src/HOL/Product_Type.thy
author wenzelm
Fri Mar 07 22:30:58 2014 +0100 (2014-03-07)
changeset 55990 41c6b99c5fb7
parent 55932 68c5104d2204
child 56077 d397030fb27e
permissions -rw-r--r--
more antiquotations;
nipkow@10213
     1
(*  Title:      HOL/Product_Type.thy
nipkow@10213
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
nipkow@10213
     3
    Copyright   1992  University of Cambridge
wenzelm@11777
     4
*)
nipkow@10213
     5
wenzelm@11838
     6
header {* Cartesian products *}
nipkow@10213
     7
nipkow@15131
     8
theory Product_Type
haftmann@33959
     9
imports Typedef Inductive Fun
wenzelm@46950
    10
keywords "inductive_set" "coinductive_set" :: thy_decl
nipkow@15131
    11
begin
wenzelm@11838
    12
haftmann@24699
    13
subsection {* @{typ bool} is a datatype *}
haftmann@24699
    14
blanchet@55469
    15
free_constructors case_bool for =: True | False
blanchet@55393
    16
by auto
blanchet@55393
    17
blanchet@55442
    18
text {* Avoid name clashes by prefixing the output of @{text rep_datatype} with @{text old}. *}
blanchet@55442
    19
blanchet@55393
    20
setup {* Sign.mandatory_path "old" *}
blanchet@55393
    21
haftmann@27104
    22
rep_datatype True False by (auto intro: bool_induct)
haftmann@24699
    23
blanchet@55393
    24
setup {* Sign.parent_path *}
blanchet@55393
    25
blanchet@55468
    26
text {* But erase the prefix for properties that are not generated by @{text free_constructors}. *}
blanchet@55442
    27
blanchet@55393
    28
setup {* Sign.mandatory_path "bool" *}
blanchet@55393
    29
blanchet@55393
    30
lemmas induct = old.bool.induct
blanchet@55393
    31
lemmas inducts = old.bool.inducts
blanchet@55642
    32
lemmas rec = old.bool.rec
blanchet@55642
    33
lemmas simps = bool.distinct bool.case bool.rec
blanchet@55393
    34
blanchet@55393
    35
setup {* Sign.parent_path *}
blanchet@55393
    36
haftmann@24699
    37
declare case_split [cases type: bool]
haftmann@24699
    38
  -- "prefer plain propositional version"
haftmann@24699
    39
haftmann@28346
    40
lemma
haftmann@38857
    41
  shows [code]: "HOL.equal False P \<longleftrightarrow> \<not> P"
haftmann@38857
    42
    and [code]: "HOL.equal True P \<longleftrightarrow> P" 
haftmann@46630
    43
    and [code]: "HOL.equal P False \<longleftrightarrow> \<not> P"
haftmann@38857
    44
    and [code]: "HOL.equal P True \<longleftrightarrow> P"
haftmann@38857
    45
    and [code nbe]: "HOL.equal P P \<longleftrightarrow> True"
haftmann@38857
    46
  by (simp_all add: equal)
haftmann@25534
    47
haftmann@43654
    48
lemma If_case_cert:
haftmann@43654
    49
  assumes "CASE \<equiv> (\<lambda>b. If b f g)"
haftmann@43654
    50
  shows "(CASE True \<equiv> f) &&& (CASE False \<equiv> g)"
haftmann@43654
    51
  using assms by simp_all
haftmann@43654
    52
haftmann@43654
    53
setup {*
haftmann@43654
    54
  Code.add_case @{thm If_case_cert}
haftmann@43654
    55
*}
haftmann@43654
    56
haftmann@52435
    57
code_printing
haftmann@52435
    58
  constant "HOL.equal :: bool \<Rightarrow> bool \<Rightarrow> bool" \<rightharpoonup> (Haskell) infix 4 "=="
haftmann@52435
    59
| class_instance "bool" :: "equal" \<rightharpoonup> (Haskell) -
haftmann@24699
    60
haftmann@26358
    61
haftmann@37166
    62
subsection {* The @{text unit} type *}
wenzelm@11838
    63
wenzelm@49834
    64
typedef unit = "{True}"
wenzelm@45694
    65
  by auto
wenzelm@11838
    66
wenzelm@45694
    67
definition Unity :: unit  ("'(')")
wenzelm@45694
    68
  where "() = Abs_unit True"
wenzelm@11838
    69
blanchet@35828
    70
lemma unit_eq [no_atp]: "u = ()"
huffman@40590
    71
  by (induct u) (simp add: Unity_def)
wenzelm@11838
    72
wenzelm@11838
    73
text {*
wenzelm@11838
    74
  Simplification procedure for @{thm [source] unit_eq}.  Cannot use
wenzelm@11838
    75
  this rule directly --- it loops!
wenzelm@11838
    76
*}
wenzelm@11838
    77
wenzelm@43594
    78
simproc_setup unit_eq ("x::unit") = {*
wenzelm@43594
    79
  fn _ => fn _ => fn ct =>
wenzelm@43594
    80
    if HOLogic.is_unit (term_of ct) then NONE
wenzelm@43594
    81
    else SOME (mk_meta_eq @{thm unit_eq})
wenzelm@11838
    82
*}
wenzelm@11838
    83
blanchet@55469
    84
free_constructors case_unit for "()"
blanchet@55393
    85
by auto
blanchet@55393
    86
blanchet@55442
    87
text {* Avoid name clashes by prefixing the output of @{text rep_datatype} with @{text old}. *}
blanchet@55442
    88
blanchet@55393
    89
setup {* Sign.mandatory_path "old" *}
blanchet@55393
    90
haftmann@27104
    91
rep_datatype "()" by simp
haftmann@24699
    92
blanchet@55393
    93
setup {* Sign.parent_path *}
blanchet@55393
    94
blanchet@55468
    95
text {* But erase the prefix for properties that are not generated by @{text free_constructors}. *}
blanchet@55442
    96
blanchet@55393
    97
setup {* Sign.mandatory_path "unit" *}
blanchet@55393
    98
blanchet@55393
    99
lemmas induct = old.unit.induct
blanchet@55393
   100
lemmas inducts = old.unit.inducts
blanchet@55642
   101
lemmas rec = old.unit.rec
blanchet@55642
   102
lemmas simps = unit.case unit.rec
blanchet@55393
   103
blanchet@55393
   104
setup {* Sign.parent_path *}
blanchet@55393
   105
wenzelm@11838
   106
lemma unit_all_eq1: "(!!x::unit. PROP P x) == PROP P ()"
wenzelm@11838
   107
  by simp
wenzelm@11838
   108
wenzelm@11838
   109
lemma unit_all_eq2: "(!!x::unit. PROP P) == PROP P"
wenzelm@11838
   110
  by (rule triv_forall_equality)
wenzelm@11838
   111
wenzelm@11838
   112
text {*
wenzelm@43594
   113
  This rewrite counters the effect of simproc @{text unit_eq} on @{term
wenzelm@11838
   114
  [source] "%u::unit. f u"}, replacing it by @{term [source]
wenzelm@11838
   115
  f} rather than by @{term [source] "%u. f ()"}.
wenzelm@11838
   116
*}
wenzelm@11838
   117
blanchet@54147
   118
lemma unit_abs_eta_conv [simp]: "(%u::unit. f ()) = f"
wenzelm@11838
   119
  by (rule ext) simp
nipkow@10213
   120
blanchet@54147
   121
lemma UNIV_unit:
haftmann@43866
   122
  "UNIV = {()}" by auto
haftmann@43866
   123
haftmann@30924
   124
instantiation unit :: default
haftmann@30924
   125
begin
haftmann@30924
   126
haftmann@30924
   127
definition "default = ()"
haftmann@30924
   128
haftmann@30924
   129
instance ..
haftmann@30924
   130
haftmann@30924
   131
end
nipkow@10213
   132
haftmann@28562
   133
lemma [code]:
haftmann@38857
   134
  "HOL.equal (u\<Colon>unit) v \<longleftrightarrow> True" unfolding equal unit_eq [of u] unit_eq [of v] by rule+
haftmann@26358
   135
haftmann@52435
   136
code_printing
haftmann@52435
   137
  type_constructor unit \<rightharpoonup>
haftmann@52435
   138
    (SML) "unit"
haftmann@52435
   139
    and (OCaml) "unit"
haftmann@52435
   140
    and (Haskell) "()"
haftmann@52435
   141
    and (Scala) "Unit"
haftmann@52435
   142
| constant Unity \<rightharpoonup>
haftmann@52435
   143
    (SML) "()"
haftmann@52435
   144
    and (OCaml) "()"
haftmann@52435
   145
    and (Haskell) "()"
haftmann@52435
   146
    and (Scala) "()"
haftmann@52435
   147
| class_instance unit :: equal \<rightharpoonup>
haftmann@52435
   148
    (Haskell) -
haftmann@52435
   149
| constant "HOL.equal :: unit \<Rightarrow> unit \<Rightarrow> bool" \<rightharpoonup>
haftmann@52435
   150
    (Haskell) infix 4 "=="
haftmann@26358
   151
haftmann@26358
   152
code_reserved SML
haftmann@26358
   153
  unit
haftmann@26358
   154
haftmann@26358
   155
code_reserved OCaml
haftmann@26358
   156
  unit
haftmann@26358
   157
haftmann@34886
   158
code_reserved Scala
haftmann@34886
   159
  Unit
haftmann@34886
   160
haftmann@26358
   161
haftmann@37166
   162
subsection {* The product type *}
nipkow@10213
   163
haftmann@37166
   164
subsubsection {* Type definition *}
haftmann@37166
   165
haftmann@37166
   166
definition Pair_Rep :: "'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool" where
haftmann@26358
   167
  "Pair_Rep a b = (\<lambda>x y. x = a \<and> y = b)"
nipkow@10213
   168
wenzelm@45696
   169
definition "prod = {f. \<exists>a b. f = Pair_Rep (a\<Colon>'a) (b\<Colon>'b)}"
wenzelm@45696
   170
wenzelm@49834
   171
typedef ('a, 'b) prod (infixr "*" 20) = "prod :: ('a \<Rightarrow> 'b \<Rightarrow> bool) set"
wenzelm@45696
   172
  unfolding prod_def by auto
nipkow@10213
   173
wenzelm@35427
   174
type_notation (xsymbols)
haftmann@37678
   175
  "prod"  ("(_ \<times>/ _)" [21, 20] 20)
wenzelm@35427
   176
type_notation (HTML output)
haftmann@37678
   177
  "prod"  ("(_ \<times>/ _)" [21, 20] 20)
nipkow@10213
   178
haftmann@37389
   179
definition Pair :: "'a \<Rightarrow> 'b \<Rightarrow> 'a \<times> 'b" where
haftmann@37389
   180
  "Pair a b = Abs_prod (Pair_Rep a b)"
haftmann@37166
   181
blanchet@55393
   182
lemma prod_cases: "(\<And>a b. P (Pair a b)) \<Longrightarrow> P p"
blanchet@55393
   183
  by (cases p) (auto simp add: prod_def Pair_def Pair_Rep_def)
blanchet@55393
   184
blanchet@55469
   185
free_constructors case_prod for Pair fst snd
blanchet@55393
   186
proof -
blanchet@55393
   187
  fix P :: bool and p :: "'a \<times> 'b"
blanchet@55393
   188
  show "(\<And>x1 x2. p = Pair x1 x2 \<Longrightarrow> P) \<Longrightarrow> P"
blanchet@55393
   189
    by (cases p) (auto simp add: prod_def Pair_def Pair_Rep_def)
haftmann@37166
   190
next
haftmann@37166
   191
  fix a c :: 'a and b d :: 'b
haftmann@37166
   192
  have "Pair_Rep a b = Pair_Rep c d \<longleftrightarrow> a = c \<and> b = d"
nipkow@39302
   193
    by (auto simp add: Pair_Rep_def fun_eq_iff)
haftmann@37389
   194
  moreover have "Pair_Rep a b \<in> prod" and "Pair_Rep c d \<in> prod"
haftmann@37389
   195
    by (auto simp add: prod_def)
haftmann@37166
   196
  ultimately show "Pair a b = Pair c d \<longleftrightarrow> a = c \<and> b = d"
haftmann@37389
   197
    by (simp add: Pair_def Abs_prod_inject)
haftmann@37166
   198
qed
haftmann@37166
   199
blanchet@55442
   200
text {* Avoid name clashes by prefixing the output of @{text rep_datatype} with @{text old}. *}
blanchet@55442
   201
blanchet@55393
   202
setup {* Sign.mandatory_path "old" *}
blanchet@55393
   203
blanchet@55393
   204
rep_datatype Pair
blanchet@55403
   205
by (erule prod_cases) (rule prod.inject)
blanchet@55393
   206
blanchet@55393
   207
setup {* Sign.parent_path *}
blanchet@37704
   208
blanchet@55468
   209
text {* But erase the prefix for properties that are not generated by @{text free_constructors}. *}
blanchet@55442
   210
blanchet@55393
   211
setup {* Sign.mandatory_path "prod" *}
blanchet@55393
   212
blanchet@55393
   213
declare
blanchet@55393
   214
  old.prod.inject[iff del]
blanchet@55393
   215
blanchet@55393
   216
lemmas induct = old.prod.induct
blanchet@55393
   217
lemmas inducts = old.prod.inducts
blanchet@55642
   218
lemmas rec = old.prod.rec
blanchet@55642
   219
lemmas simps = prod.inject prod.case prod.rec
blanchet@55393
   220
blanchet@55393
   221
setup {* Sign.parent_path *}
blanchet@55393
   222
blanchet@55393
   223
declare prod.case [nitpick_simp del]
huffman@40929
   224
declare prod.weak_case_cong [cong del]
haftmann@37411
   225
haftmann@37166
   226
haftmann@37166
   227
subsubsection {* Tuple syntax *}
haftmann@37166
   228
haftmann@37591
   229
abbreviation (input) split :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c" where
blanchet@55414
   230
  "split \<equiv> case_prod"
wenzelm@19535
   231
wenzelm@11777
   232
text {*
wenzelm@11777
   233
  Patterns -- extends pre-defined type @{typ pttrn} used in
wenzelm@11777
   234
  abstractions.
wenzelm@11777
   235
*}
nipkow@10213
   236
wenzelm@41229
   237
nonterminal tuple_args and patterns
nipkow@10213
   238
nipkow@10213
   239
syntax
nipkow@10213
   240
  "_tuple"      :: "'a => tuple_args => 'a * 'b"        ("(1'(_,/ _'))")
nipkow@10213
   241
  "_tuple_arg"  :: "'a => tuple_args"                   ("_")
nipkow@10213
   242
  "_tuple_args" :: "'a => tuple_args => tuple_args"     ("_,/ _")
oheimb@11025
   243
  "_pattern"    :: "[pttrn, patterns] => pttrn"         ("'(_,/ _')")
oheimb@11025
   244
  ""            :: "pttrn => patterns"                  ("_")
oheimb@11025
   245
  "_patterns"   :: "[pttrn, patterns] => patterns"      ("_,/ _")
nipkow@10213
   246
nipkow@10213
   247
translations
wenzelm@35115
   248
  "(x, y)" == "CONST Pair x y"
nipkow@51392
   249
  "_pattern x y" => "CONST Pair x y"
nipkow@51392
   250
  "_patterns x y" => "CONST Pair x y"
nipkow@10213
   251
  "_tuple x (_tuple_args y z)" == "_tuple x (_tuple_arg (_tuple y z))"
blanchet@55414
   252
  "%(x, y, zs). b" == "CONST case_prod (%x (y, zs). b)"
blanchet@55414
   253
  "%(x, y). b" == "CONST case_prod (%x y. b)"
wenzelm@35115
   254
  "_abs (CONST Pair x y) t" => "%(x, y). t"
haftmann@37166
   255
  -- {* The last rule accommodates tuples in `case C ... (x,y) ... => ...'
haftmann@37166
   256
     The (x,y) is parsed as `Pair x y' because it is logic, not pttrn *}
nipkow@10213
   257
wenzelm@35115
   258
(*reconstruct pattern from (nested) splits, avoiding eta-contraction of body;
wenzelm@35115
   259
  works best with enclosing "let", if "let" does not avoid eta-contraction*)
schirmer@14359
   260
print_translation {*
wenzelm@52143
   261
  let
wenzelm@52143
   262
    fun split_tr' [Abs (x, T, t as (Abs abs))] =
wenzelm@52143
   263
          (* split (%x y. t) => %(x,y) t *)
wenzelm@52143
   264
          let
wenzelm@52143
   265
            val (y, t') = Syntax_Trans.atomic_abs_tr' abs;
wenzelm@52143
   266
            val (x', t'') = Syntax_Trans.atomic_abs_tr' (x, T, t');
wenzelm@52143
   267
          in
wenzelm@52143
   268
            Syntax.const @{syntax_const "_abs"} $
wenzelm@52143
   269
              (Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t''
wenzelm@52143
   270
          end
blanchet@55414
   271
      | split_tr' [Abs (x, T, (s as Const (@{const_syntax case_prod}, _) $ t))] =
wenzelm@52143
   272
          (* split (%x. (split (%y z. t))) => %(x,y,z). t *)
wenzelm@52143
   273
          let
wenzelm@52143
   274
            val Const (@{syntax_const "_abs"}, _) $
wenzelm@52143
   275
              (Const (@{syntax_const "_pattern"}, _) $ y $ z) $ t' = split_tr' [t];
wenzelm@52143
   276
            val (x', t'') = Syntax_Trans.atomic_abs_tr' (x, T, t');
wenzelm@52143
   277
          in
wenzelm@52143
   278
            Syntax.const @{syntax_const "_abs"} $
wenzelm@52143
   279
              (Syntax.const @{syntax_const "_pattern"} $ x' $
wenzelm@52143
   280
                (Syntax.const @{syntax_const "_patterns"} $ y $ z)) $ t''
wenzelm@52143
   281
          end
blanchet@55414
   282
      | split_tr' [Const (@{const_syntax case_prod}, _) $ t] =
wenzelm@52143
   283
          (* split (split (%x y z. t)) => %((x, y), z). t *)
wenzelm@52143
   284
          split_tr' [(split_tr' [t])] (* inner split_tr' creates next pattern *)
wenzelm@52143
   285
      | split_tr' [Const (@{syntax_const "_abs"}, _) $ x_y $ Abs abs] =
wenzelm@52143
   286
          (* split (%pttrn z. t) => %(pttrn,z). t *)
wenzelm@52143
   287
          let val (z, t) = Syntax_Trans.atomic_abs_tr' abs in
wenzelm@52143
   288
            Syntax.const @{syntax_const "_abs"} $
wenzelm@52143
   289
              (Syntax.const @{syntax_const "_pattern"} $ x_y $ z) $ t
wenzelm@52143
   290
          end
wenzelm@52143
   291
      | split_tr' _ = raise Match;
blanchet@55414
   292
  in [(@{const_syntax case_prod}, K split_tr')] end
schirmer@14359
   293
*}
schirmer@14359
   294
schirmer@15422
   295
(* print "split f" as "\<lambda>(x,y). f x y" and "split (\<lambda>x. f x)" as "\<lambda>(x,y). f x y" *) 
schirmer@15422
   296
typed_print_translation {*
wenzelm@52143
   297
  let
wenzelm@52143
   298
    fun split_guess_names_tr' T [Abs (x, _, Abs _)] = raise Match
wenzelm@52143
   299
      | split_guess_names_tr' T [Abs (x, xT, t)] =
wenzelm@52143
   300
          (case (head_of t) of
blanchet@55414
   301
            Const (@{const_syntax case_prod}, _) => raise Match
wenzelm@52143
   302
          | _ =>
wenzelm@52143
   303
            let 
wenzelm@52143
   304
              val (_ :: yT :: _) = binder_types (domain_type T) handle Bind => raise Match;
wenzelm@52143
   305
              val (y, t') = Syntax_Trans.atomic_abs_tr' ("y", yT, incr_boundvars 1 t $ Bound 0);
wenzelm@52143
   306
              val (x', t'') = Syntax_Trans.atomic_abs_tr' (x, xT, t');
wenzelm@52143
   307
            in
wenzelm@52143
   308
              Syntax.const @{syntax_const "_abs"} $
wenzelm@52143
   309
                (Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t''
wenzelm@52143
   310
            end)
wenzelm@52143
   311
      | split_guess_names_tr' T [t] =
wenzelm@52143
   312
          (case head_of t of
blanchet@55414
   313
            Const (@{const_syntax case_prod}, _) => raise Match
wenzelm@52143
   314
          | _ =>
wenzelm@52143
   315
            let
wenzelm@52143
   316
              val (xT :: yT :: _) = binder_types (domain_type T) handle Bind => raise Match;
wenzelm@52143
   317
              val (y, t') =
wenzelm@52143
   318
                Syntax_Trans.atomic_abs_tr' ("y", yT, incr_boundvars 2 t $ Bound 1 $ Bound 0);
wenzelm@52143
   319
              val (x', t'') = Syntax_Trans.atomic_abs_tr' ("x", xT, t');
wenzelm@52143
   320
            in
wenzelm@52143
   321
              Syntax.const @{syntax_const "_abs"} $
wenzelm@52143
   322
                (Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t''
wenzelm@52143
   323
            end)
wenzelm@52143
   324
      | split_guess_names_tr' _ _ = raise Match;
blanchet@55414
   325
  in [(@{const_syntax case_prod}, K split_guess_names_tr')] end
schirmer@15422
   326
*}
schirmer@15422
   327
blanchet@55414
   328
(* Force eta-contraction for terms of the form "Q A (%p. case_prod P p)"
nipkow@42059
   329
   where Q is some bounded quantifier or set operator.
nipkow@42059
   330
   Reason: the above prints as "Q p : A. case p of (x,y) \<Rightarrow> P x y"
nipkow@42059
   331
   whereas we want "Q (x,y):A. P x y".
nipkow@42059
   332
   Otherwise prevent eta-contraction.
nipkow@42059
   333
*)
nipkow@42059
   334
print_translation {*
wenzelm@52143
   335
  let
wenzelm@52143
   336
    fun contract Q tr ctxt ts =
wenzelm@52143
   337
      (case ts of
blanchet@55414
   338
        [A, Abs (_, _, (s as Const (@{const_syntax case_prod},_) $ t) $ Bound 0)] =>
wenzelm@52143
   339
          if Term.is_dependent t then tr ctxt ts
wenzelm@52143
   340
          else Syntax.const Q $ A $ s
wenzelm@52143
   341
      | _ => tr ctxt ts);
wenzelm@52143
   342
  in
wenzelm@42284
   343
    [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax Ball} @{syntax_const "_Ball"},
wenzelm@42284
   344
     Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax Bex} @{syntax_const "_Bex"},
wenzelm@42284
   345
     Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax INFI} @{syntax_const "_INF"},
wenzelm@42284
   346
     Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax SUPR} @{syntax_const "_SUP"}]
wenzelm@52143
   347
    |> map (fn (Q, tr) => (Q, contract Q tr))
wenzelm@52143
   348
  end
nipkow@42059
   349
*}
nipkow@10213
   350
haftmann@37166
   351
subsubsection {* Code generator setup *}
haftmann@37166
   352
haftmann@52435
   353
code_printing
haftmann@52435
   354
  type_constructor prod \<rightharpoonup>
haftmann@52435
   355
    (SML) infix 2 "*"
haftmann@52435
   356
    and (OCaml) infix 2 "*"
haftmann@52435
   357
    and (Haskell) "!((_),/ (_))"
haftmann@52435
   358
    and (Scala) "((_),/ (_))"
haftmann@52435
   359
| constant Pair \<rightharpoonup>
haftmann@52435
   360
    (SML) "!((_),/ (_))"
haftmann@52435
   361
    and (OCaml) "!((_),/ (_))"
haftmann@52435
   362
    and (Haskell) "!((_),/ (_))"
haftmann@52435
   363
    and (Scala) "!((_),/ (_))"
haftmann@52435
   364
| class_instance  prod :: equal \<rightharpoonup>
haftmann@52435
   365
    (Haskell) -
haftmann@52435
   366
| constant "HOL.equal :: 'a \<times> 'b \<Rightarrow> 'a \<times> 'b \<Rightarrow> bool" \<rightharpoonup>
haftmann@52435
   367
    (Haskell) infix 4 "=="
haftmann@37166
   368
haftmann@37166
   369
haftmann@37166
   370
subsubsection {* Fundamental operations and properties *}
wenzelm@11838
   371
bulwahn@49897
   372
lemma Pair_inject:
bulwahn@49897
   373
  assumes "(a, b) = (a', b')"
bulwahn@49897
   374
    and "a = a' ==> b = b' ==> R"
bulwahn@49897
   375
  shows R
bulwahn@49897
   376
  using assms by simp
bulwahn@49897
   377
haftmann@26358
   378
lemma surj_pair [simp]: "EX x y. p = (x, y)"
haftmann@37166
   379
  by (cases p) simp
nipkow@10213
   380
haftmann@52435
   381
code_printing
haftmann@52435
   382
  constant fst \<rightharpoonup> (Haskell) "fst"
haftmann@52435
   383
| constant snd \<rightharpoonup> (Haskell) "snd"
haftmann@26358
   384
blanchet@55414
   385
lemma case_prod_unfold [nitpick_unfold]: "case_prod = (%c p. c (fst p) (snd p))"
nipkow@39302
   386
  by (simp add: fun_eq_iff split: prod.split)
haftmann@26358
   387
wenzelm@11838
   388
lemma fst_eqD: "fst (x, y) = a ==> x = a"
wenzelm@11838
   389
  by simp
wenzelm@11838
   390
wenzelm@11838
   391
lemma snd_eqD: "snd (x, y) = a ==> y = a"
wenzelm@11838
   392
  by simp
wenzelm@11838
   393
blanchet@55393
   394
lemmas surjective_pairing = prod.collapse [symmetric]
wenzelm@11838
   395
huffman@44066
   396
lemma prod_eq_iff: "s = t \<longleftrightarrow> fst s = fst t \<and> snd s = snd t"
haftmann@37166
   397
  by (cases s, cases t) simp
haftmann@37166
   398
haftmann@37166
   399
lemma prod_eqI [intro?]: "fst p = fst q \<Longrightarrow> snd p = snd q \<Longrightarrow> p = q"
huffman@44066
   400
  by (simp add: prod_eq_iff)
haftmann@37166
   401
haftmann@37166
   402
lemma split_conv [simp, code]: "split f (a, b) = f a b"
blanchet@55642
   403
  by (fact prod.case)
haftmann@37166
   404
haftmann@37166
   405
lemma splitI: "f a b \<Longrightarrow> split f (a, b)"
haftmann@37166
   406
  by (rule split_conv [THEN iffD2])
haftmann@37166
   407
haftmann@37166
   408
lemma splitD: "split f (a, b) \<Longrightarrow> f a b"
haftmann@37166
   409
  by (rule split_conv [THEN iffD1])
haftmann@37166
   410
haftmann@37166
   411
lemma split_Pair [simp]: "(\<lambda>(x, y). (x, y)) = id"
nipkow@39302
   412
  by (simp add: fun_eq_iff split: prod.split)
haftmann@37166
   413
haftmann@37166
   414
lemma split_eta: "(\<lambda>(x, y). f (x, y)) = f"
haftmann@37166
   415
  -- {* Subsumes the old @{text split_Pair} when @{term f} is the identity function. *}
nipkow@39302
   416
  by (simp add: fun_eq_iff split: prod.split)
haftmann@37166
   417
haftmann@37166
   418
lemma split_comp: "split (f \<circ> g) x = f (g (fst x)) (snd x)"
haftmann@37166
   419
  by (cases x) simp
haftmann@37166
   420
haftmann@37166
   421
lemma split_twice: "split f (split g p) = split (\<lambda>x y. split f (g x y)) p"
haftmann@37166
   422
  by (cases p) simp
haftmann@37166
   423
haftmann@37166
   424
lemma The_split: "The (split P) = (THE xy. P (fst xy) (snd xy))"
blanchet@55414
   425
  by (simp add: case_prod_unfold)
haftmann@37166
   426
haftmann@37166
   427
lemma split_weak_cong: "p = q \<Longrightarrow> split c p = split c q"
haftmann@37166
   428
  -- {* Prevents simplification of @{term c}: much faster *}
huffman@40929
   429
  by (fact prod.weak_case_cong)
haftmann@37166
   430
haftmann@37166
   431
lemma cond_split_eta: "(!!x y. f x y = g (x, y)) ==> (%(x, y). f x y) = g"
haftmann@37166
   432
  by (simp add: split_eta)
haftmann@37166
   433
blanchet@47740
   434
lemma split_paired_all [no_atp]: "(!!x. PROP P x) == (!!a b. PROP P (a, b))"
wenzelm@11820
   435
proof
wenzelm@11820
   436
  fix a b
wenzelm@11820
   437
  assume "!!x. PROP P x"
wenzelm@19535
   438
  then show "PROP P (a, b)" .
wenzelm@11820
   439
next
wenzelm@11820
   440
  fix x
wenzelm@11820
   441
  assume "!!a b. PROP P (a, b)"
wenzelm@19535
   442
  from `PROP P (fst x, snd x)` show "PROP P x" by simp
wenzelm@11820
   443
qed
wenzelm@11820
   444
hoelzl@50104
   445
lemma case_prod_distrib: "f (case x of (x, y) \<Rightarrow> g x y) = (case x of (x, y) \<Rightarrow> f (g x y))"
hoelzl@50104
   446
  by (cases x) simp
hoelzl@50104
   447
wenzelm@11838
   448
text {*
wenzelm@11838
   449
  The rule @{thm [source] split_paired_all} does not work with the
wenzelm@11838
   450
  Simplifier because it also affects premises in congrence rules,
wenzelm@11838
   451
  where this can lead to premises of the form @{text "!!a b. ... =
wenzelm@11838
   452
  ?P(a, b)"} which cannot be solved by reflexivity.
wenzelm@11838
   453
*}
wenzelm@11838
   454
haftmann@26358
   455
lemmas split_tupled_all = split_paired_all unit_all_eq2
haftmann@26358
   456
wenzelm@26480
   457
ML {*
wenzelm@11838
   458
  (* replace parameters of product type by individual component parameters *)
wenzelm@11838
   459
  local (* filtering with exists_paired_all is an essential optimization *)
wenzelm@16121
   460
    fun exists_paired_all (Const ("all", _) $ Abs (_, T, t)) =
wenzelm@11838
   461
          can HOLogic.dest_prodT T orelse exists_paired_all t
wenzelm@11838
   462
      | exists_paired_all (t $ u) = exists_paired_all t orelse exists_paired_all u
wenzelm@11838
   463
      | exists_paired_all (Abs (_, _, t)) = exists_paired_all t
wenzelm@11838
   464
      | exists_paired_all _ = false;
wenzelm@51717
   465
    val ss =
wenzelm@51717
   466
      simpset_of
wenzelm@51717
   467
       (put_simpset HOL_basic_ss @{context}
wenzelm@51717
   468
        addsimps [@{thm split_paired_all}, @{thm unit_all_eq2}, @{thm unit_abs_eta_conv}]
wenzelm@51717
   469
        addsimprocs [@{simproc unit_eq}]);
wenzelm@11838
   470
  in
wenzelm@51717
   471
    fun split_all_tac ctxt = SUBGOAL (fn (t, i) =>
wenzelm@51717
   472
      if exists_paired_all t then safe_full_simp_tac (put_simpset ss ctxt) i else no_tac);
wenzelm@51717
   473
wenzelm@51717
   474
    fun unsafe_split_all_tac ctxt = SUBGOAL (fn (t, i) =>
wenzelm@51717
   475
      if exists_paired_all t then full_simp_tac (put_simpset ss ctxt) i else no_tac);
wenzelm@51717
   476
wenzelm@51717
   477
    fun split_all ctxt th =
wenzelm@51717
   478
      if exists_paired_all (Thm.prop_of th)
wenzelm@51717
   479
      then full_simplify (put_simpset ss ctxt) th else th;
wenzelm@11838
   480
  end;
wenzelm@26340
   481
*}
wenzelm@11838
   482
wenzelm@51703
   483
setup {* map_theory_claset (fn ctxt => ctxt addSbefore ("split_all_tac", split_all_tac)) *}
wenzelm@11838
   484
blanchet@47740
   485
lemma split_paired_All [simp, no_atp]: "(ALL x. P x) = (ALL a b. P (a, b))"
wenzelm@11838
   486
  -- {* @{text "[iff]"} is not a good idea because it makes @{text blast} loop *}
wenzelm@11838
   487
  by fast
wenzelm@11838
   488
blanchet@47740
   489
lemma split_paired_Ex [simp, no_atp]: "(EX x. P x) = (EX a b. P (a, b))"
haftmann@26358
   490
  by fast
haftmann@26358
   491
blanchet@47740
   492
lemma split_paired_The [no_atp]: "(THE x. P x) = (THE (a, b). P (a, b))"
wenzelm@11838
   493
  -- {* Can't be added to simpset: loops! *}
haftmann@26358
   494
  by (simp add: split_eta)
wenzelm@11838
   495
wenzelm@11838
   496
text {*
wenzelm@11838
   497
  Simplification procedure for @{thm [source] cond_split_eta}.  Using
wenzelm@11838
   498
  @{thm [source] split_eta} as a rewrite rule is not general enough,
wenzelm@11838
   499
  and using @{thm [source] cond_split_eta} directly would render some
wenzelm@11838
   500
  existing proofs very inefficient; similarly for @{text
haftmann@26358
   501
  split_beta}.
haftmann@26358
   502
*}
wenzelm@11838
   503
wenzelm@26480
   504
ML {*
wenzelm@11838
   505
local
wenzelm@51717
   506
  val cond_split_eta_ss =
wenzelm@51717
   507
    simpset_of (put_simpset HOL_basic_ss @{context} addsimps @{thms cond_split_eta});
wenzelm@35364
   508
  fun Pair_pat k 0 (Bound m) = (m = k)
wenzelm@35364
   509
    | Pair_pat k i (Const (@{const_name Pair},  _) $ Bound m $ t) =
wenzelm@35364
   510
        i > 0 andalso m = k + i andalso Pair_pat k (i - 1) t
wenzelm@35364
   511
    | Pair_pat _ _ _ = false;
wenzelm@35364
   512
  fun no_args k i (Abs (_, _, t)) = no_args (k + 1) i t
wenzelm@35364
   513
    | no_args k i (t $ u) = no_args k i t andalso no_args k i u
wenzelm@35364
   514
    | no_args k i (Bound m) = m < k orelse m > k + i
wenzelm@35364
   515
    | no_args _ _ _ = true;
wenzelm@35364
   516
  fun split_pat tp i (Abs  (_, _, t)) = if tp 0 i t then SOME (i, t) else NONE
blanchet@55414
   517
    | split_pat tp i (Const (@{const_name case_prod}, _) $ Abs (_, _, t)) = split_pat tp (i + 1) t
wenzelm@35364
   518
    | split_pat tp i _ = NONE;
wenzelm@51717
   519
  fun metaeq ctxt lhs rhs = mk_meta_eq (Goal.prove ctxt [] []
wenzelm@35364
   520
        (HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs)))
wenzelm@51717
   521
        (K (simp_tac (put_simpset cond_split_eta_ss ctxt) 1)));
wenzelm@11838
   522
wenzelm@35364
   523
  fun beta_term_pat k i (Abs (_, _, t)) = beta_term_pat (k + 1) i t
wenzelm@35364
   524
    | beta_term_pat k i (t $ u) =
wenzelm@35364
   525
        Pair_pat k i (t $ u) orelse (beta_term_pat k i t andalso beta_term_pat k i u)
wenzelm@35364
   526
    | beta_term_pat k i t = no_args k i t;
wenzelm@35364
   527
  fun eta_term_pat k i (f $ arg) = no_args k i f andalso Pair_pat k i arg
wenzelm@35364
   528
    | eta_term_pat _ _ _ = false;
wenzelm@11838
   529
  fun subst arg k i (Abs (x, T, t)) = Abs (x, T, subst arg (k+1) i t)
wenzelm@35364
   530
    | subst arg k i (t $ u) =
wenzelm@35364
   531
        if Pair_pat k i (t $ u) then incr_boundvars k arg
wenzelm@35364
   532
        else (subst arg k i t $ subst arg k i u)
wenzelm@35364
   533
    | subst arg k i t = t;
wenzelm@43595
   534
in
blanchet@55414
   535
  fun beta_proc ctxt (s as Const (@{const_name case_prod}, _) $ Abs (_, _, t) $ arg) =
wenzelm@11838
   536
        (case split_pat beta_term_pat 1 t of
wenzelm@51717
   537
          SOME (i, f) => SOME (metaeq ctxt s (subst arg 0 i f))
skalberg@15531
   538
        | NONE => NONE)
wenzelm@35364
   539
    | beta_proc _ _ = NONE;
blanchet@55414
   540
  fun eta_proc ctxt (s as Const (@{const_name case_prod}, _) $ Abs (_, _, t)) =
wenzelm@11838
   541
        (case split_pat eta_term_pat 1 t of
wenzelm@51717
   542
          SOME (_, ft) => SOME (metaeq ctxt s (let val (f $ arg) = ft in f end))
skalberg@15531
   543
        | NONE => NONE)
wenzelm@35364
   544
    | eta_proc _ _ = NONE;
wenzelm@11838
   545
end;
wenzelm@11838
   546
*}
wenzelm@51717
   547
simproc_setup split_beta ("split f z") = {* fn _ => fn ctxt => fn ct => beta_proc ctxt (term_of ct) *}
wenzelm@51717
   548
simproc_setup split_eta ("split f") = {* fn _ => fn ctxt => fn ct => eta_proc ctxt (term_of ct) *}
wenzelm@11838
   549
berghofe@26798
   550
lemma split_beta [mono]: "(%(x, y). P x y) z = P (fst z) (snd z)"
wenzelm@11838
   551
  by (subst surjective_pairing, rule split_conv)
wenzelm@11838
   552
hoelzl@50104
   553
lemma split_beta': "(\<lambda>(x,y). f x y) = (\<lambda>x. f (fst x) (snd x))"
hoelzl@50104
   554
  by (auto simp: fun_eq_iff)
hoelzl@50104
   555
hoelzl@50104
   556
blanchet@35828
   557
lemma split_split [no_atp]: "R(split c p) = (ALL x y. p = (x, y) --> R(c x y))"
wenzelm@11838
   558
  -- {* For use with @{text split} and the Simplifier. *}
paulson@15481
   559
  by (insert surj_pair [of p], clarify, simp)
wenzelm@11838
   560
wenzelm@11838
   561
text {*
wenzelm@11838
   562
  @{thm [source] split_split} could be declared as @{text "[split]"}
wenzelm@11838
   563
  done after the Splitter has been speeded up significantly;
wenzelm@11838
   564
  precompute the constants involved and don't do anything unless the
wenzelm@11838
   565
  current goal contains one of those constants.
wenzelm@11838
   566
*}
wenzelm@11838
   567
blanchet@35828
   568
lemma split_split_asm [no_atp]: "R (split c p) = (~(EX x y. p = (x, y) & (~R (c x y))))"
paulson@14208
   569
by (subst split_split, simp)
wenzelm@11838
   570
wenzelm@11838
   571
text {*
wenzelm@11838
   572
  \medskip @{term split} used as a logical connective or set former.
wenzelm@11838
   573
wenzelm@11838
   574
  \medskip These rules are for use with @{text blast}; could instead
huffman@40929
   575
  call @{text simp} using @{thm [source] prod.split} as rewrite. *}
wenzelm@11838
   576
wenzelm@11838
   577
lemma splitI2: "!!p. [| !!a b. p = (a, b) ==> c a b |] ==> split c p"
wenzelm@11838
   578
  apply (simp only: split_tupled_all)
wenzelm@11838
   579
  apply (simp (no_asm_simp))
wenzelm@11838
   580
  done
wenzelm@11838
   581
wenzelm@11838
   582
lemma splitI2': "!!p. [| !!a b. (a, b) = p ==> c a b x |] ==> split c p x"
wenzelm@11838
   583
  apply (simp only: split_tupled_all)
wenzelm@11838
   584
  apply (simp (no_asm_simp))
wenzelm@11838
   585
  done
wenzelm@11838
   586
wenzelm@11838
   587
lemma splitE: "split c p ==> (!!x y. p = (x, y) ==> c x y ==> Q) ==> Q"
haftmann@37591
   588
  by (induct p) auto
wenzelm@11838
   589
wenzelm@11838
   590
lemma splitE': "split c p z ==> (!!x y. p = (x, y) ==> c x y z ==> Q) ==> Q"
haftmann@37591
   591
  by (induct p) auto
wenzelm@11838
   592
wenzelm@11838
   593
lemma splitE2:
wenzelm@11838
   594
  "[| Q (split P z);  !!x y. [|z = (x, y); Q (P x y)|] ==> R |] ==> R"
wenzelm@11838
   595
proof -
wenzelm@11838
   596
  assume q: "Q (split P z)"
wenzelm@11838
   597
  assume r: "!!x y. [|z = (x, y); Q (P x y)|] ==> R"
wenzelm@11838
   598
  show R
wenzelm@11838
   599
    apply (rule r surjective_pairing)+
wenzelm@11838
   600
    apply (rule split_beta [THEN subst], rule q)
wenzelm@11838
   601
    done
wenzelm@11838
   602
qed
wenzelm@11838
   603
wenzelm@11838
   604
lemma splitD': "split R (a,b) c ==> R a b c"
wenzelm@11838
   605
  by simp
wenzelm@11838
   606
wenzelm@11838
   607
lemma mem_splitI: "z: c a b ==> z: split c (a, b)"
wenzelm@11838
   608
  by simp
wenzelm@11838
   609
wenzelm@11838
   610
lemma mem_splitI2: "!!p. [| !!a b. p = (a, b) ==> z: c a b |] ==> z: split c p"
paulson@14208
   611
by (simp only: split_tupled_all, simp)
wenzelm@11838
   612
wenzelm@18372
   613
lemma mem_splitE:
haftmann@37166
   614
  assumes major: "z \<in> split c p"
haftmann@37166
   615
    and cases: "\<And>x y. p = (x, y) \<Longrightarrow> z \<in> c x y \<Longrightarrow> Q"
wenzelm@18372
   616
  shows Q
blanchet@55414
   617
  by (rule major [unfolded case_prod_unfold] cases surjective_pairing)+
wenzelm@11838
   618
wenzelm@11838
   619
declare mem_splitI2 [intro!] mem_splitI [intro!] splitI2' [intro!] splitI2 [intro!] splitI [intro!]
wenzelm@11838
   620
declare mem_splitE [elim!] splitE' [elim!] splitE [elim!]
wenzelm@11838
   621
wenzelm@26340
   622
ML {*
wenzelm@11838
   623
local (* filtering with exists_p_split is an essential optimization *)
blanchet@55414
   624
  fun exists_p_split (Const (@{const_name case_prod},_) $ _ $ (Const (@{const_name Pair},_)$_$_)) = true
wenzelm@11838
   625
    | exists_p_split (t $ u) = exists_p_split t orelse exists_p_split u
wenzelm@11838
   626
    | exists_p_split (Abs (_, _, t)) = exists_p_split t
wenzelm@11838
   627
    | exists_p_split _ = false;
wenzelm@11838
   628
in
wenzelm@51717
   629
fun split_conv_tac ctxt = SUBGOAL (fn (t, i) =>
wenzelm@51717
   630
  if exists_p_split t
wenzelm@51717
   631
  then safe_full_simp_tac (put_simpset HOL_basic_ss ctxt addsimps @{thms split_conv}) i
wenzelm@51717
   632
  else no_tac);
wenzelm@11838
   633
end;
wenzelm@26340
   634
*}
wenzelm@26340
   635
wenzelm@11838
   636
(* This prevents applications of splitE for already splitted arguments leading
wenzelm@11838
   637
   to quite time-consuming computations (in particular for nested tuples) *)
wenzelm@51703
   638
setup {* map_theory_claset (fn ctxt => ctxt addSbefore ("split_conv_tac", split_conv_tac)) *}
wenzelm@11838
   639
blanchet@54147
   640
lemma split_eta_SetCompr [simp, no_atp]: "(%u. EX x y. u = (x, y) & P (x, y)) = P"
wenzelm@18372
   641
  by (rule ext) fast
wenzelm@11838
   642
blanchet@54147
   643
lemma split_eta_SetCompr2 [simp, no_atp]: "(%u. EX x y. u = (x, y) & P x y) = split P"
wenzelm@18372
   644
  by (rule ext) fast
wenzelm@11838
   645
wenzelm@11838
   646
lemma split_part [simp]: "(%(a,b). P & Q a b) = (%ab. P & split Q ab)"
wenzelm@11838
   647
  -- {* Allows simplifications of nested splits in case of independent predicates. *}
wenzelm@18372
   648
  by (rule ext) blast
wenzelm@11838
   649
nipkow@14337
   650
(* Do NOT make this a simp rule as it
nipkow@14337
   651
   a) only helps in special situations
nipkow@14337
   652
   b) can lead to nontermination in the presence of split_def
nipkow@14337
   653
*)
nipkow@14337
   654
lemma split_comp_eq: 
paulson@20415
   655
  fixes f :: "'a => 'b => 'c" and g :: "'d => 'a"
paulson@20415
   656
  shows "(%u. f (g (fst u)) (snd u)) = (split (%x. f (g x)))"
wenzelm@18372
   657
  by (rule ext) auto
oheimb@14101
   658
haftmann@26358
   659
lemma pair_imageI [intro]: "(a, b) : A ==> f a b : (%(a, b). f a b) ` A"
haftmann@26358
   660
  apply (rule_tac x = "(a, b)" in image_eqI)
haftmann@26358
   661
   apply auto
haftmann@26358
   662
  done
haftmann@26358
   663
wenzelm@11838
   664
lemma The_split_eq [simp]: "(THE (x',y'). x = x' & y = y') = (x, y)"
wenzelm@11838
   665
  by blast
wenzelm@11838
   666
wenzelm@11838
   667
(*
wenzelm@11838
   668
the following  would be slightly more general,
wenzelm@11838
   669
but cannot be used as rewrite rule:
wenzelm@11838
   670
### Cannot add premise as rewrite rule because it contains (type) unknowns:
wenzelm@11838
   671
### ?y = .x
wenzelm@11838
   672
Goal "[| P y; !!x. P x ==> x = y |] ==> (@(x',y). x = x' & P y) = (x,y)"
paulson@14208
   673
by (rtac some_equality 1)
paulson@14208
   674
by ( Simp_tac 1)
paulson@14208
   675
by (split_all_tac 1)
paulson@14208
   676
by (Asm_full_simp_tac 1)
wenzelm@11838
   677
qed "The_split_eq";
wenzelm@11838
   678
*)
wenzelm@11838
   679
wenzelm@11838
   680
text {*
wenzelm@11838
   681
  Setup of internal @{text split_rule}.
wenzelm@11838
   682
*}
wenzelm@11838
   683
blanchet@55642
   684
lemmas case_prodI = prod.case [THEN iffD2]
haftmann@24699
   685
blanchet@55414
   686
lemma case_prodI2: "!!p. [| !!a b. p = (a, b) ==> c a b |] ==> case_prod c p"
haftmann@37678
   687
  by (fact splitI2)
haftmann@24699
   688
blanchet@55414
   689
lemma case_prodI2': "!!p. [| !!a b. (a, b) = p ==> c a b x |] ==> case_prod c p x"
haftmann@37678
   690
  by (fact splitI2')
haftmann@24699
   691
blanchet@55414
   692
lemma case_prodE: "case_prod c p ==> (!!x y. p = (x, y) ==> c x y ==> Q) ==> Q"
haftmann@37678
   693
  by (fact splitE)
haftmann@24699
   694
blanchet@55414
   695
lemma case_prodE': "case_prod c p z ==> (!!x y. p = (x, y) ==> c x y z ==> Q) ==> Q"
haftmann@37678
   696
  by (fact splitE')
haftmann@24699
   697
blanchet@55414
   698
declare case_prodI [intro!]
haftmann@24699
   699
blanchet@55414
   700
lemma case_prod_beta:
blanchet@55414
   701
  "case_prod f p = f (fst p) (snd p)"
haftmann@37591
   702
  by (fact split_beta)
bulwahn@26143
   703
blanchet@55417
   704
lemma prod_cases3 [cases type]:
haftmann@24699
   705
  obtains (fields) a b c where "y = (a, b, c)"
haftmann@24699
   706
  by (cases y, case_tac b) blast
haftmann@24699
   707
haftmann@24699
   708
lemma prod_induct3 [case_names fields, induct type]:
haftmann@24699
   709
    "(!!a b c. P (a, b, c)) ==> P x"
haftmann@24699
   710
  by (cases x) blast
haftmann@24699
   711
blanchet@55417
   712
lemma prod_cases4 [cases type]:
haftmann@24699
   713
  obtains (fields) a b c d where "y = (a, b, c, d)"
haftmann@24699
   714
  by (cases y, case_tac c) blast
haftmann@24699
   715
haftmann@24699
   716
lemma prod_induct4 [case_names fields, induct type]:
haftmann@24699
   717
    "(!!a b c d. P (a, b, c, d)) ==> P x"
haftmann@24699
   718
  by (cases x) blast
haftmann@24699
   719
blanchet@55417
   720
lemma prod_cases5 [cases type]:
haftmann@24699
   721
  obtains (fields) a b c d e where "y = (a, b, c, d, e)"
haftmann@24699
   722
  by (cases y, case_tac d) blast
haftmann@24699
   723
haftmann@24699
   724
lemma prod_induct5 [case_names fields, induct type]:
haftmann@24699
   725
    "(!!a b c d e. P (a, b, c, d, e)) ==> P x"
haftmann@24699
   726
  by (cases x) blast
haftmann@24699
   727
blanchet@55417
   728
lemma prod_cases6 [cases type]:
haftmann@24699
   729
  obtains (fields) a b c d e f where "y = (a, b, c, d, e, f)"
haftmann@24699
   730
  by (cases y, case_tac e) blast
haftmann@24699
   731
haftmann@24699
   732
lemma prod_induct6 [case_names fields, induct type]:
haftmann@24699
   733
    "(!!a b c d e f. P (a, b, c, d, e, f)) ==> P x"
haftmann@24699
   734
  by (cases x) blast
haftmann@24699
   735
blanchet@55417
   736
lemma prod_cases7 [cases type]:
haftmann@24699
   737
  obtains (fields) a b c d e f g where "y = (a, b, c, d, e, f, g)"
haftmann@24699
   738
  by (cases y, case_tac f) blast
haftmann@24699
   739
haftmann@24699
   740
lemma prod_induct7 [case_names fields, induct type]:
haftmann@24699
   741
    "(!!a b c d e f g. P (a, b, c, d, e, f, g)) ==> P x"
haftmann@24699
   742
  by (cases x) blast
haftmann@24699
   743
haftmann@37166
   744
lemma split_def:
haftmann@37166
   745
  "split = (\<lambda>c p. c (fst p) (snd p))"
blanchet@55414
   746
  by (fact case_prod_unfold)
haftmann@37166
   747
haftmann@37166
   748
definition internal_split :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c" where
haftmann@37166
   749
  "internal_split == split"
haftmann@37166
   750
haftmann@37166
   751
lemma internal_split_conv: "internal_split c (a, b) = c a b"
haftmann@37166
   752
  by (simp only: internal_split_def split_conv)
haftmann@37166
   753
wenzelm@48891
   754
ML_file "Tools/split_rule.ML"
haftmann@37166
   755
setup Split_Rule.setup
haftmann@37166
   756
haftmann@37166
   757
hide_const internal_split
haftmann@37166
   758
haftmann@24699
   759
haftmann@26358
   760
subsubsection {* Derived operations *}
haftmann@26358
   761
haftmann@37387
   762
definition curry    :: "('a \<times> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'c" where
haftmann@37387
   763
  "curry = (\<lambda>c x y. c (x, y))"
haftmann@37166
   764
haftmann@37166
   765
lemma curry_conv [simp, code]: "curry f a b = f (a, b)"
haftmann@37166
   766
  by (simp add: curry_def)
haftmann@37166
   767
haftmann@37166
   768
lemma curryI [intro!]: "f (a, b) \<Longrightarrow> curry f a b"
haftmann@37166
   769
  by (simp add: curry_def)
haftmann@37166
   770
haftmann@37166
   771
lemma curryD [dest!]: "curry f a b \<Longrightarrow> f (a, b)"
haftmann@37166
   772
  by (simp add: curry_def)
haftmann@37166
   773
haftmann@37166
   774
lemma curryE: "curry f a b \<Longrightarrow> (f (a, b) \<Longrightarrow> Q) \<Longrightarrow> Q"
haftmann@37166
   775
  by (simp add: curry_def)
haftmann@37166
   776
haftmann@37166
   777
lemma curry_split [simp]: "curry (split f) = f"
haftmann@37166
   778
  by (simp add: curry_def split_def)
haftmann@37166
   779
haftmann@37166
   780
lemma split_curry [simp]: "split (curry f) = f"
haftmann@37166
   781
  by (simp add: curry_def split_def)
haftmann@37166
   782
Andreas@54630
   783
lemma curry_K: "curry (\<lambda>x. c) = (\<lambda>x y. c)"
Andreas@54630
   784
by(simp add: fun_eq_iff)
Andreas@54630
   785
haftmann@26358
   786
text {*
haftmann@26358
   787
  The composition-uncurry combinator.
haftmann@26358
   788
*}
haftmann@26358
   789
haftmann@37751
   790
notation fcomp (infixl "\<circ>>" 60)
haftmann@26358
   791
haftmann@37751
   792
definition scomp :: "('a \<Rightarrow> 'b \<times> 'c) \<Rightarrow> ('b \<Rightarrow> 'c \<Rightarrow> 'd) \<Rightarrow> 'a \<Rightarrow> 'd" (infixl "\<circ>\<rightarrow>" 60) where
blanchet@55414
   793
  "f \<circ>\<rightarrow> g = (\<lambda>x. case_prod g (f x))"
haftmann@26358
   794
haftmann@37678
   795
lemma scomp_unfold: "scomp = (\<lambda>f g x. g (fst (f x)) (snd (f x)))"
blanchet@55414
   796
  by (simp add: fun_eq_iff scomp_def case_prod_unfold)
haftmann@37678
   797
blanchet@55414
   798
lemma scomp_apply [simp]: "(f \<circ>\<rightarrow> g) x = case_prod g (f x)"
blanchet@55414
   799
  by (simp add: scomp_unfold case_prod_unfold)
haftmann@26358
   800
haftmann@37751
   801
lemma Pair_scomp: "Pair x \<circ>\<rightarrow> f = f x"
huffman@44921
   802
  by (simp add: fun_eq_iff)
haftmann@26358
   803
haftmann@37751
   804
lemma scomp_Pair: "x \<circ>\<rightarrow> Pair = x"
huffman@44921
   805
  by (simp add: fun_eq_iff)
haftmann@26358
   806
haftmann@37751
   807
lemma scomp_scomp: "(f \<circ>\<rightarrow> g) \<circ>\<rightarrow> h = f \<circ>\<rightarrow> (\<lambda>x. g x \<circ>\<rightarrow> h)"
nipkow@39302
   808
  by (simp add: fun_eq_iff scomp_unfold)
haftmann@26358
   809
haftmann@37751
   810
lemma scomp_fcomp: "(f \<circ>\<rightarrow> g) \<circ>> h = f \<circ>\<rightarrow> (\<lambda>x. g x \<circ>> h)"
nipkow@39302
   811
  by (simp add: fun_eq_iff scomp_unfold fcomp_def)
haftmann@26358
   812
haftmann@37751
   813
lemma fcomp_scomp: "(f \<circ>> g) \<circ>\<rightarrow> h = f \<circ>> (g \<circ>\<rightarrow> h)"
huffman@44921
   814
  by (simp add: fun_eq_iff scomp_unfold)
haftmann@26358
   815
haftmann@52435
   816
code_printing
haftmann@52435
   817
  constant scomp \<rightharpoonup> (Eval) infixl 3 "#->"
haftmann@31202
   818
haftmann@37751
   819
no_notation fcomp (infixl "\<circ>>" 60)
haftmann@37751
   820
no_notation scomp (infixl "\<circ>\<rightarrow>" 60)
haftmann@26358
   821
haftmann@26358
   822
text {*
blanchet@55932
   823
  @{term map_prod} --- action of the product functor upon
krauss@36664
   824
  functions.
haftmann@26358
   825
*}
haftmann@21195
   826
blanchet@55932
   827
definition map_prod :: "('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c \<times> 'd" where
blanchet@55932
   828
  "map_prod f g = (\<lambda>(x, y). (f x, g y))"
haftmann@26358
   829
blanchet@55932
   830
lemma map_prod_simp [simp, code]:
blanchet@55932
   831
  "map_prod f g (a, b) = (f a, g b)"
blanchet@55932
   832
  by (simp add: map_prod_def)
haftmann@26358
   833
blanchet@55932
   834
functor map_prod: map_prod
huffman@44921
   835
  by (auto simp add: split_paired_all)
nipkow@37278
   836
blanchet@55932
   837
lemma fst_map_prod [simp]:
blanchet@55932
   838
  "fst (map_prod f g x) = f (fst x)"
haftmann@40607
   839
  by (cases x) simp_all
nipkow@37278
   840
haftmann@40607
   841
lemma snd_prod_fun [simp]:
blanchet@55932
   842
  "snd (map_prod f g x) = g (snd x)"
haftmann@40607
   843
  by (cases x) simp_all
nipkow@37278
   844
blanchet@55932
   845
lemma fst_comp_map_prod [simp]:
blanchet@55932
   846
  "fst \<circ> map_prod f g = f \<circ> fst"
haftmann@40607
   847
  by (rule ext) simp_all
nipkow@37278
   848
blanchet@55932
   849
lemma snd_comp_map_prod [simp]:
blanchet@55932
   850
  "snd \<circ> map_prod f g = g \<circ> snd"
haftmann@40607
   851
  by (rule ext) simp_all
haftmann@26358
   852
blanchet@55932
   853
lemma map_prod_compose:
blanchet@55932
   854
  "map_prod (f1 o f2) (g1 o g2) = (map_prod f1 g1 o map_prod f2 g2)"
blanchet@55932
   855
  by (rule ext) (simp add: map_prod.compositionality comp_def)
haftmann@26358
   856
blanchet@55932
   857
lemma map_prod_ident [simp]:
blanchet@55932
   858
  "map_prod (%x. x) (%y. y) = (%z. z)"
blanchet@55932
   859
  by (rule ext) (simp add: map_prod.identity)
haftmann@40607
   860
blanchet@55932
   861
lemma map_prod_imageI [intro]:
blanchet@55932
   862
  "(a, b) \<in> R \<Longrightarrow> (f a, g b) \<in> map_prod f g ` R"
haftmann@40607
   863
  by (rule image_eqI) simp_all
haftmann@21195
   864
haftmann@26358
   865
lemma prod_fun_imageE [elim!]:
blanchet@55932
   866
  assumes major: "c \<in> map_prod f g ` R"
haftmann@40607
   867
    and cases: "\<And>x y. c = (f x, g y) \<Longrightarrow> (x, y) \<in> R \<Longrightarrow> P"
haftmann@26358
   868
  shows P
haftmann@26358
   869
  apply (rule major [THEN imageE])
haftmann@37166
   870
  apply (case_tac x)
haftmann@26358
   871
  apply (rule cases)
haftmann@40607
   872
  apply simp_all
haftmann@26358
   873
  done
haftmann@26358
   874
haftmann@37166
   875
definition apfst :: "('a \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c \<times> 'b" where
blanchet@55932
   876
  "apfst f = map_prod f id"
haftmann@26358
   877
haftmann@37166
   878
definition apsnd :: "('b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'a \<times> 'c" where
blanchet@55932
   879
  "apsnd f = map_prod id f"
haftmann@26358
   880
haftmann@26358
   881
lemma apfst_conv [simp, code]:
haftmann@26358
   882
  "apfst f (x, y) = (f x, y)" 
haftmann@26358
   883
  by (simp add: apfst_def)
haftmann@26358
   884
hoelzl@33638
   885
lemma apsnd_conv [simp, code]:
haftmann@26358
   886
  "apsnd f (x, y) = (x, f y)" 
haftmann@26358
   887
  by (simp add: apsnd_def)
haftmann@21195
   888
haftmann@33594
   889
lemma fst_apfst [simp]:
haftmann@33594
   890
  "fst (apfst f x) = f (fst x)"
haftmann@33594
   891
  by (cases x) simp
haftmann@33594
   892
haftmann@51173
   893
lemma fst_comp_apfst [simp]:
haftmann@51173
   894
  "fst \<circ> apfst f = f \<circ> fst"
haftmann@51173
   895
  by (simp add: fun_eq_iff)
haftmann@51173
   896
haftmann@33594
   897
lemma fst_apsnd [simp]:
haftmann@33594
   898
  "fst (apsnd f x) = fst x"
haftmann@33594
   899
  by (cases x) simp
haftmann@33594
   900
haftmann@51173
   901
lemma fst_comp_apsnd [simp]:
haftmann@51173
   902
  "fst \<circ> apsnd f = fst"
haftmann@51173
   903
  by (simp add: fun_eq_iff)
haftmann@51173
   904
haftmann@33594
   905
lemma snd_apfst [simp]:
haftmann@33594
   906
  "snd (apfst f x) = snd x"
haftmann@33594
   907
  by (cases x) simp
haftmann@33594
   908
haftmann@51173
   909
lemma snd_comp_apfst [simp]:
haftmann@51173
   910
  "snd \<circ> apfst f = snd"
haftmann@51173
   911
  by (simp add: fun_eq_iff)
haftmann@51173
   912
haftmann@33594
   913
lemma snd_apsnd [simp]:
haftmann@33594
   914
  "snd (apsnd f x) = f (snd x)"
haftmann@33594
   915
  by (cases x) simp
haftmann@33594
   916
haftmann@51173
   917
lemma snd_comp_apsnd [simp]:
haftmann@51173
   918
  "snd \<circ> apsnd f = f \<circ> snd"
haftmann@51173
   919
  by (simp add: fun_eq_iff)
haftmann@51173
   920
haftmann@33594
   921
lemma apfst_compose:
haftmann@33594
   922
  "apfst f (apfst g x) = apfst (f \<circ> g) x"
haftmann@33594
   923
  by (cases x) simp
haftmann@33594
   924
haftmann@33594
   925
lemma apsnd_compose:
haftmann@33594
   926
  "apsnd f (apsnd g x) = apsnd (f \<circ> g) x"
haftmann@33594
   927
  by (cases x) simp
haftmann@33594
   928
haftmann@33594
   929
lemma apfst_apsnd [simp]:
haftmann@33594
   930
  "apfst f (apsnd g x) = (f (fst x), g (snd x))"
haftmann@33594
   931
  by (cases x) simp
haftmann@33594
   932
haftmann@33594
   933
lemma apsnd_apfst [simp]:
haftmann@33594
   934
  "apsnd f (apfst g x) = (g (fst x), f (snd x))"
haftmann@33594
   935
  by (cases x) simp
haftmann@33594
   936
haftmann@33594
   937
lemma apfst_id [simp] :
haftmann@33594
   938
  "apfst id = id"
nipkow@39302
   939
  by (simp add: fun_eq_iff)
haftmann@33594
   940
haftmann@33594
   941
lemma apsnd_id [simp] :
haftmann@33594
   942
  "apsnd id = id"
nipkow@39302
   943
  by (simp add: fun_eq_iff)
haftmann@33594
   944
haftmann@33594
   945
lemma apfst_eq_conv [simp]:
haftmann@33594
   946
  "apfst f x = apfst g x \<longleftrightarrow> f (fst x) = g (fst x)"
haftmann@33594
   947
  by (cases x) simp
haftmann@33594
   948
haftmann@33594
   949
lemma apsnd_eq_conv [simp]:
haftmann@33594
   950
  "apsnd f x = apsnd g x \<longleftrightarrow> f (snd x) = g (snd x)"
haftmann@33594
   951
  by (cases x) simp
haftmann@33594
   952
hoelzl@33638
   953
lemma apsnd_apfst_commute:
hoelzl@33638
   954
  "apsnd f (apfst g p) = apfst g (apsnd f p)"
hoelzl@33638
   955
  by simp
haftmann@21195
   956
haftmann@26358
   957
text {*
haftmann@26358
   958
  Disjoint union of a family of sets -- Sigma.
haftmann@26358
   959
*}
haftmann@26358
   960
haftmann@45986
   961
definition Sigma :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> ('a \<times> 'b) set" where
haftmann@26358
   962
  Sigma_def: "Sigma A B == UN x:A. UN y:B x. {Pair x y}"
haftmann@26358
   963
haftmann@26358
   964
abbreviation
haftmann@45986
   965
  Times :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<times> 'b) set"
haftmann@26358
   966
    (infixr "<*>" 80) where
haftmann@26358
   967
  "A <*> B == Sigma A (%_. B)"
haftmann@26358
   968
haftmann@26358
   969
notation (xsymbols)
haftmann@26358
   970
  Times  (infixr "\<times>" 80)
berghofe@15394
   971
haftmann@26358
   972
notation (HTML output)
haftmann@26358
   973
  Times  (infixr "\<times>" 80)
haftmann@26358
   974
nipkow@45662
   975
hide_const (open) Times
nipkow@45662
   976
haftmann@26358
   977
syntax
wenzelm@35115
   978
  "_Sigma" :: "[pttrn, 'a set, 'b set] => ('a * 'b) set"  ("(3SIGMA _:_./ _)" [0, 0, 10] 10)
haftmann@26358
   979
translations
wenzelm@35115
   980
  "SIGMA x:A. B" == "CONST Sigma A (%x. B)"
haftmann@26358
   981
haftmann@26358
   982
lemma SigmaI [intro!]: "[| a:A;  b:B(a) |] ==> (a,b) : Sigma A B"
haftmann@26358
   983
  by (unfold Sigma_def) blast
haftmann@26358
   984
haftmann@26358
   985
lemma SigmaE [elim!]:
haftmann@26358
   986
    "[| c: Sigma A B;
haftmann@26358
   987
        !!x y.[| x:A;  y:B(x);  c=(x,y) |] ==> P
haftmann@26358
   988
     |] ==> P"
haftmann@26358
   989
  -- {* The general elimination rule. *}
haftmann@26358
   990
  by (unfold Sigma_def) blast
haftmann@20588
   991
haftmann@26358
   992
text {*
haftmann@26358
   993
  Elimination of @{term "(a, b) : A \<times> B"} -- introduces no
haftmann@26358
   994
  eigenvariables.
haftmann@26358
   995
*}
haftmann@26358
   996
haftmann@26358
   997
lemma SigmaD1: "(a, b) : Sigma A B ==> a : A"
haftmann@26358
   998
  by blast
haftmann@26358
   999
haftmann@26358
  1000
lemma SigmaD2: "(a, b) : Sigma A B ==> b : B a"
haftmann@26358
  1001
  by blast
haftmann@26358
  1002
haftmann@26358
  1003
lemma SigmaE2:
haftmann@26358
  1004
    "[| (a, b) : Sigma A B;
haftmann@26358
  1005
        [| a:A;  b:B(a) |] ==> P
haftmann@26358
  1006
     |] ==> P"
haftmann@26358
  1007
  by blast
haftmann@20588
  1008
haftmann@26358
  1009
lemma Sigma_cong:
haftmann@26358
  1010
     "\<lbrakk>A = B; !!x. x \<in> B \<Longrightarrow> C x = D x\<rbrakk>
haftmann@26358
  1011
      \<Longrightarrow> (SIGMA x: A. C x) = (SIGMA x: B. D x)"
haftmann@26358
  1012
  by auto
haftmann@26358
  1013
haftmann@26358
  1014
lemma Sigma_mono: "[| A <= C; !!x. x:A ==> B x <= D x |] ==> Sigma A B <= Sigma C D"
haftmann@26358
  1015
  by blast
haftmann@26358
  1016
haftmann@26358
  1017
lemma Sigma_empty1 [simp]: "Sigma {} B = {}"
haftmann@26358
  1018
  by blast
haftmann@26358
  1019
haftmann@26358
  1020
lemma Sigma_empty2 [simp]: "A <*> {} = {}"
haftmann@26358
  1021
  by blast
haftmann@26358
  1022
haftmann@26358
  1023
lemma UNIV_Times_UNIV [simp]: "UNIV <*> UNIV = UNIV"
haftmann@26358
  1024
  by auto
haftmann@21908
  1025
haftmann@26358
  1026
lemma Compl_Times_UNIV1 [simp]: "- (UNIV <*> A) = UNIV <*> (-A)"
haftmann@26358
  1027
  by auto
haftmann@26358
  1028
haftmann@26358
  1029
lemma Compl_Times_UNIV2 [simp]: "- (A <*> UNIV) = (-A) <*> UNIV"
haftmann@26358
  1030
  by auto
haftmann@26358
  1031
haftmann@26358
  1032
lemma mem_Sigma_iff [iff]: "((a,b): Sigma A B) = (a:A & b:B(a))"
haftmann@26358
  1033
  by blast
haftmann@26358
  1034
haftmann@26358
  1035
lemma Times_subset_cancel2: "x:C ==> (A <*> C <= B <*> C) = (A <= B)"
haftmann@26358
  1036
  by blast
haftmann@26358
  1037
haftmann@26358
  1038
lemma Times_eq_cancel2: "x:C ==> (A <*> C = B <*> C) = (A = B)"
haftmann@26358
  1039
  by (blast elim: equalityE)
haftmann@20588
  1040
haftmann@26358
  1041
lemma SetCompr_Sigma_eq:
haftmann@26358
  1042
    "Collect (split (%x y. P x & Q x y)) = (SIGMA x:Collect P. Collect (Q x))"
haftmann@26358
  1043
  by blast
haftmann@26358
  1044
haftmann@26358
  1045
lemma Collect_split [simp]: "{(a,b). P a & Q b} = Collect P <*> Collect Q"
haftmann@26358
  1046
  by blast
haftmann@26358
  1047
haftmann@26358
  1048
lemma UN_Times_distrib:
haftmann@26358
  1049
  "(UN (a,b):(A <*> B). E a <*> F b) = (UNION A E) <*> (UNION B F)"
haftmann@26358
  1050
  -- {* Suggested by Pierre Chartier *}
haftmann@26358
  1051
  by blast
haftmann@26358
  1052
blanchet@47740
  1053
lemma split_paired_Ball_Sigma [simp, no_atp]:
haftmann@26358
  1054
    "(ALL z: Sigma A B. P z) = (ALL x:A. ALL y: B x. P(x,y))"
haftmann@26358
  1055
  by blast
haftmann@26358
  1056
blanchet@47740
  1057
lemma split_paired_Bex_Sigma [simp, no_atp]:
haftmann@26358
  1058
    "(EX z: Sigma A B. P z) = (EX x:A. EX y: B x. P(x,y))"
haftmann@26358
  1059
  by blast
haftmann@21908
  1060
haftmann@26358
  1061
lemma Sigma_Un_distrib1: "(SIGMA i:I Un J. C(i)) = (SIGMA i:I. C(i)) Un (SIGMA j:J. C(j))"
haftmann@26358
  1062
  by blast
haftmann@26358
  1063
haftmann@26358
  1064
lemma Sigma_Un_distrib2: "(SIGMA i:I. A(i) Un B(i)) = (SIGMA i:I. A(i)) Un (SIGMA i:I. B(i))"
haftmann@26358
  1065
  by blast
haftmann@26358
  1066
haftmann@26358
  1067
lemma Sigma_Int_distrib1: "(SIGMA i:I Int J. C(i)) = (SIGMA i:I. C(i)) Int (SIGMA j:J. C(j))"
haftmann@26358
  1068
  by blast
haftmann@26358
  1069
haftmann@26358
  1070
lemma Sigma_Int_distrib2: "(SIGMA i:I. A(i) Int B(i)) = (SIGMA i:I. A(i)) Int (SIGMA i:I. B(i))"
haftmann@26358
  1071
  by blast
haftmann@26358
  1072
haftmann@26358
  1073
lemma Sigma_Diff_distrib1: "(SIGMA i:I - J. C(i)) = (SIGMA i:I. C(i)) - (SIGMA j:J. C(j))"
haftmann@26358
  1074
  by blast
haftmann@26358
  1075
haftmann@26358
  1076
lemma Sigma_Diff_distrib2: "(SIGMA i:I. A(i) - B(i)) = (SIGMA i:I. A(i)) - (SIGMA i:I. B(i))"
haftmann@26358
  1077
  by blast
haftmann@21908
  1078
haftmann@26358
  1079
lemma Sigma_Union: "Sigma (Union X) B = (UN A:X. Sigma A B)"
haftmann@26358
  1080
  by blast
haftmann@26358
  1081
haftmann@26358
  1082
text {*
haftmann@26358
  1083
  Non-dependent versions are needed to avoid the need for higher-order
haftmann@26358
  1084
  matching, especially when the rules are re-oriented.
haftmann@26358
  1085
*}
haftmann@21908
  1086
haftmann@26358
  1087
lemma Times_Un_distrib1: "(A Un B) <*> C = (A <*> C) Un (B <*> C)"
nipkow@28719
  1088
by blast
haftmann@26358
  1089
haftmann@26358
  1090
lemma Times_Int_distrib1: "(A Int B) <*> C = (A <*> C) Int (B <*> C)"
nipkow@28719
  1091
by blast
haftmann@26358
  1092
haftmann@26358
  1093
lemma Times_Diff_distrib1: "(A - B) <*> C = (A <*> C) - (B <*> C)"
nipkow@28719
  1094
by blast
haftmann@26358
  1095
hoelzl@36622
  1096
lemma Times_empty[simp]: "A \<times> B = {} \<longleftrightarrow> A = {} \<or> B = {}"
hoelzl@36622
  1097
  by auto
hoelzl@36622
  1098
hoelzl@50104
  1099
lemma times_eq_iff: "A \<times> B = C \<times> D \<longleftrightarrow> A = C \<and> B = D \<or> ((A = {} \<or> B = {}) \<and> (C = {} \<or> D = {}))"
hoelzl@50104
  1100
  by auto
hoelzl@50104
  1101
hoelzl@36622
  1102
lemma fst_image_times[simp]: "fst ` (A \<times> B) = (if B = {} then {} else A)"
huffman@44921
  1103
  by force
hoelzl@36622
  1104
hoelzl@36622
  1105
lemma snd_image_times[simp]: "snd ` (A \<times> B) = (if A = {} then {} else B)"
huffman@44921
  1106
  by force
hoelzl@36622
  1107
nipkow@28719
  1108
lemma insert_times_insert[simp]:
nipkow@28719
  1109
  "insert a A \<times> insert b B =
nipkow@28719
  1110
   insert (a,b) (A \<times> insert b B \<union> insert a A \<times> B)"
nipkow@28719
  1111
by blast
haftmann@26358
  1112
paulson@33271
  1113
lemma vimage_Times: "f -` (A \<times> B) = ((fst \<circ> f) -` A) \<inter> ((snd \<circ> f) -` B)"
wenzelm@47988
  1114
  apply auto
wenzelm@47988
  1115
  apply (case_tac "f x")
wenzelm@47988
  1116
  apply auto
wenzelm@47988
  1117
  done
paulson@33271
  1118
hoelzl@50104
  1119
lemma times_Int_times: "A \<times> B \<inter> C \<times> D = (A \<inter> C) \<times> (B \<inter> D)"
hoelzl@50104
  1120
  by auto
hoelzl@50104
  1121
haftmann@35822
  1122
lemma swap_inj_on:
hoelzl@36622
  1123
  "inj_on (\<lambda>(i, j). (j, i)) A"
hoelzl@36622
  1124
  by (auto intro!: inj_onI)
haftmann@35822
  1125
haftmann@35822
  1126
lemma swap_product:
haftmann@35822
  1127
  "(%(i, j). (j, i)) ` (A \<times> B) = B \<times> A"
haftmann@35822
  1128
  by (simp add: split_def image_def) blast
haftmann@35822
  1129
hoelzl@36622
  1130
lemma image_split_eq_Sigma:
hoelzl@36622
  1131
  "(\<lambda>x. (f x, g x)) ` A = Sigma (f ` A) (\<lambda>x. g ` (f -` {x} \<inter> A))"
haftmann@46128
  1132
proof (safe intro!: imageI)
hoelzl@36622
  1133
  fix a b assume *: "a \<in> A" "b \<in> A" and eq: "f a = f b"
hoelzl@36622
  1134
  show "(f b, g a) \<in> (\<lambda>x. (f x, g x)) ` A"
hoelzl@36622
  1135
    using * eq[symmetric] by auto
hoelzl@36622
  1136
qed simp_all
haftmann@35822
  1137
haftmann@46128
  1138
definition product :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<times> 'b) set" where
haftmann@46128
  1139
  [code_abbrev]: "product A B = A \<times> B"
haftmann@46128
  1140
haftmann@46128
  1141
hide_const (open) product
haftmann@46128
  1142
haftmann@46128
  1143
lemma member_product:
haftmann@46128
  1144
  "x \<in> Product_Type.product A B \<longleftrightarrow> x \<in> A \<times> B"
haftmann@46128
  1145
  by (simp add: product_def)
haftmann@46128
  1146
blanchet@55932
  1147
text {* The following @{const map_prod} lemmas are due to Joachim Breitner: *}
haftmann@40607
  1148
blanchet@55932
  1149
lemma map_prod_inj_on:
haftmann@40607
  1150
  assumes "inj_on f A" and "inj_on g B"
blanchet@55932
  1151
  shows "inj_on (map_prod f g) (A \<times> B)"
haftmann@40607
  1152
proof (rule inj_onI)
haftmann@40607
  1153
  fix x :: "'a \<times> 'c" and y :: "'a \<times> 'c"
haftmann@40607
  1154
  assume "x \<in> A \<times> B" hence "fst x \<in> A" and "snd x \<in> B" by auto
haftmann@40607
  1155
  assume "y \<in> A \<times> B" hence "fst y \<in> A" and "snd y \<in> B" by auto
blanchet@55932
  1156
  assume "map_prod f g x = map_prod f g y"
blanchet@55932
  1157
  hence "fst (map_prod f g x) = fst (map_prod f g y)" by (auto)
haftmann@40607
  1158
  hence "f (fst x) = f (fst y)" by (cases x,cases y,auto)
haftmann@40607
  1159
  with `inj_on f A` and `fst x \<in> A` and `fst y \<in> A`
haftmann@40607
  1160
  have "fst x = fst y" by (auto dest:dest:inj_onD)
blanchet@55932
  1161
  moreover from `map_prod f g x = map_prod f g y`
blanchet@55932
  1162
  have "snd (map_prod f g x) = snd (map_prod f g y)" by (auto)
haftmann@40607
  1163
  hence "g (snd x) = g (snd y)" by (cases x,cases y,auto)
haftmann@40607
  1164
  with `inj_on g B` and `snd x \<in> B` and `snd y \<in> B`
haftmann@40607
  1165
  have "snd x = snd y" by (auto dest:dest:inj_onD)
haftmann@40607
  1166
  ultimately show "x = y" by(rule prod_eqI)
haftmann@40607
  1167
qed
haftmann@40607
  1168
blanchet@55932
  1169
lemma map_prod_surj:
hoelzl@40702
  1170
  fixes f :: "'a \<Rightarrow> 'b" and g :: "'c \<Rightarrow> 'd"
haftmann@40607
  1171
  assumes "surj f" and "surj g"
blanchet@55932
  1172
  shows "surj (map_prod f g)"
haftmann@40607
  1173
unfolding surj_def
haftmann@40607
  1174
proof
haftmann@40607
  1175
  fix y :: "'b \<times> 'd"
haftmann@40607
  1176
  from `surj f` obtain a where "fst y = f a" by (auto elim:surjE)
haftmann@40607
  1177
  moreover
haftmann@40607
  1178
  from `surj g` obtain b where "snd y = g b" by (auto elim:surjE)
blanchet@55932
  1179
  ultimately have "(fst y, snd y) = map_prod f g (a,b)" by auto
blanchet@55932
  1180
  thus "\<exists>x. y = map_prod f g x" by auto
haftmann@40607
  1181
qed
haftmann@40607
  1182
blanchet@55932
  1183
lemma map_prod_surj_on:
haftmann@40607
  1184
  assumes "f ` A = A'" and "g ` B = B'"
blanchet@55932
  1185
  shows "map_prod f g ` (A \<times> B) = A' \<times> B'"
haftmann@40607
  1186
unfolding image_def
haftmann@40607
  1187
proof(rule set_eqI,rule iffI)
haftmann@40607
  1188
  fix x :: "'a \<times> 'c"
blanchet@55932
  1189
  assume "x \<in> {y\<Colon>'a \<times> 'c. \<exists>x\<Colon>'b \<times> 'd\<in>A \<times> B. y = map_prod f g x}"
blanchet@55932
  1190
  then obtain y where "y \<in> A \<times> B" and "x = map_prod f g y" by blast
haftmann@40607
  1191
  from `image f A = A'` and `y \<in> A \<times> B` have "f (fst y) \<in> A'" by auto
haftmann@40607
  1192
  moreover from `image g B = B'` and `y \<in> A \<times> B` have "g (snd y) \<in> B'" by auto
haftmann@40607
  1193
  ultimately have "(f (fst y), g (snd y)) \<in> (A' \<times> B')" by auto
blanchet@55932
  1194
  with `x = map_prod f g y` show "x \<in> A' \<times> B'" by (cases y, auto)
haftmann@40607
  1195
next
haftmann@40607
  1196
  fix x :: "'a \<times> 'c"
haftmann@40607
  1197
  assume "x \<in> A' \<times> B'" hence "fst x \<in> A'" and "snd x \<in> B'" by auto
haftmann@40607
  1198
  from `image f A = A'` and `fst x \<in> A'` have "fst x \<in> image f A" by auto
haftmann@40607
  1199
  then obtain a where "a \<in> A" and "fst x = f a" by (rule imageE)
haftmann@40607
  1200
  moreover from `image g B = B'` and `snd x \<in> B'`
haftmann@40607
  1201
  obtain b where "b \<in> B" and "snd x = g b" by auto
blanchet@55932
  1202
  ultimately have "(fst x, snd x) = map_prod f g (a,b)" by auto
haftmann@40607
  1203
  moreover from `a \<in> A` and  `b \<in> B` have "(a , b) \<in> A \<times> B" by auto
blanchet@55932
  1204
  ultimately have "\<exists>y \<in> A \<times> B. x = map_prod f g y" by auto
blanchet@55932
  1205
  thus "x \<in> {x. \<exists>y \<in> A \<times> B. x = map_prod f g y}" by auto
haftmann@40607
  1206
qed
haftmann@40607
  1207
haftmann@21908
  1208
bulwahn@49764
  1209
subsection {* Simproc for rewriting a set comprehension into a pointfree expression *}
bulwahn@49764
  1210
bulwahn@49764
  1211
ML_file "Tools/set_comprehension_pointfree.ML"
bulwahn@49764
  1212
bulwahn@49764
  1213
setup {*
wenzelm@51717
  1214
  Code_Preproc.map_pre (fn ctxt => ctxt addsimprocs
bulwahn@49764
  1215
    [Raw_Simplifier.make_simproc {name = "set comprehension", lhss = [@{cpat "Collect ?P"}],
bulwahn@49764
  1216
    proc = K Set_Comprehension_Pointfree.code_simproc, identifier = []}])
bulwahn@49764
  1217
*}
bulwahn@49764
  1218
bulwahn@49764
  1219
haftmann@37166
  1220
subsection {* Inductively defined sets *}
berghofe@15394
  1221
wenzelm@48891
  1222
ML_file "Tools/inductive_set.ML"
haftmann@31723
  1223
setup Inductive_Set.setup
haftmann@24699
  1224
haftmann@37166
  1225
haftmann@37166
  1226
subsection {* Legacy theorem bindings and duplicates *}
haftmann@37166
  1227
haftmann@37166
  1228
lemma PairE:
haftmann@37166
  1229
  obtains x y where "p = (x, y)"
haftmann@37166
  1230
  by (fact prod.exhaust)
haftmann@37166
  1231
haftmann@37166
  1232
lemmas Pair_eq = prod.inject
blanchet@55393
  1233
lemmas fst_conv = prod.sel(1)
blanchet@55393
  1234
lemmas snd_conv = prod.sel(2)
blanchet@55393
  1235
lemmas pair_collapse = prod.collapse
blanchet@55393
  1236
lemmas split = split_conv
huffman@44066
  1237
lemmas Pair_fst_snd_eq = prod_eq_iff
huffman@44066
  1238
huffman@45204
  1239
hide_const (open) prod
huffman@45204
  1240
nipkow@10213
  1241
end