src/HOL/Tools/inductive_package.ML
author berghofe
Thu Apr 05 14:51:28 2007 +0200 (2007-04-05)
changeset 22605 41b092e7d89a
parent 22460 b4f96f343d6c
child 22667 cbfb899dd674
permissions -rw-r--r--
- Removed occurrences of ProofContext.export in add_ind_def that
caused theorems to end up in the wrong context
- Explicit parameters are now generalized in theorems returned
by add_inductive(_i)
berghofe@5094
     1
(*  Title:      HOL/Tools/inductive_package.ML
berghofe@5094
     2
    ID:         $Id$
berghofe@5094
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
wenzelm@21367
     4
    Author:     Stefan Berghofer and Markus Wenzel, TU Muenchen
berghofe@5094
     5
wenzelm@6424
     6
(Co)Inductive Definition module for HOL.
berghofe@5094
     7
berghofe@5094
     8
Features:
wenzelm@6424
     9
  * least or greatest fixedpoints
wenzelm@6424
    10
  * mutually recursive definitions
wenzelm@6424
    11
  * definitions involving arbitrary monotone operators
wenzelm@6424
    12
  * automatically proves introduction and elimination rules
berghofe@5094
    13
berghofe@5094
    14
  Introduction rules have the form
berghofe@21024
    15
  [| M Pj ti, ..., Q x, ... |] ==> Pk t
berghofe@5094
    16
  where M is some monotone operator (usually the identity)
berghofe@21024
    17
  Q x is any side condition on the free variables
berghofe@5094
    18
  ti, t are any terms
berghofe@21024
    19
  Pj, Pk are two of the predicates being defined in mutual recursion
berghofe@5094
    20
*)
berghofe@5094
    21
berghofe@5094
    22
signature INDUCTIVE_PACKAGE =
berghofe@5094
    23
sig
wenzelm@6424
    24
  val quiet_mode: bool ref
berghofe@21024
    25
  type inductive_result
wenzelm@21526
    26
  val morph_result: morphism -> inductive_result -> inductive_result
berghofe@21024
    27
  type inductive_info
wenzelm@21526
    28
  val the_inductive: Proof.context -> string -> inductive_info
wenzelm@21367
    29
  val print_inductives: Proof.context -> unit
wenzelm@18728
    30
  val mono_add: attribute
wenzelm@18728
    31
  val mono_del: attribute
wenzelm@21367
    32
  val get_monos: Proof.context -> thm list
wenzelm@21367
    33
  val mk_cases: Proof.context -> term -> thm
wenzelm@10910
    34
  val inductive_forall_name: string
wenzelm@10910
    35
  val inductive_forall_def: thm
wenzelm@10910
    36
  val rulify: thm -> thm
wenzelm@21367
    37
  val inductive_cases: ((bstring * Attrib.src list) * string list) list ->
wenzelm@21367
    38
    Proof.context -> thm list list * local_theory
wenzelm@21367
    39
  val inductive_cases_i: ((bstring * Attrib.src list) * term list) list ->
wenzelm@21367
    40
    Proof.context -> thm list list * local_theory
wenzelm@21367
    41
  val add_inductive_i: bool -> bstring -> bool -> bool -> bool ->
wenzelm@21367
    42
    (string * typ option * mixfix) list ->
berghofe@21024
    43
    (string * typ option) list -> ((bstring * Attrib.src list) * term) list -> thm list ->
wenzelm@21367
    44
      local_theory -> inductive_result * local_theory
berghofe@21024
    45
  val add_inductive: bool -> bool -> (string * string option * mixfix) list ->
berghofe@21024
    46
    (string * string option * mixfix) list ->
berghofe@21024
    47
    ((bstring * Attrib.src list) * string) list -> (thmref * Attrib.src list) list ->
wenzelm@21367
    48
    local_theory -> inductive_result * local_theory
wenzelm@21526
    49
  val add_inductive_global: bool -> bstring -> bool -> bool -> bool ->
wenzelm@21526
    50
    (string * typ option * mixfix) list -> (string * typ option) list ->
wenzelm@21526
    51
    ((bstring * Attrib.src list) * term) list -> thm list -> theory -> inductive_result * theory
wenzelm@18708
    52
  val setup: theory -> theory
berghofe@5094
    53
end;
berghofe@5094
    54
wenzelm@6424
    55
structure InductivePackage: INDUCTIVE_PACKAGE =
berghofe@5094
    56
struct
berghofe@5094
    57
wenzelm@9598
    58
wenzelm@10729
    59
(** theory context references **)
wenzelm@10729
    60
nipkow@15525
    61
val mono_name = "Orderings.mono";
avigad@17010
    62
val gfp_name = "FixedPoint.gfp";
avigad@17010
    63
val lfp_name = "FixedPoint.lfp";
wenzelm@10735
    64
wenzelm@11991
    65
val inductive_forall_name = "HOL.induct_forall";
wenzelm@11991
    66
val inductive_forall_def = thm "induct_forall_def";
wenzelm@11991
    67
val inductive_conj_name = "HOL.induct_conj";
wenzelm@11991
    68
val inductive_conj_def = thm "induct_conj_def";
wenzelm@11991
    69
val inductive_conj = thms "induct_conj";
wenzelm@11991
    70
val inductive_atomize = thms "induct_atomize";
wenzelm@18463
    71
val inductive_rulify = thms "induct_rulify";
wenzelm@18463
    72
val inductive_rulify_fallback = thms "induct_rulify_fallback";
wenzelm@10729
    73
berghofe@21024
    74
val notTrueE = TrueI RSN (2, notE);
berghofe@21024
    75
val notFalseI = Seq.hd (atac 1 notI);
berghofe@21024
    76
val simp_thms' = map (fn s => mk_meta_eq (the (find_first
berghofe@21024
    77
  (equal (term_of (read_cterm HOL.thy (s, propT))) o prop_of) simp_thms)))
berghofe@21024
    78
  ["(~True) = False", "(~False) = True",
berghofe@21024
    79
   "(True --> ?P) = ?P", "(False --> ?P) = True",
berghofe@21024
    80
   "(?P & True) = ?P", "(True & ?P) = ?P"];
berghofe@21024
    81
wenzelm@10729
    82
wenzelm@10729
    83
wenzelm@10735
    84
(** theory data **)
berghofe@7710
    85
berghofe@21024
    86
type inductive_result =
berghofe@21024
    87
  {preds: term list, defs: thm list, elims: thm list, raw_induct: thm,
wenzelm@21367
    88
   induct: thm, intrs: thm list, mono: thm, unfold: thm};
berghofe@7710
    89
wenzelm@21526
    90
fun morph_result phi {preds, defs, elims, raw_induct: thm, induct, intrs, mono, unfold} =
wenzelm@21526
    91
  let
wenzelm@21526
    92
    val term = Morphism.term phi;
wenzelm@21526
    93
    val thm = Morphism.thm phi;
wenzelm@21526
    94
    val fact = Morphism.fact phi;
wenzelm@21526
    95
  in
wenzelm@21526
    96
   {preds = map term preds, defs = fact defs, elims = fact elims, raw_induct = thm raw_induct,
wenzelm@21526
    97
    induct = thm induct, intrs = fact intrs, mono = thm mono, unfold = thm unfold}
wenzelm@21526
    98
  end;
wenzelm@21526
    99
berghofe@21024
   100
type inductive_info =
berghofe@21024
   101
  {names: string list, coind: bool} * inductive_result;
berghofe@21024
   102
berghofe@21024
   103
structure InductiveData = GenericDataFun
wenzelm@16432
   104
(struct
wenzelm@21526
   105
  val name = "HOL/inductive";
berghofe@7710
   106
  type T = inductive_info Symtab.table * thm list;
berghofe@7710
   107
berghofe@7710
   108
  val empty = (Symtab.empty, []);
wenzelm@16432
   109
  val extend = I;
wenzelm@16432
   110
  fun merge _ ((tab1, monos1), (tab2, monos2)) =
wenzelm@11502
   111
    (Symtab.merge (K true) (tab1, tab2), Drule.merge_rules (monos1, monos2));
berghofe@7710
   112
wenzelm@21526
   113
  fun print context (tab, monos) =
wenzelm@21526
   114
    let
wenzelm@21526
   115
      val ctxt = Context.proof_of context;
wenzelm@21526
   116
      val space = Consts.space_of (ProofContext.consts_of ctxt);
wenzelm@21526
   117
    in
wenzelm@21526
   118
      [Pretty.strs ("(co)inductives:" :: map #1 (NameSpace.extern_table (space, tab))),
wenzelm@21526
   119
       Pretty.big_list "monotonicity rules:" (map (ProofContext.pretty_thm ctxt) monos)]
wenzelm@21526
   120
      |> Pretty.chunks |> Pretty.writeln
wenzelm@21526
   121
    end;
wenzelm@16432
   122
end);
berghofe@7710
   123
wenzelm@21526
   124
val get_inductives = InductiveData.get o Context.Proof;
wenzelm@21367
   125
val print_inductives = InductiveData.print o Context.Proof;
berghofe@7710
   126
berghofe@7710
   127
berghofe@7710
   128
(* get and put data *)
berghofe@7710
   129
wenzelm@21367
   130
fun the_inductive ctxt name =
wenzelm@21526
   131
  (case Symtab.lookup (#1 (get_inductives ctxt)) name of
berghofe@21024
   132
    NONE => error ("Unknown (co)inductive predicate " ^ quote name)
skalberg@15531
   133
  | SOME info => info);
wenzelm@9598
   134
wenzelm@18222
   135
fun put_inductives names info = InductiveData.map (apfst (fn tab =>
wenzelm@18222
   136
  fold (fn name => Symtab.update_new (name, info)) names tab
wenzelm@21526
   137
    handle Symtab.DUP d => error ("Duplicate definition of (co)inductive predicate " ^ quote d)));
berghofe@7710
   138
wenzelm@8277
   139
berghofe@7710
   140
berghofe@7710
   141
(** monotonicity rules **)
berghofe@7710
   142
wenzelm@21526
   143
val get_monos = #2 o get_inductives;
wenzelm@21367
   144
val map_monos = InductiveData.map o apsnd;
wenzelm@8277
   145
berghofe@7710
   146
fun mk_mono thm =
berghofe@7710
   147
  let
berghofe@22275
   148
    val concl = concl_of thm;
berghofe@22275
   149
    fun eq2mono thm' = [thm' RS (thm' RS eq_to_mono)] @
berghofe@22275
   150
      (case concl of
berghofe@7710
   151
          (_ $ (_ $ (Const ("Not", _) $ _) $ _)) => []
berghofe@22275
   152
        | _ => [thm' RS (thm' RS eq_to_mono2)]);
berghofe@22275
   153
    fun dest_less_concl thm = dest_less_concl (thm RS le_funD)
berghofe@22275
   154
      handle THM _ => thm RS le_boolD      
berghofe@7710
   155
  in
berghofe@22275
   156
    case concl of
berghofe@22275
   157
      Const ("==", _) $ _ $ _ => eq2mono (thm RS meta_eq_to_obj_eq)
berghofe@22275
   158
    | _ $ (Const ("op =", _) $ _ $ _) => eq2mono thm
berghofe@22275
   159
    | _ $ (Const ("Orderings.less_eq", _) $ _ $ _) =>
berghofe@22275
   160
      [dest_less_concl (Seq.hd (REPEAT (FIRSTGOAL
berghofe@22275
   161
         (resolve_tac [le_funI, le_boolI'])) thm))]
berghofe@22275
   162
    | _ => [thm]
berghofe@7710
   163
  end;
berghofe@7710
   164
wenzelm@21367
   165
val mono_add = Thm.declaration_attribute (map_monos o fold Drule.add_rule o mk_mono);
wenzelm@21367
   166
val mono_del = Thm.declaration_attribute (map_monos o fold Drule.del_rule o mk_mono);
berghofe@7710
   167
berghofe@7710
   168
wenzelm@7107
   169
wenzelm@10735
   170
(** misc utilities **)
wenzelm@6424
   171
berghofe@5662
   172
val quiet_mode = ref false;
wenzelm@10735
   173
fun message s = if ! quiet_mode then () else writeln s;
wenzelm@10735
   174
fun clean_message s = if ! quick_and_dirty then () else message s;
berghofe@5662
   175
wenzelm@21433
   176
val note_theorems = LocalTheory.notes Thm.theoremK;
wenzelm@21433
   177
val note_theorem = LocalTheory.note Thm.theoremK;
wenzelm@21433
   178
wenzelm@6424
   179
fun coind_prefix true = "co"
wenzelm@6424
   180
  | coind_prefix false = "";
wenzelm@6424
   181
berghofe@21024
   182
fun log b m n = if m >= n then 0 else 1 + log b (b * m) n;
wenzelm@6424
   183
berghofe@21024
   184
fun make_bool_args f g [] i = []
berghofe@21024
   185
  | make_bool_args f g (x :: xs) i =
berghofe@21024
   186
      (if i mod 2 = 0 then f x else g x) :: make_bool_args f g xs (i div 2);
berghofe@21024
   187
berghofe@21024
   188
fun make_bool_args' xs =
berghofe@21024
   189
  make_bool_args (K HOLogic.false_const) (K HOLogic.true_const) xs;
berghofe@21024
   190
berghofe@21024
   191
fun find_arg T x [] = sys_error "find_arg"
berghofe@21024
   192
  | find_arg T x ((p as (_, (SOME _, _))) :: ps) =
berghofe@21024
   193
      apsnd (cons p) (find_arg T x ps)
berghofe@21024
   194
  | find_arg T x ((p as (U, (NONE, y))) :: ps) =
berghofe@21024
   195
      if T = U then (y, (U, (SOME x, y)) :: ps)
berghofe@21024
   196
      else apsnd (cons p) (find_arg T x ps);
berghofe@7020
   197
berghofe@21024
   198
fun make_args Ts xs =
berghofe@21024
   199
  map (fn (T, (NONE, ())) => Const ("arbitrary", T) | (_, (SOME t, ())) => t)
berghofe@21024
   200
    (fold (fn (t, T) => snd o find_arg T t) xs (map (rpair (NONE, ())) Ts));
berghofe@7020
   201
berghofe@21024
   202
fun make_args' Ts xs Us =
berghofe@21024
   203
  fst (fold_map (fn T => find_arg T ()) Us (Ts ~~ map (pair NONE) xs));
berghofe@7020
   204
berghofe@21024
   205
fun dest_predicate cs params t =
berghofe@5094
   206
  let
berghofe@21024
   207
    val k = length params;
berghofe@21024
   208
    val (c, ts) = strip_comb t;
berghofe@21024
   209
    val (xs, ys) = chop k ts;
berghofe@21024
   210
    val i = find_index_eq c cs;
berghofe@21024
   211
  in
berghofe@21024
   212
    if xs = params andalso i >= 0 then
berghofe@21024
   213
      SOME (c, i, ys, chop (length ys)
berghofe@21024
   214
        (List.drop (binder_types (fastype_of c), k)))
berghofe@21024
   215
    else NONE
berghofe@5094
   216
  end;
berghofe@5094
   217
berghofe@21024
   218
fun mk_names a 0 = []
berghofe@21024
   219
  | mk_names a 1 = [a]
berghofe@21024
   220
  | mk_names a n = map (fn i => a ^ string_of_int i) (1 upto n);
berghofe@10988
   221
wenzelm@6424
   222
wenzelm@6424
   223
wenzelm@10729
   224
(** process rules **)
wenzelm@10729
   225
wenzelm@10729
   226
local
berghofe@5094
   227
wenzelm@16432
   228
fun err_in_rule thy name t msg =
wenzelm@16432
   229
  error (cat_lines ["Ill-formed introduction rule " ^ quote name,
wenzelm@16432
   230
    Sign.string_of_term thy t, msg]);
wenzelm@10729
   231
wenzelm@16432
   232
fun err_in_prem thy name t p msg =
wenzelm@16432
   233
  error (cat_lines ["Ill-formed premise", Sign.string_of_term thy p,
wenzelm@16432
   234
    "in introduction rule " ^ quote name, Sign.string_of_term thy t, msg]);
berghofe@5094
   235
berghofe@21024
   236
val bad_concl = "Conclusion of introduction rule must be an inductive predicate";
wenzelm@10729
   237
berghofe@21024
   238
val bad_ind_occ = "Inductive predicate occurs in argument of inductive predicate";
berghofe@21024
   239
berghofe@21024
   240
val bad_app = "Inductive predicate must be applied to parameter(s) ";
paulson@11358
   241
wenzelm@16432
   242
fun atomize_term thy = MetaSimplifier.rewrite_term thy inductive_atomize [];
wenzelm@10729
   243
wenzelm@10729
   244
in
berghofe@5094
   245
berghofe@21024
   246
fun check_rule thy cs params ((name, att), rule) =
wenzelm@10729
   247
  let
berghofe@21024
   248
    val params' = Term.variant_frees rule (Logic.strip_params rule);
berghofe@21024
   249
    val frees = rev (map Free params');
berghofe@21024
   250
    val concl = subst_bounds (frees, Logic.strip_assums_concl rule);
berghofe@21024
   251
    val prems = map (curry subst_bounds frees) (Logic.strip_assums_hyp rule);
wenzelm@16432
   252
    val aprems = map (atomize_term thy) prems;
berghofe@21024
   253
    val arule = list_all_free (params', Logic.list_implies (aprems, concl));
berghofe@21024
   254
berghofe@21024
   255
    fun check_ind err t = case dest_predicate cs params t of
berghofe@21024
   256
        NONE => err (bad_app ^
berghofe@21024
   257
          commas (map (Sign.string_of_term thy) params))
berghofe@21024
   258
      | SOME (_, _, ys, _) =>
berghofe@21024
   259
          if exists (fn c => exists (fn t => Logic.occs (c, t)) ys) cs
berghofe@21024
   260
          then err bad_ind_occ else ();
berghofe@21024
   261
berghofe@21024
   262
    fun check_prem' prem t =
berghofe@21024
   263
      if head_of t mem cs then
berghofe@21024
   264
        check_ind (err_in_prem thy name rule prem) t
berghofe@21024
   265
      else (case t of
berghofe@21024
   266
          Abs (_, _, t) => check_prem' prem t
berghofe@21024
   267
        | t $ u => (check_prem' prem t; check_prem' prem u)
berghofe@21024
   268
        | _ => ());
berghofe@5094
   269
wenzelm@10729
   270
    fun check_prem (prem, aprem) =
berghofe@21024
   271
      if can HOLogic.dest_Trueprop aprem then check_prem' prem prem
wenzelm@16432
   272
      else err_in_prem thy name rule prem "Non-atomic premise";
wenzelm@10729
   273
  in
paulson@11358
   274
    (case concl of
wenzelm@21367
   275
       Const ("Trueprop", _) $ t =>
berghofe@21024
   276
         if head_of t mem cs then
berghofe@21024
   277
           (check_ind (err_in_rule thy name rule) t;
berghofe@21024
   278
            List.app check_prem (prems ~~ aprems))
berghofe@21024
   279
         else err_in_rule thy name rule bad_concl
berghofe@21024
   280
     | _ => err_in_rule thy name rule bad_concl);
berghofe@21024
   281
    ((name, att), arule)
wenzelm@10729
   282
  end;
berghofe@5094
   283
wenzelm@18222
   284
val rulify =  (* FIXME norm_hhf *)
wenzelm@18222
   285
  hol_simplify inductive_conj
wenzelm@18463
   286
  #> hol_simplify inductive_rulify
wenzelm@18463
   287
  #> hol_simplify inductive_rulify_fallback
berghofe@21024
   288
  (*#> standard*);
wenzelm@10729
   289
wenzelm@10729
   290
end;
wenzelm@10729
   291
berghofe@5094
   292
wenzelm@6424
   293
berghofe@21024
   294
(** proofs for (co)inductive predicates **)
wenzelm@6424
   295
wenzelm@10735
   296
(* prove monotonicity -- NOT subject to quick_and_dirty! *)
berghofe@5094
   297
berghofe@21024
   298
fun prove_mono predT fp_fun monos ctxt =
wenzelm@10735
   299
 (message "  Proving monotonicity ...";
berghofe@21024
   300
  Goal.prove ctxt [] []   (*NO quick_and_dirty here!*)
wenzelm@17985
   301
    (HOLogic.mk_Trueprop
berghofe@21024
   302
      (Const (mono_name, (predT --> predT) --> HOLogic.boolT) $ fp_fun))
wenzelm@17985
   303
    (fn _ => EVERY [rtac monoI 1,
berghofe@21024
   304
      REPEAT (resolve_tac [le_funI, le_boolI'] 1),
berghofe@21024
   305
      REPEAT (FIRST
berghofe@21024
   306
        [atac 1,
wenzelm@21367
   307
         resolve_tac (List.concat (map mk_mono monos) @ get_monos ctxt) 1,
berghofe@21024
   308
         etac le_funE 1, dtac le_boolD 1])]));
berghofe@5094
   309
wenzelm@6424
   310
wenzelm@10735
   311
(* prove introduction rules *)
berghofe@5094
   312
berghofe@22605
   313
fun prove_intrs coind mono fp_def k params intr_ts rec_preds_defs ctxt =
berghofe@5094
   314
  let
wenzelm@10735
   315
    val _ = clean_message "  Proving the introduction rules ...";
berghofe@5094
   316
berghofe@21024
   317
    val unfold = funpow k (fn th => th RS fun_cong)
berghofe@21024
   318
      (mono RS (fp_def RS
berghofe@21024
   319
        (if coind then def_gfp_unfold else def_lfp_unfold)));
berghofe@5094
   320
berghofe@5094
   321
    fun select_disj 1 1 = []
berghofe@5094
   322
      | select_disj _ 1 = [rtac disjI1]
berghofe@5094
   323
      | select_disj n i = (rtac disjI2)::(select_disj (n - 1) (i - 1));
berghofe@5094
   324
berghofe@21024
   325
    val rules = [refl, TrueI, notFalseI, exI, conjI];
berghofe@21024
   326
berghofe@22605
   327
    val intrs = map_index (fn (i, intr) => rulify
berghofe@22605
   328
      (SkipProof.prove ctxt (map (fst o dest_Free) params) [] intr (fn _ => EVERY
berghofe@21024
   329
       [rewrite_goals_tac rec_preds_defs,
berghofe@21024
   330
        rtac (unfold RS iffD2) 1,
berghofe@21024
   331
        EVERY1 (select_disj (length intr_ts) (i + 1)),
wenzelm@17985
   332
        (*Not ares_tac, since refl must be tried before any equality assumptions;
wenzelm@17985
   333
          backtracking may occur if the premises have extra variables!*)
berghofe@21024
   334
        DEPTH_SOLVE_1 (resolve_tac rules 1 APPEND assume_tac 1)]))) intr_ts
berghofe@5094
   335
berghofe@5094
   336
  in (intrs, unfold) end;
berghofe@5094
   337
wenzelm@6424
   338
wenzelm@10735
   339
(* prove elimination rules *)
berghofe@5094
   340
berghofe@21024
   341
fun prove_elims cs params intr_ts intr_names unfold rec_preds_defs ctxt =
berghofe@5094
   342
  let
wenzelm@10735
   343
    val _ = clean_message "  Proving the elimination rules ...";
berghofe@5094
   344
berghofe@22605
   345
    val ([pname], ctxt') = ctxt |>
berghofe@22605
   346
      Variable.add_fixes (map (fst o dest_Free) params) |> snd |>
berghofe@22605
   347
      Variable.variant_fixes ["P"];
berghofe@21024
   348
    val P = HOLogic.mk_Trueprop (Free (pname, HOLogic.boolT));
berghofe@21024
   349
berghofe@21024
   350
    fun dest_intr r =
berghofe@21024
   351
      (the (dest_predicate cs params (HOLogic.dest_Trueprop (Logic.strip_assums_concl r))),
berghofe@21024
   352
       Logic.strip_assums_hyp r, Logic.strip_params r);
berghofe@21024
   353
berghofe@21024
   354
    val intrs = map dest_intr intr_ts ~~ intr_names;
berghofe@21024
   355
berghofe@21024
   356
    val rules1 = [disjE, exE, FalseE];
berghofe@21024
   357
    val rules2 = [conjE, FalseE, notTrueE];
berghofe@21024
   358
berghofe@21024
   359
    fun prove_elim c =
berghofe@21024
   360
      let
berghofe@21024
   361
        val Ts = List.drop (binder_types (fastype_of c), length params);
berghofe@21024
   362
        val (anames, ctxt'') = Variable.variant_fixes (mk_names "a" (length Ts)) ctxt';
berghofe@21024
   363
        val frees = map Free (anames ~~ Ts);
berghofe@21024
   364
berghofe@21024
   365
        fun mk_elim_prem ((_, _, us, _), ts, params') =
berghofe@21024
   366
          list_all (params',
berghofe@21024
   367
            Logic.list_implies (map (HOLogic.mk_Trueprop o HOLogic.mk_eq)
berghofe@21024
   368
              (frees ~~ us) @ ts, P));
berghofe@21024
   369
        val c_intrs = (List.filter (equal c o #1 o #1 o #1) intrs);
berghofe@21024
   370
        val prems = HOLogic.mk_Trueprop (list_comb (c, params @ frees)) ::
berghofe@21024
   371
           map mk_elim_prem (map #1 c_intrs)
berghofe@21024
   372
      in
berghofe@21048
   373
        (SkipProof.prove ctxt'' [] prems P
berghofe@21024
   374
          (fn {prems, ...} => EVERY
berghofe@21024
   375
            [cut_facts_tac [hd prems] 1,
berghofe@21024
   376
             rewrite_goals_tac rec_preds_defs,
berghofe@21024
   377
             dtac (unfold RS iffD1) 1,
berghofe@21024
   378
             REPEAT (FIRSTGOAL (eresolve_tac rules1)),
berghofe@21024
   379
             REPEAT (FIRSTGOAL (eresolve_tac rules2)),
berghofe@21024
   380
             EVERY (map (fn prem =>
berghofe@21024
   381
               DEPTH_SOLVE_1 (ares_tac [rewrite_rule rec_preds_defs prem, conjI] 1)) (tl prems))])
berghofe@21024
   382
          |> rulify
berghofe@21048
   383
          |> singleton (ProofContext.export ctxt'' ctxt),
berghofe@21048
   384
         map #2 c_intrs)
berghofe@21024
   385
      end
berghofe@21024
   386
berghofe@21024
   387
   in map prove_elim cs end;
berghofe@5094
   388
wenzelm@6424
   389
wenzelm@10735
   390
(* derivation of simplified elimination rules *)
berghofe@5094
   391
wenzelm@11682
   392
local
wenzelm@11682
   393
wenzelm@11682
   394
(*delete needless equality assumptions*)
wenzelm@11682
   395
val refl_thin = prove_goal HOL.thy "!!P. a = a ==> P ==> P" (fn _ => [assume_tac 1]);
berghofe@21024
   396
val elim_rls = [asm_rl, FalseE, refl_thin, conjE, exE];
wenzelm@11682
   397
val elim_tac = REPEAT o Tactic.eresolve_tac elim_rls;
wenzelm@11682
   398
wenzelm@11682
   399
fun simp_case_tac solved ss i =
wenzelm@11682
   400
  EVERY' [elim_tac, asm_full_simp_tac ss, elim_tac, REPEAT o bound_hyp_subst_tac] i
wenzelm@21367
   401
  THEN_MAYBE (if solved then no_tac else all_tac);  (* FIXME !? *)
wenzelm@21367
   402
wenzelm@11682
   403
in
wenzelm@9598
   404
wenzelm@21367
   405
fun mk_cases ctxt prop =
wenzelm@7107
   406
  let
wenzelm@21367
   407
    val thy = ProofContext.theory_of ctxt;
wenzelm@21367
   408
    val ss = Simplifier.local_simpset_of ctxt;
wenzelm@21367
   409
wenzelm@21526
   410
    fun err msg =
wenzelm@21526
   411
      error (Pretty.string_of (Pretty.block
wenzelm@21526
   412
        [Pretty.str msg, Pretty.fbrk, ProofContext.pretty_term ctxt prop]));
wenzelm@21526
   413
wenzelm@21526
   414
    val P = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop) handle TERM _ =>
wenzelm@21526
   415
      err "Object-logic proposition expected";
wenzelm@21526
   416
    val c = Term.head_name_of P;
wenzelm@21367
   417
    val (_, {elims, ...}) = the_inductive ctxt c;
wenzelm@21367
   418
wenzelm@21367
   419
    val cprop = Thm.cterm_of thy prop;
wenzelm@11682
   420
    val tac = ALLGOALS (simp_case_tac false ss) THEN prune_params_tac;
wenzelm@21367
   421
    fun mk_elim rl =
wenzelm@21367
   422
      Thm.implies_intr cprop (Tactic.rule_by_tactic tac (Thm.assume cprop RS rl))
wenzelm@21367
   423
      |> singleton (Variable.export (Variable.auto_fixes prop ctxt) ctxt);
wenzelm@7107
   424
  in
wenzelm@7107
   425
    (case get_first (try mk_elim) elims of
skalberg@15531
   426
      SOME r => r
wenzelm@21526
   427
    | NONE => err "Proposition not an inductive predicate:")
wenzelm@7107
   428
  end;
wenzelm@7107
   429
wenzelm@11682
   430
end;
wenzelm@11682
   431
wenzelm@7107
   432
wenzelm@21367
   433
(* inductive_cases *)
wenzelm@7107
   434
wenzelm@21367
   435
fun gen_inductive_cases prep_att prep_prop args lthy =
wenzelm@9598
   436
  let
wenzelm@21367
   437
    val thy = ProofContext.theory_of lthy;
wenzelm@12876
   438
    val facts = args |> map (fn ((a, atts), props) =>
wenzelm@21367
   439
      ((a, map (prep_att thy) atts),
wenzelm@21367
   440
        map (Thm.no_attributes o single o mk_cases lthy o prep_prop lthy) props));
wenzelm@21433
   441
  in lthy |> note_theorems facts |>> map snd end;
berghofe@5094
   442
wenzelm@21367
   443
val inductive_cases = gen_inductive_cases Attrib.intern_src ProofContext.read_prop;
wenzelm@12172
   444
val inductive_cases_i = gen_inductive_cases (K I) ProofContext.cert_prop;
wenzelm@7107
   445
wenzelm@6424
   446
berghofe@22275
   447
fun ind_cases src = Method.syntax (Scan.lift (Scan.repeat1 Args.name --
berghofe@22275
   448
    Scan.optional (Args.$$$ "for" |-- Scan.repeat1 Args.name) [])) src
berghofe@22275
   449
  #> (fn ((raw_props, fixes), ctxt) =>
berghofe@22275
   450
    let
berghofe@22275
   451
      val (_, ctxt') = Variable.add_fixes fixes ctxt;
berghofe@22275
   452
      val props = map (ProofContext.read_prop ctxt') raw_props;
berghofe@22275
   453
      val ctxt'' = fold Variable.declare_term props ctxt';
berghofe@22275
   454
      val rules = ProofContext.export ctxt'' ctxt (map (mk_cases ctxt'') props)
berghofe@22275
   455
    in Method.erule 0 rules end);
wenzelm@9598
   456
wenzelm@9598
   457
wenzelm@9598
   458
wenzelm@10735
   459
(* prove induction rule *)
berghofe@5094
   460
berghofe@21024
   461
fun prove_indrule cs argTs bs xs rec_const params intr_ts mono
berghofe@21024
   462
    fp_def rec_preds_defs ctxt =
berghofe@5094
   463
  let
wenzelm@10735
   464
    val _ = clean_message "  Proving the induction rule ...";
wenzelm@20047
   465
    val thy = ProofContext.theory_of ctxt;
berghofe@5094
   466
berghofe@21024
   467
    (* predicates for induction rule *)
berghofe@21024
   468
berghofe@22605
   469
    val (pnames, ctxt') = ctxt |>
berghofe@22605
   470
      Variable.add_fixes (map (fst o dest_Free) params) |> snd |>
berghofe@22605
   471
      Variable.variant_fixes (mk_names "P" (length cs));
berghofe@21024
   472
    val preds = map Free (pnames ~~
berghofe@21024
   473
      map (fn c => List.drop (binder_types (fastype_of c), length params) --->
berghofe@21024
   474
        HOLogic.boolT) cs);
berghofe@21024
   475
berghofe@21024
   476
    (* transform an introduction rule into a premise for induction rule *)
berghofe@21024
   477
berghofe@21024
   478
    fun mk_ind_prem r =
berghofe@21024
   479
      let
berghofe@21024
   480
        fun subst s = (case dest_predicate cs params s of
berghofe@21024
   481
            SOME (_, i, ys, (_, Ts)) =>
berghofe@21024
   482
              let
berghofe@21024
   483
                val k = length Ts;
berghofe@21024
   484
                val bs = map Bound (k - 1 downto 0);
berghofe@21024
   485
                val P = list_comb (List.nth (preds, i), ys @ bs);
berghofe@21024
   486
                val Q = list_abs (mk_names "x" k ~~ Ts,
berghofe@21024
   487
                  HOLogic.mk_binop inductive_conj_name (list_comb (s, bs), P))
berghofe@21024
   488
              in (Q, case Ts of [] => SOME (s, P) | _ => NONE) end
berghofe@21024
   489
          | NONE => (case s of
berghofe@21024
   490
              (t $ u) => (fst (subst t) $ fst (subst u), NONE)
berghofe@21024
   491
            | (Abs (a, T, t)) => (Abs (a, T, fst (subst t)), NONE)
berghofe@21024
   492
            | _ => (s, NONE)));
berghofe@7293
   493
berghofe@21024
   494
        fun mk_prem (s, prems) = (case subst s of
berghofe@21024
   495
              (_, SOME (t, u)) => t :: u :: prems
berghofe@21024
   496
            | (t, _) => t :: prems);
berghofe@21024
   497
berghofe@21024
   498
        val SOME (_, i, ys, _) = dest_predicate cs params
berghofe@21024
   499
          (HOLogic.dest_Trueprop (Logic.strip_assums_concl r))
berghofe@21024
   500
berghofe@21024
   501
      in list_all_free (Logic.strip_params r,
berghofe@21024
   502
        Logic.list_implies (map HOLogic.mk_Trueprop (foldr mk_prem
berghofe@21024
   503
          [] (map HOLogic.dest_Trueprop (Logic.strip_assums_hyp r))),
berghofe@21024
   504
            HOLogic.mk_Trueprop (list_comb (List.nth (preds, i), ys))))
berghofe@21024
   505
      end;
berghofe@21024
   506
berghofe@21024
   507
    val ind_prems = map mk_ind_prem intr_ts;
berghofe@21024
   508
wenzelm@21526
   509
berghofe@21024
   510
    (* make conclusions for induction rules *)
berghofe@21024
   511
berghofe@21024
   512
    val Tss = map (binder_types o fastype_of) preds;
berghofe@21024
   513
    val (xnames, ctxt'') =
berghofe@21024
   514
      Variable.variant_fixes (mk_names "x" (length (flat Tss))) ctxt';
berghofe@21024
   515
    val mutual_ind_concl = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
berghofe@21024
   516
        (map (fn (((xnames, Ts), c), P) =>
berghofe@21024
   517
           let val frees = map Free (xnames ~~ Ts)
berghofe@21024
   518
           in HOLogic.mk_imp
berghofe@21024
   519
             (list_comb (c, params @ frees), list_comb (P, frees))
berghofe@21024
   520
           end) (unflat Tss xnames ~~ Tss ~~ cs ~~ preds)));
berghofe@5094
   521
paulson@13626
   522
berghofe@5094
   523
    (* make predicate for instantiation of abstract induction rule *)
berghofe@5094
   524
berghofe@21024
   525
    val ind_pred = fold_rev lambda (bs @ xs) (foldr1 HOLogic.mk_conj
berghofe@21024
   526
      (map_index (fn (i, P) => foldr HOLogic.mk_imp
berghofe@21024
   527
         (list_comb (P, make_args' argTs xs (binder_types (fastype_of P))))
berghofe@21024
   528
         (make_bool_args HOLogic.mk_not I bs i)) preds));
berghofe@5094
   529
berghofe@5094
   530
    val ind_concl = HOLogic.mk_Trueprop
berghofe@21024
   531
      (HOLogic.mk_binrel "Orderings.less_eq" (rec_const, ind_pred));
berghofe@5094
   532
paulson@13626
   533
    val raw_fp_induct = (mono RS (fp_def RS def_lfp_induct));
paulson@13626
   534
berghofe@21024
   535
    val induct = SkipProof.prove ctxt'' [] ind_prems ind_concl
wenzelm@20248
   536
      (fn {prems, ...} => EVERY
wenzelm@17985
   537
        [rewrite_goals_tac [inductive_conj_def],
berghofe@21024
   538
         DETERM (rtac raw_fp_induct 1),
berghofe@21024
   539
         REPEAT (resolve_tac [le_funI, le_boolI] 1),
haftmann@22460
   540
         rewrite_goals_tac (inf_fun_eq :: inf_bool_eq :: simp_thms'),
berghofe@21024
   541
         (*This disjE separates out the introduction rules*)
berghofe@21024
   542
         REPEAT (FIRSTGOAL (eresolve_tac [disjE, exE, FalseE])),
berghofe@5094
   543
         (*Now break down the individual cases.  No disjE here in case
berghofe@5094
   544
           some premise involves disjunction.*)
paulson@13747
   545
         REPEAT (FIRSTGOAL (etac conjE ORELSE' bound_hyp_subst_tac)),
berghofe@21024
   546
         REPEAT (FIRSTGOAL
berghofe@21024
   547
           (resolve_tac [conjI, impI] ORELSE' (etac notE THEN' atac))),
berghofe@21024
   548
         EVERY (map (fn prem => DEPTH_SOLVE_1 (ares_tac [rewrite_rule
berghofe@21024
   549
           (inductive_conj_def :: rec_preds_defs) prem, conjI, refl] 1)) prems)]);
berghofe@5094
   550
berghofe@21024
   551
    val lemma = SkipProof.prove ctxt'' [] []
wenzelm@17985
   552
      (Logic.mk_implies (ind_concl, mutual_ind_concl)) (fn _ => EVERY
berghofe@21024
   553
        [rewrite_goals_tac rec_preds_defs,
berghofe@5094
   554
         REPEAT (EVERY
berghofe@5094
   555
           [REPEAT (resolve_tac [conjI, impI] 1),
berghofe@21024
   556
            REPEAT (eresolve_tac [le_funE, le_boolE] 1),
berghofe@21024
   557
            atac 1,
berghofe@21024
   558
            rewrite_goals_tac simp_thms',
berghofe@21024
   559
            atac 1])])
berghofe@5094
   560
berghofe@21024
   561
  in singleton (ProofContext.export ctxt'' ctxt) (induct RS lemma) end;
berghofe@5094
   562
wenzelm@6424
   563
wenzelm@6424
   564
berghofe@21024
   565
(** specification of (co)inductive predicates **)
wenzelm@10729
   566
berghofe@21024
   567
fun mk_ind_def alt_name coind cs intr_ts monos
berghofe@21024
   568
      params cnames_syn ctxt =
berghofe@5094
   569
  let
wenzelm@10735
   570
    val fp_name = if coind then gfp_name else lfp_name;
berghofe@5094
   571
berghofe@21024
   572
    val argTs = fold (fn c => fn Ts => Ts @
berghofe@21024
   573
      (List.drop (binder_types (fastype_of c), length params) \\ Ts)) cs [];
berghofe@21024
   574
    val k = log 2 1 (length cs);
berghofe@21024
   575
    val predT = replicate k HOLogic.boolT ---> argTs ---> HOLogic.boolT;
berghofe@21024
   576
    val p :: xs = map Free (Variable.variant_frees ctxt intr_ts
berghofe@21024
   577
      (("p", predT) :: (mk_names "x" (length argTs) ~~ argTs)));
berghofe@21024
   578
    val bs = map Free (Variable.variant_frees ctxt (p :: xs @ intr_ts)
berghofe@21024
   579
      (map (rpair HOLogic.boolT) (mk_names "b" k)));
berghofe@21024
   580
berghofe@21024
   581
    fun subst t = (case dest_predicate cs params t of
berghofe@21024
   582
        SOME (_, i, ts, (Ts, Us)) =>
berghofe@21024
   583
          let val zs = map Bound (length Us - 1 downto 0)
berghofe@21024
   584
          in
berghofe@21024
   585
            list_abs (map (pair "z") Us, list_comb (p,
berghofe@21024
   586
              make_bool_args' bs i @ make_args argTs ((ts ~~ Ts) @ (zs ~~ Us))))
berghofe@21024
   587
          end
berghofe@21024
   588
      | NONE => (case t of
berghofe@21024
   589
          t1 $ t2 => subst t1 $ subst t2
berghofe@21024
   590
        | Abs (x, T, u) => Abs (x, T, subst u)
berghofe@21024
   591
        | _ => t));
berghofe@5149
   592
berghofe@5094
   593
    (* transform an introduction rule into a conjunction  *)
berghofe@21024
   594
    (*   [| p_i t; ... |] ==> p_j u                       *)
berghofe@5094
   595
    (* is transformed into                                *)
berghofe@21024
   596
    (*   b_j & x_j = u & p b_j t & ...                    *)
berghofe@5094
   597
berghofe@5094
   598
    fun transform_rule r =
berghofe@5094
   599
      let
berghofe@21024
   600
        val SOME (_, i, ts, (Ts, _)) = dest_predicate cs params
berghofe@21048
   601
          (HOLogic.dest_Trueprop (Logic.strip_assums_concl r));
berghofe@21048
   602
        val ps = make_bool_args HOLogic.mk_not I bs i @
berghofe@21048
   603
          map HOLogic.mk_eq (make_args' argTs xs Ts ~~ ts) @
berghofe@21048
   604
          map (subst o HOLogic.dest_Trueprop)
berghofe@21048
   605
            (Logic.strip_assums_hyp r)
berghofe@21024
   606
      in foldr (fn ((x, T), P) => HOLogic.exists_const T $ (Abs (x, T, P)))
berghofe@21048
   607
        (if null ps then HOLogic.true_const else foldr1 HOLogic.mk_conj ps)
berghofe@21048
   608
        (Logic.strip_params r)
berghofe@5094
   609
      end
berghofe@5094
   610
berghofe@5094
   611
    (* make a disjunction of all introduction rules *)
berghofe@5094
   612
berghofe@21024
   613
    val fp_fun = fold_rev lambda (p :: bs @ xs)
berghofe@21024
   614
      (if null intr_ts then HOLogic.false_const
berghofe@21024
   615
       else foldr1 HOLogic.mk_disj (map transform_rule intr_ts));
berghofe@5094
   616
berghofe@21024
   617
    (* add definiton of recursive predicates to theory *)
berghofe@5094
   618
berghofe@14235
   619
    val rec_name = if alt_name = "" then
berghofe@21024
   620
      space_implode "_" (map fst cnames_syn) else alt_name;
berghofe@5094
   621
berghofe@21024
   622
    val ((rec_const, (_, fp_def)), ctxt') = ctxt |>
wenzelm@21433
   623
      LocalTheory.def Thm.internalK
berghofe@21024
   624
        ((rec_name, case cnames_syn of [(_, syn)] => syn | _ => NoSyn),
berghofe@21024
   625
         (("", []), fold_rev lambda params
berghofe@21024
   626
           (Const (fp_name, (predT --> predT) --> predT) $ fp_fun)));
berghofe@21024
   627
    val fp_def' = Simplifier.rewrite (HOL_basic_ss addsimps [fp_def])
berghofe@21024
   628
      (cterm_of (ProofContext.theory_of ctxt') (list_comb (rec_const, params)));
berghofe@21024
   629
    val specs = if length cs < 2 then [] else
berghofe@21024
   630
      map_index (fn (i, (name_mx, c)) =>
berghofe@21024
   631
        let
berghofe@21024
   632
          val Ts = List.drop (binder_types (fastype_of c), length params);
berghofe@21024
   633
          val xs = map Free (Variable.variant_frees ctxt intr_ts
berghofe@21024
   634
            (mk_names "x" (length Ts) ~~ Ts))
berghofe@21024
   635
        in
berghofe@21024
   636
          (name_mx, (("", []), fold_rev lambda (params @ xs)
berghofe@21024
   637
            (list_comb (rec_const, params @ make_bool_args' bs i @
berghofe@21024
   638
              make_args argTs (xs ~~ Ts)))))
berghofe@21024
   639
        end) (cnames_syn ~~ cs);
wenzelm@21433
   640
    val (consts_defs, ctxt'') = fold_map (LocalTheory.def Thm.internalK) specs ctxt';
berghofe@21024
   641
    val preds = (case cs of [_] => [rec_const] | _ => map #1 consts_defs);
berghofe@5094
   642
berghofe@21024
   643
    val mono = prove_mono predT fp_fun monos ctxt''
berghofe@5094
   644
berghofe@21024
   645
  in (ctxt'', rec_name, mono, fp_def', map (#2 o #2) consts_defs,
berghofe@21024
   646
    list_comb (rec_const, params), preds, argTs, bs, xs)
berghofe@21024
   647
  end;
berghofe@5094
   648
berghofe@21024
   649
fun add_ind_def verbose alt_name coind no_elim no_ind cs
berghofe@21048
   650
    intros monos params cnames_syn ctxt =
berghofe@9072
   651
  let
wenzelm@10735
   652
    val _ =
berghofe@21024
   653
      if verbose then message ("Proofs for " ^ coind_prefix coind ^ "inductive predicate(s) " ^
berghofe@21024
   654
        commas_quote (map fst cnames_syn)) else ();
berghofe@9072
   655
wenzelm@21526
   656
    val cnames = map (Sign.full_name (ProofContext.theory_of ctxt) o #1) cnames_syn;  (* FIXME *)
berghofe@21024
   657
    val ((intr_names, intr_atts), intr_ts) = apfst split_list (split_list intros);
berghofe@21024
   658
berghofe@21024
   659
    val (ctxt1, rec_name, mono, fp_def, rec_preds_defs, rec_const, preds,
berghofe@21024
   660
      argTs, bs, xs) = mk_ind_def alt_name coind cs intr_ts
berghofe@21024
   661
        monos params cnames_syn ctxt;
berghofe@9072
   662
berghofe@21024
   663
    val (intrs, unfold) = prove_intrs coind mono fp_def (length bs + length xs)
berghofe@22605
   664
      params intr_ts rec_preds_defs ctxt1;
berghofe@21048
   665
    val elims = if no_elim then [] else
berghofe@22605
   666
      cnames ~~ prove_elims cs params intr_ts intr_names unfold rec_preds_defs ctxt1;
berghofe@22605
   667
    val raw_induct = zero_var_indexes
berghofe@21024
   668
      (if no_ind then Drule.asm_rl else
berghofe@21024
   669
       if coind then ObjectLogic.rulify (rule_by_tactic
berghofe@21024
   670
         (rewrite_tac [le_fun_def, le_bool_def] THEN
berghofe@21024
   671
           fold_tac rec_preds_defs) (mono RS (fp_def RS def_coinduct)))
berghofe@21024
   672
       else
berghofe@21024
   673
         prove_indrule cs argTs bs xs rec_const params intr_ts mono fp_def
berghofe@22605
   674
           rec_preds_defs ctxt1);
berghofe@21048
   675
    val induct_cases = map (#1 o #1) intros;
berghofe@21048
   676
    val ind_case_names = RuleCases.case_names induct_cases;
wenzelm@12165
   677
    val induct =
wenzelm@18222
   678
      if coind then
wenzelm@18222
   679
        (raw_induct, [RuleCases.case_names [rec_name],
wenzelm@18234
   680
          RuleCases.case_conclusion (rec_name, induct_cases),
wenzelm@18222
   681
          RuleCases.consumes 1])
wenzelm@18222
   682
      else if no_ind orelse length cs > 1 then
berghofe@21048
   683
        (raw_induct, [ind_case_names, RuleCases.consumes 0])
berghofe@21048
   684
      else (raw_induct RSN (2, rev_mp), [ind_case_names, RuleCases.consumes 1]);
berghofe@5094
   685
berghofe@21024
   686
    val (intrs', ctxt2) =
berghofe@21024
   687
      ctxt1 |>
wenzelm@21433
   688
      note_theorems
wenzelm@21390
   689
        (map (NameSpace.qualified rec_name) intr_names ~~
berghofe@22605
   690
         intr_atts ~~ map (fn th => [([th],
berghofe@22605
   691
           [Attrib.internal (K (ContextRules.intro_query NONE))])]) intrs) |>>
berghofe@21024
   692
      map (hd o snd); (* FIXME? *)
berghofe@21048
   693
    val (((_, elims'), (_, [induct'])), ctxt3) =
berghofe@21024
   694
      ctxt2 |>
wenzelm@21465
   695
      note_theorem ((NameSpace.qualified rec_name "intros", []), intrs') ||>>
berghofe@21048
   696
      fold_map (fn (name, (elim, cases)) =>
wenzelm@21433
   697
        note_theorem ((NameSpace.qualified (Sign.base_name name) "cases",
wenzelm@21658
   698
          [Attrib.internal (K (RuleCases.case_names cases)),
wenzelm@21658
   699
           Attrib.internal (K (RuleCases.consumes 1)),
wenzelm@21658
   700
           Attrib.internal (K (InductAttrib.cases_set name)),
wenzelm@21658
   701
           Attrib.internal (K (ContextRules.elim_query NONE))]), [elim]) #>
berghofe@21048
   702
        apfst (hd o snd)) elims ||>>
wenzelm@21433
   703
      note_theorem ((NameSpace.qualified rec_name (coind_prefix coind ^ "induct"),
wenzelm@21658
   704
        map (Attrib.internal o K) (#2 induct)), [rulify (#1 induct)]);
berghofe@21048
   705
berghofe@21048
   706
    val induct_att = if coind then InductAttrib.coinduct_set else InductAttrib.induct_set;
berghofe@21048
   707
    val ctxt4 = if no_ind then ctxt3 else
berghofe@21048
   708
      let val inducts = cnames ~~ ProjectRule.projects ctxt (1 upto length cnames) induct'
berghofe@21048
   709
      in
berghofe@21048
   710
        ctxt3 |>
wenzelm@21508
   711
        note_theorems [((NameSpace.qualified rec_name (coind_prefix coind ^ "inducts"), []),
wenzelm@21508
   712
          inducts |> map (fn (name, th) => ([th],
wenzelm@21658
   713
            [Attrib.internal (K ind_case_names),
wenzelm@21658
   714
             Attrib.internal (K (RuleCases.consumes 1)),
wenzelm@21658
   715
             Attrib.internal (K (induct_att name))])))] |> snd
berghofe@21048
   716
      end;
berghofe@21048
   717
wenzelm@21526
   718
    val names = map #1 cnames_syn;
berghofe@21048
   719
    val result =
berghofe@21048
   720
      {preds = preds,
berghofe@21048
   721
       defs = fp_def :: rec_preds_defs,
berghofe@22605
   722
       mono = mono,
berghofe@22605
   723
       unfold = unfold,
berghofe@21048
   724
       intrs = intrs',
berghofe@21048
   725
       elims = elims',
berghofe@21048
   726
       raw_induct = rulify raw_induct,
wenzelm@21526
   727
       induct = induct'};
wenzelm@21526
   728
    val target_result = morph_result (LocalTheory.target_morphism ctxt4) result;
wenzelm@21367
   729
wenzelm@21526
   730
    val ctxt5 = ctxt4
wenzelm@21526
   731
      |> Context.proof_map (put_inductives names ({names = names, coind = coind}, result))
wenzelm@21526
   732
      |> LocalTheory.declaration (fn phi =>
wenzelm@21526
   733
        let
wenzelm@21526
   734
          val names' = map (LocalTheory.target_name ctxt4 o Morphism.name phi) names;
wenzelm@21526
   735
          val result' = morph_result phi target_result;
wenzelm@21526
   736
        in put_inductives names' ({names = names', coind = coind}, result') end);
wenzelm@21526
   737
  in (result, ctxt5) end;
berghofe@5094
   738
wenzelm@6424
   739
wenzelm@10735
   740
(* external interfaces *)
berghofe@5094
   741
berghofe@21024
   742
fun add_inductive_i verbose alt_name coind no_elim no_ind cnames_syn pnames pre_intros monos ctxt =
berghofe@5094
   743
  let
berghofe@21024
   744
    val thy = ProofContext.theory_of ctxt;
wenzelm@6424
   745
    val _ = Theory.requires thy "Inductive" (coind_prefix coind ^ "inductive definitions");
berghofe@5094
   746
berghofe@21024
   747
    val frees = fold (Term.add_frees o snd) pre_intros [];
berghofe@21024
   748
    fun type_of s = (case AList.lookup op = frees s of
berghofe@21024
   749
      NONE => error ("No such variable: " ^ s) | SOME T => T);
berghofe@5094
   750
berghofe@21766
   751
    fun is_abbrev ((name, atts), t) =
berghofe@21766
   752
      can (Logic.strip_assums_concl #> Logic.dest_equals) t andalso
berghofe@21766
   753
      (name = "" andalso null atts orelse
berghofe@21766
   754
       error "Abbreviations may not have names or attributes");
berghofe@21766
   755
berghofe@21766
   756
    fun expand_atom tab (t as Free xT) =
berghofe@21766
   757
          the_default t (AList.lookup op = tab xT)
berghofe@21766
   758
      | expand_atom tab t = t;
berghofe@21766
   759
    fun expand [] r = r
berghofe@21766
   760
      | expand tab r = Envir.beta_norm (Term.map_aterms (expand_atom tab) r);
berghofe@21766
   761
berghofe@21766
   762
    val (_, ctxt') = Variable.add_fixes (map #1 cnames_syn) ctxt;
berghofe@21766
   763
berghofe@21766
   764
    fun prep_abbrevs [] abbrevs' abbrevs'' = (rev abbrevs', rev abbrevs'')
berghofe@21766
   765
      | prep_abbrevs ((_, abbrev) :: abbrevs) abbrevs' abbrevs'' =
berghofe@21766
   766
          let val ((s, T), t) =
berghofe@21766
   767
            LocalDefs.abs_def (snd (LocalDefs.cert_def ctxt' abbrev))
berghofe@21766
   768
          in case find_first (equal s o #1) cnames_syn of
berghofe@21766
   769
              NONE => error ("Head of abbreviation " ^ quote s ^ " undeclared")
berghofe@21766
   770
            | SOME (_, _, mx) => prep_abbrevs abbrevs
berghofe@21766
   771
                (((s, T), expand abbrevs' t) :: abbrevs')
berghofe@21766
   772
                (((s, mx), expand abbrevs' t) :: abbrevs'') (* FIXME: do not expand *)
berghofe@21766
   773
          end;
berghofe@21766
   774
berghofe@21766
   775
    val (abbrevs, pre_intros') = List.partition is_abbrev pre_intros;
berghofe@21766
   776
    val (abbrevs', abbrevs'') = prep_abbrevs abbrevs [] [];
berghofe@21766
   777
    val _ = (case gen_inter (op = o apsnd fst)
berghofe@21766
   778
      (fold (Term.add_frees o snd) abbrevs' [], abbrevs') of
berghofe@21766
   779
        [] => ()
berghofe@21766
   780
      | xs => error ("Bad abbreviation(s): " ^ commas (map fst xs)));
berghofe@21766
   781
berghofe@21024
   782
    val params = map
berghofe@21024
   783
      (fn (s, SOME T) => Free (s, T) | (s, NONE) => Free (s, type_of s)) pnames;
berghofe@21766
   784
    val cnames_syn' = filter_out (fn (s, _, _) =>
berghofe@21766
   785
      exists (equal s o fst o fst) abbrevs') cnames_syn;
berghofe@21024
   786
    val cs = map
berghofe@21766
   787
      (fn (s, SOME T, _) => Free (s, T) | (s, NONE, _) => Free (s, type_of s)) cnames_syn';
berghofe@21766
   788
    val cnames_syn'' = map (fn (s, _, mx) => (s, mx)) cnames_syn';
berghofe@5094
   789
berghofe@21024
   790
    fun close_rule (x, r) = (x, list_all_free (rev (fold_aterms
berghofe@21024
   791
      (fn t as Free (v as (s, _)) =>
berghofe@21024
   792
            if Variable.is_fixed ctxt s orelse member op = cs t orelse
berghofe@21024
   793
              member op = params t then I else insert op = v
berghofe@21024
   794
        | _ => I) r []), r));
berghofe@5094
   795
berghofe@21766
   796
    val intros = map (apsnd (expand abbrevs') #>
berghofe@21766
   797
      check_rule thy cs params #> close_rule) pre_intros';
berghofe@21048
   798
  in
berghofe@21766
   799
    ctxt |>
berghofe@21048
   800
    add_ind_def verbose alt_name coind no_elim no_ind cs intros monos
berghofe@21766
   801
      params cnames_syn'' ||>
wenzelm@21793
   802
    fold (snd oo LocalTheory.abbrev Syntax.default_mode) abbrevs''
berghofe@21048
   803
  end;
berghofe@5094
   804
berghofe@21024
   805
fun add_inductive verbose coind cnames_syn pnames_syn intro_srcs raw_monos ctxt =
berghofe@5094
   806
  let
berghofe@21024
   807
    val (_, ctxt') = Specification.read_specification (cnames_syn @ pnames_syn) [] ctxt;
berghofe@21766
   808
    val intrs = map (fn ((name, att), s) => apsnd hd (hd (snd (fst
berghofe@21766
   809
      (Specification.read_specification [] [((name, att), [s])] ctxt'))))
berghofe@21766
   810
      handle ERROR msg =>
berghofe@21766
   811
        cat_error msg ("The error(s) above occurred for\n" ^
berghofe@21766
   812
          (if name = "" then "" else name ^ ": ") ^ s)) intro_srcs;
berghofe@21024
   813
    val pnames = map (fn (s, _, _) =>
berghofe@21024
   814
      (s, SOME (ProofContext.infer_type ctxt' s))) pnames_syn;
berghofe@21024
   815
    val cnames_syn' = map (fn (s, _, mx) =>
berghofe@21024
   816
      (s, SOME (ProofContext.infer_type ctxt' s), mx)) cnames_syn;
wenzelm@21350
   817
    val (monos, ctxt'') = LocalTheory.theory_result (IsarCmd.apply_theorems raw_monos) ctxt;
wenzelm@6424
   818
  in
berghofe@21024
   819
    add_inductive_i verbose "" coind false false cnames_syn' pnames intrs monos ctxt''
berghofe@5094
   820
  end;
berghofe@5094
   821
wenzelm@21526
   822
fun add_inductive_global verbose alt_name coind no_elim no_ind cnames_syn pnames pre_intros monos =
wenzelm@21526
   823
  TheoryTarget.init NONE #>
wenzelm@21526
   824
  add_inductive_i verbose alt_name coind no_elim no_ind cnames_syn pnames pre_intros monos #>
wenzelm@21526
   825
  (fn (_, lthy) =>
wenzelm@21526
   826
    (#2 (the_inductive (LocalTheory.target_of lthy)
wenzelm@21526
   827
      (LocalTheory.target_name lthy (#1 (hd cnames_syn)))),
wenzelm@21526
   828
    ProofContext.theory_of (LocalTheory.exit lthy)));
wenzelm@6424
   829
wenzelm@6424
   830
wenzelm@6437
   831
(** package setup **)
wenzelm@6437
   832
wenzelm@6437
   833
(* setup theory *)
wenzelm@6437
   834
wenzelm@8634
   835
val setup =
wenzelm@18708
   836
  InductiveData.init #>
wenzelm@21367
   837
  Method.add_methods [("ind_cases2", ind_cases,   (* FIXME "ind_cases" (?) *)
berghofe@21024
   838
    "dynamic case analysis on predicates")] #>
wenzelm@21367
   839
  Attrib.add_attributes [("mono2", Attrib.add_del_args mono_add mono_del,   (* FIXME "mono" *)
wenzelm@18728
   840
    "declaration of monotonicity rule")];
wenzelm@6437
   841
wenzelm@6437
   842
wenzelm@6437
   843
(* outer syntax *)
wenzelm@6424
   844
wenzelm@17057
   845
local structure P = OuterParse and K = OuterKeyword in
wenzelm@6424
   846
wenzelm@21367
   847
(* FIXME tmp *)
wenzelm@21367
   848
fun flatten_specification specs = specs |> maps
wenzelm@21367
   849
  (fn (a, (concl, [])) => concl |> map
wenzelm@21367
   850
        (fn ((b, atts), [B]) =>
wenzelm@21367
   851
              if a = "" then ((b, atts), B)
wenzelm@21367
   852
              else if b = "" then ((a, atts), B)
wenzelm@21367
   853
              else error ("Illegal nested case names " ^ quote (NameSpace.append a b))
wenzelm@21367
   854
          | ((b, _), _) => error ("Illegal simultaneous specification " ^ quote b))
wenzelm@21367
   855
    | (a, _) => error ("Illegal local specification parameters for " ^ quote a));
wenzelm@6424
   856
wenzelm@6424
   857
fun ind_decl coind =
wenzelm@22102
   858
  P.opt_target --
wenzelm@21367
   859
  P.fixes -- P.for_fixes --
wenzelm@22102
   860
  Scan.optional (P.$$$ "where" |-- P.!!! SpecParse.specification) [] --
wenzelm@22102
   861
  Scan.optional (P.$$$ "monos" |-- P.!!! SpecParse.xthms1) []
wenzelm@21367
   862
  >> (fn ((((loc, preds), params), specs), monos) =>
wenzelm@21367
   863
    Toplevel.local_theory loc
wenzelm@21367
   864
      (fn lthy => lthy
wenzelm@21367
   865
        |> add_inductive true coind preds params (flatten_specification specs) monos |> snd));
wenzelm@6424
   866
wenzelm@6723
   867
val inductiveP =
berghofe@21024
   868
  OuterSyntax.command "inductive2" "define inductive predicates" K.thy_decl (ind_decl false);
wenzelm@6723
   869
wenzelm@6723
   870
val coinductiveP =
berghofe@21024
   871
  OuterSyntax.command "coinductive2" "define coinductive predicates" K.thy_decl (ind_decl true);
wenzelm@6424
   872
wenzelm@7107
   873
wenzelm@7107
   874
val inductive_casesP =
berghofe@21024
   875
  OuterSyntax.command "inductive_cases2"
wenzelm@21367
   876
    "create simplified instances of elimination rules (improper)" K.thy_script
wenzelm@22102
   877
    (P.opt_target -- P.and_list1 SpecParse.spec
wenzelm@21367
   878
      >> (fn (loc, specs) => Toplevel.local_theory loc (snd o inductive_cases specs)));
wenzelm@7107
   879
wenzelm@21367
   880
val _ = OuterSyntax.add_keywords ["monos"];
wenzelm@7107
   881
val _ = OuterSyntax.add_parsers [inductiveP, coinductiveP, inductive_casesP];
wenzelm@6424
   882
berghofe@5094
   883
end;
wenzelm@6424
   884
wenzelm@6424
   885
end;