src/HOL/List.thy
author nipkow
Fri Feb 20 01:32:59 2004 +0100 (2004-02-20)
changeset 14402 4201e1916482
parent 14395 cc96cc06abf9
child 14495 e2a1c31cf6d3
permissions -rw-r--r--
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
wenzelm@13462
     1
(*  Title:      HOL/List.thy
wenzelm@13462
     2
    ID:         $Id$
wenzelm@13462
     3
    Author:     Tobias Nipkow
wenzelm@13462
     4
    License:    GPL (GNU GENERAL PUBLIC LICENSE)
clasohm@923
     5
*)
clasohm@923
     6
wenzelm@13114
     7
header {* The datatype of finite lists *}
wenzelm@13122
     8
wenzelm@13122
     9
theory List = PreList:
clasohm@923
    10
wenzelm@13142
    11
datatype 'a list =
wenzelm@13366
    12
    Nil    ("[]")
wenzelm@13366
    13
  | Cons 'a  "'a list"    (infixr "#" 65)
clasohm@923
    14
clasohm@923
    15
consts
wenzelm@13366
    16
  "@" :: "'a list => 'a list => 'a list"    (infixr 65)
wenzelm@13366
    17
  filter:: "('a => bool) => 'a list => 'a list"
wenzelm@13366
    18
  concat:: "'a list list => 'a list"
wenzelm@13366
    19
  foldl :: "('b => 'a => 'b) => 'b => 'a list => 'b"
wenzelm@13366
    20
  foldr :: "('a => 'b => 'b) => 'a list => 'b => 'b"
oheimb@14099
    21
  fold_rel :: "('a * 'c * 'a) set => ('a * 'c list * 'a) set"
wenzelm@13366
    22
  hd:: "'a list => 'a"
wenzelm@13366
    23
  tl:: "'a list => 'a list"
wenzelm@13366
    24
  last:: "'a list => 'a"
wenzelm@13366
    25
  butlast :: "'a list => 'a list"
wenzelm@13366
    26
  set :: "'a list => 'a set"
oheimb@14099
    27
  o2l :: "'a option => 'a list"
wenzelm@13366
    28
  list_all:: "('a => bool) => ('a list => bool)"
wenzelm@13366
    29
  list_all2 :: "('a => 'b => bool) => 'a list => 'b list => bool"
wenzelm@13366
    30
  map :: "('a=>'b) => ('a list => 'b list)"
wenzelm@13366
    31
  mem :: "'a => 'a list => bool"    (infixl 55)
wenzelm@13366
    32
  nth :: "'a list => nat => 'a"    (infixl "!" 100)
wenzelm@13366
    33
  list_update :: "'a list => nat => 'a => 'a list"
wenzelm@13366
    34
  take:: "nat => 'a list => 'a list"
wenzelm@13366
    35
  drop:: "nat => 'a list => 'a list"
wenzelm@13366
    36
  takeWhile :: "('a => bool) => 'a list => 'a list"
wenzelm@13366
    37
  dropWhile :: "('a => bool) => 'a list => 'a list"
wenzelm@13366
    38
  rev :: "'a list => 'a list"
wenzelm@13366
    39
  zip :: "'a list => 'b list => ('a * 'b) list"
wenzelm@13366
    40
  upt :: "nat => nat => nat list" ("(1[_../_'(])")
wenzelm@13366
    41
  remdups :: "'a list => 'a list"
wenzelm@13366
    42
  null:: "'a list => bool"
wenzelm@13366
    43
  "distinct":: "'a list => bool"
wenzelm@13366
    44
  replicate :: "nat => 'a => 'a list"
oheimb@14099
    45
  postfix :: "'a list => 'a list => bool"
oheimb@14099
    46
oheimb@14099
    47
syntax (xsymbols)
oheimb@14099
    48
  postfix :: "'a list => 'a list => bool"             ("(_/ \<sqsupseteq> _)" [51, 51] 50)
clasohm@923
    49
nipkow@13146
    50
nonterminals lupdbinds lupdbind
nipkow@5077
    51
clasohm@923
    52
syntax
wenzelm@13366
    53
  -- {* list Enumeration *}
wenzelm@13366
    54
  "@list" :: "args => 'a list"    ("[(_)]")
clasohm@923
    55
wenzelm@13366
    56
  -- {* Special syntax for filter *}
wenzelm@13366
    57
  "@filter" :: "[pttrn, 'a list, bool] => 'a list"    ("(1[_:_./ _])")
clasohm@923
    58
wenzelm@13366
    59
  -- {* list update *}
wenzelm@13366
    60
  "_lupdbind":: "['a, 'a] => lupdbind"    ("(2_ :=/ _)")
wenzelm@13366
    61
  "" :: "lupdbind => lupdbinds"    ("_")
wenzelm@13366
    62
  "_lupdbinds" :: "[lupdbind, lupdbinds] => lupdbinds"    ("_,/ _")
wenzelm@13366
    63
  "_LUpdate" :: "['a, lupdbinds] => 'a"    ("_/[(_)]" [900,0] 900)
nipkow@5077
    64
wenzelm@13366
    65
  upto:: "nat => nat => nat list"    ("(1[_../_])")
nipkow@5427
    66
clasohm@923
    67
translations
wenzelm@13366
    68
  "[x, xs]" == "x#[xs]"
wenzelm@13366
    69
  "[x]" == "x#[]"
wenzelm@13366
    70
  "[x:xs . P]"== "filter (%x. P) xs"
clasohm@923
    71
wenzelm@13366
    72
  "_LUpdate xs (_lupdbinds b bs)"== "_LUpdate (_LUpdate xs b) bs"
wenzelm@13366
    73
  "xs[i:=x]" == "list_update xs i x"
nipkow@5077
    74
wenzelm@13366
    75
  "[i..j]" == "[i..(Suc j)(]"
nipkow@5427
    76
nipkow@5427
    77
wenzelm@12114
    78
syntax (xsymbols)
wenzelm@13366
    79
  "@filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<in>_ ./ _])")
paulson@3342
    80
paulson@3342
    81
wenzelm@13142
    82
text {*
wenzelm@13366
    83
  Function @{text size} is overloaded for all datatypes.Users may
wenzelm@13366
    84
  refer to the list version as @{text length}. *}
wenzelm@13142
    85
wenzelm@13142
    86
syntax length :: "'a list => nat"
wenzelm@13142
    87
translations "length" => "size :: _ list => nat"
wenzelm@13114
    88
wenzelm@13142
    89
typed_print_translation {*
wenzelm@13366
    90
  let
wenzelm@13366
    91
    fun size_tr' _ (Type ("fun", (Type ("list", _) :: _))) [t] =
wenzelm@13366
    92
          Syntax.const "length" $ t
wenzelm@13366
    93
      | size_tr' _ _ _ = raise Match;
wenzelm@13366
    94
  in [("size", size_tr')] end
wenzelm@13114
    95
*}
paulson@3437
    96
berghofe@5183
    97
primrec
nipkow@13145
    98
"hd(x#xs) = x"
berghofe@5183
    99
primrec
nipkow@13145
   100
"tl([]) = []"
nipkow@13145
   101
"tl(x#xs) = xs"
berghofe@5183
   102
primrec
nipkow@13145
   103
"null([]) = True"
nipkow@13145
   104
"null(x#xs) = False"
paulson@8972
   105
primrec
nipkow@13145
   106
"last(x#xs) = (if xs=[] then x else last xs)"
berghofe@5183
   107
primrec
nipkow@13145
   108
"butlast []= []"
nipkow@13145
   109
"butlast(x#xs) = (if xs=[] then [] else x#butlast xs)"
berghofe@5183
   110
primrec
nipkow@13145
   111
"x mem [] = False"
nipkow@13145
   112
"x mem (y#ys) = (if y=x then True else x mem ys)"
oheimb@5518
   113
primrec
nipkow@13145
   114
"set [] = {}"
nipkow@13145
   115
"set (x#xs) = insert x (set xs)"
berghofe@5183
   116
primrec
oheimb@14099
   117
 "o2l  None    = []"
oheimb@14099
   118
 "o2l (Some x) = [x]"
oheimb@14099
   119
primrec
nipkow@13145
   120
list_all_Nil:"list_all P [] = True"
nipkow@13145
   121
list_all_Cons: "list_all P (x#xs) = (P(x) \<and> list_all P xs)"
oheimb@5518
   122
primrec
nipkow@13145
   123
"map f [] = []"
nipkow@13145
   124
"map f (x#xs) = f(x)#map f xs"
berghofe@5183
   125
primrec
nipkow@13145
   126
append_Nil:"[]@ys = ys"
nipkow@13145
   127
append_Cons: "(x#xs)@ys = x#(xs@ys)"
berghofe@5183
   128
primrec
nipkow@13145
   129
"rev([]) = []"
nipkow@13145
   130
"rev(x#xs) = rev(xs) @ [x]"
berghofe@5183
   131
primrec
nipkow@13145
   132
"filter P [] = []"
nipkow@13145
   133
"filter P (x#xs) = (if P x then x#filter P xs else filter P xs)"
berghofe@5183
   134
primrec
nipkow@13145
   135
foldl_Nil:"foldl f a [] = a"
nipkow@13145
   136
foldl_Cons: "foldl f a (x#xs) = foldl f (f a x) xs"
berghofe@5183
   137
primrec
nipkow@13145
   138
"foldr f [] a = a"
nipkow@13145
   139
"foldr f (x#xs) a = f x (foldr f xs a)"
paulson@8000
   140
primrec
nipkow@13145
   141
"concat([]) = []"
nipkow@13145
   142
"concat(x#xs) = x @ concat(xs)"
berghofe@5183
   143
primrec
nipkow@13145
   144
drop_Nil:"drop n [] = []"
nipkow@13145
   145
drop_Cons: "drop n (x#xs) = (case n of 0 => x#xs | Suc(m) => drop m xs)"
nipkow@13145
   146
-- {* Warning: simpset does not contain this definition *}
nipkow@13145
   147
-- {* but separate theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
berghofe@5183
   148
primrec
nipkow@13145
   149
take_Nil:"take n [] = []"
nipkow@13145
   150
take_Cons: "take n (x#xs) = (case n of 0 => [] | Suc(m) => x # take m xs)"
nipkow@13145
   151
-- {* Warning: simpset does not contain this definition *}
nipkow@13145
   152
-- {* but separate theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
berghofe@5183
   153
primrec
nipkow@13145
   154
nth_Cons:"(x#xs)!n = (case n of 0 => x | (Suc k) => xs!k)"
nipkow@13145
   155
-- {* Warning: simpset does not contain this definition *}
nipkow@13145
   156
-- {* but separate theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
wenzelm@13142
   157
primrec
nipkow@13145
   158
"[][i:=v] = []"
nipkow@13145
   159
"(x#xs)[i:=v] =
nipkow@13145
   160
(case i of 0 => v # xs
nipkow@13145
   161
| Suc j => x # xs[j:=v])"
berghofe@5183
   162
primrec
nipkow@13145
   163
"takeWhile P [] = []"
nipkow@13145
   164
"takeWhile P (x#xs) = (if P x then x#takeWhile P xs else [])"
berghofe@5183
   165
primrec
nipkow@13145
   166
"dropWhile P [] = []"
nipkow@13145
   167
"dropWhile P (x#xs) = (if P x then dropWhile P xs else x#xs)"
berghofe@5183
   168
primrec
nipkow@13145
   169
"zip xs [] = []"
nipkow@13145
   170
zip_Cons: "zip xs (y#ys) = (case xs of [] => [] | z#zs => (z,y)#zip zs ys)"
nipkow@13145
   171
-- {* Warning: simpset does not contain this definition *}
nipkow@13145
   172
-- {* but separate theorems for @{text "xs = []"} and @{text "xs = z # zs"} *}
nipkow@5427
   173
primrec
nipkow@13145
   174
upt_0: "[i..0(] = []"
nipkow@13145
   175
upt_Suc: "[i..(Suc j)(] = (if i <= j then [i..j(] @ [j] else [])"
berghofe@5183
   176
primrec
nipkow@13145
   177
"distinct [] = True"
nipkow@13145
   178
"distinct (x#xs) = (x ~: set xs \<and> distinct xs)"
berghofe@5183
   179
primrec
nipkow@13145
   180
"remdups [] = []"
nipkow@13145
   181
"remdups (x#xs) = (if x : set xs then remdups xs else x # remdups xs)"
berghofe@5183
   182
primrec
nipkow@13147
   183
replicate_0: "replicate 0 x = []"
nipkow@13145
   184
replicate_Suc: "replicate (Suc n) x = x # replicate n x"
nipkow@8115
   185
defs
oheimb@14099
   186
 postfix_def: "postfix xs ys == \<exists>zs. xs = zs @ ys"
oheimb@14099
   187
defs
wenzelm@13114
   188
 list_all2_def:
wenzelm@13142
   189
 "list_all2 P xs ys == length xs = length ys \<and> (\<forall>(x, y) \<in> set (zip xs ys). P x y)"
nipkow@8115
   190
paulson@3196
   191
wenzelm@13142
   192
subsection {* Lexicographic orderings on lists *}
nipkow@5281
   193
nipkow@5281
   194
consts
nipkow@13145
   195
lexn :: "('a * 'a)set => nat => ('a list * 'a list)set"
nipkow@5281
   196
primrec
nipkow@13145
   197
"lexn r 0 = {}"
nipkow@13145
   198
"lexn r (Suc n) =
nipkow@13145
   199
(prod_fun (%(x,xs). x#xs) (%(x,xs). x#xs) ` (r <*lex*> lexn r n)) Int
nipkow@13145
   200
{(xs,ys). length xs = Suc n \<and> length ys = Suc n}"
nipkow@5281
   201
nipkow@5281
   202
constdefs
nipkow@13145
   203
lex :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
nipkow@13145
   204
"lex r == \<Union>n. lexn r n"
nipkow@5281
   205
nipkow@13145
   206
lexico :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
nipkow@13145
   207
"lexico r == inv_image (less_than <*lex*> lex r) (%xs. (length xs, xs))"
paulson@9336
   208
nipkow@13145
   209
sublist :: "'a list => nat set => 'a list"
nipkow@13145
   210
"sublist xs A == map fst (filter (%p. snd p : A) (zip xs [0..size xs(]))"
nipkow@5281
   211
wenzelm@13114
   212
wenzelm@13142
   213
lemma not_Cons_self [simp]: "xs \<noteq> x # xs"
nipkow@13145
   214
by (induct xs) auto
wenzelm@13114
   215
wenzelm@13142
   216
lemmas not_Cons_self2 [simp] = not_Cons_self [symmetric]
wenzelm@13114
   217
wenzelm@13142
   218
lemma neq_Nil_conv: "(xs \<noteq> []) = (\<exists>y ys. xs = y # ys)"
nipkow@13145
   219
by (induct xs) auto
wenzelm@13114
   220
wenzelm@13142
   221
lemma length_induct:
nipkow@13145
   222
"(!!xs. \<forall>ys. length ys < length xs --> P ys ==> P xs) ==> P xs"
nipkow@13145
   223
by (rule measure_induct [of length]) rules
wenzelm@13114
   224
wenzelm@13114
   225
wenzelm@13142
   226
subsection {* @{text lists}: the list-forming operator over sets *}
wenzelm@13114
   227
wenzelm@13142
   228
consts lists :: "'a set => 'a list set"
wenzelm@13142
   229
inductive "lists A"
nipkow@13145
   230
intros
nipkow@13145
   231
Nil [intro!]: "[]: lists A"
nipkow@13145
   232
Cons [intro!]: "[| a: A;l: lists A|] ==> a#l : lists A"
wenzelm@13114
   233
wenzelm@13142
   234
inductive_cases listsE [elim!]: "x#l : lists A"
wenzelm@13114
   235
wenzelm@13366
   236
lemma lists_mono [mono]: "A \<subseteq> B ==> lists A \<subseteq> lists B"
nipkow@13145
   237
by (unfold lists.defs) (blast intro!: lfp_mono)
wenzelm@13114
   238
berghofe@13883
   239
lemma lists_IntI:
berghofe@13883
   240
  assumes l: "l: lists A" shows "l: lists B ==> l: lists (A Int B)" using l
berghofe@13883
   241
  by induct blast+
wenzelm@13142
   242
wenzelm@13142
   243
lemma lists_Int_eq [simp]: "lists (A \<inter> B) = lists A \<inter> lists B"
nipkow@13145
   244
apply (rule mono_Int [THEN equalityI])
nipkow@13145
   245
apply (simp add: mono_def lists_mono)
nipkow@13145
   246
apply (blast intro!: lists_IntI)
nipkow@13145
   247
done
wenzelm@13114
   248
wenzelm@13142
   249
lemma append_in_lists_conv [iff]:
nipkow@13145
   250
"(xs @ ys : lists A) = (xs : lists A \<and> ys : lists A)"
nipkow@13145
   251
by (induct xs) auto
wenzelm@13142
   252
wenzelm@13142
   253
wenzelm@13142
   254
subsection {* @{text length} *}
wenzelm@13114
   255
wenzelm@13142
   256
text {*
nipkow@13145
   257
Needs to come before @{text "@"} because of theorem @{text
nipkow@13145
   258
append_eq_append_conv}.
wenzelm@13142
   259
*}
wenzelm@13114
   260
wenzelm@13142
   261
lemma length_append [simp]: "length (xs @ ys) = length xs + length ys"
nipkow@13145
   262
by (induct xs) auto
wenzelm@13114
   263
wenzelm@13142
   264
lemma length_map [simp]: "length (map f xs) = length xs"
nipkow@13145
   265
by (induct xs) auto
wenzelm@13114
   266
wenzelm@13142
   267
lemma length_rev [simp]: "length (rev xs) = length xs"
nipkow@13145
   268
by (induct xs) auto
wenzelm@13114
   269
wenzelm@13142
   270
lemma length_tl [simp]: "length (tl xs) = length xs - 1"
nipkow@13145
   271
by (cases xs) auto
wenzelm@13114
   272
wenzelm@13142
   273
lemma length_0_conv [iff]: "(length xs = 0) = (xs = [])"
nipkow@13145
   274
by (induct xs) auto
wenzelm@13114
   275
wenzelm@13142
   276
lemma length_greater_0_conv [iff]: "(0 < length xs) = (xs \<noteq> [])"
nipkow@13145
   277
by (induct xs) auto
wenzelm@13114
   278
wenzelm@13114
   279
lemma length_Suc_conv:
nipkow@13145
   280
"(length xs = Suc n) = (\<exists>y ys. xs = y # ys \<and> length ys = n)"
nipkow@13145
   281
by (induct xs) auto
wenzelm@13142
   282
nipkow@14025
   283
lemma Suc_length_conv:
nipkow@14025
   284
"(Suc n = length xs) = (\<exists>y ys. xs = y # ys \<and> length ys = n)"
paulson@14208
   285
apply (induct xs, simp, simp)
nipkow@14025
   286
apply blast
nipkow@14025
   287
done
nipkow@14025
   288
oheimb@14099
   289
lemma impossible_Cons [rule_format]: 
oheimb@14099
   290
  "length xs <= length ys --> xs = x # ys = False"
paulson@14208
   291
apply (induct xs, auto)
oheimb@14099
   292
done
oheimb@14099
   293
nipkow@14247
   294
lemma list_induct2[consumes 1]: "\<And>ys.
nipkow@14247
   295
 \<lbrakk> length xs = length ys;
nipkow@14247
   296
   P [] [];
nipkow@14247
   297
   \<And>x xs y ys. \<lbrakk> length xs = length ys; P xs ys \<rbrakk> \<Longrightarrow> P (x#xs) (y#ys) \<rbrakk>
nipkow@14247
   298
 \<Longrightarrow> P xs ys"
nipkow@14247
   299
apply(induct xs)
nipkow@14247
   300
 apply simp
nipkow@14247
   301
apply(case_tac ys)
nipkow@14247
   302
 apply simp
nipkow@14247
   303
apply(simp)
nipkow@14247
   304
done
wenzelm@13114
   305
wenzelm@13142
   306
subsection {* @{text "@"} -- append *}
wenzelm@13114
   307
wenzelm@13142
   308
lemma append_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"
nipkow@13145
   309
by (induct xs) auto
wenzelm@13114
   310
wenzelm@13142
   311
lemma append_Nil2 [simp]: "xs @ [] = xs"
nipkow@13145
   312
by (induct xs) auto
nipkow@3507
   313
wenzelm@13142
   314
lemma append_is_Nil_conv [iff]: "(xs @ ys = []) = (xs = [] \<and> ys = [])"
nipkow@13145
   315
by (induct xs) auto
wenzelm@13114
   316
wenzelm@13142
   317
lemma Nil_is_append_conv [iff]: "([] = xs @ ys) = (xs = [] \<and> ys = [])"
nipkow@13145
   318
by (induct xs) auto
wenzelm@13114
   319
wenzelm@13142
   320
lemma append_self_conv [iff]: "(xs @ ys = xs) = (ys = [])"
nipkow@13145
   321
by (induct xs) auto
wenzelm@13114
   322
wenzelm@13142
   323
lemma self_append_conv [iff]: "(xs = xs @ ys) = (ys = [])"
nipkow@13145
   324
by (induct xs) auto
wenzelm@13114
   325
berghofe@13883
   326
lemma append_eq_append_conv [simp]:
berghofe@13883
   327
 "!!ys. length xs = length ys \<or> length us = length vs
berghofe@13883
   328
 ==> (xs@us = ys@vs) = (xs=ys \<and> us=vs)"
berghofe@13883
   329
apply (induct xs)
paulson@14208
   330
 apply (case_tac ys, simp, force)
paulson@14208
   331
apply (case_tac ys, force, simp)
nipkow@13145
   332
done
wenzelm@13142
   333
wenzelm@13142
   334
lemma same_append_eq [iff]: "(xs @ ys = xs @ zs) = (ys = zs)"
nipkow@13145
   335
by simp
wenzelm@13142
   336
wenzelm@13142
   337
lemma append1_eq_conv [iff]: "(xs @ [x] = ys @ [y]) = (xs = ys \<and> x = y)"
nipkow@13145
   338
by simp
wenzelm@13114
   339
wenzelm@13142
   340
lemma append_same_eq [iff]: "(ys @ xs = zs @ xs) = (ys = zs)"
nipkow@13145
   341
by simp
wenzelm@13114
   342
wenzelm@13142
   343
lemma append_self_conv2 [iff]: "(xs @ ys = ys) = (xs = [])"
nipkow@13145
   344
using append_same_eq [of _ _ "[]"] by auto
nipkow@3507
   345
wenzelm@13142
   346
lemma self_append_conv2 [iff]: "(ys = xs @ ys) = (xs = [])"
nipkow@13145
   347
using append_same_eq [of "[]"] by auto
wenzelm@13114
   348
wenzelm@13142
   349
lemma hd_Cons_tl [simp]: "xs \<noteq> [] ==> hd xs # tl xs = xs"
nipkow@13145
   350
by (induct xs) auto
wenzelm@13114
   351
wenzelm@13142
   352
lemma hd_append: "hd (xs @ ys) = (if xs = [] then hd ys else hd xs)"
nipkow@13145
   353
by (induct xs) auto
wenzelm@13114
   354
wenzelm@13142
   355
lemma hd_append2 [simp]: "xs \<noteq> [] ==> hd (xs @ ys) = hd xs"
nipkow@13145
   356
by (simp add: hd_append split: list.split)
wenzelm@13114
   357
wenzelm@13142
   358
lemma tl_append: "tl (xs @ ys) = (case xs of [] => tl ys | z#zs => zs @ ys)"
nipkow@13145
   359
by (simp split: list.split)
wenzelm@13114
   360
wenzelm@13142
   361
lemma tl_append2 [simp]: "xs \<noteq> [] ==> tl (xs @ ys) = tl xs @ ys"
nipkow@13145
   362
by (simp add: tl_append split: list.split)
wenzelm@13114
   363
wenzelm@13114
   364
nipkow@14300
   365
lemma Cons_eq_append_conv: "x#xs = ys@zs =
nipkow@14300
   366
 (ys = [] & x#xs = zs | (EX ys'. x#ys' = ys & xs = ys'@zs))"
nipkow@14300
   367
by(cases ys) auto
nipkow@14300
   368
nipkow@14300
   369
wenzelm@13142
   370
text {* Trivial rules for solving @{text "@"}-equations automatically. *}
wenzelm@13114
   371
wenzelm@13114
   372
lemma eq_Nil_appendI: "xs = ys ==> xs = [] @ ys"
nipkow@13145
   373
by simp
wenzelm@13114
   374
wenzelm@13142
   375
lemma Cons_eq_appendI:
nipkow@13145
   376
"[| x # xs1 = ys; xs = xs1 @ zs |] ==> x # xs = ys @ zs"
nipkow@13145
   377
by (drule sym) simp
wenzelm@13114
   378
wenzelm@13142
   379
lemma append_eq_appendI:
nipkow@13145
   380
"[| xs @ xs1 = zs; ys = xs1 @ us |] ==> xs @ ys = zs @ us"
nipkow@13145
   381
by (drule sym) simp
wenzelm@13114
   382
wenzelm@13114
   383
wenzelm@13142
   384
text {*
nipkow@13145
   385
Simplification procedure for all list equalities.
nipkow@13145
   386
Currently only tries to rearrange @{text "@"} to see if
nipkow@13145
   387
- both lists end in a singleton list,
nipkow@13145
   388
- or both lists end in the same list.
wenzelm@13142
   389
*}
wenzelm@13142
   390
wenzelm@13142
   391
ML_setup {*
nipkow@3507
   392
local
nipkow@3507
   393
wenzelm@13122
   394
val append_assoc = thm "append_assoc";
wenzelm@13122
   395
val append_Nil = thm "append_Nil";
wenzelm@13122
   396
val append_Cons = thm "append_Cons";
wenzelm@13122
   397
val append1_eq_conv = thm "append1_eq_conv";
wenzelm@13122
   398
val append_same_eq = thm "append_same_eq";
wenzelm@13122
   399
wenzelm@13114
   400
fun last (cons as Const("List.list.Cons",_) $ _ $ xs) =
wenzelm@13462
   401
  (case xs of Const("List.list.Nil",_) => cons | _ => last xs)
wenzelm@13462
   402
  | last (Const("List.op @",_) $ _ $ ys) = last ys
wenzelm@13462
   403
  | last t = t;
wenzelm@13114
   404
wenzelm@13114
   405
fun list1 (Const("List.list.Cons",_) $ _ $ Const("List.list.Nil",_)) = true
wenzelm@13462
   406
  | list1 _ = false;
wenzelm@13114
   407
wenzelm@13114
   408
fun butlast ((cons as Const("List.list.Cons",_) $ x) $ xs) =
wenzelm@13462
   409
  (case xs of Const("List.list.Nil",_) => xs | _ => cons $ butlast xs)
wenzelm@13462
   410
  | butlast ((app as Const("List.op @",_) $ xs) $ ys) = app $ butlast ys
wenzelm@13462
   411
  | butlast xs = Const("List.list.Nil",fastype_of xs);
wenzelm@13114
   412
wenzelm@13114
   413
val rearr_tac =
wenzelm@13462
   414
  simp_tac (HOL_basic_ss addsimps [append_assoc, append_Nil, append_Cons]);
wenzelm@13114
   415
wenzelm@13114
   416
fun list_eq sg _ (F as (eq as Const(_,eqT)) $ lhs $ rhs) =
wenzelm@13462
   417
  let
wenzelm@13462
   418
    val lastl = last lhs and lastr = last rhs;
wenzelm@13462
   419
    fun rearr conv =
wenzelm@13462
   420
      let
wenzelm@13462
   421
        val lhs1 = butlast lhs and rhs1 = butlast rhs;
wenzelm@13462
   422
        val Type(_,listT::_) = eqT
wenzelm@13462
   423
        val appT = [listT,listT] ---> listT
wenzelm@13462
   424
        val app = Const("List.op @",appT)
wenzelm@13462
   425
        val F2 = eq $ (app$lhs1$lastl) $ (app$rhs1$lastr)
wenzelm@13480
   426
        val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (F,F2));
wenzelm@13480
   427
        val thm = Tactic.prove sg [] [] eq (K (rearr_tac 1));
wenzelm@13462
   428
      in Some ((conv RS (thm RS trans)) RS eq_reflection) end;
wenzelm@13114
   429
wenzelm@13462
   430
  in
wenzelm@13462
   431
    if list1 lastl andalso list1 lastr then rearr append1_eq_conv
wenzelm@13462
   432
    else if lastl aconv lastr then rearr append_same_eq
wenzelm@13462
   433
    else None
wenzelm@13462
   434
  end;
wenzelm@13462
   435
wenzelm@13114
   436
in
wenzelm@13462
   437
wenzelm@13462
   438
val list_eq_simproc =
wenzelm@13462
   439
  Simplifier.simproc (Theory.sign_of (the_context ())) "list_eq" ["(xs::'a list) = ys"] list_eq;
wenzelm@13462
   440
wenzelm@13114
   441
end;
wenzelm@13114
   442
wenzelm@13114
   443
Addsimprocs [list_eq_simproc];
wenzelm@13114
   444
*}
wenzelm@13114
   445
wenzelm@13114
   446
wenzelm@13142
   447
subsection {* @{text map} *}
wenzelm@13114
   448
wenzelm@13142
   449
lemma map_ext: "(!!x. x : set xs --> f x = g x) ==> map f xs = map g xs"
nipkow@13145
   450
by (induct xs) simp_all
wenzelm@13114
   451
wenzelm@13142
   452
lemma map_ident [simp]: "map (\<lambda>x. x) = (\<lambda>xs. xs)"
nipkow@13145
   453
by (rule ext, induct_tac xs) auto
wenzelm@13114
   454
wenzelm@13142
   455
lemma map_append [simp]: "map f (xs @ ys) = map f xs @ map f ys"
nipkow@13145
   456
by (induct xs) auto
wenzelm@13114
   457
wenzelm@13142
   458
lemma map_compose: "map (f o g) xs = map f (map g xs)"
nipkow@13145
   459
by (induct xs) (auto simp add: o_def)
wenzelm@13114
   460
wenzelm@13142
   461
lemma rev_map: "rev (map f xs) = map f (rev xs)"
nipkow@13145
   462
by (induct xs) auto
wenzelm@13114
   463
nipkow@13737
   464
lemma map_eq_conv[simp]: "(map f xs = map g xs) = (!x : set xs. f x = g x)"
nipkow@13737
   465
by (induct xs) auto
nipkow@13737
   466
wenzelm@13366
   467
lemma map_cong [recdef_cong]:
nipkow@13145
   468
"xs = ys ==> (!!x. x : set ys ==> f x = g x) ==> map f xs = map g ys"
nipkow@13145
   469
-- {* a congruence rule for @{text map} *}
nipkow@13737
   470
by simp
wenzelm@13114
   471
wenzelm@13142
   472
lemma map_is_Nil_conv [iff]: "(map f xs = []) = (xs = [])"
nipkow@13145
   473
by (cases xs) auto
wenzelm@13114
   474
wenzelm@13142
   475
lemma Nil_is_map_conv [iff]: "([] = map f xs) = (xs = [])"
nipkow@13145
   476
by (cases xs) auto
wenzelm@13114
   477
nipkow@14025
   478
lemma map_eq_Cons_conv[iff]:
nipkow@14025
   479
 "(map f xs = y#ys) = (\<exists>z zs. xs = z#zs \<and> f z = y \<and> map f zs = ys)"
nipkow@13145
   480
by (cases xs) auto
wenzelm@13114
   481
nipkow@14025
   482
lemma Cons_eq_map_conv[iff]:
nipkow@14025
   483
 "(x#xs = map f ys) = (\<exists>z zs. ys = z#zs \<and> x = f z \<and> xs = map f zs)"
nipkow@14025
   484
by (cases ys) auto
nipkow@14025
   485
nipkow@14111
   486
lemma ex_map_conv:
nipkow@14111
   487
  "(EX xs. ys = map f xs) = (ALL y : set ys. EX x. y = f x)"
nipkow@14111
   488
by(induct ys, auto)
nipkow@14111
   489
wenzelm@13114
   490
lemma map_injective:
nipkow@14338
   491
 "!!xs. map f xs = map f ys ==> inj f ==> xs = ys"
nipkow@14338
   492
by (induct ys) (auto dest!:injD)
wenzelm@13114
   493
nipkow@14339
   494
lemma inj_map_eq_map[simp]: "inj f \<Longrightarrow> (map f xs = map f ys) = (xs = ys)"
nipkow@14339
   495
by(blast dest:map_injective)
nipkow@14339
   496
wenzelm@13114
   497
lemma inj_mapI: "inj f ==> inj (map f)"
paulson@13585
   498
by (rules dest: map_injective injD intro: inj_onI)
wenzelm@13114
   499
wenzelm@13114
   500
lemma inj_mapD: "inj (map f) ==> inj f"
paulson@14208
   501
apply (unfold inj_on_def, clarify)
nipkow@13145
   502
apply (erule_tac x = "[x]" in ballE)
paulson@14208
   503
 apply (erule_tac x = "[y]" in ballE, simp, blast)
nipkow@13145
   504
apply blast
nipkow@13145
   505
done
wenzelm@13114
   506
nipkow@14339
   507
lemma inj_map[iff]: "inj (map f) = inj f"
nipkow@13145
   508
by (blast dest: inj_mapD intro: inj_mapI)
wenzelm@13114
   509
kleing@14343
   510
lemma map_idI: "(\<And>x. x \<in> set xs \<Longrightarrow> f x = x) \<Longrightarrow> map f xs = xs"
kleing@14343
   511
by (induct xs, auto)
wenzelm@13114
   512
nipkow@14402
   513
lemma map_fun_upd [simp]: "y \<notin> set xs \<Longrightarrow> map (f(y:=v)) xs = map f xs"
nipkow@14402
   514
by (induct xs) auto
nipkow@14402
   515
wenzelm@13142
   516
subsection {* @{text rev} *}
wenzelm@13114
   517
wenzelm@13142
   518
lemma rev_append [simp]: "rev (xs @ ys) = rev ys @ rev xs"
nipkow@13145
   519
by (induct xs) auto
wenzelm@13114
   520
wenzelm@13142
   521
lemma rev_rev_ident [simp]: "rev (rev xs) = xs"
nipkow@13145
   522
by (induct xs) auto
wenzelm@13114
   523
wenzelm@13142
   524
lemma rev_is_Nil_conv [iff]: "(rev xs = []) = (xs = [])"
nipkow@13145
   525
by (induct xs) auto
wenzelm@13114
   526
wenzelm@13142
   527
lemma Nil_is_rev_conv [iff]: "([] = rev xs) = (xs = [])"
nipkow@13145
   528
by (induct xs) auto
wenzelm@13114
   529
wenzelm@13142
   530
lemma rev_is_rev_conv [iff]: "!!ys. (rev xs = rev ys) = (xs = ys)"
paulson@14208
   531
apply (induct xs, force)
paulson@14208
   532
apply (case_tac ys, simp, force)
nipkow@13145
   533
done
wenzelm@13114
   534
wenzelm@13366
   535
lemma rev_induct [case_names Nil snoc]:
wenzelm@13366
   536
  "[| P []; !!x xs. P xs ==> P (xs @ [x]) |] ==> P xs"
nipkow@13145
   537
apply(subst rev_rev_ident[symmetric])
nipkow@13145
   538
apply(rule_tac list = "rev xs" in list.induct, simp_all)
nipkow@13145
   539
done
wenzelm@13114
   540
nipkow@13145
   541
ML {* val rev_induct_tac = induct_thm_tac (thm "rev_induct") *}-- "compatibility"
wenzelm@13114
   542
wenzelm@13366
   543
lemma rev_exhaust [case_names Nil snoc]:
wenzelm@13366
   544
  "(xs = [] ==> P) ==>(!!ys y. xs = ys @ [y] ==> P) ==> P"
nipkow@13145
   545
by (induct xs rule: rev_induct) auto
wenzelm@13114
   546
wenzelm@13366
   547
lemmas rev_cases = rev_exhaust
wenzelm@13366
   548
wenzelm@13114
   549
wenzelm@13142
   550
subsection {* @{text set} *}
wenzelm@13114
   551
wenzelm@13142
   552
lemma finite_set [iff]: "finite (set xs)"
nipkow@13145
   553
by (induct xs) auto
wenzelm@13114
   554
wenzelm@13142
   555
lemma set_append [simp]: "set (xs @ ys) = (set xs \<union> set ys)"
nipkow@13145
   556
by (induct xs) auto
wenzelm@13114
   557
oheimb@14099
   558
lemma hd_in_set: "l = x#xs \<Longrightarrow> x\<in>set l"
paulson@14208
   559
by (case_tac l, auto)
oheimb@14099
   560
wenzelm@13142
   561
lemma set_subset_Cons: "set xs \<subseteq> set (x # xs)"
nipkow@13145
   562
by auto
wenzelm@13114
   563
oheimb@14099
   564
lemma set_ConsD: "y \<in> set (x # xs) \<Longrightarrow> y=x \<or> y \<in> set xs" 
oheimb@14099
   565
by auto
oheimb@14099
   566
wenzelm@13142
   567
lemma set_empty [iff]: "(set xs = {}) = (xs = [])"
nipkow@13145
   568
by (induct xs) auto
wenzelm@13114
   569
wenzelm@13142
   570
lemma set_rev [simp]: "set (rev xs) = set xs"
nipkow@13145
   571
by (induct xs) auto
wenzelm@13114
   572
wenzelm@13142
   573
lemma set_map [simp]: "set (map f xs) = f`(set xs)"
nipkow@13145
   574
by (induct xs) auto
wenzelm@13114
   575
wenzelm@13142
   576
lemma set_filter [simp]: "set (filter P xs) = {x. x : set xs \<and> P x}"
nipkow@13145
   577
by (induct xs) auto
wenzelm@13114
   578
wenzelm@13142
   579
lemma set_upt [simp]: "set[i..j(] = {k. i \<le> k \<and> k < j}"
paulson@14208
   580
apply (induct j, simp_all)
paulson@14208
   581
apply (erule ssubst, auto)
nipkow@13145
   582
done
wenzelm@13114
   583
wenzelm@13142
   584
lemma in_set_conv_decomp: "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs)"
paulson@14208
   585
apply (induct xs, simp, simp)
nipkow@13145
   586
apply (rule iffI)
nipkow@13145
   587
 apply (blast intro: eq_Nil_appendI Cons_eq_appendI)
nipkow@13145
   588
apply (erule exE)+
paulson@14208
   589
apply (case_tac ys, auto)
nipkow@13145
   590
done
wenzelm@13142
   591
wenzelm@13142
   592
lemma in_lists_conv_set: "(xs : lists A) = (\<forall>x \<in> set xs. x : A)"
nipkow@13145
   593
-- {* eliminate @{text lists} in favour of @{text set} *}
nipkow@13145
   594
by (induct xs) auto
wenzelm@13142
   595
wenzelm@13142
   596
lemma in_listsD [dest!]: "xs \<in> lists A ==> \<forall>x\<in>set xs. x \<in> A"
nipkow@13145
   597
by (rule in_lists_conv_set [THEN iffD1])
wenzelm@13142
   598
wenzelm@13142
   599
lemma in_listsI [intro!]: "\<forall>x\<in>set xs. x \<in> A ==> xs \<in> lists A"
nipkow@13145
   600
by (rule in_lists_conv_set [THEN iffD2])
wenzelm@13114
   601
paulson@13508
   602
lemma finite_list: "finite A ==> EX l. set l = A"
paulson@13508
   603
apply (erule finite_induct, auto)
paulson@13508
   604
apply (rule_tac x="x#l" in exI, auto)
paulson@13508
   605
done
paulson@13508
   606
kleing@14388
   607
lemma card_length: "card (set xs) \<le> length xs"
kleing@14388
   608
by (induct xs) (auto simp add: card_insert_if)
wenzelm@13114
   609
wenzelm@13142
   610
subsection {* @{text mem} *}
wenzelm@13114
   611
wenzelm@13114
   612
lemma set_mem_eq: "(x mem xs) = (x : set xs)"
nipkow@13145
   613
by (induct xs) auto
wenzelm@13114
   614
wenzelm@13114
   615
wenzelm@13142
   616
subsection {* @{text list_all} *}
wenzelm@13114
   617
wenzelm@13142
   618
lemma list_all_conv: "list_all P xs = (\<forall>x \<in> set xs. P x)"
nipkow@13145
   619
by (induct xs) auto
wenzelm@13114
   620
wenzelm@13142
   621
lemma list_all_append [simp]:
nipkow@13145
   622
"list_all P (xs @ ys) = (list_all P xs \<and> list_all P ys)"
nipkow@13145
   623
by (induct xs) auto
wenzelm@13114
   624
wenzelm@13114
   625
wenzelm@13142
   626
subsection {* @{text filter} *}
wenzelm@13114
   627
wenzelm@13142
   628
lemma filter_append [simp]: "filter P (xs @ ys) = filter P xs @ filter P ys"
nipkow@13145
   629
by (induct xs) auto
wenzelm@13114
   630
wenzelm@13142
   631
lemma filter_filter [simp]: "filter P (filter Q xs) = filter (\<lambda>x. Q x \<and> P x) xs"
nipkow@13145
   632
by (induct xs) auto
wenzelm@13114
   633
wenzelm@13142
   634
lemma filter_True [simp]: "\<forall>x \<in> set xs. P x ==> filter P xs = xs"
nipkow@13145
   635
by (induct xs) auto
wenzelm@13114
   636
wenzelm@13142
   637
lemma filter_False [simp]: "\<forall>x \<in> set xs. \<not> P x ==> filter P xs = []"
nipkow@13145
   638
by (induct xs) auto
wenzelm@13114
   639
wenzelm@13142
   640
lemma length_filter [simp]: "length (filter P xs) \<le> length xs"
nipkow@13145
   641
by (induct xs) (auto simp add: le_SucI)
wenzelm@13114
   642
wenzelm@13142
   643
lemma filter_is_subset [simp]: "set (filter P xs) \<le> set xs"
nipkow@13145
   644
by auto
wenzelm@13114
   645
wenzelm@13114
   646
wenzelm@13142
   647
subsection {* @{text concat} *}
wenzelm@13114
   648
wenzelm@13142
   649
lemma concat_append [simp]: "concat (xs @ ys) = concat xs @ concat ys"
nipkow@13145
   650
by (induct xs) auto
wenzelm@13114
   651
wenzelm@13142
   652
lemma concat_eq_Nil_conv [iff]: "(concat xss = []) = (\<forall>xs \<in> set xss. xs = [])"
nipkow@13145
   653
by (induct xss) auto
wenzelm@13114
   654
wenzelm@13142
   655
lemma Nil_eq_concat_conv [iff]: "([] = concat xss) = (\<forall>xs \<in> set xss. xs = [])"
nipkow@13145
   656
by (induct xss) auto
wenzelm@13114
   657
wenzelm@13142
   658
lemma set_concat [simp]: "set (concat xs) = \<Union>(set ` set xs)"
nipkow@13145
   659
by (induct xs) auto
wenzelm@13114
   660
wenzelm@13142
   661
lemma map_concat: "map f (concat xs) = concat (map (map f) xs)"
nipkow@13145
   662
by (induct xs) auto
wenzelm@13114
   663
wenzelm@13142
   664
lemma filter_concat: "filter p (concat xs) = concat (map (filter p) xs)"
nipkow@13145
   665
by (induct xs) auto
wenzelm@13114
   666
wenzelm@13142
   667
lemma rev_concat: "rev (concat xs) = concat (map rev (rev xs))"
nipkow@13145
   668
by (induct xs) auto
wenzelm@13114
   669
wenzelm@13114
   670
wenzelm@13142
   671
subsection {* @{text nth} *}
wenzelm@13114
   672
wenzelm@13142
   673
lemma nth_Cons_0 [simp]: "(x # xs)!0 = x"
nipkow@13145
   674
by auto
wenzelm@13114
   675
wenzelm@13142
   676
lemma nth_Cons_Suc [simp]: "(x # xs)!(Suc n) = xs!n"
nipkow@13145
   677
by auto
wenzelm@13114
   678
wenzelm@13142
   679
declare nth.simps [simp del]
wenzelm@13114
   680
wenzelm@13114
   681
lemma nth_append:
nipkow@13145
   682
"!!n. (xs @ ys)!n = (if n < length xs then xs!n else ys!(n - length xs))"
paulson@14208
   683
apply (induct "xs", simp)
paulson@14208
   684
apply (case_tac n, auto)
nipkow@13145
   685
done
wenzelm@13114
   686
nipkow@14402
   687
lemma nth_append_length [simp]: "(xs @ x # ys) ! length xs = x"
nipkow@14402
   688
by (induct "xs") auto
nipkow@14402
   689
nipkow@14402
   690
lemma nth_append_length_plus[simp]: "(xs @ ys) ! (length xs + n) = ys ! n"
nipkow@14402
   691
by (induct "xs") auto
nipkow@14402
   692
wenzelm@13142
   693
lemma nth_map [simp]: "!!n. n < length xs ==> (map f xs)!n = f(xs!n)"
paulson@14208
   694
apply (induct xs, simp)
paulson@14208
   695
apply (case_tac n, auto)
nipkow@13145
   696
done
wenzelm@13114
   697
wenzelm@13142
   698
lemma set_conv_nth: "set xs = {xs!i | i. i < length xs}"
paulson@14208
   699
apply (induct_tac xs, simp, simp)
nipkow@13145
   700
apply safe
paulson@14208
   701
apply (rule_tac x = 0 in exI, simp)
paulson@14208
   702
 apply (rule_tac x = "Suc i" in exI, simp)
paulson@14208
   703
apply (case_tac i, simp)
nipkow@13145
   704
apply (rename_tac j)
paulson@14208
   705
apply (rule_tac x = j in exI, simp)
nipkow@13145
   706
done
wenzelm@13114
   707
nipkow@13145
   708
lemma list_ball_nth: "[| n < length xs; !x : set xs. P x|] ==> P(xs!n)"
nipkow@13145
   709
by (auto simp add: set_conv_nth)
wenzelm@13114
   710
wenzelm@13142
   711
lemma nth_mem [simp]: "n < length xs ==> xs!n : set xs"
nipkow@13145
   712
by (auto simp add: set_conv_nth)
wenzelm@13114
   713
wenzelm@13114
   714
lemma all_nth_imp_all_set:
nipkow@13145
   715
"[| !i < length xs. P(xs!i); x : set xs|] ==> P x"
nipkow@13145
   716
by (auto simp add: set_conv_nth)
wenzelm@13114
   717
wenzelm@13114
   718
lemma all_set_conv_all_nth:
nipkow@13145
   719
"(\<forall>x \<in> set xs. P x) = (\<forall>i. i < length xs --> P (xs ! i))"
nipkow@13145
   720
by (auto simp add: set_conv_nth)
wenzelm@13114
   721
wenzelm@13114
   722
wenzelm@13142
   723
subsection {* @{text list_update} *}
wenzelm@13114
   724
wenzelm@13142
   725
lemma length_list_update [simp]: "!!i. length(xs[i:=x]) = length xs"
nipkow@13145
   726
by (induct xs) (auto split: nat.split)
wenzelm@13114
   727
wenzelm@13114
   728
lemma nth_list_update:
nipkow@13145
   729
"!!i j. i < length xs==> (xs[i:=x])!j = (if i = j then x else xs!j)"
nipkow@13145
   730
by (induct xs) (auto simp add: nth_Cons split: nat.split)
wenzelm@13114
   731
wenzelm@13142
   732
lemma nth_list_update_eq [simp]: "i < length xs ==> (xs[i:=x])!i = x"
nipkow@13145
   733
by (simp add: nth_list_update)
wenzelm@13114
   734
wenzelm@13142
   735
lemma nth_list_update_neq [simp]: "!!i j. i \<noteq> j ==> xs[i:=x]!j = xs!j"
nipkow@13145
   736
by (induct xs) (auto simp add: nth_Cons split: nat.split)
wenzelm@13114
   737
wenzelm@13142
   738
lemma list_update_overwrite [simp]:
nipkow@13145
   739
"!!i. i < size xs ==> xs[i:=x, i:=y] = xs[i:=y]"
nipkow@13145
   740
by (induct xs) (auto split: nat.split)
wenzelm@13114
   741
nipkow@14402
   742
lemma list_update_id[simp]: "!!i. i < length xs ==> xs[i := xs!i] = xs"
paulson@14208
   743
apply (induct xs, simp)
nipkow@14187
   744
apply(simp split:nat.splits)
nipkow@14187
   745
done
nipkow@14187
   746
wenzelm@13114
   747
lemma list_update_same_conv:
nipkow@13145
   748
"!!i. i < length xs ==> (xs[i := x] = xs) = (xs!i = x)"
nipkow@13145
   749
by (induct xs) (auto split: nat.split)
wenzelm@13114
   750
nipkow@14187
   751
lemma list_update_append1:
nipkow@14187
   752
 "!!i. i < size xs \<Longrightarrow> (xs @ ys)[i:=x] = xs[i:=x] @ ys"
paulson@14208
   753
apply (induct xs, simp)
nipkow@14187
   754
apply(simp split:nat.split)
nipkow@14187
   755
done
nipkow@14187
   756
nipkow@14402
   757
lemma list_update_length [simp]:
nipkow@14402
   758
 "(xs @ x # ys)[length xs := y] = (xs @ y # ys)"
nipkow@14402
   759
by (induct xs, auto)
nipkow@14402
   760
wenzelm@13114
   761
lemma update_zip:
nipkow@13145
   762
"!!i xy xs. length xs = length ys ==>
nipkow@13145
   763
(zip xs ys)[i:=xy] = zip (xs[i:=fst xy]) (ys[i:=snd xy])"
nipkow@13145
   764
by (induct ys) (auto, case_tac xs, auto split: nat.split)
wenzelm@13114
   765
wenzelm@13114
   766
lemma set_update_subset_insert: "!!i. set(xs[i:=x]) <= insert x (set xs)"
nipkow@13145
   767
by (induct xs) (auto split: nat.split)
wenzelm@13114
   768
wenzelm@13114
   769
lemma set_update_subsetI: "[| set xs <= A; x:A |] ==> set(xs[i := x]) <= A"
nipkow@13145
   770
by (blast dest!: set_update_subset_insert [THEN subsetD])
wenzelm@13114
   771
wenzelm@13114
   772
wenzelm@13142
   773
subsection {* @{text last} and @{text butlast} *}
wenzelm@13114
   774
wenzelm@13142
   775
lemma last_snoc [simp]: "last (xs @ [x]) = x"
nipkow@13145
   776
by (induct xs) auto
wenzelm@13114
   777
wenzelm@13142
   778
lemma butlast_snoc [simp]: "butlast (xs @ [x]) = xs"
nipkow@13145
   779
by (induct xs) auto
wenzelm@13114
   780
nipkow@14302
   781
lemma last_ConsL: "xs = [] \<Longrightarrow> last(x#xs) = x"
nipkow@14302
   782
by(simp add:last.simps)
nipkow@14302
   783
nipkow@14302
   784
lemma last_ConsR: "xs \<noteq> [] \<Longrightarrow> last(x#xs) = last xs"
nipkow@14302
   785
by(simp add:last.simps)
nipkow@14302
   786
nipkow@14302
   787
lemma last_append: "last(xs @ ys) = (if ys = [] then last xs else last ys)"
nipkow@14302
   788
by (induct xs) (auto)
nipkow@14302
   789
nipkow@14302
   790
lemma last_appendL[simp]: "ys = [] \<Longrightarrow> last(xs @ ys) = last xs"
nipkow@14302
   791
by(simp add:last_append)
nipkow@14302
   792
nipkow@14302
   793
lemma last_appendR[simp]: "ys \<noteq> [] \<Longrightarrow> last(xs @ ys) = last ys"
nipkow@14302
   794
by(simp add:last_append)
nipkow@14302
   795
nipkow@14302
   796
nipkow@14302
   797
wenzelm@13142
   798
lemma length_butlast [simp]: "length (butlast xs) = length xs - 1"
nipkow@13145
   799
by (induct xs rule: rev_induct) auto
wenzelm@13114
   800
wenzelm@13114
   801
lemma butlast_append:
nipkow@13145
   802
"!!ys. butlast (xs @ ys) = (if ys = [] then butlast xs else xs @ butlast ys)"
nipkow@13145
   803
by (induct xs) auto
wenzelm@13114
   804
wenzelm@13142
   805
lemma append_butlast_last_id [simp]:
nipkow@13145
   806
"xs \<noteq> [] ==> butlast xs @ [last xs] = xs"
nipkow@13145
   807
by (induct xs) auto
wenzelm@13114
   808
wenzelm@13142
   809
lemma in_set_butlastD: "x : set (butlast xs) ==> x : set xs"
nipkow@13145
   810
by (induct xs) (auto split: split_if_asm)
wenzelm@13114
   811
wenzelm@13114
   812
lemma in_set_butlast_appendI:
nipkow@13145
   813
"x : set (butlast xs) | x : set (butlast ys) ==> x : set (butlast (xs @ ys))"
nipkow@13145
   814
by (auto dest: in_set_butlastD simp add: butlast_append)
wenzelm@13114
   815
wenzelm@13142
   816
wenzelm@13142
   817
subsection {* @{text take} and @{text drop} *}
wenzelm@13114
   818
wenzelm@13142
   819
lemma take_0 [simp]: "take 0 xs = []"
nipkow@13145
   820
by (induct xs) auto
wenzelm@13114
   821
wenzelm@13142
   822
lemma drop_0 [simp]: "drop 0 xs = xs"
nipkow@13145
   823
by (induct xs) auto
wenzelm@13114
   824
wenzelm@13142
   825
lemma take_Suc_Cons [simp]: "take (Suc n) (x # xs) = x # take n xs"
nipkow@13145
   826
by simp
wenzelm@13114
   827
wenzelm@13142
   828
lemma drop_Suc_Cons [simp]: "drop (Suc n) (x # xs) = drop n xs"
nipkow@13145
   829
by simp
wenzelm@13114
   830
wenzelm@13142
   831
declare take_Cons [simp del] and drop_Cons [simp del]
wenzelm@13114
   832
nipkow@14187
   833
lemma drop_Suc: "drop (Suc n) xs = drop n (tl xs)"
nipkow@14187
   834
by(cases xs, simp_all)
nipkow@14187
   835
nipkow@14187
   836
lemma drop_tl: "!!n. drop n (tl xs) = tl(drop n xs)"
nipkow@14187
   837
by(induct xs, simp_all add:drop_Cons drop_Suc split:nat.split)
nipkow@14187
   838
nipkow@14187
   839
lemma nth_via_drop: "!!n. drop n xs = y#ys \<Longrightarrow> xs!n = y"
paulson@14208
   840
apply (induct xs, simp)
nipkow@14187
   841
apply(simp add:drop_Cons nth_Cons split:nat.splits)
nipkow@14187
   842
done
nipkow@14187
   843
nipkow@13913
   844
lemma take_Suc_conv_app_nth:
nipkow@13913
   845
 "!!i. i < length xs \<Longrightarrow> take (Suc i) xs = take i xs @ [xs!i]"
paulson@14208
   846
apply (induct xs, simp)
paulson@14208
   847
apply (case_tac i, auto)
nipkow@13913
   848
done
nipkow@13913
   849
wenzelm@13142
   850
lemma length_take [simp]: "!!xs. length (take n xs) = min (length xs) n"
nipkow@13145
   851
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
   852
wenzelm@13142
   853
lemma length_drop [simp]: "!!xs. length (drop n xs) = (length xs - n)"
nipkow@13145
   854
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
   855
wenzelm@13142
   856
lemma take_all [simp]: "!!xs. length xs <= n ==> take n xs = xs"
nipkow@13145
   857
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
   858
wenzelm@13142
   859
lemma drop_all [simp]: "!!xs. length xs <= n ==> drop n xs = []"
nipkow@13145
   860
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
   861
wenzelm@13142
   862
lemma take_append [simp]:
nipkow@13145
   863
"!!xs. take n (xs @ ys) = (take n xs @ take (n - length xs) ys)"
nipkow@13145
   864
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
   865
wenzelm@13142
   866
lemma drop_append [simp]:
nipkow@13145
   867
"!!xs. drop n (xs @ ys) = drop n xs @ drop (n - length xs) ys"
nipkow@13145
   868
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
   869
wenzelm@13142
   870
lemma take_take [simp]: "!!xs n. take n (take m xs) = take (min n m) xs"
paulson@14208
   871
apply (induct m, auto)
paulson@14208
   872
apply (case_tac xs, auto)
paulson@14208
   873
apply (case_tac na, auto)
nipkow@13145
   874
done
wenzelm@13114
   875
wenzelm@13142
   876
lemma drop_drop [simp]: "!!xs. drop n (drop m xs) = drop (n + m) xs"
paulson@14208
   877
apply (induct m, auto)
paulson@14208
   878
apply (case_tac xs, auto)
nipkow@13145
   879
done
wenzelm@13114
   880
wenzelm@13114
   881
lemma take_drop: "!!xs n. take n (drop m xs) = drop m (take (n + m) xs)"
paulson@14208
   882
apply (induct m, auto)
paulson@14208
   883
apply (case_tac xs, auto)
nipkow@13145
   884
done
wenzelm@13114
   885
wenzelm@13142
   886
lemma append_take_drop_id [simp]: "!!xs. take n xs @ drop n xs = xs"
paulson@14208
   887
apply (induct n, auto)
paulson@14208
   888
apply (case_tac xs, auto)
nipkow@13145
   889
done
wenzelm@13114
   890
wenzelm@13114
   891
lemma take_map: "!!xs. take n (map f xs) = map f (take n xs)"
paulson@14208
   892
apply (induct n, auto)
paulson@14208
   893
apply (case_tac xs, auto)
nipkow@13145
   894
done
wenzelm@13114
   895
wenzelm@13142
   896
lemma drop_map: "!!xs. drop n (map f xs) = map f (drop n xs)"
paulson@14208
   897
apply (induct n, auto)
paulson@14208
   898
apply (case_tac xs, auto)
nipkow@13145
   899
done
wenzelm@13114
   900
wenzelm@13114
   901
lemma rev_take: "!!i. rev (take i xs) = drop (length xs - i) (rev xs)"
paulson@14208
   902
apply (induct xs, auto)
paulson@14208
   903
apply (case_tac i, auto)
nipkow@13145
   904
done
wenzelm@13114
   905
wenzelm@13114
   906
lemma rev_drop: "!!i. rev (drop i xs) = take (length xs - i) (rev xs)"
paulson@14208
   907
apply (induct xs, auto)
paulson@14208
   908
apply (case_tac i, auto)
nipkow@13145
   909
done
wenzelm@13114
   910
wenzelm@13142
   911
lemma nth_take [simp]: "!!n i. i < n ==> (take n xs)!i = xs!i"
paulson@14208
   912
apply (induct xs, auto)
paulson@14208
   913
apply (case_tac n, blast)
paulson@14208
   914
apply (case_tac i, auto)
nipkow@13145
   915
done
wenzelm@13114
   916
wenzelm@13142
   917
lemma nth_drop [simp]:
nipkow@13145
   918
"!!xs i. n + i <= length xs ==> (drop n xs)!i = xs!(n + i)"
paulson@14208
   919
apply (induct n, auto)
paulson@14208
   920
apply (case_tac xs, auto)
nipkow@13145
   921
done
nipkow@3507
   922
nipkow@14025
   923
lemma set_take_subset: "\<And>n. set(take n xs) \<subseteq> set xs"
nipkow@14025
   924
by(induct xs)(auto simp:take_Cons split:nat.split)
nipkow@14025
   925
nipkow@14025
   926
lemma set_drop_subset: "\<And>n. set(drop n xs) \<subseteq> set xs"
nipkow@14025
   927
by(induct xs)(auto simp:drop_Cons split:nat.split)
nipkow@14025
   928
nipkow@14187
   929
lemma in_set_takeD: "x : set(take n xs) \<Longrightarrow> x : set xs"
nipkow@14187
   930
using set_take_subset by fast
nipkow@14187
   931
nipkow@14187
   932
lemma in_set_dropD: "x : set(drop n xs) \<Longrightarrow> x : set xs"
nipkow@14187
   933
using set_drop_subset by fast
nipkow@14187
   934
wenzelm@13114
   935
lemma append_eq_conv_conj:
nipkow@13145
   936
"!!zs. (xs @ ys = zs) = (xs = take (length xs) zs \<and> ys = drop (length xs) zs)"
paulson@14208
   937
apply (induct xs, simp, clarsimp)
paulson@14208
   938
apply (case_tac zs, auto)
nipkow@13145
   939
done
wenzelm@13142
   940
paulson@14050
   941
lemma take_add [rule_format]: 
paulson@14050
   942
    "\<forall>i. i+j \<le> length(xs) --> take (i+j) xs = take i xs @ take j (drop i xs)"
paulson@14050
   943
apply (induct xs, auto) 
paulson@14050
   944
apply (case_tac i, simp_all) 
paulson@14050
   945
done
paulson@14050
   946
nipkow@14300
   947
lemma append_eq_append_conv_if:
nipkow@14300
   948
 "!! ys\<^isub>1. (xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>1 @ ys\<^isub>2) =
nipkow@14300
   949
  (if size xs\<^isub>1 \<le> size ys\<^isub>1
nipkow@14300
   950
   then xs\<^isub>1 = take (size xs\<^isub>1) ys\<^isub>1 \<and> xs\<^isub>2 = drop (size xs\<^isub>1) ys\<^isub>1 @ ys\<^isub>2
nipkow@14300
   951
   else take (size ys\<^isub>1) xs\<^isub>1 = ys\<^isub>1 \<and> drop (size ys\<^isub>1) xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>2)"
nipkow@14300
   952
apply(induct xs\<^isub>1)
nipkow@14300
   953
 apply simp
nipkow@14300
   954
apply(case_tac ys\<^isub>1)
nipkow@14300
   955
apply simp_all
nipkow@14300
   956
done
nipkow@14300
   957
wenzelm@13114
   958
wenzelm@13142
   959
subsection {* @{text takeWhile} and @{text dropWhile} *}
wenzelm@13114
   960
wenzelm@13142
   961
lemma takeWhile_dropWhile_id [simp]: "takeWhile P xs @ dropWhile P xs = xs"
nipkow@13145
   962
by (induct xs) auto
wenzelm@13114
   963
wenzelm@13142
   964
lemma takeWhile_append1 [simp]:
nipkow@13145
   965
"[| x:set xs; ~P(x)|] ==> takeWhile P (xs @ ys) = takeWhile P xs"
nipkow@13145
   966
by (induct xs) auto
wenzelm@13114
   967
wenzelm@13142
   968
lemma takeWhile_append2 [simp]:
nipkow@13145
   969
"(!!x. x : set xs ==> P x) ==> takeWhile P (xs @ ys) = xs @ takeWhile P ys"
nipkow@13145
   970
by (induct xs) auto
wenzelm@13114
   971
wenzelm@13142
   972
lemma takeWhile_tail: "\<not> P x ==> takeWhile P (xs @ (x#l)) = takeWhile P xs"
nipkow@13145
   973
by (induct xs) auto
wenzelm@13114
   974
wenzelm@13142
   975
lemma dropWhile_append1 [simp]:
nipkow@13145
   976
"[| x : set xs; ~P(x)|] ==> dropWhile P (xs @ ys) = (dropWhile P xs)@ys"
nipkow@13145
   977
by (induct xs) auto
wenzelm@13114
   978
wenzelm@13142
   979
lemma dropWhile_append2 [simp]:
nipkow@13145
   980
"(!!x. x:set xs ==> P(x)) ==> dropWhile P (xs @ ys) = dropWhile P ys"
nipkow@13145
   981
by (induct xs) auto
wenzelm@13114
   982
wenzelm@13142
   983
lemma set_take_whileD: "x : set (takeWhile P xs) ==> x : set xs \<and> P x"
nipkow@13145
   984
by (induct xs) (auto split: split_if_asm)
wenzelm@13114
   985
nipkow@13913
   986
lemma takeWhile_eq_all_conv[simp]:
nipkow@13913
   987
 "(takeWhile P xs = xs) = (\<forall>x \<in> set xs. P x)"
nipkow@13913
   988
by(induct xs, auto)
nipkow@13913
   989
nipkow@13913
   990
lemma dropWhile_eq_Nil_conv[simp]:
nipkow@13913
   991
 "(dropWhile P xs = []) = (\<forall>x \<in> set xs. P x)"
nipkow@13913
   992
by(induct xs, auto)
nipkow@13913
   993
nipkow@13913
   994
lemma dropWhile_eq_Cons_conv:
nipkow@13913
   995
 "(dropWhile P xs = y#ys) = (xs = takeWhile P xs @ y # ys & \<not> P y)"
nipkow@13913
   996
by(induct xs, auto)
nipkow@13913
   997
wenzelm@13114
   998
wenzelm@13142
   999
subsection {* @{text zip} *}
wenzelm@13114
  1000
wenzelm@13142
  1001
lemma zip_Nil [simp]: "zip [] ys = []"
nipkow@13145
  1002
by (induct ys) auto
wenzelm@13114
  1003
wenzelm@13142
  1004
lemma zip_Cons_Cons [simp]: "zip (x # xs) (y # ys) = (x, y) # zip xs ys"
nipkow@13145
  1005
by simp
wenzelm@13114
  1006
wenzelm@13142
  1007
declare zip_Cons [simp del]
wenzelm@13114
  1008
wenzelm@13142
  1009
lemma length_zip [simp]:
nipkow@13145
  1010
"!!xs. length (zip xs ys) = min (length xs) (length ys)"
paulson@14208
  1011
apply (induct ys, simp)
paulson@14208
  1012
apply (case_tac xs, auto)
nipkow@13145
  1013
done
wenzelm@13114
  1014
wenzelm@13114
  1015
lemma zip_append1:
nipkow@13145
  1016
"!!xs. zip (xs @ ys) zs =
nipkow@13145
  1017
zip xs (take (length xs) zs) @ zip ys (drop (length xs) zs)"
paulson@14208
  1018
apply (induct zs, simp)
paulson@14208
  1019
apply (case_tac xs, simp_all)
nipkow@13145
  1020
done
wenzelm@13114
  1021
wenzelm@13114
  1022
lemma zip_append2:
nipkow@13145
  1023
"!!ys. zip xs (ys @ zs) =
nipkow@13145
  1024
zip (take (length ys) xs) ys @ zip (drop (length ys) xs) zs"
paulson@14208
  1025
apply (induct xs, simp)
paulson@14208
  1026
apply (case_tac ys, simp_all)
nipkow@13145
  1027
done
wenzelm@13114
  1028
wenzelm@13142
  1029
lemma zip_append [simp]:
wenzelm@13142
  1030
 "[| length xs = length us; length ys = length vs |] ==>
nipkow@13145
  1031
zip (xs@ys) (us@vs) = zip xs us @ zip ys vs"
nipkow@13145
  1032
by (simp add: zip_append1)
wenzelm@13114
  1033
wenzelm@13114
  1034
lemma zip_rev:
nipkow@14247
  1035
"length xs = length ys ==> zip (rev xs) (rev ys) = rev (zip xs ys)"
nipkow@14247
  1036
by (induct rule:list_induct2, simp_all)
wenzelm@13114
  1037
wenzelm@13142
  1038
lemma nth_zip [simp]:
nipkow@13145
  1039
"!!i xs. [| i < length xs; i < length ys|] ==> (zip xs ys)!i = (xs!i, ys!i)"
paulson@14208
  1040
apply (induct ys, simp)
nipkow@13145
  1041
apply (case_tac xs)
nipkow@13145
  1042
 apply (simp_all add: nth.simps split: nat.split)
nipkow@13145
  1043
done
wenzelm@13114
  1044
wenzelm@13114
  1045
lemma set_zip:
nipkow@13145
  1046
"set (zip xs ys) = {(xs!i, ys!i) | i. i < min (length xs) (length ys)}"
nipkow@13145
  1047
by (simp add: set_conv_nth cong: rev_conj_cong)
wenzelm@13114
  1048
wenzelm@13114
  1049
lemma zip_update:
nipkow@13145
  1050
"length xs = length ys ==> zip (xs[i:=x]) (ys[i:=y]) = (zip xs ys)[i:=(x,y)]"
nipkow@13145
  1051
by (rule sym, simp add: update_zip)
wenzelm@13114
  1052
wenzelm@13142
  1053
lemma zip_replicate [simp]:
nipkow@13145
  1054
"!!j. zip (replicate i x) (replicate j y) = replicate (min i j) (x,y)"
paulson@14208
  1055
apply (induct i, auto)
paulson@14208
  1056
apply (case_tac j, auto)
nipkow@13145
  1057
done
wenzelm@13114
  1058
wenzelm@13142
  1059
wenzelm@13142
  1060
subsection {* @{text list_all2} *}
wenzelm@13114
  1061
kleing@14316
  1062
lemma list_all2_lengthD [intro?]: 
kleing@14316
  1063
  "list_all2 P xs ys ==> length xs = length ys"
nipkow@13145
  1064
by (simp add: list_all2_def)
wenzelm@13114
  1065
wenzelm@13142
  1066
lemma list_all2_Nil [iff]: "list_all2 P [] ys = (ys = [])"
nipkow@13145
  1067
by (simp add: list_all2_def)
wenzelm@13114
  1068
wenzelm@13142
  1069
lemma list_all2_Nil2[iff]: "list_all2 P xs [] = (xs = [])"
nipkow@13145
  1070
by (simp add: list_all2_def)
wenzelm@13114
  1071
wenzelm@13142
  1072
lemma list_all2_Cons [iff]:
nipkow@13145
  1073
"list_all2 P (x # xs) (y # ys) = (P x y \<and> list_all2 P xs ys)"
nipkow@13145
  1074
by (auto simp add: list_all2_def)
wenzelm@13114
  1075
wenzelm@13114
  1076
lemma list_all2_Cons1:
nipkow@13145
  1077
"list_all2 P (x # xs) ys = (\<exists>z zs. ys = z # zs \<and> P x z \<and> list_all2 P xs zs)"
nipkow@13145
  1078
by (cases ys) auto
wenzelm@13114
  1079
wenzelm@13114
  1080
lemma list_all2_Cons2:
nipkow@13145
  1081
"list_all2 P xs (y # ys) = (\<exists>z zs. xs = z # zs \<and> P z y \<and> list_all2 P zs ys)"
nipkow@13145
  1082
by (cases xs) auto
wenzelm@13114
  1083
wenzelm@13142
  1084
lemma list_all2_rev [iff]:
nipkow@13145
  1085
"list_all2 P (rev xs) (rev ys) = list_all2 P xs ys"
nipkow@13145
  1086
by (simp add: list_all2_def zip_rev cong: conj_cong)
wenzelm@13114
  1087
kleing@13863
  1088
lemma list_all2_rev1:
kleing@13863
  1089
"list_all2 P (rev xs) ys = list_all2 P xs (rev ys)"
kleing@13863
  1090
by (subst list_all2_rev [symmetric]) simp
kleing@13863
  1091
wenzelm@13114
  1092
lemma list_all2_append1:
nipkow@13145
  1093
"list_all2 P (xs @ ys) zs =
nipkow@13145
  1094
(EX us vs. zs = us @ vs \<and> length us = length xs \<and> length vs = length ys \<and>
nipkow@13145
  1095
list_all2 P xs us \<and> list_all2 P ys vs)"
nipkow@13145
  1096
apply (simp add: list_all2_def zip_append1)
nipkow@13145
  1097
apply (rule iffI)
nipkow@13145
  1098
 apply (rule_tac x = "take (length xs) zs" in exI)
nipkow@13145
  1099
 apply (rule_tac x = "drop (length xs) zs" in exI)
paulson@14208
  1100
 apply (force split: nat_diff_split simp add: min_def, clarify)
nipkow@13145
  1101
apply (simp add: ball_Un)
nipkow@13145
  1102
done
wenzelm@13114
  1103
wenzelm@13114
  1104
lemma list_all2_append2:
nipkow@13145
  1105
"list_all2 P xs (ys @ zs) =
nipkow@13145
  1106
(EX us vs. xs = us @ vs \<and> length us = length ys \<and> length vs = length zs \<and>
nipkow@13145
  1107
list_all2 P us ys \<and> list_all2 P vs zs)"
nipkow@13145
  1108
apply (simp add: list_all2_def zip_append2)
nipkow@13145
  1109
apply (rule iffI)
nipkow@13145
  1110
 apply (rule_tac x = "take (length ys) xs" in exI)
nipkow@13145
  1111
 apply (rule_tac x = "drop (length ys) xs" in exI)
paulson@14208
  1112
 apply (force split: nat_diff_split simp add: min_def, clarify)
nipkow@13145
  1113
apply (simp add: ball_Un)
nipkow@13145
  1114
done
wenzelm@13114
  1115
kleing@13863
  1116
lemma list_all2_append:
nipkow@14247
  1117
  "length xs = length ys \<Longrightarrow>
nipkow@14247
  1118
  list_all2 P (xs@us) (ys@vs) = (list_all2 P xs ys \<and> list_all2 P us vs)"
nipkow@14247
  1119
by (induct rule:list_induct2, simp_all)
kleing@13863
  1120
kleing@13863
  1121
lemma list_all2_appendI [intro?, trans]:
kleing@13863
  1122
  "\<lbrakk> list_all2 P a b; list_all2 P c d \<rbrakk> \<Longrightarrow> list_all2 P (a@c) (b@d)"
kleing@13863
  1123
  by (simp add: list_all2_append list_all2_lengthD)
kleing@13863
  1124
wenzelm@13114
  1125
lemma list_all2_conv_all_nth:
nipkow@13145
  1126
"list_all2 P xs ys =
nipkow@13145
  1127
(length xs = length ys \<and> (\<forall>i < length xs. P (xs!i) (ys!i)))"
nipkow@13145
  1128
by (force simp add: list_all2_def set_zip)
wenzelm@13114
  1129
berghofe@13883
  1130
lemma list_all2_trans:
berghofe@13883
  1131
  assumes tr: "!!a b c. P1 a b ==> P2 b c ==> P3 a c"
berghofe@13883
  1132
  shows "!!bs cs. list_all2 P1 as bs ==> list_all2 P2 bs cs ==> list_all2 P3 as cs"
berghofe@13883
  1133
        (is "!!bs cs. PROP ?Q as bs cs")
berghofe@13883
  1134
proof (induct as)
berghofe@13883
  1135
  fix x xs bs assume I1: "!!bs cs. PROP ?Q xs bs cs"
berghofe@13883
  1136
  show "!!cs. PROP ?Q (x # xs) bs cs"
berghofe@13883
  1137
  proof (induct bs)
berghofe@13883
  1138
    fix y ys cs assume I2: "!!cs. PROP ?Q (x # xs) ys cs"
berghofe@13883
  1139
    show "PROP ?Q (x # xs) (y # ys) cs"
berghofe@13883
  1140
      by (induct cs) (auto intro: tr I1 I2)
berghofe@13883
  1141
  qed simp
berghofe@13883
  1142
qed simp
berghofe@13883
  1143
kleing@13863
  1144
lemma list_all2_all_nthI [intro?]:
kleing@13863
  1145
  "length a = length b \<Longrightarrow> (\<And>n. n < length a \<Longrightarrow> P (a!n) (b!n)) \<Longrightarrow> list_all2 P a b"
kleing@13863
  1146
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1147
paulson@14395
  1148
lemma list_all2I:
paulson@14395
  1149
  "\<forall>x \<in> set (zip a b). split P x \<Longrightarrow> length a = length b \<Longrightarrow> list_all2 P a b"
paulson@14395
  1150
  by (simp add: list_all2_def)
paulson@14395
  1151
kleing@14328
  1152
lemma list_all2_nthD:
kleing@13863
  1153
  "\<lbrakk> list_all2 P xs ys; p < size xs \<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)"
kleing@13863
  1154
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1155
nipkow@14302
  1156
lemma list_all2_nthD2:
nipkow@14302
  1157
  "\<lbrakk>list_all2 P xs ys; p < size ys\<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)"
nipkow@14302
  1158
  by (frule list_all2_lengthD) (auto intro: list_all2_nthD)
nipkow@14302
  1159
kleing@13863
  1160
lemma list_all2_map1: 
kleing@13863
  1161
  "list_all2 P (map f as) bs = list_all2 (\<lambda>x y. P (f x) y) as bs"
kleing@13863
  1162
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1163
kleing@13863
  1164
lemma list_all2_map2: 
kleing@13863
  1165
  "list_all2 P as (map f bs) = list_all2 (\<lambda>x y. P x (f y)) as bs"
kleing@13863
  1166
  by (auto simp add: list_all2_conv_all_nth)
kleing@13863
  1167
kleing@14316
  1168
lemma list_all2_refl [intro?]:
kleing@13863
  1169
  "(\<And>x. P x x) \<Longrightarrow> list_all2 P xs xs"
kleing@13863
  1170
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1171
kleing@13863
  1172
lemma list_all2_update_cong:
kleing@13863
  1173
  "\<lbrakk> i<size xs; list_all2 P xs ys; P x y \<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])"
kleing@13863
  1174
  by (simp add: list_all2_conv_all_nth nth_list_update)
kleing@13863
  1175
kleing@13863
  1176
lemma list_all2_update_cong2:
kleing@13863
  1177
  "\<lbrakk>list_all2 P xs ys; P x y; i < length ys\<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])"
kleing@13863
  1178
  by (simp add: list_all2_lengthD list_all2_update_cong)
kleing@13863
  1179
nipkow@14302
  1180
lemma list_all2_takeI [simp,intro?]:
nipkow@14302
  1181
  "\<And>n ys. list_all2 P xs ys \<Longrightarrow> list_all2 P (take n xs) (take n ys)"
nipkow@14302
  1182
  apply (induct xs)
nipkow@14302
  1183
   apply simp
nipkow@14302
  1184
  apply (clarsimp simp add: list_all2_Cons1)
nipkow@14302
  1185
  apply (case_tac n)
nipkow@14302
  1186
  apply auto
nipkow@14302
  1187
  done
nipkow@14302
  1188
nipkow@14302
  1189
lemma list_all2_dropI [simp,intro?]:
kleing@13863
  1190
  "\<And>n bs. list_all2 P as bs \<Longrightarrow> list_all2 P (drop n as) (drop n bs)"
paulson@14208
  1191
  apply (induct as, simp)
kleing@13863
  1192
  apply (clarsimp simp add: list_all2_Cons1)
paulson@14208
  1193
  apply (case_tac n, simp, simp)
kleing@13863
  1194
  done
kleing@13863
  1195
kleing@14327
  1196
lemma list_all2_mono [intro?]:
kleing@13863
  1197
  "\<And>y. list_all2 P x y \<Longrightarrow> (\<And>x y. P x y \<Longrightarrow> Q x y) \<Longrightarrow> list_all2 Q x y"
paulson@14208
  1198
  apply (induct x, simp)
paulson@14208
  1199
  apply (case_tac y, auto)
kleing@13863
  1200
  done
kleing@13863
  1201
wenzelm@13142
  1202
nipkow@14402
  1203
subsection {* @{text foldl} and @{text foldr} *}
wenzelm@13142
  1204
wenzelm@13142
  1205
lemma foldl_append [simp]:
nipkow@13145
  1206
"!!a. foldl f a (xs @ ys) = foldl f (foldl f a xs) ys"
nipkow@13145
  1207
by (induct xs) auto
wenzelm@13142
  1208
nipkow@14402
  1209
lemma foldr_append[simp]: "foldr f (xs @ ys) a = foldr f xs (foldr f ys a)"
nipkow@14402
  1210
by (induct xs) auto
nipkow@14402
  1211
nipkow@14402
  1212
lemma foldr_foldl: "foldr f xs a = foldl (%x y. f y x) a (rev xs)"
nipkow@14402
  1213
by (induct xs) auto
nipkow@14402
  1214
nipkow@14402
  1215
lemma foldl_foldr: "foldl f a xs = foldr (%x y. f y x) (rev xs) a"
nipkow@14402
  1216
by (simp add: foldr_foldl [of "%x y. f y x" "rev xs"])
nipkow@14402
  1217
wenzelm@13142
  1218
text {*
nipkow@13145
  1219
Note: @{text "n \<le> foldl (op +) n ns"} looks simpler, but is more
nipkow@13145
  1220
difficult to use because it requires an additional transitivity step.
wenzelm@13142
  1221
*}
wenzelm@13142
  1222
wenzelm@13142
  1223
lemma start_le_sum: "!!n::nat. m <= n ==> m <= foldl (op +) n ns"
nipkow@13145
  1224
by (induct ns) auto
wenzelm@13142
  1225
wenzelm@13142
  1226
lemma elem_le_sum: "!!n::nat. n : set ns ==> n <= foldl (op +) 0 ns"
nipkow@13145
  1227
by (force intro: start_le_sum simp add: in_set_conv_decomp)
wenzelm@13142
  1228
wenzelm@13142
  1229
lemma sum_eq_0_conv [iff]:
nipkow@13145
  1230
"!!m::nat. (foldl (op +) m ns = 0) = (m = 0 \<and> (\<forall>n \<in> set ns. n = 0))"
nipkow@13145
  1231
by (induct ns) auto
wenzelm@13114
  1232
wenzelm@13114
  1233
oheimb@14099
  1234
subsection {* folding a relation over a list *}
oheimb@14099
  1235
oheimb@14099
  1236
(*"fold_rel R cs \<equiv> foldl (%r c. r O {(x,y). (c,x,y):R}) Id cs"*)
oheimb@14099
  1237
inductive "fold_rel R" intros
oheimb@14099
  1238
  Nil:  "(a, [],a) : fold_rel R"
oheimb@14099
  1239
  Cons: "[|(a,x,b) : R; (b,xs,c) : fold_rel R|] ==> (a,x#xs,c) : fold_rel R"
oheimb@14099
  1240
inductive_cases fold_rel_elim_case [elim!]:
paulson@14208
  1241
   "(a, [] , b) : fold_rel R"
oheimb@14099
  1242
   "(a, x#xs, b) : fold_rel R"
oheimb@14099
  1243
oheimb@14099
  1244
lemma fold_rel_Nil [intro!]: "a = b ==> (a, [], b) : fold_rel R" 
oheimb@14099
  1245
by (simp add: fold_rel.Nil)
oheimb@14099
  1246
declare fold_rel.Cons [intro!]
oheimb@14099
  1247
oheimb@14099
  1248
wenzelm@13142
  1249
subsection {* @{text upto} *}
wenzelm@13114
  1250
wenzelm@13142
  1251
lemma upt_rec: "[i..j(] = (if i<j then i#[Suc i..j(] else [])"
nipkow@13145
  1252
-- {* Does not terminate! *}
nipkow@13145
  1253
by (induct j) auto
wenzelm@13142
  1254
wenzelm@13142
  1255
lemma upt_conv_Nil [simp]: "j <= i ==> [i..j(] = []"
nipkow@13145
  1256
by (subst upt_rec) simp
wenzelm@13114
  1257
wenzelm@13142
  1258
lemma upt_Suc_append: "i <= j ==> [i..(Suc j)(] = [i..j(]@[j]"
nipkow@13145
  1259
-- {* Only needed if @{text upt_Suc} is deleted from the simpset. *}
nipkow@13145
  1260
by simp
wenzelm@13114
  1261
wenzelm@13142
  1262
lemma upt_conv_Cons: "i < j ==> [i..j(] = i # [Suc i..j(]"
nipkow@13145
  1263
apply(rule trans)
nipkow@13145
  1264
apply(subst upt_rec)
paulson@14208
  1265
 prefer 2 apply (rule refl, simp)
nipkow@13145
  1266
done
wenzelm@13114
  1267
wenzelm@13142
  1268
lemma upt_add_eq_append: "i<=j ==> [i..j+k(] = [i..j(]@[j..j+k(]"
nipkow@13145
  1269
-- {* LOOPS as a simprule, since @{text "j <= j"}. *}
nipkow@13145
  1270
by (induct k) auto
wenzelm@13114
  1271
wenzelm@13142
  1272
lemma length_upt [simp]: "length [i..j(] = j - i"
nipkow@13145
  1273
by (induct j) (auto simp add: Suc_diff_le)
wenzelm@13114
  1274
wenzelm@13142
  1275
lemma nth_upt [simp]: "i + k < j ==> [i..j(] ! k = i + k"
nipkow@13145
  1276
apply (induct j)
nipkow@13145
  1277
apply (auto simp add: less_Suc_eq nth_append split: nat_diff_split)
nipkow@13145
  1278
done
wenzelm@13114
  1279
wenzelm@13142
  1280
lemma take_upt [simp]: "!!i. i+m <= n ==> take m [i..n(] = [i..i+m(]"
paulson@14208
  1281
apply (induct m, simp)
nipkow@13145
  1282
apply (subst upt_rec)
nipkow@13145
  1283
apply (rule sym)
nipkow@13145
  1284
apply (subst upt_rec)
nipkow@13145
  1285
apply (simp del: upt.simps)
nipkow@13145
  1286
done
nipkow@3507
  1287
wenzelm@13114
  1288
lemma map_Suc_upt: "map Suc [m..n(] = [Suc m..n]"
nipkow@13145
  1289
by (induct n) auto
wenzelm@13114
  1290
wenzelm@13114
  1291
lemma nth_map_upt: "!!i. i < n-m ==> (map f [m..n(]) ! i = f(m+i)"
nipkow@13145
  1292
apply (induct n m rule: diff_induct)
nipkow@13145
  1293
prefer 3 apply (subst map_Suc_upt[symmetric])
nipkow@13145
  1294
apply (auto simp add: less_diff_conv nth_upt)
nipkow@13145
  1295
done
wenzelm@13114
  1296
berghofe@13883
  1297
lemma nth_take_lemma:
berghofe@13883
  1298
  "!!xs ys. k <= length xs ==> k <= length ys ==>
berghofe@13883
  1299
     (!!i. i < k --> xs!i = ys!i) ==> take k xs = take k ys"
berghofe@13883
  1300
apply (atomize, induct k)
paulson@14208
  1301
apply (simp_all add: less_Suc_eq_0_disj all_conj_distrib, clarify)
nipkow@13145
  1302
txt {* Both lists must be non-empty *}
paulson@14208
  1303
apply (case_tac xs, simp)
paulson@14208
  1304
apply (case_tac ys, clarify)
nipkow@13145
  1305
 apply (simp (no_asm_use))
nipkow@13145
  1306
apply clarify
nipkow@13145
  1307
txt {* prenexing's needed, not miniscoping *}
nipkow@13145
  1308
apply (simp (no_asm_use) add: all_simps [symmetric] del: all_simps)
nipkow@13145
  1309
apply blast
nipkow@13145
  1310
done
wenzelm@13114
  1311
wenzelm@13114
  1312
lemma nth_equalityI:
wenzelm@13114
  1313
 "[| length xs = length ys; ALL i < length xs. xs!i = ys!i |] ==> xs = ys"
nipkow@13145
  1314
apply (frule nth_take_lemma [OF le_refl eq_imp_le])
nipkow@13145
  1315
apply (simp_all add: take_all)
nipkow@13145
  1316
done
wenzelm@13142
  1317
kleing@13863
  1318
(* needs nth_equalityI *)
kleing@13863
  1319
lemma list_all2_antisym:
kleing@13863
  1320
  "\<lbrakk> (\<And>x y. \<lbrakk>P x y; Q y x\<rbrakk> \<Longrightarrow> x = y); list_all2 P xs ys; list_all2 Q ys xs \<rbrakk> 
kleing@13863
  1321
  \<Longrightarrow> xs = ys"
kleing@13863
  1322
  apply (simp add: list_all2_conv_all_nth) 
paulson@14208
  1323
  apply (rule nth_equalityI, blast, simp)
kleing@13863
  1324
  done
kleing@13863
  1325
wenzelm@13142
  1326
lemma take_equalityI: "(\<forall>i. take i xs = take i ys) ==> xs = ys"
nipkow@13145
  1327
-- {* The famous take-lemma. *}
nipkow@13145
  1328
apply (drule_tac x = "max (length xs) (length ys)" in spec)
nipkow@13145
  1329
apply (simp add: le_max_iff_disj take_all)
nipkow@13145
  1330
done
wenzelm@13142
  1331
wenzelm@13142
  1332
wenzelm@13142
  1333
subsection {* @{text "distinct"} and @{text remdups} *}
wenzelm@13142
  1334
wenzelm@13142
  1335
lemma distinct_append [simp]:
nipkow@13145
  1336
"distinct (xs @ ys) = (distinct xs \<and> distinct ys \<and> set xs \<inter> set ys = {})"
nipkow@13145
  1337
by (induct xs) auto
wenzelm@13142
  1338
wenzelm@13142
  1339
lemma set_remdups [simp]: "set (remdups xs) = set xs"
nipkow@13145
  1340
by (induct xs) (auto simp add: insert_absorb)
wenzelm@13142
  1341
wenzelm@13142
  1342
lemma distinct_remdups [iff]: "distinct (remdups xs)"
nipkow@13145
  1343
by (induct xs) auto
wenzelm@13142
  1344
wenzelm@13142
  1345
lemma distinct_filter [simp]: "distinct xs ==> distinct (filter P xs)"
nipkow@13145
  1346
by (induct xs) auto
wenzelm@13114
  1347
wenzelm@13142
  1348
text {*
nipkow@13145
  1349
It is best to avoid this indexed version of distinct, but sometimes
nipkow@13145
  1350
it is useful. *}
wenzelm@13142
  1351
lemma distinct_conv_nth:
nipkow@13145
  1352
"distinct xs = (\<forall>i j. i < size xs \<and> j < size xs \<and> i \<noteq> j --> xs!i \<noteq> xs!j)"
paulson@14208
  1353
apply (induct_tac xs, simp, simp)
paulson@14208
  1354
apply (rule iffI, clarsimp)
nipkow@13145
  1355
 apply (case_tac i)
paulson@14208
  1356
apply (case_tac j, simp)
nipkow@13145
  1357
apply (simp add: set_conv_nth)
nipkow@13145
  1358
 apply (case_tac j)
paulson@14208
  1359
apply (clarsimp simp add: set_conv_nth, simp)
nipkow@13145
  1360
apply (rule conjI)
nipkow@13145
  1361
 apply (clarsimp simp add: set_conv_nth)
nipkow@13145
  1362
 apply (erule_tac x = 0 in allE)
paulson@14208
  1363
 apply (erule_tac x = "Suc i" in allE, simp, clarsimp)
nipkow@13145
  1364
apply (erule_tac x = "Suc i" in allE)
paulson@14208
  1365
apply (erule_tac x = "Suc j" in allE, simp)
nipkow@13145
  1366
done
wenzelm@13114
  1367
kleing@14388
  1368
lemma distinct_card: "distinct xs \<Longrightarrow> card (set xs) = size xs"
kleing@14388
  1369
  by (induct xs) auto
kleing@14388
  1370
kleing@14388
  1371
lemma card_distinct: "card (set xs) = size xs \<Longrightarrow> distinct xs"
kleing@14388
  1372
proof (induct xs)
kleing@14388
  1373
  case Nil thus ?case by simp
kleing@14388
  1374
next
kleing@14388
  1375
  case (Cons x xs)
kleing@14388
  1376
  show ?case
kleing@14388
  1377
  proof (cases "x \<in> set xs")
kleing@14388
  1378
    case False with Cons show ?thesis by simp
kleing@14388
  1379
  next
kleing@14388
  1380
    case True with Cons.prems
kleing@14388
  1381
    have "card (set xs) = Suc (length xs)" 
kleing@14388
  1382
      by (simp add: card_insert_if split: split_if_asm)
kleing@14388
  1383
    moreover have "card (set xs) \<le> length xs" by (rule card_length)
kleing@14388
  1384
    ultimately have False by simp
kleing@14388
  1385
    thus ?thesis ..
kleing@14388
  1386
  qed
kleing@14388
  1387
qed
kleing@14388
  1388
wenzelm@13114
  1389
wenzelm@13142
  1390
subsection {* @{text replicate} *}
wenzelm@13114
  1391
wenzelm@13142
  1392
lemma length_replicate [simp]: "length (replicate n x) = n"
nipkow@13145
  1393
by (induct n) auto
nipkow@13124
  1394
wenzelm@13142
  1395
lemma map_replicate [simp]: "map f (replicate n x) = replicate n (f x)"
nipkow@13145
  1396
by (induct n) auto
wenzelm@13114
  1397
wenzelm@13114
  1398
lemma replicate_app_Cons_same:
nipkow@13145
  1399
"(replicate n x) @ (x # xs) = x # replicate n x @ xs"
nipkow@13145
  1400
by (induct n) auto
wenzelm@13114
  1401
wenzelm@13142
  1402
lemma rev_replicate [simp]: "rev (replicate n x) = replicate n x"
paulson@14208
  1403
apply (induct n, simp)
nipkow@13145
  1404
apply (simp add: replicate_app_Cons_same)
nipkow@13145
  1405
done
wenzelm@13114
  1406
wenzelm@13142
  1407
lemma replicate_add: "replicate (n + m) x = replicate n x @ replicate m x"
nipkow@13145
  1408
by (induct n) auto
wenzelm@13114
  1409
wenzelm@13142
  1410
lemma hd_replicate [simp]: "n \<noteq> 0 ==> hd (replicate n x) = x"
nipkow@13145
  1411
by (induct n) auto
wenzelm@13114
  1412
wenzelm@13142
  1413
lemma tl_replicate [simp]: "n \<noteq> 0 ==> tl (replicate n x) = replicate (n - 1) x"
nipkow@13145
  1414
by (induct n) auto
wenzelm@13114
  1415
wenzelm@13142
  1416
lemma last_replicate [simp]: "n \<noteq> 0 ==> last (replicate n x) = x"
nipkow@13145
  1417
by (atomize (full), induct n) auto
wenzelm@13114
  1418
wenzelm@13142
  1419
lemma nth_replicate[simp]: "!!i. i < n ==> (replicate n x)!i = x"
paulson@14208
  1420
apply (induct n, simp)
nipkow@13145
  1421
apply (simp add: nth_Cons split: nat.split)
nipkow@13145
  1422
done
wenzelm@13114
  1423
wenzelm@13142
  1424
lemma set_replicate_Suc: "set (replicate (Suc n) x) = {x}"
nipkow@13145
  1425
by (induct n) auto
wenzelm@13114
  1426
wenzelm@13142
  1427
lemma set_replicate [simp]: "n \<noteq> 0 ==> set (replicate n x) = {x}"
nipkow@13145
  1428
by (fast dest!: not0_implies_Suc intro!: set_replicate_Suc)
wenzelm@13114
  1429
wenzelm@13142
  1430
lemma set_replicate_conv_if: "set (replicate n x) = (if n = 0 then {} else {x})"
nipkow@13145
  1431
by auto
wenzelm@13114
  1432
wenzelm@13142
  1433
lemma in_set_replicateD: "x : set (replicate n y) ==> x = y"
nipkow@13145
  1434
by (simp add: set_replicate_conv_if split: split_if_asm)
wenzelm@13114
  1435
wenzelm@13114
  1436
oheimb@14099
  1437
subsection {* @{text postfix} *}
oheimb@14099
  1438
oheimb@14099
  1439
lemma postfix_refl [simp, intro!]: "xs \<sqsupseteq> xs" by (auto simp add: postfix_def)
oheimb@14099
  1440
lemma postfix_trans: "\<lbrakk>xs \<sqsupseteq> ys; ys \<sqsupseteq> zs\<rbrakk> \<Longrightarrow> xs \<sqsupseteq> zs" 
oheimb@14099
  1441
         by (auto simp add: postfix_def)
oheimb@14099
  1442
lemma postfix_antisym: "\<lbrakk>xs \<sqsupseteq> ys; ys \<sqsupseteq> xs\<rbrakk> \<Longrightarrow> xs = ys" 
oheimb@14099
  1443
         by (auto simp add: postfix_def)
oheimb@14099
  1444
oheimb@14099
  1445
lemma postfix_emptyI [simp, intro!]: "xs \<sqsupseteq> []" by (auto simp add: postfix_def)
oheimb@14099
  1446
lemma postfix_emptyD [dest!]: "[] \<sqsupseteq> xs \<Longrightarrow> xs = []"by(auto simp add:postfix_def)
oheimb@14099
  1447
lemma postfix_ConsI: "xs \<sqsupseteq> ys \<Longrightarrow> x#xs \<sqsupseteq> ys" by (auto simp add: postfix_def)
oheimb@14099
  1448
lemma postfix_ConsD: "xs \<sqsupseteq> y#ys \<Longrightarrow> xs \<sqsupseteq> ys" by (auto simp add: postfix_def)
oheimb@14099
  1449
lemma postfix_appendI: "xs \<sqsupseteq> ys \<Longrightarrow> zs@xs \<sqsupseteq> ys" by (auto simp add: postfix_def)
oheimb@14099
  1450
lemma postfix_appendD: "xs \<sqsupseteq> zs@ys \<Longrightarrow> xs \<sqsupseteq> ys" by (auto simp add: postfix_def)
oheimb@14099
  1451
oheimb@14099
  1452
lemma postfix_is_subset_lemma: "xs = zs @ ys \<Longrightarrow> set ys \<subseteq> set xs"
oheimb@14099
  1453
by (induct zs, auto)
oheimb@14099
  1454
lemma postfix_is_subset: "xs \<sqsupseteq> ys \<Longrightarrow> set ys \<subseteq> set xs"
oheimb@14099
  1455
by (unfold postfix_def, erule exE, erule postfix_is_subset_lemma)
oheimb@14099
  1456
oheimb@14099
  1457
lemma postfix_ConsD2_lemma [rule_format]: "x#xs = zs @ y#ys \<longrightarrow> xs \<sqsupseteq> ys"
oheimb@14099
  1458
by (induct zs, auto intro!: postfix_appendI postfix_ConsI)
oheimb@14099
  1459
lemma postfix_ConsD2: "x#xs \<sqsupseteq> y#ys \<Longrightarrow> xs \<sqsupseteq> ys"
oheimb@14099
  1460
by (auto simp add: postfix_def dest!: postfix_ConsD2_lemma)
oheimb@14099
  1461
oheimb@14099
  1462
subsection {* Lexicographic orderings on lists *}
nipkow@3507
  1463
wenzelm@13142
  1464
lemma wf_lexn: "wf r ==> wf (lexn r n)"
paulson@14208
  1465
apply (induct_tac n, simp, simp)
nipkow@13145
  1466
apply(rule wf_subset)
nipkow@13145
  1467
 prefer 2 apply (rule Int_lower1)
nipkow@13145
  1468
apply(rule wf_prod_fun_image)
paulson@14208
  1469
 prefer 2 apply (rule inj_onI, auto)
nipkow@13145
  1470
done
wenzelm@13114
  1471
wenzelm@13114
  1472
lemma lexn_length:
nipkow@13145
  1473
"!!xs ys. (xs, ys) : lexn r n ==> length xs = n \<and> length ys = n"
nipkow@13145
  1474
by (induct n) auto
wenzelm@13114
  1475
wenzelm@13142
  1476
lemma wf_lex [intro!]: "wf r ==> wf (lex r)"
nipkow@13145
  1477
apply (unfold lex_def)
nipkow@13145
  1478
apply (rule wf_UN)
paulson@14208
  1479
apply (blast intro: wf_lexn, clarify)
nipkow@13145
  1480
apply (rename_tac m n)
nipkow@13145
  1481
apply (subgoal_tac "m \<noteq> n")
nipkow@13145
  1482
 prefer 2 apply blast
nipkow@13145
  1483
apply (blast dest: lexn_length not_sym)
nipkow@13145
  1484
done
wenzelm@13114
  1485
wenzelm@13114
  1486
lemma lexn_conv:
nipkow@13145
  1487
"lexn r n =
nipkow@13145
  1488
{(xs,ys). length xs = n \<and> length ys = n \<and>
nipkow@13145
  1489
(\<exists>xys x y xs' ys'. xs= xys @ x#xs' \<and> ys= xys @ y # ys' \<and> (x, y):r)}"
paulson@14208
  1490
apply (induct_tac n, simp, blast)
paulson@14208
  1491
apply (simp add: image_Collect lex_prod_def, safe, blast)
paulson@14208
  1492
 apply (rule_tac x = "ab # xys" in exI, simp)
paulson@14208
  1493
apply (case_tac xys, simp_all, blast)
nipkow@13145
  1494
done
wenzelm@13114
  1495
wenzelm@13114
  1496
lemma lex_conv:
nipkow@13145
  1497
"lex r =
nipkow@13145
  1498
{(xs,ys). length xs = length ys \<and>
nipkow@13145
  1499
(\<exists>xys x y xs' ys'. xs = xys @ x # xs' \<and> ys = xys @ y # ys' \<and> (x, y):r)}"
nipkow@13145
  1500
by (force simp add: lex_def lexn_conv)
wenzelm@13114
  1501
wenzelm@13142
  1502
lemma wf_lexico [intro!]: "wf r ==> wf (lexico r)"
nipkow@13145
  1503
by (unfold lexico_def) blast
wenzelm@13114
  1504
wenzelm@13114
  1505
lemma lexico_conv:
nipkow@13145
  1506
"lexico r = {(xs,ys). length xs < length ys |
nipkow@13145
  1507
length xs = length ys \<and> (xs, ys) : lex r}"
nipkow@13145
  1508
by (simp add: lexico_def diag_def lex_prod_def measure_def inv_image_def)
wenzelm@13114
  1509
wenzelm@13142
  1510
lemma Nil_notin_lex [iff]: "([], ys) \<notin> lex r"
nipkow@13145
  1511
by (simp add: lex_conv)
wenzelm@13114
  1512
wenzelm@13142
  1513
lemma Nil2_notin_lex [iff]: "(xs, []) \<notin> lex r"
nipkow@13145
  1514
by (simp add:lex_conv)
wenzelm@13114
  1515
wenzelm@13142
  1516
lemma Cons_in_lex [iff]:
nipkow@13145
  1517
"((x # xs, y # ys) : lex r) =
nipkow@13145
  1518
((x, y) : r \<and> length xs = length ys | x = y \<and> (xs, ys) : lex r)"
nipkow@13145
  1519
apply (simp add: lex_conv)
nipkow@13145
  1520
apply (rule iffI)
paulson@14208
  1521
 prefer 2 apply (blast intro: Cons_eq_appendI, clarify)
paulson@14208
  1522
apply (case_tac xys, simp, simp)
nipkow@13145
  1523
apply blast
nipkow@13145
  1524
done
wenzelm@13114
  1525
wenzelm@13114
  1526
wenzelm@13142
  1527
subsection {* @{text sublist} --- a generalization of @{text nth} to sets *}
wenzelm@13114
  1528
wenzelm@13142
  1529
lemma sublist_empty [simp]: "sublist xs {} = []"
nipkow@13145
  1530
by (auto simp add: sublist_def)
wenzelm@13114
  1531
wenzelm@13142
  1532
lemma sublist_nil [simp]: "sublist [] A = []"
nipkow@13145
  1533
by (auto simp add: sublist_def)
wenzelm@13114
  1534
wenzelm@13114
  1535
lemma sublist_shift_lemma:
nipkow@13145
  1536
"map fst [p:zip xs [i..i + length xs(] . snd p : A] =
nipkow@13145
  1537
map fst [p:zip xs [0..length xs(] . snd p + i : A]"
nipkow@13145
  1538
by (induct xs rule: rev_induct) (simp_all add: add_commute)
wenzelm@13114
  1539
wenzelm@13114
  1540
lemma sublist_append:
nipkow@13145
  1541
"sublist (l @ l') A = sublist l A @ sublist l' {j. j + length l : A}"
nipkow@13145
  1542
apply (unfold sublist_def)
paulson@14208
  1543
apply (induct l' rule: rev_induct, simp)
nipkow@13145
  1544
apply (simp add: upt_add_eq_append[of 0] zip_append sublist_shift_lemma)
nipkow@13145
  1545
apply (simp add: add_commute)
nipkow@13145
  1546
done
wenzelm@13114
  1547
wenzelm@13114
  1548
lemma sublist_Cons:
nipkow@13145
  1549
"sublist (x # l) A = (if 0:A then [x] else []) @ sublist l {j. Suc j : A}"
nipkow@13145
  1550
apply (induct l rule: rev_induct)
nipkow@13145
  1551
 apply (simp add: sublist_def)
nipkow@13145
  1552
apply (simp del: append_Cons add: append_Cons[symmetric] sublist_append)
nipkow@13145
  1553
done
wenzelm@13114
  1554
wenzelm@13142
  1555
lemma sublist_singleton [simp]: "sublist [x] A = (if 0 : A then [x] else [])"
nipkow@13145
  1556
by (simp add: sublist_Cons)
wenzelm@13114
  1557
wenzelm@13142
  1558
lemma sublist_upt_eq_take [simp]: "sublist l {..n(} = take n l"
paulson@14208
  1559
apply (induct l rule: rev_induct, simp)
nipkow@13145
  1560
apply (simp split: nat_diff_split add: sublist_append)
nipkow@13145
  1561
done
wenzelm@13114
  1562
wenzelm@13114
  1563
wenzelm@13142
  1564
lemma take_Cons':
nipkow@13145
  1565
"take n (x # xs) = (if n = 0 then [] else x # take (n - 1) xs)"
nipkow@13145
  1566
by (cases n) simp_all
wenzelm@13114
  1567
wenzelm@13142
  1568
lemma drop_Cons':
nipkow@13145
  1569
"drop n (x # xs) = (if n = 0 then x # xs else drop (n - 1) xs)"
nipkow@13145
  1570
by (cases n) simp_all
wenzelm@13114
  1571
wenzelm@13142
  1572
lemma nth_Cons': "(x # xs)!n = (if n = 0 then x else xs!(n - 1))"
nipkow@13145
  1573
by (cases n) simp_all
wenzelm@13142
  1574
nipkow@13145
  1575
lemmas [simp] = take_Cons'[of "number_of v",standard]
nipkow@13145
  1576
                drop_Cons'[of "number_of v",standard]
nipkow@13145
  1577
                nth_Cons'[of _ _ "number_of v",standard]
nipkow@3507
  1578
wenzelm@13462
  1579
kleing@14388
  1580
lemma distinct_card: "distinct xs \<Longrightarrow> card (set xs) = size xs"
kleing@14388
  1581
  by (induct xs) auto
kleing@14388
  1582
kleing@14388
  1583
lemma card_length: "card (set xs) \<le> length xs"
kleing@14388
  1584
  by (induct xs) (auto simp add: card_insert_if)
kleing@14388
  1585
kleing@14388
  1586
lemma "card (set xs) = size xs \<Longrightarrow> distinct xs"
kleing@14388
  1587
proof (induct xs)
kleing@14388
  1588
  case Nil thus ?case by simp
kleing@14388
  1589
next
kleing@14388
  1590
  case (Cons x xs)
kleing@14388
  1591
  show ?case
kleing@14388
  1592
  proof (cases "x \<in> set xs")
kleing@14388
  1593
    case False with Cons show ?thesis by simp
kleing@14388
  1594
  next
kleing@14388
  1595
    case True with Cons.prems
kleing@14388
  1596
    have "card (set xs) = Suc (length xs)" 
kleing@14388
  1597
      by (simp add: card_insert_if split: split_if_asm)
kleing@14388
  1598
    moreover have "card (set xs) \<le> length xs" by (rule card_length)
kleing@14388
  1599
    ultimately have False by simp
kleing@14388
  1600
    thus ?thesis ..
kleing@14388
  1601
  qed
kleing@14388
  1602
qed
kleing@14388
  1603
wenzelm@13366
  1604
subsection {* Characters and strings *}
wenzelm@13366
  1605
wenzelm@13366
  1606
datatype nibble =
wenzelm@13366
  1607
    Nibble0 | Nibble1 | Nibble2 | Nibble3 | Nibble4 | Nibble5 | Nibble6 | Nibble7
wenzelm@13366
  1608
  | Nibble8 | Nibble9 | NibbleA | NibbleB | NibbleC | NibbleD | NibbleE | NibbleF
wenzelm@13366
  1609
wenzelm@13366
  1610
datatype char = Char nibble nibble
wenzelm@13366
  1611
  -- "Note: canonical order of character encoding coincides with standard term ordering"
wenzelm@13366
  1612
wenzelm@13366
  1613
types string = "char list"
wenzelm@13366
  1614
wenzelm@13366
  1615
syntax
wenzelm@13366
  1616
  "_Char" :: "xstr => char"    ("CHR _")
wenzelm@13366
  1617
  "_String" :: "xstr => string"    ("_")
wenzelm@13366
  1618
wenzelm@13366
  1619
parse_ast_translation {*
wenzelm@13366
  1620
  let
wenzelm@13366
  1621
    val constants = Syntax.Appl o map Syntax.Constant;
wenzelm@13366
  1622
wenzelm@13366
  1623
    fun mk_nib n = "Nibble" ^ chr (n + (if n <= 9 then ord "0" else ord "A" - 10));
wenzelm@13366
  1624
    fun mk_char c =
wenzelm@13366
  1625
      if Symbol.is_ascii c andalso Symbol.is_printable c then
wenzelm@13366
  1626
        constants ["Char", mk_nib (ord c div 16), mk_nib (ord c mod 16)]
wenzelm@13366
  1627
      else error ("Printable ASCII character expected: " ^ quote c);
wenzelm@13366
  1628
wenzelm@13366
  1629
    fun mk_string [] = Syntax.Constant "Nil"
wenzelm@13366
  1630
      | mk_string (c :: cs) = Syntax.Appl [Syntax.Constant "Cons", mk_char c, mk_string cs];
wenzelm@13366
  1631
wenzelm@13366
  1632
    fun char_ast_tr [Syntax.Variable xstr] =
wenzelm@13366
  1633
        (case Syntax.explode_xstr xstr of
wenzelm@13366
  1634
          [c] => mk_char c
wenzelm@13366
  1635
        | _ => error ("Single character expected: " ^ xstr))
wenzelm@13366
  1636
      | char_ast_tr asts = raise AST ("char_ast_tr", asts);
wenzelm@13366
  1637
wenzelm@13366
  1638
    fun string_ast_tr [Syntax.Variable xstr] =
wenzelm@13366
  1639
        (case Syntax.explode_xstr xstr of
wenzelm@13366
  1640
          [] => constants [Syntax.constrainC, "Nil", "string"]
wenzelm@13366
  1641
        | cs => mk_string cs)
wenzelm@13366
  1642
      | string_ast_tr asts = raise AST ("string_tr", asts);
wenzelm@13366
  1643
  in [("_Char", char_ast_tr), ("_String", string_ast_tr)] end;
wenzelm@13366
  1644
*}
wenzelm@13366
  1645
wenzelm@13366
  1646
print_ast_translation {*
wenzelm@13366
  1647
  let
wenzelm@13366
  1648
    fun dest_nib (Syntax.Constant c) =
wenzelm@13366
  1649
        (case explode c of
wenzelm@13366
  1650
          ["N", "i", "b", "b", "l", "e", h] =>
wenzelm@13366
  1651
            if "0" <= h andalso h <= "9" then ord h - ord "0"
wenzelm@13366
  1652
            else if "A" <= h andalso h <= "F" then ord h - ord "A" + 10
wenzelm@13366
  1653
            else raise Match
wenzelm@13366
  1654
        | _ => raise Match)
wenzelm@13366
  1655
      | dest_nib _ = raise Match;
wenzelm@13366
  1656
wenzelm@13366
  1657
    fun dest_chr c1 c2 =
wenzelm@13366
  1658
      let val c = chr (dest_nib c1 * 16 + dest_nib c2)
wenzelm@13366
  1659
      in if Symbol.is_printable c then c else raise Match end;
wenzelm@13366
  1660
wenzelm@13366
  1661
    fun dest_char (Syntax.Appl [Syntax.Constant "Char", c1, c2]) = dest_chr c1 c2
wenzelm@13366
  1662
      | dest_char _ = raise Match;
wenzelm@13366
  1663
wenzelm@13366
  1664
    fun xstr cs = Syntax.Appl [Syntax.Constant "_xstr", Syntax.Variable (Syntax.implode_xstr cs)];
wenzelm@13366
  1665
wenzelm@13366
  1666
    fun char_ast_tr' [c1, c2] = Syntax.Appl [Syntax.Constant "_Char", xstr [dest_chr c1 c2]]
wenzelm@13366
  1667
      | char_ast_tr' _ = raise Match;
wenzelm@13366
  1668
wenzelm@13366
  1669
    fun list_ast_tr' [args] = Syntax.Appl [Syntax.Constant "_String",
wenzelm@13366
  1670
            xstr (map dest_char (Syntax.unfold_ast "_args" args))]
wenzelm@13366
  1671
      | list_ast_tr' ts = raise Match;
wenzelm@13366
  1672
  in [("Char", char_ast_tr'), ("@list", list_ast_tr')] end;
wenzelm@13366
  1673
*}
wenzelm@13366
  1674
wenzelm@13122
  1675
end