src/HOL/Nitpick.thy
author blanchet
Wed Apr 23 10:23:27 2014 +0200 (2014-04-23)
changeset 56643 41d3596d8a64
parent 55642 63beb38e9258
child 57231 dca8d06ecbba
permissions -rw-r--r--
move size hooks together, with new one preceding old one and sharing same theory data
blanchet@33192
     1
(*  Title:      HOL/Nitpick.thy
blanchet@33192
     2
    Author:     Jasmin Blanchette, TU Muenchen
blanchet@35807
     3
    Copyright   2008, 2009, 2010
blanchet@33192
     4
blanchet@33192
     5
Nitpick: Yet another counterexample generator for Isabelle/HOL.
blanchet@33192
     6
*)
blanchet@33192
     7
blanchet@33192
     8
header {* Nitpick: Yet Another Counterexample Generator for Isabelle/HOL *}
blanchet@33192
     9
blanchet@33192
    10
theory Nitpick
blanchet@55082
    11
imports BNF_FP_Base Map Record Sledgehammer
blanchet@55539
    12
keywords
blanchet@55539
    13
  "nitpick" :: diag and
blanchet@55539
    14
  "nitpick_params" :: thy_decl
blanchet@33192
    15
begin
blanchet@33192
    16
blanchet@33192
    17
typedecl bisim_iterator
blanchet@33192
    18
blanchet@33192
    19
axiomatization unknown :: 'a
blanchet@34938
    20
           and is_unknown :: "'a \<Rightarrow> bool"
blanchet@33192
    21
           and bisim :: "bisim_iterator \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
blanchet@33192
    22
           and bisim_iterator_max :: bisim_iterator
blanchet@34938
    23
           and Quot :: "'a \<Rightarrow> 'b"
blanchet@35671
    24
           and safe_The :: "('a \<Rightarrow> bool) \<Rightarrow> 'a"
blanchet@33192
    25
blanchet@35665
    26
datatype ('a, 'b) fun_box = FunBox "('a \<Rightarrow> 'b)"
blanchet@33192
    27
datatype ('a, 'b) pair_box = PairBox 'a 'b
blanchet@34124
    28
blanchet@34124
    29
typedecl unsigned_bit
blanchet@34124
    30
typedecl signed_bit
blanchet@34124
    31
blanchet@34124
    32
datatype 'a word = Word "('a set)"
blanchet@33192
    33
blanchet@33192
    34
text {*
blanchet@33192
    35
Alternative definitions.
blanchet@33192
    36
*}
blanchet@33192
    37
blanchet@54148
    38
lemma Ex1_unfold [nitpick_unfold]:
haftmann@45970
    39
"Ex1 P \<equiv> \<exists>x. {x. P x} = {x}"
blanchet@33192
    40
apply (rule eq_reflection)
nipkow@39302
    41
apply (simp add: Ex1_def set_eq_iff)
blanchet@33192
    42
apply (rule iffI)
blanchet@33192
    43
 apply (erule exE)
blanchet@33192
    44
 apply (erule conjE)
blanchet@33192
    45
 apply (rule_tac x = x in exI)
blanchet@33192
    46
 apply (rule allI)
blanchet@33192
    47
 apply (rename_tac y)
blanchet@33192
    48
 apply (erule_tac x = y in allE)
haftmann@45970
    49
by auto
blanchet@33192
    50
blanchet@54148
    51
lemma rtrancl_unfold [nitpick_unfold]: "r\<^sup>* \<equiv> (r\<^sup>+)\<^sup>="
haftmann@45140
    52
  by (simp only: rtrancl_trancl_reflcl)
blanchet@33192
    53
blanchet@54148
    54
lemma rtranclp_unfold [nitpick_unfold]:
blanchet@33192
    55
"rtranclp r a b \<equiv> (a = b \<or> tranclp r a b)"
blanchet@33192
    56
by (rule eq_reflection) (auto dest: rtranclpD)
blanchet@33192
    57
blanchet@54148
    58
lemma tranclp_unfold [nitpick_unfold]:
haftmann@45970
    59
"tranclp r a b \<equiv> (a, b) \<in> trancl {(x, y). r x y}"
haftmann@45970
    60
by (simp add: trancl_def)
blanchet@33192
    61
blanchet@54148
    62
lemma [nitpick_simp]:
blanchet@47909
    63
"of_nat n = (if n = 0 then 0 else 1 + of_nat (n - 1))"
wenzelm@47988
    64
by (cases n) auto
blanchet@47909
    65
blanchet@41046
    66
definition prod :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<times> 'b) set" where
blanchet@41046
    67
"prod A B = {(a, b). a \<in> A \<and> b \<in> B}"
blanchet@41046
    68
haftmann@44278
    69
definition refl' :: "('a \<times> 'a) set \<Rightarrow> bool" where
blanchet@33192
    70
"refl' r \<equiv> \<forall>x. (x, x) \<in> r"
blanchet@33192
    71
haftmann@44278
    72
definition wf' :: "('a \<times> 'a) set \<Rightarrow> bool" where
blanchet@33192
    73
"wf' r \<equiv> acyclic r \<and> (finite r \<or> unknown)"
blanchet@33192
    74
haftmann@44278
    75
definition card' :: "'a set \<Rightarrow> nat" where
blanchet@39365
    76
"card' A \<equiv> if finite A then length (SOME xs. set xs = A \<and> distinct xs) else 0"
blanchet@33192
    77
haftmann@44278
    78
definition setsum' :: "('a \<Rightarrow> 'b\<Colon>comm_monoid_add) \<Rightarrow> 'a set \<Rightarrow> 'b" where
blanchet@39365
    79
"setsum' f A \<equiv> if finite A then listsum (map f (SOME xs. set xs = A \<and> distinct xs)) else 0"
blanchet@33192
    80
haftmann@44278
    81
inductive fold_graph' :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> bool" where
blanchet@33192
    82
"fold_graph' f z {} z" |
blanchet@33192
    83
"\<lbrakk>x \<in> A; fold_graph' f z (A - {x}) y\<rbrakk> \<Longrightarrow> fold_graph' f z A (f x y)"
blanchet@33192
    84
blanchet@33192
    85
text {*
blanchet@33192
    86
The following lemmas are not strictly necessary but they help the
blanchet@47909
    87
\textit{specialize} optimization.
blanchet@33192
    88
*}
blanchet@33192
    89
blanchet@54148
    90
lemma The_psimp [nitpick_psimp]:
haftmann@45970
    91
  "P = (op =) x \<Longrightarrow> The P = x"
haftmann@45970
    92
  by auto
blanchet@33192
    93
blanchet@54148
    94
lemma Eps_psimp [nitpick_psimp]:
blanchet@33192
    95
"\<lbrakk>P x; \<not> P y; Eps P = y\<rbrakk> \<Longrightarrow> Eps P = x"
wenzelm@47988
    96
apply (cases "P (Eps P)")
blanchet@33192
    97
 apply auto
blanchet@33192
    98
apply (erule contrapos_np)
blanchet@33192
    99
by (rule someI)
blanchet@33192
   100
blanchet@55414
   101
lemma case_unit_unfold [nitpick_unfold]:
blanchet@55414
   102
"case_unit x u \<equiv> x"
blanchet@33192
   103
apply (subgoal_tac "u = ()")
blanchet@55642
   104
 apply (simp only: unit.case)
blanchet@33192
   105
by simp
blanchet@33192
   106
blanchet@55642
   107
declare unit.case [nitpick_simp del]
blanchet@33556
   108
blanchet@55415
   109
lemma case_nat_unfold [nitpick_unfold]:
blanchet@55415
   110
"case_nat x f n \<equiv> if n = 0 then x else f (n - 1)"
blanchet@33192
   111
apply (rule eq_reflection)
wenzelm@47988
   112
by (cases n) auto
blanchet@33192
   113
blanchet@55642
   114
declare nat.case [nitpick_simp del]
blanchet@33556
   115
blanchet@56643
   116
lemma size_list_simp [nitpick_simp]:
blanchet@56643
   117
"size_list f xs = (if xs = [] then 0 else Suc (f (hd xs) + size_list f (tl xs)))"
blanchet@33192
   118
"size xs = (if xs = [] then 0 else Suc (size (tl xs)))"
wenzelm@47988
   119
by (cases xs) auto
blanchet@33192
   120
blanchet@33192
   121
text {*
blanchet@33192
   122
Auxiliary definitions used to provide an alternative representation for
blanchet@33192
   123
@{text rat} and @{text real}.
blanchet@33192
   124
*}
blanchet@33192
   125
blanchet@33192
   126
function nat_gcd :: "nat \<Rightarrow> nat \<Rightarrow> nat" where
blanchet@33192
   127
[simp del]: "nat_gcd x y = (if y = 0 then x else nat_gcd y (x mod y))"
blanchet@33192
   128
by auto
blanchet@33192
   129
termination
blanchet@33192
   130
apply (relation "measure (\<lambda>(x, y). x + y + (if y > x then 1 else 0))")
blanchet@33192
   131
 apply auto
blanchet@33192
   132
 apply (metis mod_less_divisor xt1(9))
blanchet@33192
   133
by (metis mod_mod_trivial mod_self nat_neq_iff xt1(10))
blanchet@33192
   134
blanchet@33192
   135
definition nat_lcm :: "nat \<Rightarrow> nat \<Rightarrow> nat" where
blanchet@33192
   136
"nat_lcm x y = x * y div (nat_gcd x y)"
blanchet@33192
   137
blanchet@33192
   138
definition int_gcd :: "int \<Rightarrow> int \<Rightarrow> int" where
blanchet@33192
   139
"int_gcd x y = int (nat_gcd (nat (abs x)) (nat (abs y)))"
blanchet@33192
   140
blanchet@33192
   141
definition int_lcm :: "int \<Rightarrow> int \<Rightarrow> int" where
blanchet@33192
   142
"int_lcm x y = int (nat_lcm (nat (abs x)) (nat (abs y)))"
blanchet@33192
   143
blanchet@33192
   144
definition Frac :: "int \<times> int \<Rightarrow> bool" where
blanchet@33192
   145
"Frac \<equiv> \<lambda>(a, b). b > 0 \<and> int_gcd a b = 1"
blanchet@33192
   146
blanchet@56643
   147
axiomatization
blanchet@56643
   148
  Abs_Frac :: "int \<times> int \<Rightarrow> 'a" and
blanchet@56643
   149
  Rep_Frac :: "'a \<Rightarrow> int \<times> int"
blanchet@33192
   150
blanchet@33192
   151
definition zero_frac :: 'a where
blanchet@33192
   152
"zero_frac \<equiv> Abs_Frac (0, 1)"
blanchet@33192
   153
blanchet@33192
   154
definition one_frac :: 'a where
blanchet@33192
   155
"one_frac \<equiv> Abs_Frac (1, 1)"
blanchet@33192
   156
blanchet@33192
   157
definition num :: "'a \<Rightarrow> int" where
blanchet@33192
   158
"num \<equiv> fst o Rep_Frac"
blanchet@33192
   159
blanchet@33192
   160
definition denom :: "'a \<Rightarrow> int" where
blanchet@33192
   161
"denom \<equiv> snd o Rep_Frac"
blanchet@33192
   162
blanchet@33192
   163
function norm_frac :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where
blanchet@33192
   164
[simp del]: "norm_frac a b = (if b < 0 then norm_frac (- a) (- b)
blanchet@33192
   165
                              else if a = 0 \<or> b = 0 then (0, 1)
blanchet@33192
   166
                              else let c = int_gcd a b in (a div c, b div c))"
blanchet@33192
   167
by pat_completeness auto
blanchet@33192
   168
termination by (relation "measure (\<lambda>(_, b). if b < 0 then 1 else 0)") auto
blanchet@33192
   169
blanchet@33192
   170
definition frac :: "int \<Rightarrow> int \<Rightarrow> 'a" where
blanchet@33192
   171
"frac a b \<equiv> Abs_Frac (norm_frac a b)"
blanchet@33192
   172
blanchet@33192
   173
definition plus_frac :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
blanchet@33192
   174
[nitpick_simp]:
blanchet@33192
   175
"plus_frac q r = (let d = int_lcm (denom q) (denom r) in
blanchet@33192
   176
                    frac (num q * (d div denom q) + num r * (d div denom r)) d)"
blanchet@33192
   177
blanchet@33192
   178
definition times_frac :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
blanchet@33192
   179
[nitpick_simp]:
blanchet@33192
   180
"times_frac q r = frac (num q * num r) (denom q * denom r)"
blanchet@33192
   181
blanchet@33192
   182
definition uminus_frac :: "'a \<Rightarrow> 'a" where
blanchet@33192
   183
"uminus_frac q \<equiv> Abs_Frac (- num q, denom q)"
blanchet@33192
   184
blanchet@33192
   185
definition number_of_frac :: "int \<Rightarrow> 'a" where
blanchet@33192
   186
"number_of_frac n \<equiv> Abs_Frac (n, 1)"
blanchet@33192
   187
blanchet@33192
   188
definition inverse_frac :: "'a \<Rightarrow> 'a" where
blanchet@33192
   189
"inverse_frac q \<equiv> frac (denom q) (num q)"
blanchet@33192
   190
blanchet@37397
   191
definition less_frac :: "'a \<Rightarrow> 'a \<Rightarrow> bool" where
blanchet@37397
   192
[nitpick_simp]:
blanchet@37397
   193
"less_frac q r \<longleftrightarrow> num (plus_frac q (uminus_frac r)) < 0"
blanchet@37397
   194
blanchet@33192
   195
definition less_eq_frac :: "'a \<Rightarrow> 'a \<Rightarrow> bool" where
blanchet@33192
   196
[nitpick_simp]:
blanchet@33192
   197
"less_eq_frac q r \<longleftrightarrow> num (plus_frac q (uminus_frac r)) \<le> 0"
blanchet@33192
   198
blanchet@33192
   199
definition of_frac :: "'a \<Rightarrow> 'b\<Colon>{inverse,ring_1}" where
blanchet@33192
   200
"of_frac q \<equiv> of_int (num q) / of_int (denom q)"
blanchet@33192
   201
blanchet@55017
   202
axiomatization wf_wfrec :: "('a \<times> 'a) set \<Rightarrow> (('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
blanchet@55017
   203
blanchet@55017
   204
definition wf_wfrec' :: "('a \<times> 'a) set \<Rightarrow> (('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b" where
blanchet@55017
   205
[nitpick_simp]: "wf_wfrec' R F x = F (cut (wf_wfrec R F) R x) x"
blanchet@55017
   206
blanchet@55017
   207
definition wfrec' ::  "('a \<times> 'a) set \<Rightarrow> (('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b" where
blanchet@55017
   208
"wfrec' R F x \<equiv> if wf R then wf_wfrec' R F x
blanchet@55017
   209
                else THE y. wfrec_rel R (%f x. F (cut f R x) x) x y"
blanchet@55017
   210
wenzelm@48891
   211
ML_file "Tools/Nitpick/kodkod.ML"
wenzelm@48891
   212
ML_file "Tools/Nitpick/kodkod_sat.ML"
wenzelm@48891
   213
ML_file "Tools/Nitpick/nitpick_util.ML"
wenzelm@48891
   214
ML_file "Tools/Nitpick/nitpick_hol.ML"
wenzelm@48891
   215
ML_file "Tools/Nitpick/nitpick_mono.ML"
wenzelm@48891
   216
ML_file "Tools/Nitpick/nitpick_preproc.ML"
wenzelm@48891
   217
ML_file "Tools/Nitpick/nitpick_scope.ML"
wenzelm@48891
   218
ML_file "Tools/Nitpick/nitpick_peephole.ML"
wenzelm@48891
   219
ML_file "Tools/Nitpick/nitpick_rep.ML"
wenzelm@48891
   220
ML_file "Tools/Nitpick/nitpick_nut.ML"
wenzelm@48891
   221
ML_file "Tools/Nitpick/nitpick_kodkod.ML"
wenzelm@48891
   222
ML_file "Tools/Nitpick/nitpick_model.ML"
wenzelm@48891
   223
ML_file "Tools/Nitpick/nitpick.ML"
blanchet@55199
   224
ML_file "Tools/Nitpick/nitpick_commands.ML"
wenzelm@48891
   225
ML_file "Tools/Nitpick/nitpick_tests.ML"
blanchet@33192
   226
krauss@44016
   227
setup {*
krauss@44016
   228
  Nitpick_HOL.register_ersatz_global
krauss@44016
   229
    [(@{const_name card}, @{const_name card'}),
krauss@44016
   230
     (@{const_name setsum}, @{const_name setsum'}),
krauss@44016
   231
     (@{const_name fold_graph}, @{const_name fold_graph'}),
blanchet@55017
   232
     (@{const_name wf}, @{const_name wf'}),
blanchet@55017
   233
     (@{const_name wf_wfrec}, @{const_name wf_wfrec'}),
blanchet@55017
   234
     (@{const_name wfrec}, @{const_name wfrec'})]
krauss@44016
   235
*}
blanchet@33561
   236
blanchet@39365
   237
hide_const (open) unknown is_unknown bisim bisim_iterator_max Quot safe_The
krauss@44013
   238
    FunBox PairBox Word prod refl' wf' card' setsum'
blanchet@41052
   239
    fold_graph' nat_gcd nat_lcm int_gcd int_lcm Frac Abs_Frac Rep_Frac zero_frac
blanchet@41052
   240
    one_frac num denom norm_frac frac plus_frac times_frac uminus_frac
blanchet@55017
   241
    number_of_frac inverse_frac less_frac less_eq_frac of_frac wf_wfrec wf_wfrec
blanchet@55017
   242
    wfrec'
blanchet@46324
   243
hide_type (open) bisim_iterator fun_box pair_box unsigned_bit signed_bit word
blanchet@41797
   244
hide_fact (open) Ex1_unfold rtrancl_unfold rtranclp_unfold tranclp_unfold
krauss@44013
   245
    prod_def refl'_def wf'_def card'_def setsum'_def
blanchet@55415
   246
    fold_graph'_def The_psimp Eps_psimp case_unit_unfold case_nat_unfold
blanchet@56643
   247
    size_list_simp nat_gcd_def nat_lcm_def int_gcd_def int_lcm_def Frac_def
blanchet@41046
   248
    zero_frac_def one_frac_def num_def denom_def norm_frac_def frac_def
blanchet@41046
   249
    plus_frac_def times_frac_def uminus_frac_def number_of_frac_def
blanchet@55017
   250
    inverse_frac_def less_frac_def less_eq_frac_def of_frac_def wf_wfrec'_def
blanchet@55017
   251
    wfrec'_def
blanchet@33192
   252
blanchet@33192
   253
end