src/HOL/Fun.thy
author wenzelm
Sun Jul 16 20:48:35 2000 +0200 (2000-07-16)
changeset 9352 416b2ecd97a1
parent 9340 9666f78ecfab
child 10212 33fe2d701ddd
permissions -rw-r--r--
syntax (symbols) "op o" moved from HOL to Fun;
clasohm@1475
     1
(*  Title:      HOL/Fun.thy
clasohm@923
     2
    ID:         $Id$
clasohm@1475
     3
    Author:     Tobias Nipkow, Cambridge University Computer Laboratory
clasohm@923
     4
    Copyright   1994  University of Cambridge
clasohm@923
     5
nipkow@2912
     6
Notions about functions.
clasohm@923
     7
*)
clasohm@923
     8
paulson@8960
     9
Fun = Vimage + equalities + 
nipkow@2912
    10
paulson@4059
    11
instance set :: (term) order
paulson@4059
    12
                       (subset_refl,subset_trans,subset_antisym,psubset_eq)
paulson@6171
    13
consts
paulson@6171
    14
  fun_upd  :: "('a => 'b) => 'a => 'b => ('a => 'b)"
paulson@6171
    15
wenzelm@9141
    16
nonterminals
wenzelm@9141
    17
  updbinds updbind
oheimb@5305
    18
syntax
oheimb@5305
    19
  "_updbind"       :: ['a, 'a] => updbind             ("(2_ :=/ _)")
oheimb@5305
    20
  ""               :: updbind => updbinds             ("_")
oheimb@5305
    21
  "_updbinds"      :: [updbind, updbinds] => updbinds ("_,/ _")
oheimb@8258
    22
  "_Update"        :: ['a, updbinds] => 'a            ("_/'((_)')" [1000,0] 900)
oheimb@5305
    23
oheimb@5305
    24
translations
oheimb@5305
    25
  "_Update f (_updbinds b bs)"  == "_Update (_Update f b) bs"
oheimb@5305
    26
  "f(x:=y)"                     == "fun_upd f x y"
nipkow@2912
    27
nipkow@2912
    28
defs
paulson@6171
    29
  fun_upd_def "f(a:=b) == % x. if x=a then b else f x"
nipkow@2912
    30
oheimb@9340
    31
(* Hint: to define the sum of two functions (or maps), use sum_case.
oheimb@9340
    32
         A nice infix syntax could be defined (in Datatype.thy or below) by
oheimb@9340
    33
consts
oheimb@9340
    34
  fun_sum :: "('a => 'c) => ('b => 'c) => (('a+'b) => 'c)" (infixr "'(+')"80)
oheimb@9340
    35
translations
oheimb@9340
    36
 "fun_sum" == "sum_case"
oheimb@9340
    37
*)
paulson@6171
    38
  
paulson@6171
    39
constdefs
paulson@6171
    40
  id ::  'a => 'a
paulson@6171
    41
    "id == %x. x"
paulson@6171
    42
paulson@6171
    43
  o  :: ['b => 'c, 'a => 'b, 'a] => 'c   (infixl 55)
paulson@6171
    44
    "f o g == %x. f(g(x))"
paulson@7374
    45
  
paulson@7374
    46
  inv :: ('a => 'b) => ('b => 'a)
paulson@7374
    47
    "inv(f::'a=>'b) == % y. @x. f(x)=y"
paulson@6171
    48
paulson@6171
    49
  inj_on :: ['a => 'b, 'a set] => bool
paulson@6171
    50
    "inj_on f A == ! x:A. ! y:A. f(x)=f(y) --> x=y"
nipkow@2912
    51
wenzelm@9352
    52
syntax (symbols)
wenzelm@9352
    53
  "op o"        :: "['b => 'c, 'a => 'b, 'a] => 'c"      (infixl "\\<circ>" 55)
wenzelm@9352
    54
paulson@6171
    55
syntax
paulson@6171
    56
  inj   :: ('a => 'b) => bool                   (*injective*)
paulson@6171
    57
paulson@6171
    58
translations
paulson@6171
    59
  "inj f" == "inj_on f UNIV"
paulson@5852
    60
paulson@7374
    61
constdefs
paulson@7374
    62
  surj :: ('a => 'b) => bool                   (*surjective*)
paulson@7374
    63
    "surj f == ! y. ? x. y=f(x)"
paulson@7374
    64
  
paulson@7374
    65
  bij :: ('a => 'b) => bool                    (*bijective*)
paulson@7374
    66
    "bij f == inj f & surj f"
paulson@7374
    67
  
paulson@7374
    68
paulson@5852
    69
(*The Pi-operator, by Florian Kammueller*)
paulson@5852
    70
  
paulson@5852
    71
constdefs
paulson@5852
    72
  Pi      :: "['a set, 'a => 'b set] => ('a => 'b) set"
paulson@5852
    73
    "Pi A B == {f. ! x. if x:A then f(x) : B(x) else f(x) = (@ y. True)}"
paulson@5852
    74
paulson@5852
    75
  restrict :: "['a => 'b, 'a set] => ('a => 'b)"
paulson@5852
    76
    "restrict f A == (%x. if x : A then f x else (@ y. True))"
paulson@5852
    77
paulson@5852
    78
syntax
paulson@5852
    79
  "@Pi"  :: "[idt, 'a set, 'b set] => ('a => 'b) set"  ("(3PI _:_./ _)" 10)
paulson@5852
    80
  funcset :: "['a set, 'b set] => ('a => 'b) set"      (infixr 60) 
paulson@5852
    81
  "@lam" :: "[pttrn, 'a set, 'a => 'b] => ('a => 'b)"  ("(3lam _:_./ _)" 10)
paulson@5852
    82
paulson@5852
    83
  (*Giving funcset the nice arrow syntax -> clashes with existing theories*)
paulson@5852
    84
paulson@5852
    85
translations
paulson@5852
    86
  "PI x:A. B" => "Pi A (%x. B)"
paulson@5852
    87
  "A funcset B"    => "Pi A (_K B)"
paulson@5852
    88
  "lam x:A. f"  == "restrict (%x. f) A"
paulson@5852
    89
paulson@5852
    90
constdefs
paulson@5852
    91
  Applyall :: "[('a => 'b) set, 'a]=> 'b set"
paulson@5852
    92
    "Applyall F a == (%f. f a) `` F"
paulson@5852
    93
wenzelm@9309
    94
  compose :: "['a set, 'b => 'c, 'a => 'b] => ('a => 'c)"
paulson@5852
    95
    "compose A g f == lam x : A. g(f x)"
paulson@5852
    96
paulson@5852
    97
  Inv    :: "['a set, 'a => 'b] => ('b => 'a)"
paulson@5852
    98
    "Inv A f == (% x. (@ y. y : A & f y = x))"
paulson@5852
    99
paulson@5852
   100
  
nipkow@2912
   101
end
paulson@5852
   102
paulson@5852
   103
ML
paulson@5852
   104
val print_translation = [("Pi", dependent_tr' ("@Pi", "op funcset"))];