src/HOL/Hoare/hoare_tac.ML
author wenzelm
Fri Feb 21 20:29:33 2014 +0100 (2014-02-21)
changeset 55659 4089f6e98ab9
parent 55414 eab03e9cee8a
child 55660 f0f895716a8b
permissions -rw-r--r--
reduced ML warnings;
wenzelm@24475
     1
(*  Title:      HOL/Hoare/hoare_tac.ML
wenzelm@24475
     2
    Author:     Leonor Prensa Nieto & Tobias Nipkow
wenzelm@24475
     3
wenzelm@24475
     4
Derivation of the proof rules and, most importantly, the VCG tactic.
wenzelm@24475
     5
*)
wenzelm@24475
     6
wenzelm@41449
     7
(* FIXME structure Hoare: HOARE *)
wenzelm@41449
     8
wenzelm@24475
     9
(*** The tactics ***)
wenzelm@24475
    10
wenzelm@24475
    11
(*****************************************************************************)
wenzelm@24475
    12
(** The function Mset makes the theorem                                     **)
wenzelm@24475
    13
(** "?Mset <= {(x1,...,xn). ?P (x1,...,xn)} ==> ?Mset <= {s. ?P s}",        **)
wenzelm@24475
    14
(** where (x1,...,xn) are the variables of the particular program we are    **)
wenzelm@24475
    15
(** working on at the moment of the call                                    **)
wenzelm@24475
    16
(*****************************************************************************)
wenzelm@24475
    17
wenzelm@41449
    18
local
wenzelm@24475
    19
wenzelm@24475
    20
(** maps (%x1 ... xn. t) to [x1,...,xn] **)
blanchet@55414
    21
fun abs2list (Const (@{const_name case_prod}, _) $ Abs (x, T, t)) = Free (x, T) :: abs2list t
wenzelm@55659
    22
  | abs2list (Abs (x, T, _)) = [Free (x, T)]
wenzelm@24475
    23
  | abs2list _ = [];
wenzelm@24475
    24
wenzelm@24475
    25
(** maps {(x1,...,xn). t} to [x1,...,xn] **)
haftmann@37677
    26
fun mk_vars (Const (@{const_name Collect},_) $ T) = abs2list T
wenzelm@24475
    27
  | mk_vars _ = [];
wenzelm@24475
    28
wenzelm@28457
    29
(** abstraction of body over a tuple formed from a list of free variables.
wenzelm@24475
    30
Types are also built **)
wenzelm@44241
    31
fun mk_abstupleC [] body = absfree ("x", HOLogic.unitT) body
wenzelm@44241
    32
  | mk_abstupleC [v] body = absfree (dest_Free v) body
wenzelm@44241
    33
  | mk_abstupleC (v :: w) body =
wenzelm@44241
    34
      let
wenzelm@44241
    35
        val (x, T) = dest_Free v;
wenzelm@44241
    36
        val z = mk_abstupleC w body;
wenzelm@44241
    37
        val T2 =
wenzelm@44241
    38
          (case z of
wenzelm@44241
    39
            Abs (_, T, _) => T
wenzelm@44241
    40
          | Const (_, Type (_, [_, Type (_, [T, _])])) $ _ => T);
wenzelm@44241
    41
      in
blanchet@55414
    42
        Const (@{const_name case_prod},
wenzelm@44241
    43
            (T --> T2 --> HOLogic.boolT) --> HOLogic.mk_prodT (T, T2) --> HOLogic.boolT) $
wenzelm@44241
    44
          absfree (x, T) z
wenzelm@44241
    45
      end;
wenzelm@24475
    46
wenzelm@24475
    47
(** maps [x1,...,xn] to (x1,...,xn) and types**)
wenzelm@24475
    48
fun mk_bodyC []      = HOLogic.unit
wenzelm@28457
    49
  | mk_bodyC (x::xs) = if xs=[] then x
wenzelm@24475
    50
               else let val (n, T) = dest_Free x ;
wenzelm@24475
    51
                        val z = mk_bodyC xs;
wenzelm@24475
    52
                        val T2 = case z of Free(_, T) => T
haftmann@37391
    53
                                         | Const (@{const_name Pair}, Type ("fun", [_, Type
wenzelm@24475
    54
                                            ("fun", [_, T])])) $ _ $ _ => T;
wenzelm@41449
    55
                 in Const (@{const_name Pair}, [T, T2] ---> HOLogic.mk_prodT (T, T2)) $ x $ z end;
wenzelm@24475
    56
wenzelm@28457
    57
(** maps a subgoal of the form:
wenzelm@28457
    58
        VARS x1 ... xn {._.} _ {._.} or to [x1,...,xn]**)
wenzelm@28457
    59
fun get_vars c =
wenzelm@28457
    60
  let
wenzelm@28457
    61
    val d = Logic.strip_assums_concl c;
wenzelm@41449
    62
    val Const _ $ pre $ _ $ _ = HOLogic.dest_Trueprop d;
wenzelm@28457
    63
  in mk_vars pre end;
wenzelm@24475
    64
wenzelm@28457
    65
fun mk_CollectC trm =
wenzelm@28457
    66
  let val T as Type ("fun",[t,_]) = fastype_of trm
wenzelm@41449
    67
  in HOLogic.Collect_const t $ trm end;
wenzelm@24475
    68
wenzelm@41449
    69
fun inclt ty = Const (@{const_name Orderings.less_eq}, [ty,ty] ---> HOLogic.boolT);
wenzelm@24475
    70
wenzelm@41449
    71
in
wenzelm@24475
    72
wenzelm@28457
    73
fun Mset ctxt prop =
wenzelm@28457
    74
  let
wenzelm@28457
    75
    val [(Mset, _), (P, _)] = Variable.variant_frees ctxt [] [("Mset", ()), ("P", ())];
wenzelm@24475
    76
wenzelm@28457
    77
    val vars = get_vars prop;
wenzelm@28457
    78
    val varsT = fastype_of (mk_bodyC vars);
wenzelm@41449
    79
    val big_Collect = mk_CollectC (mk_abstupleC vars (Free (P, varsT --> HOLogic.boolT) $ mk_bodyC vars));
wenzelm@41449
    80
    val small_Collect = mk_CollectC (Abs ("x", varsT, Free (P, varsT --> HOLogic.boolT) $ Bound 0));
wenzelm@28457
    81
wenzelm@28457
    82
    val MsetT = fastype_of big_Collect;
wenzelm@41449
    83
    fun Mset_incl t = HOLogic.mk_Trueprop (inclt MsetT $ Free (Mset, MsetT) $ t);
wenzelm@28457
    84
    val impl = Logic.mk_implies (Mset_incl big_Collect, Mset_incl small_Collect);
wenzelm@42793
    85
    val th = Goal.prove ctxt [Mset, P] [] impl (fn _ => blast_tac ctxt 1);
wenzelm@28457
    86
 in (vars, th) end;
wenzelm@24475
    87
wenzelm@24475
    88
end;
wenzelm@24475
    89
wenzelm@24475
    90
wenzelm@24475
    91
(*****************************************************************************)
wenzelm@24475
    92
(** Simplifying:                                                            **)
wenzelm@24475
    93
(** Some useful lemmata, lists and simplification tactics to control which  **)
wenzelm@24475
    94
(** theorems are used to simplify at each moment, so that the original      **)
wenzelm@24475
    95
(** input does not suffer any unexpected transformation                     **)
wenzelm@24475
    96
(*****************************************************************************)
wenzelm@24475
    97
wenzelm@24475
    98
(**Simp_tacs**)
wenzelm@24475
    99
wenzelm@51717
   100
fun before_set2pred_simp_tac ctxt =
wenzelm@51717
   101
  simp_tac (put_simpset HOL_basic_ss ctxt addsimps [Collect_conj_eq RS sym, @{thm Compl_Collect}]);
wenzelm@24475
   102
wenzelm@51717
   103
fun split_simp_tac ctxt =
wenzelm@51717
   104
  simp_tac (put_simpset HOL_basic_ss ctxt addsimps [@{thm split_conv}]);
wenzelm@24475
   105
wenzelm@24475
   106
(*****************************************************************************)
wenzelm@28457
   107
(** set2pred_tac transforms sets inclusion into predicates implication,     **)
wenzelm@24475
   108
(** maintaining the original variable names.                                **)
wenzelm@24475
   109
(** Ex. "{x. x=0} <= {x. x <= 1}" -set2pred-> "x=0 --> x <= 1"              **)
wenzelm@24475
   110
(** Subgoals containing intersections (A Int B) or complement sets (-A)     **)
wenzelm@24475
   111
(** are first simplified by "before_set2pred_simp_tac", that returns only   **)
wenzelm@24475
   112
(** subgoals of the form "{x. P x} <= {x. Q x}", which are easily           **)
wenzelm@24475
   113
(** transformed.                                                            **)
wenzelm@24475
   114
(** This transformation may solve very easy subgoals due to a ligth         **)
wenzelm@24475
   115
(** simplification done by (split_all_tac)                                  **)
wenzelm@24475
   116
(*****************************************************************************)
wenzelm@24475
   117
wenzelm@55659
   118
fun set2pred_tac ctxt var_names = SUBGOAL (fn (_, i) =>
wenzelm@51717
   119
  before_set2pred_simp_tac ctxt i THEN_MAYBE
wenzelm@28457
   120
  EVERY [
wenzelm@28457
   121
    rtac subsetI i,
wenzelm@28457
   122
    rtac CollectI i,
wenzelm@28457
   123
    dtac CollectD i,
wenzelm@51717
   124
    TRY (split_all_tac ctxt i) THEN_MAYBE
wenzelm@51717
   125
     (rename_tac var_names i THEN
wenzelm@51717
   126
      full_simp_tac (put_simpset HOL_basic_ss ctxt addsimps [@{thm split_conv}]) i)]);
wenzelm@24475
   127
wenzelm@24475
   128
(*****************************************************************************)
wenzelm@24475
   129
(** BasicSimpTac is called to simplify all verification conditions. It does **)
wenzelm@24475
   130
(** a light simplification by applying "mem_Collect_eq", then it calls      **)
wenzelm@24475
   131
(** MaxSimpTac, which solves subgoals of the form "A <= A",                 **)
wenzelm@24475
   132
(** and transforms any other into predicates, applying then                 **)
wenzelm@24475
   133
(** the tactic chosen by the user, which may solve the subgoal completely.  **)
wenzelm@24475
   134
(*****************************************************************************)
wenzelm@24475
   135
wenzelm@51717
   136
fun MaxSimpTac ctxt var_names tac =
wenzelm@51717
   137
  FIRST'[rtac subset_refl, set2pred_tac ctxt var_names THEN_MAYBE' tac];
wenzelm@24475
   138
wenzelm@51717
   139
fun BasicSimpTac ctxt var_names tac =
wenzelm@28457
   140
  simp_tac
wenzelm@51717
   141
    (put_simpset HOL_basic_ss ctxt
wenzelm@51717
   142
      addsimps [mem_Collect_eq, @{thm split_conv}] addsimprocs [Record.simproc])
wenzelm@51717
   143
  THEN_MAYBE' MaxSimpTac ctxt var_names tac;
wenzelm@24475
   144
wenzelm@24475
   145
wenzelm@28457
   146
(** hoare_rule_tac **)
wenzelm@28457
   147
wenzelm@51717
   148
fun hoare_rule_tac ctxt (vars, Mlem) tac =
wenzelm@28457
   149
  let
wenzelm@28457
   150
    val var_names = map (fst o dest_Free) vars;
wenzelm@28457
   151
    fun wlp_tac i =
wenzelm@28457
   152
      rtac @{thm SeqRule} i THEN rule_tac false (i + 1)
wenzelm@28457
   153
    and rule_tac pre_cond i st = st |> (*abstraction over st prevents looping*)
wenzelm@28457
   154
      ((wlp_tac i THEN rule_tac pre_cond i)
wenzelm@28457
   155
        ORELSE
wenzelm@28457
   156
        (FIRST [
wenzelm@28457
   157
          rtac @{thm SkipRule} i,
wenzelm@28457
   158
          rtac @{thm AbortRule} i,
wenzelm@28457
   159
          EVERY [
wenzelm@28457
   160
            rtac @{thm BasicRule} i,
wenzelm@28457
   161
            rtac Mlem i,
wenzelm@51717
   162
            split_simp_tac ctxt i],
wenzelm@28457
   163
          EVERY [
wenzelm@28457
   164
            rtac @{thm CondRule} i,
wenzelm@28457
   165
            rule_tac false (i + 2),
wenzelm@28457
   166
            rule_tac false (i + 1)],
wenzelm@28457
   167
          EVERY [
wenzelm@28457
   168
            rtac @{thm WhileRule} i,
wenzelm@51717
   169
            BasicSimpTac ctxt var_names tac (i + 2),
wenzelm@28457
   170
            rule_tac true (i + 1)]]
wenzelm@51717
   171
         THEN (if pre_cond then BasicSimpTac ctxt var_names tac i else rtac subset_refl i)));
wenzelm@28457
   172
  in rule_tac end;
wenzelm@28457
   173
wenzelm@28457
   174
wenzelm@28457
   175
(** tac is the tactic the user chooses to solve or simplify **)
wenzelm@28457
   176
(** the final verification conditions                       **)
wenzelm@28457
   177
wenzelm@55659
   178
fun hoare_tac ctxt tac = SUBGOAL (fn (goal, i) =>
wenzelm@51717
   179
  SELECT_GOAL (hoare_rule_tac ctxt (Mset ctxt goal) tac true 1) i);
wenzelm@28457
   180