src/HOL/Probability/Projective_Family.thy
author hoelzl
Mon Nov 19 16:09:11 2012 +0100 (2012-11-19)
changeset 50124 4161c834c2fd
parent 50123 69b35a75caf3
child 50244 de72bbe42190
permissions -rw-r--r--
tuned FinMap
immler@50042
     1
(*  Title:      HOL/Probability/Projective_Family.thy
immler@50042
     2
    Author:     Fabian Immler, TU München
immler@50042
     3
    Author:     Johannes Hölzl, TU München
immler@50042
     4
*)
immler@50042
     5
immler@50042
     6
header {*Projective Family*}
immler@50042
     7
immler@50039
     8
theory Projective_Family
immler@50039
     9
imports Finite_Product_Measure Probability_Measure
immler@50039
    10
begin
immler@50039
    11
immler@50087
    12
lemma (in product_prob_space) distr_restrict:
immler@50087
    13
  assumes "J \<noteq> {}" "J \<subseteq> K" "finite K"
immler@50087
    14
  shows "(\<Pi>\<^isub>M i\<in>J. M i) = distr (\<Pi>\<^isub>M i\<in>K. M i) (\<Pi>\<^isub>M i\<in>J. M i) (\<lambda>f. restrict f J)" (is "?P = ?D")
immler@50087
    15
proof (rule measure_eqI_generator_eq)
immler@50087
    16
  have "finite J" using `J \<subseteq> K` `finite K` by (auto simp add: finite_subset)
immler@50087
    17
  interpret J: finite_product_prob_space M J proof qed fact
immler@50087
    18
  interpret K: finite_product_prob_space M K proof qed fact
immler@50087
    19
immler@50087
    20
  let ?J = "{Pi\<^isub>E J E | E. \<forall>i\<in>J. E i \<in> sets (M i)}"
immler@50087
    21
  let ?F = "\<lambda>i. \<Pi>\<^isub>E k\<in>J. space (M k)"
immler@50087
    22
  let ?\<Omega> = "(\<Pi>\<^isub>E k\<in>J. space (M k))"
immler@50087
    23
  show "Int_stable ?J"
immler@50087
    24
    by (rule Int_stable_PiE)
immler@50087
    25
  show "range ?F \<subseteq> ?J" "(\<Union>i. ?F i) = ?\<Omega>"
immler@50087
    26
    using `finite J` by (auto intro!: prod_algebraI_finite)
immler@50087
    27
  { fix i show "emeasure ?P (?F i) \<noteq> \<infinity>" by simp }
immler@50087
    28
  show "?J \<subseteq> Pow ?\<Omega>" by (auto simp: Pi_iff dest: sets_into_space)
immler@50087
    29
  show "sets (\<Pi>\<^isub>M i\<in>J. M i) = sigma_sets ?\<Omega> ?J" "sets ?D = sigma_sets ?\<Omega> ?J"
immler@50087
    30
    using `finite J` by (simp_all add: sets_PiM prod_algebra_eq_finite Pi_iff)
immler@50087
    31
immler@50087
    32
  fix X assume "X \<in> ?J"
immler@50087
    33
  then obtain E where [simp]: "X = Pi\<^isub>E J E" and E: "\<forall>i\<in>J. E i \<in> sets (M i)" by auto
immler@50087
    34
  with `finite J` have X: "X \<in> sets (Pi\<^isub>M J M)"
immler@50087
    35
    by simp
immler@50087
    36
immler@50087
    37
  have "emeasure ?P X = (\<Prod> i\<in>J. emeasure (M i) (E i))"
immler@50087
    38
    using E by (simp add: J.measure_times)
immler@50087
    39
  also have "\<dots> = (\<Prod> i\<in>J. emeasure (M i) (if i \<in> J then E i else space (M i)))"
immler@50087
    40
    by simp
immler@50087
    41
  also have "\<dots> = (\<Prod> i\<in>K. emeasure (M i) (if i \<in> J then E i else space (M i)))"
immler@50087
    42
    using `finite K` `J \<subseteq> K`
immler@50087
    43
    by (intro setprod_mono_one_left) (auto simp: M.emeasure_space_1)
immler@50087
    44
  also have "\<dots> = emeasure (Pi\<^isub>M K M) (\<Pi>\<^isub>E i\<in>K. if i \<in> J then E i else space (M i))"
immler@50087
    45
    using E by (simp add: K.measure_times)
immler@50087
    46
  also have "(\<Pi>\<^isub>E i\<in>K. if i \<in> J then E i else space (M i)) = (\<lambda>f. restrict f J) -` Pi\<^isub>E J E \<inter> (\<Pi>\<^isub>E i\<in>K. space (M i))"
hoelzl@50123
    47
    using `J \<subseteq> K` sets_into_space E by (force simp: Pi_iff PiE_def split: split_if_asm)
immler@50087
    48
  finally show "emeasure (Pi\<^isub>M J M) X = emeasure ?D X"
immler@50087
    49
    using X `J \<subseteq> K` apply (subst emeasure_distr)
immler@50087
    50
    by (auto intro!: measurable_restrict_subset simp: space_PiM)
immler@50087
    51
qed
immler@50087
    52
immler@50087
    53
lemma (in product_prob_space) emeasure_prod_emb[simp]:
immler@50087
    54
  assumes L: "J \<noteq> {}" "J \<subseteq> L" "finite L" and X: "X \<in> sets (Pi\<^isub>M J M)"
immler@50087
    55
  shows "emeasure (Pi\<^isub>M L M) (prod_emb L M J X) = emeasure (Pi\<^isub>M J M) X"
immler@50087
    56
  by (subst distr_restrict[OF L])
immler@50087
    57
     (simp add: prod_emb_def space_PiM emeasure_distr measurable_restrict_subset L X)
immler@50087
    58
immler@50039
    59
definition
immler@50095
    60
  limP :: "'i set \<Rightarrow> ('i \<Rightarrow> 'a measure) \<Rightarrow> ('i set \<Rightarrow> ('i \<Rightarrow> 'a) measure) \<Rightarrow> ('i \<Rightarrow> 'a) measure" where
immler@50095
    61
  "limP I M P = extend_measure (\<Pi>\<^isub>E i\<in>I. space (M i))
immler@50039
    62
    {(J, X). (J \<noteq> {} \<or> I = {}) \<and> finite J \<and> J \<subseteq> I \<and> X \<in> (\<Pi> j\<in>J. sets (M j))}
immler@50039
    63
    (\<lambda>(J, X). prod_emb I M J (\<Pi>\<^isub>E j\<in>J. X j))
immler@50039
    64
    (\<lambda>(J, X). emeasure (P J) (Pi\<^isub>E J X))"
immler@50039
    65
immler@50095
    66
abbreviation "lim\<^isub>P \<equiv> limP"
immler@50095
    67
immler@50095
    68
lemma space_limP[simp]: "space (limP I M P) = space (PiM I M)"
immler@50095
    69
  by (auto simp add: limP_def space_PiM prod_emb_def intro!: space_extend_measure)
immler@50039
    70
immler@50095
    71
lemma sets_limP[simp]: "sets (limP I M P) = sets (PiM I M)"
immler@50095
    72
  by (auto simp add: limP_def sets_PiM prod_algebra_def prod_emb_def intro!: sets_extend_measure)
immler@50039
    73
immler@50095
    74
lemma measurable_limP1[simp]: "measurable (limP I M P) M' = measurable (\<Pi>\<^isub>M i\<in>I. M i) M'"
immler@50039
    75
  unfolding measurable_def by auto
immler@50039
    76
immler@50095
    77
lemma measurable_limP2[simp]: "measurable M' (limP I M P) = measurable M' (\<Pi>\<^isub>M i\<in>I. M i)"
immler@50039
    78
  unfolding measurable_def by auto
immler@50039
    79
immler@50039
    80
locale projective_family =
immler@50039
    81
  fixes I::"'i set" and P::"'i set \<Rightarrow> ('i \<Rightarrow> 'a) measure" and M::"('i \<Rightarrow> 'a measure)"
immler@50039
    82
  assumes projective: "\<And>J H X. J \<noteq> {} \<Longrightarrow> J \<subseteq> H \<Longrightarrow> H \<subseteq> I \<Longrightarrow> finite H \<Longrightarrow> X \<in> sets (PiM J M) \<Longrightarrow>
immler@50039
    83
     (P H) (prod_emb H M J X) = (P J) X"
hoelzl@50101
    84
  assumes proj_prob_space: "\<And>J. finite J \<Longrightarrow> prob_space (P J)"
immler@50039
    85
  assumes proj_space: "\<And>J. finite J \<Longrightarrow> space (P J) = space (PiM J M)"
immler@50039
    86
  assumes proj_sets: "\<And>J. finite J \<Longrightarrow> sets (P J) = sets (PiM J M)"
immler@50039
    87
begin
immler@50039
    88
immler@50095
    89
lemma emeasure_limP:
immler@50039
    90
  assumes "finite J"
immler@50039
    91
  assumes "J \<subseteq> I"
immler@50039
    92
  assumes A: "\<And>i. i\<in>J \<Longrightarrow> A i \<in> sets (M i)"
immler@50095
    93
  shows "emeasure (limP J M P) (Pi\<^isub>E J A) = emeasure (P J) (Pi\<^isub>E J A)"
immler@50039
    94
proof -
immler@50039
    95
  have "Pi\<^isub>E J (restrict A J) \<subseteq> (\<Pi>\<^isub>E i\<in>J. space (M i))"
hoelzl@50123
    96
    using sets_into_space[OF A] by (auto simp: PiE_iff) blast
immler@50095
    97
  hence "emeasure (limP J M P) (Pi\<^isub>E J A) =
immler@50095
    98
    emeasure (limP J M P) (prod_emb J M J (Pi\<^isub>E J A))"
hoelzl@50123
    99
    using assms(1-3) sets_into_space by (auto simp add: prod_emb_id PiE_def Pi_def)
immler@50039
   100
  also have "\<dots> = emeasure (P J) (Pi\<^isub>E J A)"
immler@50095
   101
  proof (rule emeasure_extend_measure_Pair[OF limP_def])
immler@50095
   102
    show "positive (sets (limP J M P)) (P J)" unfolding positive_def by auto
immler@50095
   103
    show "countably_additive (sets (limP J M P)) (P J)" unfolding countably_additive_def
immler@50039
   104
      by (auto simp: suminf_emeasure proj_sets[OF `finite J`])
immler@50040
   105
    show "(J \<noteq> {} \<or> J = {}) \<and> finite J \<and> J \<subseteq> J \<and> A \<in> (\<Pi> j\<in>J. sets (M j))"
immler@50039
   106
      using assms by auto
immler@50040
   107
    fix K and X::"'i \<Rightarrow> 'a set"
immler@50040
   108
    show "prod_emb J M K (Pi\<^isub>E K X) \<in> Pow (\<Pi>\<^isub>E i\<in>J. space (M i))"
immler@50040
   109
      by (auto simp: prod_emb_def)
immler@50040
   110
    assume JX: "(K \<noteq> {} \<or> J = {}) \<and> finite K \<and> K \<subseteq> J \<and> X \<in> (\<Pi> j\<in>K. sets (M j))"
immler@50040
   111
    thus "emeasure (P J) (prod_emb J M K (Pi\<^isub>E K X)) = emeasure (P K) (Pi\<^isub>E K X)"
immler@50040
   112
      using assms
immler@50040
   113
      apply (cases "J = {}")
immler@50040
   114
      apply (simp add: prod_emb_id)
immler@50040
   115
      apply (fastforce simp add: intro!: projective sets_PiM_I_finite)
immler@50040
   116
      done
immler@50039
   117
  qed
immler@50039
   118
  finally show ?thesis .
immler@50039
   119
qed
immler@50039
   120
immler@50095
   121
lemma limP_finite:
immler@50039
   122
  assumes "finite J"
immler@50039
   123
  assumes "J \<subseteq> I"
immler@50095
   124
  shows "limP J M P = P J" (is "?P = _")
immler@50039
   125
proof (rule measure_eqI_generator_eq)
immler@50039
   126
  let ?J = "{Pi\<^isub>E J E | E. \<forall>i\<in>J. E i \<in> sets (M i)}"
immler@50039
   127
  let ?\<Omega> = "(\<Pi>\<^isub>E k\<in>J. space (M k))"
hoelzl@50101
   128
  interpret prob_space "P J" using proj_prob_space `finite J` by simp
hoelzl@50124
   129
  show "emeasure ?P (\<Pi>\<^isub>E k\<in>J. space (M k)) \<noteq> \<infinity>" using assms `finite J` by (auto simp: emeasure_limP)
immler@50095
   130
  show "sets (limP J M P) = sigma_sets ?\<Omega> ?J" "sets (P J) = sigma_sets ?\<Omega> ?J"
immler@50039
   131
    using `finite J` proj_sets by (simp_all add: sets_PiM prod_algebra_eq_finite Pi_iff)
immler@50039
   132
  fix X assume "X \<in> ?J"
immler@50039
   133
  then obtain E where X: "X = Pi\<^isub>E J E" and E: "\<forall>i\<in>J. E i \<in> sets (M i)" by auto
immler@50095
   134
  with `finite J` have "X \<in> sets (limP J M P)" by simp
immler@50039
   135
  have emb_self: "prod_emb J M J (Pi\<^isub>E J E) = Pi\<^isub>E J E"
immler@50039
   136
    using E sets_into_space
immler@50039
   137
    by (auto intro!: prod_emb_PiE_same_index)
immler@50095
   138
  show "emeasure (limP J M P) X = emeasure (P J) X"
immler@50039
   139
    unfolding X using E
immler@50095
   140
    by (intro emeasure_limP assms) simp
hoelzl@50124
   141
qed (auto simp: Pi_iff dest: sets_into_space intro: Int_stable_PiE)
immler@50039
   142
immler@50039
   143
lemma emeasure_fun_emb[simp]:
immler@50039
   144
  assumes L: "J \<noteq> {}" "J \<subseteq> L" "finite L" "L \<subseteq> I" and X: "X \<in> sets (PiM J M)"
immler@50095
   145
  shows "emeasure (limP L M P) (prod_emb L M J X) = emeasure (limP J M P) X"
immler@50039
   146
  using assms
immler@50095
   147
  by (subst limP_finite) (auto simp: limP_finite finite_subset projective)
immler@50039
   148
hoelzl@50124
   149
abbreviation
hoelzl@50124
   150
  "emb L K X \<equiv> prod_emb L M K X"
hoelzl@50124
   151
immler@50042
   152
lemma prod_emb_injective:
hoelzl@50124
   153
  assumes "J \<subseteq> L" and sets: "X \<in> sets (Pi\<^isub>M J M)" "Y \<in> sets (Pi\<^isub>M J M)"
hoelzl@50124
   154
  assumes "emb L J X = emb L J Y"
immler@50042
   155
  shows "X = Y"
immler@50042
   156
proof (rule injective_vimage_restrict)
immler@50042
   157
  show "X \<subseteq> (\<Pi>\<^isub>E i\<in>J. space (M i))" "Y \<subseteq> (\<Pi>\<^isub>E i\<in>J. space (M i))"
immler@50042
   158
    using sets[THEN sets_into_space] by (auto simp: space_PiM)
immler@50042
   159
  have "\<forall>i\<in>L. \<exists>x. x \<in> space (M i)"
immler@50042
   160
  proof
immler@50042
   161
    fix i assume "i \<in> L"
hoelzl@50101
   162
    interpret prob_space "P {i}" using proj_prob_space by simp
immler@50042
   163
    from not_empty show "\<exists>x. x \<in> space (M i)" by (auto simp add: proj_space space_PiM)
immler@50042
   164
  qed
immler@50042
   165
  from bchoice[OF this]
hoelzl@50123
   166
  show "(\<Pi>\<^isub>E i\<in>L. space (M i)) \<noteq> {}" by (auto simp: PiE_def)
immler@50042
   167
  show "(\<lambda>x. restrict x J) -` X \<inter> (\<Pi>\<^isub>E i\<in>L. space (M i)) = (\<lambda>x. restrict x J) -` Y \<inter> (\<Pi>\<^isub>E i\<in>L. space (M i))"
immler@50042
   168
    using `prod_emb L M J X = prod_emb L M J Y` by (simp add: prod_emb_def)
immler@50042
   169
qed fact
immler@50042
   170
immler@50042
   171
definition generator :: "('i \<Rightarrow> 'a) set set" where
immler@50042
   172
  "generator = (\<Union>J\<in>{J. J \<noteq> {} \<and> finite J \<and> J \<subseteq> I}. emb I J ` sets (Pi\<^isub>M J M))"
immler@50042
   173
immler@50042
   174
lemma generatorI':
immler@50042
   175
  "J \<noteq> {} \<Longrightarrow> finite J \<Longrightarrow> J \<subseteq> I \<Longrightarrow> X \<in> sets (Pi\<^isub>M J M) \<Longrightarrow> emb I J X \<in> generator"
immler@50042
   176
  unfolding generator_def by auto
immler@50042
   177
immler@50042
   178
lemma algebra_generator:
immler@50042
   179
  assumes "I \<noteq> {}" shows "algebra (\<Pi>\<^isub>E i\<in>I. space (M i)) generator" (is "algebra ?\<Omega> ?G")
immler@50042
   180
  unfolding algebra_def algebra_axioms_def ring_of_sets_iff
immler@50042
   181
proof (intro conjI ballI)
immler@50042
   182
  let ?G = generator
immler@50042
   183
  show "?G \<subseteq> Pow ?\<Omega>"
immler@50042
   184
    by (auto simp: generator_def prod_emb_def)
immler@50042
   185
  from `I \<noteq> {}` obtain i where "i \<in> I" by auto
immler@50042
   186
  then show "{} \<in> ?G"
immler@50042
   187
    by (auto intro!: exI[of _ "{i}"] image_eqI[where x="\<lambda>i. {}"]
immler@50042
   188
             simp: sigma_sets.Empty generator_def prod_emb_def)
immler@50042
   189
  from `i \<in> I` show "?\<Omega> \<in> ?G"
immler@50042
   190
    by (auto intro!: exI[of _ "{i}"] image_eqI[where x="Pi\<^isub>E {i} (\<lambda>i. space (M i))"]
immler@50042
   191
             simp: generator_def prod_emb_def)
immler@50042
   192
  fix A assume "A \<in> ?G"
immler@50042
   193
  then obtain JA XA where XA: "JA \<noteq> {}" "finite JA" "JA \<subseteq> I" "XA \<in> sets (Pi\<^isub>M JA M)" and A: "A = emb I JA XA"
immler@50042
   194
    by (auto simp: generator_def)
immler@50042
   195
  fix B assume "B \<in> ?G"
immler@50042
   196
  then obtain JB XB where XB: "JB \<noteq> {}" "finite JB" "JB \<subseteq> I" "XB \<in> sets (Pi\<^isub>M JB M)" and B: "B = emb I JB XB"
immler@50042
   197
    by (auto simp: generator_def)
immler@50042
   198
  let ?RA = "emb (JA \<union> JB) JA XA"
immler@50042
   199
  let ?RB = "emb (JA \<union> JB) JB XB"
immler@50042
   200
  have *: "A - B = emb I (JA \<union> JB) (?RA - ?RB)" "A \<union> B = emb I (JA \<union> JB) (?RA \<union> ?RB)"
immler@50042
   201
    using XA A XB B by auto
immler@50042
   202
  show "A - B \<in> ?G" "A \<union> B \<in> ?G"
immler@50042
   203
    unfolding * using XA XB by (safe intro!: generatorI') auto
immler@50042
   204
qed
immler@50042
   205
immler@50042
   206
lemma sets_PiM_generator:
immler@50042
   207
  "sets (PiM I M) = sigma_sets (\<Pi>\<^isub>E i\<in>I. space (M i)) generator"
immler@50042
   208
proof cases
immler@50042
   209
  assume "I = {}" then show ?thesis
immler@50042
   210
    unfolding generator_def
immler@50042
   211
    by (auto simp: sets_PiM_empty sigma_sets_empty_eq cong: conj_cong)
immler@50042
   212
next
immler@50042
   213
  assume "I \<noteq> {}"
immler@50042
   214
  show ?thesis
immler@50042
   215
  proof
immler@50042
   216
    show "sets (Pi\<^isub>M I M) \<subseteq> sigma_sets (\<Pi>\<^isub>E i\<in>I. space (M i)) generator"
immler@50042
   217
      unfolding sets_PiM
immler@50042
   218
    proof (safe intro!: sigma_sets_subseteq)
immler@50042
   219
      fix A assume "A \<in> prod_algebra I M" with `I \<noteq> {}` show "A \<in> generator"
immler@50042
   220
        by (auto intro!: generatorI' sets_PiM_I_finite elim!: prod_algebraE)
immler@50042
   221
    qed
immler@50042
   222
  qed (auto simp: generator_def space_PiM[symmetric] intro!: sigma_sets_subset)
immler@50042
   223
qed
immler@50042
   224
immler@50042
   225
lemma generatorI:
immler@50042
   226
  "J \<noteq> {} \<Longrightarrow> finite J \<Longrightarrow> J \<subseteq> I \<Longrightarrow> X \<in> sets (Pi\<^isub>M J M) \<Longrightarrow> A = emb I J X \<Longrightarrow> A \<in> generator"
immler@50042
   227
  unfolding generator_def by auto
immler@50042
   228
immler@50042
   229
definition
immler@50042
   230
  "\<mu>G A =
immler@50095
   231
    (THE x. \<forall>J. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> J \<subseteq> I \<longrightarrow> (\<forall>X\<in>sets (Pi\<^isub>M J M). A = emb I J X \<longrightarrow> x = emeasure (limP J M P) X))"
immler@50042
   232
immler@50042
   233
lemma \<mu>G_spec:
immler@50042
   234
  assumes J: "J \<noteq> {}" "finite J" "J \<subseteq> I" "A = emb I J X" "X \<in> sets (Pi\<^isub>M J M)"
immler@50095
   235
  shows "\<mu>G A = emeasure (limP J M P) X"
immler@50042
   236
  unfolding \<mu>G_def
immler@50042
   237
proof (intro the_equality allI impI ballI)
immler@50042
   238
  fix K Y assume K: "K \<noteq> {}" "finite K" "K \<subseteq> I" "A = emb I K Y" "Y \<in> sets (Pi\<^isub>M K M)"
immler@50095
   239
  have "emeasure (limP K M P) Y = emeasure (limP (K \<union> J) M P) (emb (K \<union> J) K Y)"
immler@50042
   240
    using K J by simp
immler@50042
   241
  also have "emb (K \<union> J) K Y = emb (K \<union> J) J X"
immler@50042
   242
    using K J by (simp add: prod_emb_injective[of "K \<union> J" I])
immler@50095
   243
  also have "emeasure (limP (K \<union> J) M P) (emb (K \<union> J) J X) = emeasure (limP J M P) X"
immler@50042
   244
    using K J by simp
immler@50095
   245
  finally show "emeasure (limP J M P) X = emeasure (limP K M P) Y" ..
immler@50042
   246
qed (insert J, force)
immler@50042
   247
immler@50042
   248
lemma \<mu>G_eq:
immler@50095
   249
  "J \<noteq> {} \<Longrightarrow> finite J \<Longrightarrow> J \<subseteq> I \<Longrightarrow> X \<in> sets (Pi\<^isub>M J M) \<Longrightarrow> \<mu>G (emb I J X) = emeasure (limP J M P) X"
immler@50042
   250
  by (intro \<mu>G_spec) auto
immler@50042
   251
immler@50042
   252
lemma generator_Ex:
immler@50042
   253
  assumes *: "A \<in> generator"
immler@50095
   254
  shows "\<exists>J X. J \<noteq> {} \<and> finite J \<and> J \<subseteq> I \<and> X \<in> sets (Pi\<^isub>M J M) \<and> A = emb I J X \<and> \<mu>G A = emeasure (limP J M P) X"
immler@50042
   255
proof -
immler@50042
   256
  from * obtain J X where J: "J \<noteq> {}" "finite J" "J \<subseteq> I" "A = emb I J X" "X \<in> sets (Pi\<^isub>M J M)"
immler@50042
   257
    unfolding generator_def by auto
immler@50042
   258
  with \<mu>G_spec[OF this] show ?thesis by auto
immler@50042
   259
qed
immler@50042
   260
immler@50042
   261
lemma generatorE:
immler@50042
   262
  assumes A: "A \<in> generator"
immler@50095
   263
  obtains J X where "J \<noteq> {}" "finite J" "J \<subseteq> I" "X \<in> sets (Pi\<^isub>M J M)" "emb I J X = A" "\<mu>G A = emeasure (limP J M P) X"
hoelzl@50124
   264
  using generator_Ex[OF A] by atomize_elim auto
immler@50042
   265
immler@50042
   266
lemma merge_sets:
immler@50042
   267
  "J \<inter> K = {} \<Longrightarrow> A \<in> sets (Pi\<^isub>M (J \<union> K) M) \<Longrightarrow> x \<in> space (Pi\<^isub>M J M) \<Longrightarrow> (\<lambda>y. merge J K (x,y)) -` A \<inter> space (Pi\<^isub>M K M) \<in> sets (Pi\<^isub>M K M)"
immler@50042
   268
  by simp
immler@50042
   269
immler@50042
   270
lemma merge_emb:
immler@50042
   271
  assumes "K \<subseteq> I" "J \<subseteq> I" and y: "y \<in> space (Pi\<^isub>M J M)"
immler@50042
   272
  shows "((\<lambda>x. merge J (I - J) (y, x)) -` emb I K X \<inter> space (Pi\<^isub>M I M)) =
immler@50042
   273
    emb I (K - J) ((\<lambda>x. merge J (K - J) (y, x)) -` emb (J \<union> K) K X \<inter> space (Pi\<^isub>M (K - J) M))"
immler@50042
   274
proof -
immler@50042
   275
  have [simp]: "\<And>x J K L. merge J K (y, restrict x L) = merge J (K \<inter> L) (y, x)"
immler@50042
   276
    by (auto simp: restrict_def merge_def)
immler@50042
   277
  have [simp]: "\<And>x J K L. restrict (merge J K (y, x)) L = merge (J \<inter> L) (K \<inter> L) (y, x)"
immler@50042
   278
    by (auto simp: restrict_def merge_def)
immler@50042
   279
  have [simp]: "(I - J) \<inter> K = K - J" using `K \<subseteq> I` `J \<subseteq> I` by auto
immler@50042
   280
  have [simp]: "(K - J) \<inter> (K \<union> J) = K - J" by auto
immler@50042
   281
  have [simp]: "(K - J) \<inter> K = K - J" by auto
immler@50042
   282
  from y `K \<subseteq> I` `J \<subseteq> I` show ?thesis
hoelzl@50123
   283
    by (simp split: split_merge add: prod_emb_def Pi_iff PiE_def extensional_merge_sub set_eq_iff space_PiM)
immler@50042
   284
       auto
immler@50042
   285
qed
immler@50042
   286
immler@50042
   287
lemma positive_\<mu>G:
immler@50042
   288
  assumes "I \<noteq> {}"
immler@50042
   289
  shows "positive generator \<mu>G"
immler@50042
   290
proof -
immler@50042
   291
  interpret G!: algebra "\<Pi>\<^isub>E i\<in>I. space (M i)" generator by (rule algebra_generator) fact
immler@50042
   292
  show ?thesis
immler@50042
   293
  proof (intro positive_def[THEN iffD2] conjI ballI)
immler@50042
   294
    from generatorE[OF G.empty_sets] guess J X . note this[simp]
immler@50042
   295
    have "X = {}"
immler@50042
   296
      by (rule prod_emb_injective[of J I]) simp_all
immler@50042
   297
    then show "\<mu>G {} = 0" by simp
immler@50042
   298
  next
immler@50042
   299
    fix A assume "A \<in> generator"
immler@50042
   300
    from generatorE[OF this] guess J X . note this[simp]
immler@50042
   301
    show "0 \<le> \<mu>G A" by (simp add: emeasure_nonneg)
immler@50042
   302
  qed
immler@50042
   303
qed
immler@50042
   304
immler@50042
   305
lemma additive_\<mu>G:
immler@50042
   306
  assumes "I \<noteq> {}"
immler@50042
   307
  shows "additive generator \<mu>G"
immler@50042
   308
proof -
immler@50042
   309
  interpret G!: algebra "\<Pi>\<^isub>E i\<in>I. space (M i)" generator by (rule algebra_generator) fact
immler@50042
   310
  show ?thesis
immler@50042
   311
  proof (intro additive_def[THEN iffD2] ballI impI)
immler@50042
   312
    fix A assume "A \<in> generator" with generatorE guess J X . note J = this
immler@50042
   313
    fix B assume "B \<in> generator" with generatorE guess K Y . note K = this
immler@50042
   314
    assume "A \<inter> B = {}"
immler@50042
   315
    have JK: "J \<union> K \<noteq> {}" "J \<union> K \<subseteq> I" "finite (J \<union> K)"
immler@50042
   316
      using J K by auto
immler@50042
   317
    have JK_disj: "emb (J \<union> K) J X \<inter> emb (J \<union> K) K Y = {}"
immler@50042
   318
      apply (rule prod_emb_injective[of "J \<union> K" I])
immler@50042
   319
      apply (insert `A \<inter> B = {}` JK J K)
immler@50042
   320
      apply (simp_all add: Int prod_emb_Int)
immler@50042
   321
      done
immler@50042
   322
    have AB: "A = emb I (J \<union> K) (emb (J \<union> K) J X)" "B = emb I (J \<union> K) (emb (J \<union> K) K Y)"
immler@50042
   323
      using J K by simp_all
immler@50042
   324
    then have "\<mu>G (A \<union> B) = \<mu>G (emb I (J \<union> K) (emb (J \<union> K) J X \<union> emb (J \<union> K) K Y))"
immler@50042
   325
      by simp
immler@50095
   326
    also have "\<dots> = emeasure (limP (J \<union> K) M P) (emb (J \<union> K) J X \<union> emb (J \<union> K) K Y)"
immler@50042
   327
      using JK J(1, 4) K(1, 4) by (simp add: \<mu>G_eq Un del: prod_emb_Un)
immler@50042
   328
    also have "\<dots> = \<mu>G A + \<mu>G B"
immler@50042
   329
      using J K JK_disj by (simp add: plus_emeasure[symmetric])
immler@50042
   330
    finally show "\<mu>G (A \<union> B) = \<mu>G A + \<mu>G B" .
immler@50042
   331
  qed
immler@50042
   332
qed
immler@50042
   333
immler@50039
   334
end
immler@50039
   335
immler@50087
   336
sublocale product_prob_space \<subseteq> projective_family I "\<lambda>J. PiM J M" M
immler@50087
   337
proof
immler@50087
   338
  fix J::"'i set" assume "finite J"
immler@50087
   339
  interpret f: finite_product_prob_space M J proof qed fact
immler@50087
   340
  show "emeasure (Pi\<^isub>M J M) (space (Pi\<^isub>M J M)) \<noteq> \<infinity>" by simp
immler@50087
   341
  show "\<exists>A. range A \<subseteq> sets (Pi\<^isub>M J M) \<and>
immler@50087
   342
            (\<Union>i. A i) = space (Pi\<^isub>M J M) \<and>
immler@50087
   343
            (\<forall>i. emeasure (Pi\<^isub>M J M) (A i) \<noteq> \<infinity>)" using sigma_finite[OF `finite J`]
immler@50087
   344
    by (auto simp add: sigma_finite_measure_def)
immler@50087
   345
  show "emeasure (Pi\<^isub>M J M) (space (Pi\<^isub>M J M)) = 1" by (rule f.emeasure_space_1)
immler@50087
   346
qed simp_all
immler@50087
   347
immler@50095
   348
lemma (in product_prob_space) limP_PiM_finite[simp]:
immler@50095
   349
  assumes "J \<noteq> {}" "finite J" "J \<subseteq> I" shows "limP J M (\<lambda>J. PiM J M) = PiM J M"
immler@50095
   350
  using assms by (simp add: limP_finite)
immler@50087
   351
immler@50039
   352
end