CFun_inverse)
huffman@16209
   108
huffman@16209
   109
text {* Extensionality for continuous functions *}
huffman@16209
   110
huffman@16209
   111
lemma ext_cfun: "(\<And>x. f\<cdot>x = g\<cdot>x) \<Longrightarrow> f = g"
huffman@16209
   112
by (simp add: Rep_CFun_inject [symmetric] ext)
huffman@15576
   113
huffman@15589
   114
text {* lemmas about application of continuous functions *}
huffman@15589
   115
huffman@16209
   116
lemma cfun_cong: "\<lbrakk>f = g; x = y\<rbrakk> \<Longrightarrow> f\<cdot>x = g\<cdot>y"
huffman@15589
   117
by simp
huffman@15589
   118
huffman@16209
   119
lemma cfun_fun_cong: "f = g \<Longrightarrow> f\<cdot>x = g\<cdot>x"
huffman@15589
   120
by simp
huffman@15589
   121
huffman@16209
   122
lemma cfun_arg_cong: "x = y \<Longrightarrow> f\<cdot>x = f\<cdot>y"
huffman@15589
   123
by simp
huffman@15589
   124
huffman@16209
   125
subsection {* Continuity of application *}
huffman@15576
   126
huffman@16209
   127
lemma cont_Rep_CFun1: "cont (\<lambda>f. f\<cdot>x)"
huffman@16209
   128
by (rule cont_Rep_CFun [THEN cont2cont_CF1L])
huffman@15576
   129
huffman@16209
   130
lemma cont_Rep_CFun2: "cont (\<lambda>x. f\<cdot>x)"
huffman@16209
   131
apply (rule_tac P = "cont" in CollectD)
huffman@16209
   132
apply (fold CFun_def)
huffman@16209
   133
apply (rule Rep_CFun)
huffman@15576
   134
done
huffman@15576
   135
huffman@16209
   136
lemmas monofun_Rep_CFun = cont_Rep_CFun [THEN cont2mono]
huffman@16209
   137
lemmas contlub_Rep_CFun = cont_Rep_CFun [THEN cont2contlub]
huffman@15589
   138
huffman@16209
   139
lemmas monofun_Rep_CFun1 = cont_Rep_CFun1 [THEN cont2mono, standard]
huffman@16209
   140
lemmas contlub_Rep_CFun1 = cont_Rep_CFun1 [THEN cont2contlub, standard]
huffman@16209
   141
lemmas monofun_Rep_CFun2 = cont_Rep_CFun2 [THEN cont2mono, standard]
huffman@16209
   142
lemmas contlub_Rep_CFun2 = cont_Rep_CFun2 [THEN cont2contlub, standard]
huffman@16209
   143
huffman@16209
   144
text {* contlub, cont properties of @{term Rep_CFun} in each argument *}
huffman@16209
   145
huffman@16209
   146
lemma contlub_cfun_arg: "chain Y \<Longrightarrow> f\<cdot>(lub (range Y)) = (\<Squnion>i. f\<cdot>(Y i))"
huffman@16209
   147
by (rule contlub_Rep_CFun2 [THEN contlubE])
huffman@15576
   148
huffman@16209
   149
lemma cont_cfun_arg: "chain Y \<Longrightarrow> range (\<lambda>i. f\<cdot>(Y i)) <<| f\<cdot>(lub (range Y))"
huffman@16209
   150
by (rule cont_Rep_CFun2 [THEN contE])
huffman@16209
   151
huffman@16209
   152
lemma contlub_cfun_fun: "chain F \<Longrightarrow> lub (range F)\<cdot>x = (\<Squnion>i. F i\<cdot>x)"
huffman@16209
   153
by (rule contlub_Rep_CFun1 [THEN contlubE])
huffman@15576
   154
huffman@16209
   155
lemma cont_cfun_fun: "chain F \<Longrightarrow> range (\<lambda>i. F i\<cdot>x) <<| lub (range F)\<cdot>x"
huffman@16209
   156
by (rule cont_Rep_CFun1 [THEN contE])
huffman@15576
   157
huffman@16209
   158
text {* Extensionality wrt. @{term "op <<"} in @{typ "'a -> 'b"} *}
huffman@15576
   159
huffman@16209
   160
lemma less_cfun_ext: "(\<And>x. f\<cdot>x \<sqsubseteq> g\<cdot>x) \<Longrightarrow> f \<sqsubseteq> g"
huffman@16699
   161
by (simp add: less_CFun_def less_fun_def)
huffman@15576
   162
huffman@16209
   163
text {* monotonicity of application *}
huffman@16209
   164
huffman@16209
   165
lemma monofun_cfun_fun: "f \<sqsubseteq> g \<Longrightarrow> f\<cdot>x \<sqsubseteq> g\<cdot>x"
huffman@16699
   166
by (simp add: less_CFun_def less_fun_def)
huffman@15576
   167
huffman@16209
   168
lemma monofun_cfun_arg: "x \<sqsubseteq> y \<Longrightarrow> f\<cdot>x \<sqsubseteq> f\<cdot>y"
huffman@16209
   169
by (rule monofun_Rep_CFun2 [THEN monofunE])
huffman@15576
   170
huffman@16209
   171
lemma monofun_cfun: "\<lbrakk>f \<sqsubseteq> g; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> f\<cdot>x \<sqsubseteq> g\<cdot>y"
huffman@16209
   172
by (rule trans_less [OF monofun_cfun_fun monofun_cfun_arg])
huffman@15576
   173
huffman@16209
   174
text {* ch2ch - rules for the type @{typ "'a -> 'b"} *}
huffman@15576
   175
huffman@16209
   176
lemma chain_monofun: "chain Y \<Longrightarrow> chain (\<lambda>i. f\<cdot>(Y i))"
huffman@16209
   177
by (erule monofun_Rep_CFun2 [THEN ch2ch_monofun])
huffman@16209
   178
huffman@16209
   179
lemma ch2ch_Rep_CFunR: "chain Y \<Longrightarrow> chain (\<lambda>i. f\<cdot>(Y i))"
huffman@16209
   180
by (rule monofun_Rep_CFun2 [THEN ch2ch_monofun])
huffman@15576
   181
huffman@16209
   182
lemma ch2ch_Rep_CFunL: "chain F \<Longrightarrow> chain (\<lambda>i. (F i)\<cdot>x)"
huffman@16209
   183
by (rule monofun_Rep_CFun1 [THEN ch2ch_monofun])
huffman@15576
   184
huffman@16209
   185
lemma ch2ch_Rep_CFun: "\<lbrakk>chain F; chain Y\<rbrakk> \<Longrightarrow> chain (\<lambda>i. (F i)\<cdot>(Y i))"
huffman@15576
   186
apply (rule chainI)
huffman@16209
   187
apply (rule monofun_cfun)
huffman@16209
   188
apply (erule chainE)
huffman@15576
   189
apply (erule chainE)
huffman@15576
   190
done
huffman@15576
   191
huffman@16209
   192
text {* contlub, cont properties of @{term Rep_CFun} in both arguments *}
huffman@15576
   193
huffman@16209
   194
lemma contlub_cfun: 
huffman@16209
   195
  "\<lbrakk>chain F; chain Y\<rbrakk> \<Longrightarrow> (\<Squnion>i. F i)\<cdot>(\<Squnion>i. Y i) = (\<Squnion>i. F i\<cdot>(Y i))"
huffman@16209
   196
apply (simp only: contlub_cfun_fun)
huffman@16209
   197
apply (simp only: contlub_cfun_arg)
huffman@16209
   198
apply (rule diag_lub)
huffman@16209
   199
apply (erule monofun_Rep_CFun1 [THEN ch2ch_monofun])
huffman@16209
   200
apply (erule monofun_Rep_CFun2 [THEN ch2ch_monofun])
huffman@15576
   201
done
huffman@15576
   202
huffman@16209
   203
lemma cont_cfun: 
huffman@16209
   204
  "\<lbrakk>chain F; chain Y\<rbrakk> \<Longrightarrow> range (\<lambda>i. F i\<cdot>(Y i)) <<| (\<Squnion>i. F i)\<cdot>(\<Squnion>i. Y i)"
huffman@16209
   205
apply (rule thelubE)
huffman@16209
   206
apply (simp only: ch2ch_Rep_CFun)
huffman@16209
   207
apply (simp only: contlub_cfun)
huffman@16209
   208
done
huffman@16209
   209
huffman@16209
   210
text {* strictness *}
huffman@16209
   211
huffman@16209
   212
lemma strictI: "f\<cdot>x = \<bottom> \<Longrightarrow> f\<cdot>\<bottom> = \<bottom>"
huffman@16209
   213
apply (rule UU_I)
huffman@15576
   214
apply (erule subst)
huffman@15576
   215
apply (rule minimal [THEN monofun_cfun_arg])
huffman@15576
   216
done
huffman@15576
   217
huffman@16209
   218
text {* the lub of a chain of continous functions is monotone *}
huffman@15576
   219
huffman@16209
   220
lemma lub_cfun_mono: "chain F \<Longrightarrow> monofun (\<lambda>x. \<Squnion>i. F i\<cdot>x)"
huffman@16209
   221
apply (drule ch2ch_monofun [OF monofun_Rep_CFun])
huffman@16209
   222
apply (simp add: thelub_fun [symmetric])
huffman@16209
   223
apply (erule monofun_lub_fun)
huffman@16209
   224
apply (simp add: monofun_Rep_CFun2)
huffman@15576
   225
done
huffman@15576
   226
huffman@16386
   227
text {* a lemma about the exchange of lubs for type @{typ "'a -> 'b"} *}
huffman@15576
   228
huffman@16699
   229
lemma ex_lub_cfun:
huffman@16699
   230
  "\<lbrakk>chain F; chain Y\<rbrakk> \<Longrightarrow> (\<Squnion>j. \<Squnion>i. F j\<cdot>(Y i)) = (\<Squnion>i. \<Squnion>j. F j\<cdot>(Y i))"
huffman@16209
   231
by (simp add: diag_lub ch2ch_Rep_CFunL ch2ch_Rep_CFunR)
huffman@15576
   232
huffman@15589
   233
text {* the lub of a chain of cont. functions is continuous *}
huffman@15576
   234
huffman@16209
   235
lemma cont_lub_cfun: "chain F \<Longrightarrow> cont (\<lambda>x. \<Squnion>i. F i\<cdot>x)"
huffman@16209
   236
apply (rule cont2cont_lub)
huffman@16209
   237
apply (erule monofun_Rep_CFun [THEN ch2ch_monofun])
huffman@16209
   238
apply (rule cont_Rep_CFun2)
huffman@15576
   239
done
huffman@15576
   240
huffman@15589
   241
text {* type @{typ "'a -> 'b"} is chain complete *}
huffman@15576
   242
huffman@16920
   243
lemma lub_cfun: "chain F \<Longrightarrow> range F <<| (\<Lambda> x. \<Squnion>i. F i\<cdot>x)"
huffman@16920
   244
by (simp only: contlub_cfun_fun [symmetric] eta_cfun thelubE)
huffman@15576
   245
huffman@16920
   246
lemma thelub_cfun: "chain F \<Longrightarrow> lub (range F) = (\<Lambda> x. \<Squnion>i. F i\<cdot>x)"
huffman@16920
   247
by (rule lub_cfun [THEN thelubI])
huffman@15576
   248
huffman@15589
   249
subsection {* Miscellaneous *}
huffman@15589
   250
huffman@15589
   251
text {* Monotonicity of @{term Abs_CFun} *}
huffman@15576
   252
huffman@16699
   253
lemma semi_monofun_Abs_CFun:
huffman@16699
   254
  "\<lbrakk>cont f; cont g; f \<sqsubseteq> g\<rbrakk> \<Longrightarrow> Abs_CFun f \<sqsubseteq> Abs_CFun g"
huffman@16699
   255
by (simp add: less_CFun_def Abs_CFun_inverse2)
huffman@15576
   256
huffman@15589
   257
text {* for compatibility with old HOLCF-Version *}
huffman@16209
   258
lemma inst_cfun_pcpo: "\<bottom> = (\<Lambda> x. \<bottom>)"
huffman@16209
   259
by (simp add: inst_fun_pcpo [symmetric] Abs_CFun_strict)
huffman@15576
   260
huffman@15589
   261
subsection {* Continuity of application *}
huffman@15589
   262
huffman@15589
   263
text {* cont2cont lemma for @{term Rep_CFun} *}
huffman@15576
   264
huffman@16209
   265
lemma cont2cont_Rep_CFun:
huffman@16209
   266
  "\<lbrakk>cont f; cont t\<rbrakk> \<Longrightarrow> cont (\<lambda>x. (f x)\<cdot>(t x))"
huffman@16209
   267
by (best intro: cont2cont_app2 cont_const cont_Rep_CFun cont_Rep_CFun2)
huffman@15576
   268
huffman@15589
   269
text {* cont2mono Lemma for @{term "%x. LAM y. c1(x)(y)"} *}
huffman@15576
   270
huffman@15576
   271
lemma cont2mono_LAM:
huffman@15576
   272
assumes p1: "!!x. cont(c1 x)"
huffman@15576
   273
assumes p2: "!!y. monofun(%x. c1 x y)"
huffman@15576
   274
shows "monofun(%x. LAM y. c1 x y)"
huffman@16209
   275
apply (rule monofunI)
huffman@16209
   276
apply (rule less_cfun_ext)
huffman@16209
   277
apply (simp add: p1)
huffman@16209
   278
apply (erule p2 [THEN monofunE])
huffman@15576
   279
done
huffman@15576
   280
huffman@15589
   281
text {* cont2cont Lemma for @{term "%x. LAM y. c1 x y"} *}
huffman@15576
   282
huffman@15576
   283
lemma cont2cont_LAM:
huffman@15576
   284
assumes p1: "!!x. cont(c1 x)"
huffman@15576
   285
assumes p2: "!!y. cont(%x. c1 x y)"
huffman@15576
   286
shows "cont(%x. LAM y. c1 x y)"
huffman@16098
   287
apply (rule cont_Abs_CFun)
huffman@16098
   288
apply (simp add: p1 CFun_def)
huffman@16098
   289
apply (simp add: p2 cont2cont_CF1L_rev)
huffman@15576
   290
done
huffman@15576
   291
huffman@16386
   292
text {* continuity simplification procedure *}
huffman@15576
   293
huffman@16055
   294
lemmas cont_lemmas1 =
huffman@16055
   295
  cont_const cont_id cont_Rep_CFun2 cont2cont_Rep_CFun cont2cont_LAM
huffman@16055
   296
huffman@16386
   297
use "cont_proc.ML";
huffman@16386
   298
setup ContProc.setup;
huffman@15576
   299
huffman@15576
   300
(*val cont_tac = (fn i => (resolve_tac cont_lemmas i));*)
huffman@15576
   301
(*val cont_tacR = (fn i => (REPEAT (cont_tac i)));*)
huffman@15576
   302
huffman@16209
   303
text {* function application is strict in its first argument *}
huffman@15576
   304
huffman@16209
   305
lemma Rep_CFun_strict1 [simp]: "\<bottom>\<cdot>x = \<bottom>"
huffman@16209
   306
by (simp add: Rep_CFun_strict)
huffman@15576
   307
huffman@15589
   308
text {* some lemmata for functions with flat/chfin domain/range types *}
huffman@15576
   309
huffman@15576
   310
lemma chfin_Rep_CFunR: "chain (Y::nat => 'a::cpo->'b::chfin)  
huffman@15576
   311
      ==> !s. ? n. lub(range(Y))$s = Y n$s"
huffman@15576
   312
apply (rule allI)
huffman@15576
   313
apply (subst contlub_cfun_fun)
huffman@15576
   314
apply assumption
huffman@15576
   315
apply (fast intro!: thelubI chfin lub_finch2 chfin2finch ch2ch_Rep_CFunL)
huffman@15576
   316
done
huffman@15576
   317
huffman@16085
   318
subsection {* Continuous injection-retraction pairs *}
huffman@15589
   319
huffman@16085
   320
text {* Continuous retractions are strict. *}
huffman@15576
   321
huffman@16085
   322
lemma retraction_strict:
huffman@16085
   323
  "\<forall>x. f\<cdot>(g\<cdot>x) = x \<Longrightarrow> f\<cdot>\<bottom> = \<bottom>"
huffman@15576
   324
apply (rule UU_I)
huffman@16085
   325
apply (drule_tac x="\<bottom>" in spec)
huffman@16085
   326
apply (erule subst)
huffman@16085
   327
apply (rule monofun_cfun_arg)
huffman@16085
   328
apply (rule minimal)
huffman@15576
   329
done
huffman@15576
   330
huffman@16085
   331
lemma injection_eq:
huffman@16085
   332
  "\<forall>x. f\<cdot>(g\<cdot>x) = x \<Longrightarrow> (g\<cdot>x = g\<cdot>y) = (x = y)"
huffman@16085
   333
apply (rule iffI)
huffman@16085
   334
apply (drule_tac f=f in cfun_arg_cong)
huffman@16085
   335
apply simp
huffman@16085
   336
apply simp
huffman@15576
   337
done
huffman@15576
   338
huffman@16314
   339
lemma injection_less:
huffman@16314
   340
  "\<forall>x. f\<cdot>(g\<cdot>x) = x \<Longrightarrow> (g\<cdot>x \<sqsubseteq> g\<cdot>y) = (x \<sqsubseteq> y)"
huffman@16314
   341
apply (rule iffI)
huffman@16314
   342
apply (drule_tac f=f in monofun_cfun_arg)
huffman@16314
   343
apply simp
huffman@16314
   344
apply (erule monofun_cfun_arg)
huffman@16314
   345
done
huffman@16314
   346
huffman@16085
   347
lemma injection_defined_rev:
huffman@16085
   348
  "\<lbrakk>\<forall>x. f\<cdot>(g\<cdot>x) = x; g\<cdot>z = \<bottom>\<rbrakk> \<Longrightarrow> z = \<bottom>"
huffman@16085
   349
apply (drule_tac f=f in cfun_arg_cong)
huffman@16085
   350
apply (simp add: retraction_strict)
huffman@15576
   351
done
huffman@15576
   352
huffman@16085
   353
lemma injection_defined:
huffman@16085
   354
  "\<lbrakk>\<forall>x. f\<cdot>(g\<cdot>x) = x; z \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> g\<cdot>z \<noteq> \<bottom>"
huffman@16085
   355
by (erule contrapos_nn, rule injection_defined_rev)
huffman@16085
   356
huffman@16085
   357
text {* propagation of flatness and chain-finiteness by retractions *}
huffman@16085
   358
huffman@16085
   359
lemma chfin2chfin:
huffman@16085
   360
  "\<forall>y. (f::'a::chfin \<rightarrow> 'b)\<cdot>(g\<cdot>y) = y
huffman@16085
   361
    \<Longrightarrow> \<forall>Y::nat \<Rightarrow> 'b. chain Y \<longrightarrow> (\<exists>n. max_in_chain n Y)"
huffman@16085
   362
apply clarify
huffman@16085
   363
apply (drule_tac f=g in chain_monofun)
huffman@16085
   364
apply (drule chfin [rule_format])
huffman@16085
   365
apply (unfold max_in_chain_def)
huffman@16085
   366
apply (simp add: injection_eq)
huffman@16085
   367
done
huffman@16085
   368
huffman@16085
   369
lemma flat2flat:
huffman@16085
   370
  "\<forall>y. (f::'a::flat \<rightarrow> 'b::pcpo)\<cdot>(g\<cdot>y) = y
huffman@16085
   371
    \<Longrightarrow> \<forall>x y::'b. x \<sqsubseteq> y \<longrightarrow> x = \<bottom> \<or> x = y"
huffman@16085
   372
apply clarify
huffman@16209
   373
apply (drule_tac f=g in monofun_cfun_arg)
huffman@16085
   374
apply (drule ax_flat [rule_format])
huffman@16085
   375
apply (erule disjE)
huffman@16085
   376
apply (simp add: injection_defined_rev)
huffman@16085
   377
apply (simp add: injection_eq)
huffman@15576
   378
done
huffman@15576
   379
huffman@15589
   380
text {* a result about functions with flat codomain *}
huffman@15576
   381
huffman@16085
   382
lemma flat_eqI: "\<lbrakk>(x::'a::flat) \<sqsubseteq> y; x \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> x = y"
huffman@16085
   383
by (drule ax_flat [rule_format], simp)
huffman@16085
   384
huffman@16085
   385
lemma flat_codom:
huffman@16085
   386
  "f\<cdot>x = (c::'b::flat) \<Longrightarrow> f\<cdot>\<bottom> = \<bottom> \<or> (\<forall>z. f\<cdot>z = c)"
huffman@16085
   387
apply (case_tac "f\<cdot>x = \<bottom>")
huffman@15576
   388
apply (rule disjI1)
huffman@15576
   389
apply (rule UU_I)
huffman@16085
   390
apply (erule_tac t="\<bottom>" in subst)
huffman@15576
   391
apply (rule minimal [THEN monofun_cfun_arg])
huffman@16085
   392
apply clarify
huffman@16085
   393
apply (rule_tac a = "f\<cdot>\<bottom>" in refl [THEN box_equals])
huffman@16085
   394
apply (erule minimal [THEN monofun_cfun_arg, THEN flat_eqI])
huffman@16085
   395
apply (erule minimal [THEN monofun_cfun_arg, THEN flat_eqI])
huffman@15589
   396
done
huffman@15589
   397
huffman@15589
   398
huffman@15589
   399
subsection {* Identity and composition *}
huffman@15589
   400
huffman@15589
   401
consts
huffman@16085
   402
  ID      :: "'a \<rightarrow> 'a"
huffman@16085
   403
  cfcomp  :: "('b \<rightarrow> 'c) \<rightarrow> ('a \<rightarrow> 'b) \<rightarrow> 'a \<rightarrow> 'c"
huffman@15589
   404
huffman@16085
   405
syntax  "@oo" :: "['b \<rightarrow> 'c, 'a \<rightarrow> 'b] \<Rightarrow> 'a \<rightarrow> 'c" (infixr "oo" 100)
huffman@15589
   406
     
huffman@16085
   407
translations  "f1 oo f2" == "cfcomp$f1$f2"
huffman@15589
   408
huffman@15589
   409
defs
huffman@16085
   410
  ID_def: "ID \<equiv> (\<Lambda> x. x)"
huffman@16085
   411
  oo_def: "cfcomp \<equiv> (\<Lambda> f g x. f\<cdot>(g\<cdot>x))" 
huffman@15589
   412
huffman@16085
   413
lemma ID1 [simp]: "ID\<cdot>x = x"
huffman@16085
   414
by (simp add: ID_def)
huffman@15576
   415
huffman@16085
   416
lemma cfcomp1: "(f oo g) = (\<Lambda> x. f\<cdot>(g\<cdot>x))"
huffman@15589
   417
by (simp add: oo_def)
huffman@15576
   418
huffman@16085
   419
lemma cfcomp2 [simp]: "(f oo g)\<cdot>x = f\<cdot>(g\<cdot>x)"
huffman@15589
   420
by (simp add: cfcomp1)
huffman@15576
   421
huffman@15589
   422
text {*
huffman@15589
   423
  Show that interpretation of (pcpo,@{text "_->_"}) is a category.
huffman@15589
   424
  The class of objects is interpretation of syntactical class pcpo.
huffman@15589
   425
  The class of arrows  between objects @{typ 'a} and @{typ 'b} is interpret. of @{typ "'a -> 'b"}.
huffman@15589
   426
  The identity arrow is interpretation of @{term ID}.
huffman@15589
   427
  The composition of f and g is interpretation of @{text "oo"}.
huffman@15589
   428
*}
huffman@15576
   429
huffman@16085
   430
lemma ID2 [simp]: "f oo ID = f"
huffman@15589
   431
by (rule ext_cfun, simp)
huffman@15576
   432
huffman@16085
   433
lemma ID3 [simp]: "ID oo f = f"
huffman@15589
   434
by (rule ext_cfun, simp)
huffman@15576
   435
huffman@15576
   436
lemma assoc_oo: "f oo (g oo h) = (f oo g) oo h"
huffman@15589
   437
by (rule ext_cfun, simp)
huffman@15576
   438
huffman@16085
   439
huffman@16085
   440
subsection {* Strictified functions *}
huffman@16085
   441
huffman@16085
   442
defaultsort pcpo
huffman@16085
   443
huffman@17815
   444
constdefs
huffman@16085
   445
  strictify  :: "('a \<rightarrow> 'b) \<rightarrow> 'a \<rightarrow> 'b"
huffman@17815
   446
  "strictify \<equiv> (\<Lambda> f x. if x = \<bottom> then \<bottom> else f\<cdot>x)"
huffman@16085
   447
huffman@16085
   448
text {* results about strictify *}
huffman@16085
   449
huffman@17815
   450
lemma cont_strictify1: "cont (\<lambda>f. if x = \<bottom> then \<bottom> else f\<cdot>x)"
huffman@17815
   451
by (simp add: cont_if)
huffman@16085
   452
huffman@17815
   453
lemma monofun_strictify2: "monofun (\<lambda>x. if x = \<bottom> then \<bottom> else f\<cdot>x)"
huffman@17815
   454
apply (rule monofunI)
huffman@17815
   455
apply (auto simp add: monofun_cfun_arg eq_UU_iff [symmetric])
huffman@16085
   456
done
huffman@16085
   457
huffman@17815
   458
(*FIXME: long proof*)
huffman@17815
   459
lemma contlub_strictify2: "contlub (\<lambda>x. if x = \<bottom> then \<bottom> else f\<cdot>x)"
huffman@16209
   460
apply (rule contlubI)
huffman@16085
   461
apply (case_tac "lub (range Y) = \<bottom>")
huffman@16699
   462
apply (drule (1) chain_UU_I)
huffman@17815
   463
apply (simp add: thelub_const)
huffman@17815
   464
apply (simp del: if_image_distrib)
huffman@17815
   465
apply (simp only: contlub_cfun_arg)
huffman@16085
   466
apply (rule lub_equal2)
huffman@16085
   467
apply (rule chain_mono2 [THEN exE])
huffman@16085
   468
apply (erule chain_UU_I_inverse2)
huffman@16085
   469
apply (assumption)
huffman@17815
   470
apply (rule_tac x=x in exI, clarsimp)
huffman@16085
   471
apply (erule chain_monofun)
huffman@17815
   472
apply (erule monofun_strictify2 [THEN ch2ch_monofun])
huffman@16085
   473
done
huffman@16085
   474
huffman@17815
   475
lemmas cont_strictify2 =
huffman@17815
   476
  monocontlub2cont [OF monofun_strictify2 contlub_strictify2, standard]
huffman@17815
   477
huffman@17815
   478
lemma strictify_conv_if: "strictify\<cdot>f\<cdot>x = (if x = \<bottom> then \<bottom> else f\<cdot>x)"
huffman@17815
   479
by (unfold strictify_def, simp add: cont_strictify1 cont_strictify2)
huffman@16085
   480
huffman@16085
   481
lemma strictify1 [simp]: "strictify\<cdot>f\<cdot>\<bottom> = \<bottom>"
huffman@17815
   482
by (simp add: strictify_conv_if)
huffman@16085
   483
huffman@16085
   484
lemma strictify2 [simp]: "x \<noteq> \<bottom> \<Longrightarrow> strictify\<cdot>f\<cdot>x = f\<cdot>x"
huffman@17815
   485
by (simp add: strictify_conv_if)
huffman@16085
   486
huffman@17816
   487
subsection {* Continuous let-bindings *}
huffman@17816
   488
huffman@17816
   489
constdefs
huffman@17816
   490
  CLet :: "'a \<rightarrow> ('a \<rightarrow> 'b) \<rightarrow> 'b"
huffman@17816
   491
  "CLet \<equiv> \<Lambda> s f. f\<cdot>s"
huffman@17816
   492
huffman@17816
   493
syntax
huffman@17816
   494
  "_CLet" :: "[letbinds, 'a] => 'a" ("(Let (_)/ in (_))" 10)
huffman@17816
   495
huffman@17816
   496
translations
huffman@17816
   497
  "_CLet (_binds b bs) e" == "_CLet b (_CLet bs e)"
huffman@17816
   498
  "Let x = a in e" == "CLet$a$(LAM x. e)"
huffman@17816
   499
huffman@15576
   500
end