src/Pure/logic.ML
author wenzelm
Thu May 26 16:40:45 1994 +0200 (1994-05-26)
changeset 398 41f279b477e2
parent 210 49497bdf573e
child 447 d1f827fa0a18
permissions -rw-r--r--
added mk_type, dest_type, mk_inclass, dest_inclass (for axclasses);
restored functor sig constraint :LOGIC;
wenzelm@398
     1
(*  Title: 	Pure/logic.ML
clasohm@0
     2
    ID:         $Id$
clasohm@0
     3
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   Cambridge University 1992
clasohm@0
     5
clasohm@0
     6
Supporting code for defining the abstract type "thm"
clasohm@0
     7
*)
clasohm@0
     8
clasohm@0
     9
infix occs;
clasohm@0
    10
clasohm@0
    11
signature LOGIC = 
clasohm@0
    12
  sig
clasohm@0
    13
  val assum_pairs: term -> (term*term)list
clasohm@0
    14
  val auto_rename: bool ref   
clasohm@0
    15
  val close_form: term -> term   
clasohm@0
    16
  val count_prems: term * int -> int
clasohm@0
    17
  val dest_equals: term -> term * term
clasohm@0
    18
  val dest_flexpair: term -> term * term
clasohm@0
    19
  val dest_implies: term -> term * term
wenzelm@398
    20
  val dest_inclass: term -> typ * class
wenzelm@398
    21
  val dest_type: term -> typ
clasohm@0
    22
  val flatten_params: int -> term -> term
clasohm@0
    23
  val freeze_vars: term -> term
clasohm@0
    24
  val incr_indexes: typ list * int -> term -> term
clasohm@0
    25
  val lift_fns: term * int -> (term -> term) * (term -> term)
clasohm@0
    26
  val list_flexpairs: (term*term)list * term -> term
clasohm@0
    27
  val list_implies: term list * term -> term
clasohm@0
    28
  val list_rename_params: string list * term -> term
clasohm@0
    29
  val mk_equals: term * term -> term
clasohm@0
    30
  val mk_flexpair: term * term -> term
clasohm@0
    31
  val mk_implies: term * term -> term
wenzelm@398
    32
  val mk_inclass: typ * class -> term
wenzelm@398
    33
  val mk_type: typ -> term
clasohm@0
    34
  val occs: term * term -> bool
clasohm@0
    35
  val rule_of: (term*term)list * term list * term -> term
clasohm@0
    36
  val set_rename_prefix: string -> unit   
clasohm@0
    37
  val skip_flexpairs: term -> term
clasohm@0
    38
  val strip_assums_concl: term -> term
clasohm@0
    39
  val strip_assums_hyp: term -> term list
clasohm@0
    40
  val strip_flexpairs: term -> (term*term)list * term
clasohm@0
    41
  val strip_horn: term -> (term*term)list * term list * term
clasohm@0
    42
  val strip_imp_concl: term -> term
clasohm@0
    43
  val strip_imp_prems: term -> term list
clasohm@0
    44
  val strip_params: term -> (string * typ) list
clasohm@0
    45
  val strip_prems: int * term list * term -> term list * term
clasohm@0
    46
  val thaw_vars: term -> term
clasohm@0
    47
  val varify: term -> term  
clasohm@0
    48
  end;
clasohm@0
    49
wenzelm@398
    50
functor LogicFun (structure Unify: UNIFY and Net:NET): LOGIC =
clasohm@0
    51
struct
wenzelm@398
    52
wenzelm@398
    53
structure Sign = Unify.Sign;
wenzelm@398
    54
structure Type = Sign.Type;
clasohm@0
    55
clasohm@0
    56
(*** Abstract syntax operations on the meta-connectives ***)
clasohm@0
    57
clasohm@0
    58
(** equality **)
clasohm@0
    59
lcp@64
    60
(*Make an equality.*)
lcp@64
    61
fun mk_equals(t,u) = equals(fastype_of t) $ t $ u;
clasohm@0
    62
clasohm@0
    63
fun dest_equals (Const("==",_) $ t $ u)  =  (t,u)
clasohm@0
    64
  | dest_equals t = raise TERM("dest_equals", [t]);
clasohm@0
    65
clasohm@0
    66
(** implies **)
clasohm@0
    67
clasohm@0
    68
fun mk_implies(A,B) = implies $ A $ B;
clasohm@0
    69
clasohm@0
    70
fun dest_implies (Const("==>",_) $ A $ B)  =  (A,B)
clasohm@0
    71
  | dest_implies A = raise TERM("dest_implies", [A]);
clasohm@0
    72
clasohm@0
    73
(** nested implications **)
clasohm@0
    74
clasohm@0
    75
(* [A1,...,An], B  goes to  A1==>...An==>B  *)
clasohm@0
    76
fun list_implies ([], B) = B : term
clasohm@0
    77
  | list_implies (A::AS, B) = implies $ A $ list_implies(AS,B);
clasohm@0
    78
clasohm@0
    79
(* A1==>...An==>B  goes to  [A1,...,An], where B is not an implication *)
clasohm@0
    80
fun strip_imp_prems (Const("==>", _) $ A $ B) = A :: strip_imp_prems B
clasohm@0
    81
  | strip_imp_prems _ = [];
clasohm@0
    82
clasohm@0
    83
(* A1==>...An==>B  goes to B, where B is not an implication *)
clasohm@0
    84
fun strip_imp_concl (Const("==>", _) $ A $ B) = strip_imp_concl B
clasohm@0
    85
  | strip_imp_concl A = A : term;
clasohm@0
    86
clasohm@0
    87
(*Strip and return premises: (i, [], A1==>...Ai==>B)
clasohm@0
    88
    goes to   ([Ai, A(i-1),...,A1] , B) 	(REVERSED) 
clasohm@0
    89
  if  i<0 or else i too big then raises  TERM*)
clasohm@0
    90
fun strip_prems (0, As, B) = (As, B) 
clasohm@0
    91
  | strip_prems (i, As, Const("==>", _) $ A $ B) = 
clasohm@0
    92
	strip_prems (i-1, A::As, B)
clasohm@0
    93
  | strip_prems (_, As, A) = raise TERM("strip_prems", A::As);
clasohm@0
    94
clasohm@0
    95
(*Count premises -- quicker than (length ostrip_prems) *)
clasohm@0
    96
fun count_prems (Const("==>", _) $ A $ B, n) = count_prems (B,n+1)
clasohm@0
    97
  | count_prems (_,n) = n;
clasohm@0
    98
clasohm@0
    99
(** flex-flex constraints **)
clasohm@0
   100
lcp@64
   101
(*Make a constraint.*)
lcp@64
   102
fun mk_flexpair(t,u) = flexpair(fastype_of t) $ t $ u;
clasohm@0
   103
clasohm@0
   104
fun dest_flexpair (Const("=?=",_) $ t $ u)  =  (t,u)
clasohm@0
   105
  | dest_flexpair t = raise TERM("dest_flexpair", [t]);
clasohm@0
   106
clasohm@0
   107
(*make flexflex antecedents: ( [(a1,b1),...,(an,bn)] , C )
clasohm@0
   108
    goes to (a1=?=b1) ==>...(an=?=bn)==>C *)
clasohm@0
   109
fun list_flexpairs ([], A) = A
clasohm@0
   110
  | list_flexpairs ((t,u)::pairs, A) =
clasohm@0
   111
	implies $ (mk_flexpair(t,u)) $ list_flexpairs(pairs,A);
clasohm@0
   112
clasohm@0
   113
(*Make the object-rule tpairs==>As==>B   *)
clasohm@0
   114
fun rule_of (tpairs, As, B) = list_flexpairs(tpairs, list_implies(As, B));
clasohm@0
   115
clasohm@0
   116
(*Remove and return flexflex pairs: 
clasohm@0
   117
    (a1=?=b1)==>...(an=?=bn)==>C  to  ( [(a1,b1),...,(an,bn)] , C )	
clasohm@0
   118
  [Tail recursive in order to return a pair of results] *)
clasohm@0
   119
fun strip_flex_aux (pairs, Const("==>", _) $ (Const("=?=",_)$t$u) $ C) =
clasohm@0
   120
        strip_flex_aux ((t,u)::pairs, C)
clasohm@0
   121
  | strip_flex_aux (pairs,C) = (rev pairs, C);
clasohm@0
   122
clasohm@0
   123
fun strip_flexpairs A = strip_flex_aux([], A);
clasohm@0
   124
clasohm@0
   125
(*Discard flexflex pairs*)
clasohm@0
   126
fun skip_flexpairs (Const("==>", _) $ (Const("=?=",_)$_$_) $ C) =
clasohm@0
   127
	skip_flexpairs C
clasohm@0
   128
  | skip_flexpairs C = C;
clasohm@0
   129
clasohm@0
   130
(*strip a proof state (Horn clause): 
clasohm@0
   131
   (a1==b1)==>...(am==bm)==>B1==>...Bn==>C
clasohm@0
   132
    goes to   ( [(a1,b1),...,(am,bm)] , [B1,...,Bn] , C)    *)
clasohm@0
   133
fun strip_horn A =
clasohm@0
   134
  let val (tpairs,horn) = strip_flexpairs A 
clasohm@0
   135
  in  (tpairs, strip_imp_prems horn, strip_imp_concl horn)   end;
clasohm@0
   136
wenzelm@398
   137
(** types as terms **)
wenzelm@398
   138
wenzelm@398
   139
fun mk_type ty = Const ("TYPE", itselfT ty);
wenzelm@398
   140
wenzelm@398
   141
fun dest_type (Const ("TYPE", Type ("itself", [ty]))) = ty
wenzelm@398
   142
  | dest_type t = raise TERM ("dest_type", [t]);
wenzelm@398
   143
wenzelm@398
   144
(* class constraints: (| ty : c_class |) *)
wenzelm@398
   145
wenzelm@398
   146
fun mk_inclass (ty, c) =
wenzelm@398
   147
  Const (Sign.const_of_class c, itselfT ty --> propT) $ mk_type ty;
wenzelm@398
   148
wenzelm@398
   149
fun dest_inclass (t as Const (c_class, _) $ ty) =
wenzelm@398
   150
      ((dest_type ty, Sign.class_of_const c_class)
wenzelm@398
   151
        handle TERM _ => raise TERM ("dest_inclass", [t]))
wenzelm@398
   152
  | dest_inclass t = raise TERM ("dest_inclass", [t]);
wenzelm@398
   153
clasohm@0
   154
clasohm@0
   155
(*** Low-level term operations ***)
clasohm@0
   156
clasohm@0
   157
(*Does t occur in u?  Or is alpha-convertible to u?
clasohm@0
   158
  The term t must contain no loose bound variables*)
clasohm@0
   159
fun t occs u = (t aconv u) orelse 
clasohm@0
   160
      (case u of
clasohm@0
   161
          Abs(_,_,body) => t occs body
clasohm@0
   162
	| f$t' => t occs f  orelse  t occs t'
clasohm@0
   163
	| _ => false);
clasohm@0
   164
clasohm@0
   165
(*Close up a formula over all free variables by quantification*)
clasohm@0
   166
fun close_form A =
clasohm@0
   167
    list_all_free (map dest_Free (sort atless (term_frees A)),   
clasohm@0
   168
		   A);
clasohm@0
   169
clasohm@0
   170
clasohm@0
   171
(*Freeze all (T)Vars by turning them into (T)Frees*)
clasohm@0
   172
fun freeze_vars(Var(ixn,T)) = Free(Syntax.string_of_vname ixn,
clasohm@0
   173
                                   Type.freeze_vars T)
clasohm@0
   174
  | freeze_vars(Const(a,T)) = Const(a,Type.freeze_vars T)
clasohm@0
   175
  | freeze_vars(Free(a,T))  = Free(a,Type.freeze_vars T)
clasohm@0
   176
  | freeze_vars(s$t)        = freeze_vars s $ freeze_vars t
clasohm@0
   177
  | freeze_vars(Abs(a,T,t)) = Abs(a,Type.freeze_vars T,freeze_vars t)
clasohm@0
   178
  | freeze_vars(b)          = b;
clasohm@0
   179
clasohm@0
   180
(*Reverse the effect of freeze_vars*)
clasohm@0
   181
fun thaw_vars(Const(a,T)) = Const(a,Type.thaw_vars T)
clasohm@0
   182
  | thaw_vars(Free(a,T))  =
clasohm@0
   183
      let val T' = Type.thaw_vars T
clasohm@0
   184
      in case explode a of
clasohm@0
   185
	   "?"::vn => let val (ixn,_) = Syntax.scan_varname vn
clasohm@0
   186
                      in Var(ixn,T') end
clasohm@0
   187
	 | _       => Free(a,T')
clasohm@0
   188
      end
clasohm@0
   189
  | thaw_vars(Abs(a,T,t)) = Abs(a,Type.thaw_vars T, thaw_vars t)
clasohm@0
   190
  | thaw_vars(s$t)        = thaw_vars s $ thaw_vars t
clasohm@0
   191
  | thaw_vars(b)          = b;
clasohm@0
   192
clasohm@0
   193
clasohm@0
   194
(*** Specialized operations for resolution... ***)
clasohm@0
   195
clasohm@0
   196
(*For all variables in the term, increment indexnames and lift over the Us
clasohm@0
   197
    result is ?Gidx(B.(lev+n-1),...,B.lev) where lev is abstraction level *)
clasohm@0
   198
fun incr_indexes (Us: typ list, inc:int) t = 
clasohm@0
   199
  let fun incr (Var ((a,i), T), lev) = 
clasohm@0
   200
		Unify.combound (Var((a, i+inc), Us---> incr_tvar inc T),
clasohm@0
   201
				lev, length Us)
clasohm@0
   202
	| incr (Abs (a,T,body), lev) =
clasohm@0
   203
		Abs (a, incr_tvar inc T, incr(body,lev+1))
clasohm@0
   204
	| incr (Const(a,T),_) = Const(a, incr_tvar inc T)
clasohm@0
   205
	| incr (Free(a,T),_) = Free(a, incr_tvar inc T)
clasohm@0
   206
	| incr (f$t, lev) = incr(f,lev) $ incr(t,lev)
clasohm@0
   207
	| incr (t,lev) = t
clasohm@0
   208
  in  incr(t,0)  end;
clasohm@0
   209
clasohm@0
   210
(*Make lifting functions from subgoal and increment.
clasohm@0
   211
    lift_abs operates on tpairs (unification constraints)
clasohm@0
   212
    lift_all operates on propositions     *)
clasohm@0
   213
fun lift_fns (B,inc) =
clasohm@0
   214
  let fun lift_abs (Us, Const("==>", _) $ _ $ B) u = lift_abs (Us,B) u
clasohm@0
   215
	| lift_abs (Us, Const("all",_)$Abs(a,T,t)) u =
clasohm@0
   216
	      Abs(a, T, lift_abs (T::Us, t) u)
clasohm@0
   217
	| lift_abs (Us, _) u = incr_indexes(rev Us, inc) u
clasohm@0
   218
      fun lift_all (Us, Const("==>", _) $ A $ B) u =
clasohm@0
   219
	      implies $ A $ lift_all (Us,B) u
clasohm@0
   220
	| lift_all (Us, Const("all",_)$Abs(a,T,t)) u = 
clasohm@0
   221
	      all T $ Abs(a, T, lift_all (T::Us,t) u)
clasohm@0
   222
	| lift_all (Us, _) u = incr_indexes(rev Us, inc) u;
clasohm@0
   223
  in  (lift_abs([],B), lift_all([],B))  end;
clasohm@0
   224
clasohm@0
   225
(*Strips assumptions in goal, yielding list of hypotheses.   *)
clasohm@0
   226
fun strip_assums_hyp (Const("==>", _) $ H $ B) = H :: strip_assums_hyp B
clasohm@0
   227
  | strip_assums_hyp (Const("all",_)$Abs(a,T,t)) = strip_assums_hyp t
clasohm@0
   228
  | strip_assums_hyp B = [];
clasohm@0
   229
clasohm@0
   230
(*Strips assumptions in goal, yielding conclusion.   *)
clasohm@0
   231
fun strip_assums_concl (Const("==>", _) $ H $ B) = strip_assums_concl B
clasohm@0
   232
  | strip_assums_concl (Const("all",_)$Abs(a,T,t)) = strip_assums_concl t
clasohm@0
   233
  | strip_assums_concl B = B;
clasohm@0
   234
clasohm@0
   235
(*Make a list of all the parameters in a subgoal, even if nested*)
clasohm@0
   236
fun strip_params (Const("==>", _) $ H $ B) = strip_params B
clasohm@0
   237
  | strip_params (Const("all",_)$Abs(a,T,t)) = (a,T) :: strip_params t
clasohm@0
   238
  | strip_params B = [];
clasohm@0
   239
clasohm@0
   240
(*Removes the parameters from a subgoal and renumber bvars in hypotheses,
clasohm@0
   241
    where j is the total number of parameters (precomputed) 
clasohm@0
   242
  If n>0 then deletes assumption n. *)
clasohm@0
   243
fun remove_params j n A = 
clasohm@0
   244
    if j=0 andalso n<=0 then A  (*nothing left to do...*)
clasohm@0
   245
    else case A of
clasohm@0
   246
        Const("==>", _) $ H $ B => 
clasohm@0
   247
	  if n=1 then                           (remove_params j (n-1) B)
clasohm@0
   248
	  else implies $ (incr_boundvars j H) $ (remove_params j (n-1) B)
clasohm@0
   249
      | Const("all",_)$Abs(a,T,t) => remove_params (j-1) n t
clasohm@0
   250
      | _ => if n>0 then raise TERM("remove_params", [A])
clasohm@0
   251
             else A;
clasohm@0
   252
clasohm@0
   253
(** Auto-renaming of parameters in subgoals **)
clasohm@0
   254
clasohm@0
   255
val auto_rename = ref false
clasohm@0
   256
and rename_prefix = ref "ka";
clasohm@0
   257
clasohm@0
   258
(*rename_prefix is not exported; it is set by this function.*)
clasohm@0
   259
fun set_rename_prefix a =
clasohm@0
   260
    if a<>"" andalso forall is_letter (explode a)
clasohm@0
   261
    then  (rename_prefix := a;  auto_rename := true)
clasohm@0
   262
    else  error"rename prefix must be nonempty and consist of letters";
clasohm@0
   263
clasohm@0
   264
(*Makes parameters in a goal have distinctive names (not guaranteed unique!)
clasohm@0
   265
  A name clash could cause the printer to rename bound vars;
clasohm@0
   266
    then res_inst_tac would not work properly.*)
clasohm@0
   267
fun rename_vars (a, []) = []
clasohm@0
   268
  | rename_vars (a, (_,T)::vars) =
clasohm@0
   269
        (a,T) :: rename_vars (bump_string a, vars);
clasohm@0
   270
clasohm@0
   271
(*Move all parameters to the front of the subgoal, renaming them apart;
clasohm@0
   272
  if n>0 then deletes assumption n. *)
clasohm@0
   273
fun flatten_params n A =
clasohm@0
   274
    let val params = strip_params A;
clasohm@0
   275
	val vars = if !auto_rename 
clasohm@0
   276
		   then rename_vars (!rename_prefix, params)
clasohm@0
   277
		   else variantlist(map #1 params,[]) ~~ map #2 params
clasohm@0
   278
    in  list_all (vars, remove_params (length vars) n A)
clasohm@0
   279
    end;
clasohm@0
   280
clasohm@0
   281
(*Makes parameters in a goal have the names supplied by the list cs.*)
clasohm@0
   282
fun list_rename_params (cs, Const("==>", _) $ A $ B) =
clasohm@0
   283
      implies $ A $ list_rename_params (cs, B)
clasohm@0
   284
  | list_rename_params (c::cs, Const("all",_)$Abs(_,T,t)) = 
clasohm@0
   285
      all T $ Abs(c, T, list_rename_params (cs, t))
clasohm@0
   286
  | list_rename_params (cs, B) = B;
clasohm@0
   287
clasohm@0
   288
(*Strips assumptions in goal yielding  ( [Hn,...,H1], [xm,...,x1], B )
clasohm@0
   289
  where H1,...,Hn are the hypotheses and x1...xm are the parameters.   *)
clasohm@0
   290
fun strip_assums_aux (Hs, params, Const("==>", _) $ H $ B) = 
clasohm@0
   291
	strip_assums_aux (H::Hs, params, B)
clasohm@0
   292
  | strip_assums_aux (Hs, params, Const("all",_)$Abs(a,T,t)) =
clasohm@0
   293
	strip_assums_aux (Hs, (a,T)::params, t)
clasohm@0
   294
  | strip_assums_aux (Hs, params, B) = (Hs, params, B);
clasohm@0
   295
clasohm@0
   296
fun strip_assums A = strip_assums_aux ([],[],A);
clasohm@0
   297
clasohm@0
   298
clasohm@0
   299
(*Produces disagreement pairs, one for each assumption proof, in order.
clasohm@0
   300
  A is the first premise of the lifted rule, and thus has the form
clasohm@0
   301
    H1 ==> ... Hk ==> B   and the pairs are (H1,B),...,(Hk,B) *)
clasohm@0
   302
fun assum_pairs A =
clasohm@0
   303
  let val (Hs, params, B) = strip_assums A
clasohm@0
   304
      val D = Unify.rlist_abs(params, B)
clasohm@0
   305
      fun pairrev ([],pairs) = pairs  
clasohm@0
   306
        | pairrev (H::Hs,pairs) = 
clasohm@0
   307
	    pairrev(Hs, (Unify.rlist_abs(params,H), D) :: pairs)
clasohm@0
   308
  in  pairrev (Hs,[])   (*WAS:  map pair (rev Hs)  *)
clasohm@0
   309
  end;
clasohm@0
   310
clasohm@0
   311
clasohm@0
   312
(*Converts Frees to Vars and TFrees to TVars so that axioms can be written
clasohm@0
   313
  without (?) everywhere*)
clasohm@0
   314
fun varify (Const(a,T)) = Const(a, Type.varifyT T)
clasohm@0
   315
  | varify (Free(a,T)) = Var((a,0), Type.varifyT T)
clasohm@0
   316
  | varify (Var(ixn,T)) = Var(ixn, Type.varifyT T)
clasohm@0
   317
  | varify (Abs (a,T,body)) = Abs (a, Type.varifyT T, varify body)
clasohm@0
   318
  | varify (f$t) = varify f $ varify t
clasohm@0
   319
  | varify t = t;
clasohm@0
   320
clasohm@0
   321
end;