src/HOL/Deriv.thy
author wenzelm
Thu Feb 11 23:00:22 2010 +0100 (2010-02-11)
changeset 35115 446c5063e4fd
parent 34941 156925dd67af
child 35216 7641e8d831d2
permissions -rw-r--r--
modernized translations;
formal markup of @{syntax_const} and @{const_syntax};
minor tuning;
huffman@21164
     1
(*  Title       : Deriv.thy
huffman@21164
     2
    Author      : Jacques D. Fleuriot
huffman@21164
     3
    Copyright   : 1998  University of Cambridge
huffman@21164
     4
    Conversion to Isar and new proofs by Lawrence C Paulson, 2004
huffman@21164
     5
    GMVT by Benjamin Porter, 2005
huffman@21164
     6
*)
huffman@21164
     7
huffman@21164
     8
header{* Differentiation *}
huffman@21164
     9
huffman@21164
    10
theory Deriv
huffman@29987
    11
imports Lim
huffman@21164
    12
begin
huffman@21164
    13
huffman@22984
    14
text{*Standard Definitions*}
huffman@21164
    15
huffman@21164
    16
definition
huffman@21784
    17
  deriv :: "['a::real_normed_field \<Rightarrow> 'a, 'a, 'a] \<Rightarrow> bool"
huffman@21164
    18
    --{*Differentiation: D is derivative of function f at x*}
wenzelm@21404
    19
          ("(DERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60) where
huffman@21784
    20
  "DERIV f x :> D = ((%h. (f(x + h) - f x) / h) -- 0 --> D)"
huffman@21164
    21
huffman@21164
    22
primrec
haftmann@34941
    23
  Bolzano_bisect :: "(real \<times> real \<Rightarrow> bool) \<Rightarrow> real \<Rightarrow> real \<Rightarrow> nat \<Rightarrow> real \<times> real" where
haftmann@34941
    24
  "Bolzano_bisect P a b 0 = (a, b)"
haftmann@34941
    25
  | "Bolzano_bisect P a b (Suc n) =
haftmann@34941
    26
      (let (x, y) = Bolzano_bisect P a b n
haftmann@34941
    27
       in if P (x, (x+y) / 2) then ((x+y)/2, y)
haftmann@34941
    28
                              else (x, (x+y)/2))"
huffman@21164
    29
huffman@21164
    30
huffman@21164
    31
subsection {* Derivatives *}
huffman@21164
    32
huffman@21784
    33
lemma DERIV_iff: "(DERIV f x :> D) = ((%h. (f(x + h) - f(x))/h) -- 0 --> D)"
huffman@21164
    34
by (simp add: deriv_def)
huffman@21164
    35
huffman@21784
    36
lemma DERIV_D: "DERIV f x :> D ==> (%h. (f(x + h) - f(x))/h) -- 0 --> D"
huffman@21164
    37
by (simp add: deriv_def)
huffman@21164
    38
huffman@21164
    39
lemma DERIV_const [simp]: "DERIV (\<lambda>x. k) x :> 0"
huffman@21164
    40
by (simp add: deriv_def)
huffman@21164
    41
huffman@23069
    42
lemma DERIV_ident [simp]: "DERIV (\<lambda>x. x) x :> 1"
nipkow@23398
    43
by (simp add: deriv_def cong: LIM_cong)
huffman@21164
    44
huffman@21164
    45
lemma add_diff_add:
huffman@21164
    46
  fixes a b c d :: "'a::ab_group_add"
huffman@21164
    47
  shows "(a + c) - (b + d) = (a - b) + (c - d)"
huffman@21164
    48
by simp
huffman@21164
    49
huffman@21164
    50
lemma DERIV_add:
huffman@21164
    51
  "\<lbrakk>DERIV f x :> D; DERIV g x :> E\<rbrakk> \<Longrightarrow> DERIV (\<lambda>x. f x + g x) x :> D + E"
huffman@21784
    52
by (simp only: deriv_def add_diff_add add_divide_distrib LIM_add)
huffman@21164
    53
huffman@21164
    54
lemma DERIV_minus:
huffman@21164
    55
  "DERIV f x :> D \<Longrightarrow> DERIV (\<lambda>x. - f x) x :> - D"
huffman@21784
    56
by (simp only: deriv_def minus_diff_minus divide_minus_left LIM_minus)
huffman@21164
    57
huffman@21164
    58
lemma DERIV_diff:
huffman@21164
    59
  "\<lbrakk>DERIV f x :> D; DERIV g x :> E\<rbrakk> \<Longrightarrow> DERIV (\<lambda>x. f x - g x) x :> D - E"
huffman@21164
    60
by (simp only: diff_def DERIV_add DERIV_minus)
huffman@21164
    61
huffman@21164
    62
lemma DERIV_add_minus:
huffman@21164
    63
  "\<lbrakk>DERIV f x :> D; DERIV g x :> E\<rbrakk> \<Longrightarrow> DERIV (\<lambda>x. f x + - g x) x :> D + - E"
huffman@21164
    64
by (simp only: DERIV_add DERIV_minus)
huffman@21164
    65
huffman@21164
    66
lemma DERIV_isCont: "DERIV f x :> D \<Longrightarrow> isCont f x"
huffman@21164
    67
proof (unfold isCont_iff)
huffman@21164
    68
  assume "DERIV f x :> D"
huffman@21784
    69
  hence "(\<lambda>h. (f(x+h) - f(x)) / h) -- 0 --> D"
huffman@21164
    70
    by (rule DERIV_D)
huffman@21784
    71
  hence "(\<lambda>h. (f(x+h) - f(x)) / h * h) -- 0 --> D * 0"
huffman@23069
    72
    by (intro LIM_mult LIM_ident)
huffman@21784
    73
  hence "(\<lambda>h. (f(x+h) - f(x)) * (h / h)) -- 0 --> 0"
huffman@21784
    74
    by simp
huffman@21784
    75
  hence "(\<lambda>h. f(x+h) - f(x)) -- 0 --> 0"
nipkow@23398
    76
    by (simp cong: LIM_cong)
huffman@21164
    77
  thus "(\<lambda>h. f(x+h)) -- 0 --> f(x)"
huffman@31338
    78
    by (simp add: LIM_def dist_norm)
huffman@21164
    79
qed
huffman@21164
    80
huffman@21164
    81
lemma DERIV_mult_lemma:
huffman@21784
    82
  fixes a b c d :: "'a::real_field"
huffman@21784
    83
  shows "(a * b - c * d) / h = a * ((b - d) / h) + ((a - c) / h) * d"
nipkow@23477
    84
by (simp add: diff_minus add_divide_distrib [symmetric] ring_distribs)
huffman@21164
    85
huffman@21164
    86
lemma DERIV_mult':
huffman@21164
    87
  assumes f: "DERIV f x :> D"
huffman@21164
    88
  assumes g: "DERIV g x :> E"
huffman@21164
    89
  shows "DERIV (\<lambda>x. f x * g x) x :> f x * E + D * g x"
huffman@21164
    90
proof (unfold deriv_def)
huffman@21164
    91
  from f have "isCont f x"
huffman@21164
    92
    by (rule DERIV_isCont)
huffman@21164
    93
  hence "(\<lambda>h. f(x+h)) -- 0 --> f x"
huffman@21164
    94
    by (simp only: isCont_iff)
huffman@21784
    95
  hence "(\<lambda>h. f(x+h) * ((g(x+h) - g x) / h) +
huffman@21784
    96
              ((f(x+h) - f x) / h) * g x)
huffman@21164
    97
          -- 0 --> f x * E + D * g x"
huffman@22613
    98
    by (intro LIM_add LIM_mult LIM_const DERIV_D f g)
huffman@21784
    99
  thus "(\<lambda>h. (f(x+h) * g(x+h) - f x * g x) / h)
huffman@21164
   100
         -- 0 --> f x * E + D * g x"
huffman@21164
   101
    by (simp only: DERIV_mult_lemma)
huffman@21164
   102
qed
huffman@21164
   103
huffman@21164
   104
lemma DERIV_mult:
huffman@21164
   105
     "[| DERIV f x :> Da; DERIV g x :> Db |]
huffman@21164
   106
      ==> DERIV (%x. f x * g x) x :> (Da * g(x)) + (Db * f(x))"
huffman@21164
   107
by (drule (1) DERIV_mult', simp only: mult_commute add_commute)
huffman@21164
   108
huffman@21164
   109
lemma DERIV_unique:
huffman@21164
   110
      "[| DERIV f x :> D; DERIV f x :> E |] ==> D = E"
huffman@21164
   111
apply (simp add: deriv_def)
huffman@21164
   112
apply (blast intro: LIM_unique)
huffman@21164
   113
done
huffman@21164
   114
huffman@21164
   115
text{*Differentiation of finite sum*}
huffman@21164
   116
hoelzl@31880
   117
lemma DERIV_setsum:
hoelzl@31880
   118
  assumes "finite S"
hoelzl@31880
   119
  and "\<And> n. n \<in> S \<Longrightarrow> DERIV (%x. f x n) x :> (f' x n)"
hoelzl@31880
   120
  shows "DERIV (%x. setsum (f x) S) x :> setsum (f' x) S"
hoelzl@31880
   121
  using assms by induct (auto intro!: DERIV_add)
hoelzl@31880
   122
huffman@21164
   123
lemma DERIV_sumr [rule_format (no_asm)]:
huffman@21164
   124
     "(\<forall>r. m \<le> r & r < (m + n) --> DERIV (%x. f r x) x :> (f' r x))
huffman@21164
   125
      --> DERIV (%x. \<Sum>n=m..<n::nat. f n x :: real) x :> (\<Sum>r=m..<n. f' r x)"
hoelzl@31880
   126
  by (auto intro: DERIV_setsum)
huffman@21164
   127
huffman@21164
   128
text{*Alternative definition for differentiability*}
huffman@21164
   129
huffman@21164
   130
lemma DERIV_LIM_iff:
huffman@31338
   131
  fixes f :: "'a::{real_normed_vector,inverse} \<Rightarrow> 'a" shows
huffman@21784
   132
     "((%h. (f(a + h) - f(a)) / h) -- 0 --> D) =
huffman@21164
   133
      ((%x. (f(x)-f(a)) / (x-a)) -- a --> D)"
huffman@21164
   134
apply (rule iffI)
huffman@21164
   135
apply (drule_tac k="- a" in LIM_offset)
huffman@21164
   136
apply (simp add: diff_minus)
huffman@21164
   137
apply (drule_tac k="a" in LIM_offset)
huffman@21164
   138
apply (simp add: add_commute)
huffman@21164
   139
done
huffman@21164
   140
huffman@21784
   141
lemma DERIV_iff2: "(DERIV f x :> D) = ((%z. (f(z) - f(x)) / (z-x)) -- x --> D)"
huffman@21784
   142
by (simp add: deriv_def diff_minus [symmetric] DERIV_LIM_iff)
huffman@21164
   143
huffman@21164
   144
lemma inverse_diff_inverse:
huffman@21164
   145
  "\<lbrakk>(a::'a::division_ring) \<noteq> 0; b \<noteq> 0\<rbrakk>
huffman@21164
   146
   \<Longrightarrow> inverse a - inverse b = - (inverse a * (a - b) * inverse b)"
nipkow@29667
   147
by (simp add: algebra_simps)
huffman@21164
   148
huffman@21164
   149
lemma DERIV_inverse_lemma:
huffman@21784
   150
  "\<lbrakk>a \<noteq> 0; b \<noteq> (0::'a::real_normed_field)\<rbrakk>
huffman@21784
   151
   \<Longrightarrow> (inverse a - inverse b) / h
huffman@21784
   152
     = - (inverse a * ((a - b) / h) * inverse b)"
huffman@21164
   153
by (simp add: inverse_diff_inverse)
huffman@21164
   154
huffman@21164
   155
lemma DERIV_inverse':
huffman@21164
   156
  assumes der: "DERIV f x :> D"
huffman@21164
   157
  assumes neq: "f x \<noteq> 0"
huffman@21164
   158
  shows "DERIV (\<lambda>x. inverse (f x)) x :> - (inverse (f x) * D * inverse (f x))"
huffman@21164
   159
    (is "DERIV _ _ :> ?E")
huffman@21164
   160
proof (unfold DERIV_iff2)
huffman@21164
   161
  from der have lim_f: "f -- x --> f x"
huffman@21164
   162
    by (rule DERIV_isCont [unfolded isCont_def])
huffman@21164
   163
huffman@21164
   164
  from neq have "0 < norm (f x)" by simp
huffman@21164
   165
  with LIM_D [OF lim_f] obtain s
huffman@21164
   166
    where s: "0 < s"
huffman@21164
   167
    and less_fx: "\<And>z. \<lbrakk>z \<noteq> x; norm (z - x) < s\<rbrakk>
huffman@21164
   168
                  \<Longrightarrow> norm (f z - f x) < norm (f x)"
huffman@21164
   169
    by fast
huffman@21164
   170
huffman@21784
   171
  show "(\<lambda>z. (inverse (f z) - inverse (f x)) / (z - x)) -- x --> ?E"
huffman@21164
   172
  proof (rule LIM_equal2 [OF s])
huffman@21784
   173
    fix z
huffman@21164
   174
    assume "z \<noteq> x" "norm (z - x) < s"
huffman@21164
   175
    hence "norm (f z - f x) < norm (f x)" by (rule less_fx)
huffman@21164
   176
    hence "f z \<noteq> 0" by auto
huffman@21784
   177
    thus "(inverse (f z) - inverse (f x)) / (z - x) =
huffman@21784
   178
          - (inverse (f z) * ((f z - f x) / (z - x)) * inverse (f x))"
huffman@21164
   179
      using neq by (rule DERIV_inverse_lemma)
huffman@21164
   180
  next
huffman@21784
   181
    from der have "(\<lambda>z. (f z - f x) / (z - x)) -- x --> D"
huffman@21164
   182
      by (unfold DERIV_iff2)
huffman@21784
   183
    thus "(\<lambda>z. - (inverse (f z) * ((f z - f x) / (z - x)) * inverse (f x)))
huffman@21164
   184
          -- x --> ?E"
huffman@22613
   185
      by (intro LIM_mult LIM_inverse LIM_minus LIM_const lim_f neq)
huffman@21164
   186
  qed
huffman@21164
   187
qed
huffman@21164
   188
huffman@21164
   189
lemma DERIV_divide:
huffman@21784
   190
  "\<lbrakk>DERIV f x :> D; DERIV g x :> E; g x \<noteq> 0\<rbrakk>
huffman@21784
   191
   \<Longrightarrow> DERIV (\<lambda>x. f x / g x) x :> (D * g x - f x * E) / (g x * g x)"
huffman@21164
   192
apply (subgoal_tac "f x * - (inverse (g x) * E * inverse (g x)) +
huffman@21164
   193
          D * inverse (g x) = (D * g x - f x * E) / (g x * g x)")
huffman@21164
   194
apply (erule subst)
huffman@21164
   195
apply (unfold divide_inverse)
huffman@21164
   196
apply (erule DERIV_mult')
huffman@21164
   197
apply (erule (1) DERIV_inverse')
nipkow@23477
   198
apply (simp add: ring_distribs nonzero_inverse_mult_distrib)
huffman@21164
   199
apply (simp add: mult_ac)
huffman@21164
   200
done
huffman@21164
   201
huffman@21164
   202
lemma DERIV_power_Suc:
haftmann@31017
   203
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field}"
huffman@21164
   204
  assumes f: "DERIV f x :> D"
huffman@23431
   205
  shows "DERIV (\<lambda>x. f x ^ Suc n) x :> (1 + of_nat n) * (D * f x ^ n)"
huffman@21164
   206
proof (induct n)
huffman@21164
   207
case 0
huffman@30273
   208
  show ?case by (simp add: f)
huffman@21164
   209
case (Suc k)
huffman@21164
   210
  from DERIV_mult' [OF f Suc] show ?case
nipkow@23477
   211
    apply (simp only: of_nat_Suc ring_distribs mult_1_left)
nipkow@29667
   212
    apply (simp only: power_Suc algebra_simps)
huffman@21164
   213
    done
huffman@21164
   214
qed
huffman@21164
   215
huffman@21164
   216
lemma DERIV_power:
haftmann@31017
   217
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field}"
huffman@21164
   218
  assumes f: "DERIV f x :> D"
huffman@21784
   219
  shows "DERIV (\<lambda>x. f x ^ n) x :> of_nat n * (D * f x ^ (n - Suc 0))"
huffman@30273
   220
by (cases "n", simp, simp add: DERIV_power_Suc f del: power_Suc)
huffman@21164
   221
huffman@29975
   222
text {* Caratheodory formulation of derivative at a point *}
huffman@21164
   223
huffman@21164
   224
lemma CARAT_DERIV:
huffman@21164
   225
     "(DERIV f x :> l) =
huffman@21784
   226
      (\<exists>g. (\<forall>z. f z - f x = g z * (z-x)) & isCont g x & g x = l)"
huffman@21164
   227
      (is "?lhs = ?rhs")
huffman@21164
   228
proof
huffman@21164
   229
  assume der: "DERIV f x :> l"
huffman@21784
   230
  show "\<exists>g. (\<forall>z. f z - f x = g z * (z-x)) \<and> isCont g x \<and> g x = l"
huffman@21164
   231
  proof (intro exI conjI)
huffman@21784
   232
    let ?g = "(%z. if z = x then l else (f z - f x) / (z-x))"
nipkow@23413
   233
    show "\<forall>z. f z - f x = ?g z * (z-x)" by simp
huffman@21164
   234
    show "isCont ?g x" using der
huffman@21164
   235
      by (simp add: isCont_iff DERIV_iff diff_minus
huffman@21164
   236
               cong: LIM_equal [rule_format])
huffman@21164
   237
    show "?g x = l" by simp
huffman@21164
   238
  qed
huffman@21164
   239
next
huffman@21164
   240
  assume "?rhs"
huffman@21164
   241
  then obtain g where
huffman@21784
   242
    "(\<forall>z. f z - f x = g z * (z-x))" and "isCont g x" and "g x = l" by blast
huffman@21164
   243
  thus "(DERIV f x :> l)"
nipkow@23413
   244
     by (auto simp add: isCont_iff DERIV_iff cong: LIM_cong)
huffman@21164
   245
qed
huffman@21164
   246
huffman@21164
   247
lemma DERIV_chain':
huffman@21164
   248
  assumes f: "DERIV f x :> D"
huffman@21164
   249
  assumes g: "DERIV g (f x) :> E"
huffman@21784
   250
  shows "DERIV (\<lambda>x. g (f x)) x :> E * D"
huffman@21164
   251
proof (unfold DERIV_iff2)
huffman@21784
   252
  obtain d where d: "\<forall>y. g y - g (f x) = d y * (y - f x)"
huffman@21164
   253
    and cont_d: "isCont d (f x)" and dfx: "d (f x) = E"
huffman@21164
   254
    using CARAT_DERIV [THEN iffD1, OF g] by fast
huffman@21164
   255
  from f have "f -- x --> f x"
huffman@21164
   256
    by (rule DERIV_isCont [unfolded isCont_def])
huffman@21164
   257
  with cont_d have "(\<lambda>z. d (f z)) -- x --> d (f x)"
huffman@21239
   258
    by (rule isCont_LIM_compose)
huffman@21784
   259
  hence "(\<lambda>z. d (f z) * ((f z - f x) / (z - x)))
huffman@21784
   260
          -- x --> d (f x) * D"
huffman@21784
   261
    by (rule LIM_mult [OF _ f [unfolded DERIV_iff2]])
huffman@21784
   262
  thus "(\<lambda>z. (g (f z) - g (f x)) / (z - x)) -- x --> E * D"
huffman@21164
   263
    by (simp add: d dfx real_scaleR_def)
huffman@21164
   264
qed
huffman@21164
   265
wenzelm@31899
   266
text {*
wenzelm@31899
   267
 Let's do the standard proof, though theorem
wenzelm@31899
   268
 @{text "LIM_mult2"} follows from a NS proof
wenzelm@31899
   269
*}
huffman@21164
   270
huffman@21164
   271
lemma DERIV_cmult:
huffman@21164
   272
      "DERIV f x :> D ==> DERIV (%x. c * f x) x :> c*D"
huffman@21164
   273
by (drule DERIV_mult' [OF DERIV_const], simp)
huffman@21164
   274
paulson@33654
   275
lemma DERIV_cdivide: "DERIV f x :> D ==> DERIV (%x. f x / c) x :> D / c"
paulson@33654
   276
  apply (subgoal_tac "DERIV (%x. (1 / c) * f x) x :> (1 / c) * D", force)
paulson@33654
   277
  apply (erule DERIV_cmult)
paulson@33654
   278
  done
paulson@33654
   279
wenzelm@31899
   280
text {* Standard version *}
huffman@21164
   281
lemma DERIV_chain: "[| DERIV f (g x) :> Da; DERIV g x :> Db |] ==> DERIV (f o g) x :> Da * Db"
huffman@21164
   282
by (drule (1) DERIV_chain', simp add: o_def real_scaleR_def mult_commute)
huffman@21164
   283
huffman@21164
   284
lemma DERIV_chain2: "[| DERIV f (g x) :> Da; DERIV g x :> Db |] ==> DERIV (%x. f (g x)) x :> Da * Db"
huffman@21164
   285
by (auto dest: DERIV_chain simp add: o_def)
huffman@21164
   286
wenzelm@31899
   287
text {* Derivative of linear multiplication *}
huffman@21164
   288
lemma DERIV_cmult_Id [simp]: "DERIV (op * c) x :> c"
huffman@23069
   289
by (cut_tac c = c and x = x in DERIV_ident [THEN DERIV_cmult], simp)
huffman@21164
   290
huffman@21164
   291
lemma DERIV_pow: "DERIV (%x. x ^ n) x :> real n * (x ^ (n - Suc 0))"
huffman@23069
   292
apply (cut_tac DERIV_power [OF DERIV_ident])
huffman@21164
   293
apply (simp add: real_scaleR_def real_of_nat_def)
huffman@21164
   294
done
huffman@21164
   295
wenzelm@31899
   296
text {* Power of @{text "-1"} *}
huffman@21164
   297
huffman@21784
   298
lemma DERIV_inverse:
haftmann@31017
   299
  fixes x :: "'a::{real_normed_field}"
huffman@21784
   300
  shows "x \<noteq> 0 ==> DERIV (%x. inverse(x)) x :> (-(inverse x ^ Suc (Suc 0)))"
huffman@30273
   301
by (drule DERIV_inverse' [OF DERIV_ident]) simp
huffman@21164
   302
wenzelm@31899
   303
text {* Derivative of inverse *}
huffman@21784
   304
lemma DERIV_inverse_fun:
haftmann@31017
   305
  fixes x :: "'a::{real_normed_field}"
huffman@21784
   306
  shows "[| DERIV f x :> d; f(x) \<noteq> 0 |]
huffman@21784
   307
      ==> DERIV (%x. inverse(f x)) x :> (- (d * inverse(f(x) ^ Suc (Suc 0))))"
huffman@30273
   308
by (drule (1) DERIV_inverse') (simp add: mult_ac nonzero_inverse_mult_distrib)
huffman@21164
   309
wenzelm@31899
   310
text {* Derivative of quotient *}
huffman@21784
   311
lemma DERIV_quotient:
haftmann@31017
   312
  fixes x :: "'a::{real_normed_field}"
huffman@21784
   313
  shows "[| DERIV f x :> d; DERIV g x :> e; g(x) \<noteq> 0 |]
huffman@21784
   314
       ==> DERIV (%y. f(y) / (g y)) x :> (d*g(x) - (e*f(x))) / (g(x) ^ Suc (Suc 0))"
huffman@30273
   315
by (drule (2) DERIV_divide) (simp add: mult_commute)
huffman@21164
   316
huffman@29975
   317
lemma lemma_DERIV_subst: "[| DERIV f x :> D; D = E |] ==> DERIV f x :> E"
huffman@29975
   318
by auto
huffman@29975
   319
wenzelm@31899
   320
text {* @{text "DERIV_intros"} *}
wenzelm@31899
   321
ML {*
wenzelm@31902
   322
structure Deriv_Intros = Named_Thms
wenzelm@31899
   323
(
wenzelm@31899
   324
  val name = "DERIV_intros"
wenzelm@31899
   325
  val description = "DERIV introduction rules"
wenzelm@31899
   326
)
wenzelm@31899
   327
*}
hoelzl@31880
   328
wenzelm@31902
   329
setup Deriv_Intros.setup
hoelzl@31880
   330
hoelzl@31880
   331
lemma DERIV_cong: "\<lbrakk> DERIV f x :> X ; X = Y \<rbrakk> \<Longrightarrow> DERIV f x :> Y"
hoelzl@31880
   332
  by simp
hoelzl@31880
   333
hoelzl@31880
   334
declare
hoelzl@31880
   335
  DERIV_const[THEN DERIV_cong, DERIV_intros]
hoelzl@31880
   336
  DERIV_ident[THEN DERIV_cong, DERIV_intros]
hoelzl@31880
   337
  DERIV_add[THEN DERIV_cong, DERIV_intros]
hoelzl@31880
   338
  DERIV_minus[THEN DERIV_cong, DERIV_intros]
hoelzl@31880
   339
  DERIV_mult[THEN DERIV_cong, DERIV_intros]
hoelzl@31880
   340
  DERIV_diff[THEN DERIV_cong, DERIV_intros]
hoelzl@31880
   341
  DERIV_inverse'[THEN DERIV_cong, DERIV_intros]
hoelzl@31880
   342
  DERIV_divide[THEN DERIV_cong, DERIV_intros]
hoelzl@31880
   343
  DERIV_power[where 'a=real, THEN DERIV_cong,
hoelzl@31880
   344
              unfolded real_of_nat_def[symmetric], DERIV_intros]
hoelzl@31880
   345
  DERIV_setsum[THEN DERIV_cong, DERIV_intros]
huffman@22984
   346
wenzelm@31899
   347
huffman@22984
   348
subsection {* Differentiability predicate *}
huffman@21164
   349
huffman@29169
   350
definition
huffman@29169
   351
  differentiable :: "['a::real_normed_field \<Rightarrow> 'a, 'a] \<Rightarrow> bool"
huffman@29169
   352
    (infixl "differentiable" 60) where
huffman@29169
   353
  "f differentiable x = (\<exists>D. DERIV f x :> D)"
huffman@29169
   354
huffman@29169
   355
lemma differentiableE [elim?]:
huffman@29169
   356
  assumes "f differentiable x"
huffman@29169
   357
  obtains df where "DERIV f x :> df"
huffman@29169
   358
  using prems unfolding differentiable_def ..
huffman@29169
   359
huffman@21164
   360
lemma differentiableD: "f differentiable x ==> \<exists>D. DERIV f x :> D"
huffman@21164
   361
by (simp add: differentiable_def)
huffman@21164
   362
huffman@21164
   363
lemma differentiableI: "DERIV f x :> D ==> f differentiable x"
huffman@21164
   364
by (force simp add: differentiable_def)
huffman@21164
   365
huffman@29169
   366
lemma differentiable_ident [simp]: "(\<lambda>x. x) differentiable x"
huffman@29169
   367
  by (rule DERIV_ident [THEN differentiableI])
huffman@29169
   368
huffman@29169
   369
lemma differentiable_const [simp]: "(\<lambda>z. a) differentiable x"
huffman@29169
   370
  by (rule DERIV_const [THEN differentiableI])
huffman@21164
   371
huffman@29169
   372
lemma differentiable_compose:
huffman@29169
   373
  assumes f: "f differentiable (g x)"
huffman@29169
   374
  assumes g: "g differentiable x"
huffman@29169
   375
  shows "(\<lambda>x. f (g x)) differentiable x"
huffman@29169
   376
proof -
huffman@29169
   377
  from `f differentiable (g x)` obtain df where "DERIV f (g x) :> df" ..
huffman@29169
   378
  moreover
huffman@29169
   379
  from `g differentiable x` obtain dg where "DERIV g x :> dg" ..
huffman@29169
   380
  ultimately
huffman@29169
   381
  have "DERIV (\<lambda>x. f (g x)) x :> df * dg" by (rule DERIV_chain2)
huffman@29169
   382
  thus ?thesis by (rule differentiableI)
huffman@29169
   383
qed
huffman@29169
   384
huffman@29169
   385
lemma differentiable_sum [simp]:
huffman@21164
   386
  assumes "f differentiable x"
huffman@21164
   387
  and "g differentiable x"
huffman@21164
   388
  shows "(\<lambda>x. f x + g x) differentiable x"
huffman@21164
   389
proof -
huffman@29169
   390
  from `f differentiable x` obtain df where "DERIV f x :> df" ..
huffman@29169
   391
  moreover
huffman@29169
   392
  from `g differentiable x` obtain dg where "DERIV g x :> dg" ..
huffman@29169
   393
  ultimately
huffman@29169
   394
  have "DERIV (\<lambda>x. f x + g x) x :> df + dg" by (rule DERIV_add)
huffman@29169
   395
  thus ?thesis by (rule differentiableI)
huffman@29169
   396
qed
huffman@29169
   397
huffman@29169
   398
lemma differentiable_minus [simp]:
huffman@29169
   399
  assumes "f differentiable x"
huffman@29169
   400
  shows "(\<lambda>x. - f x) differentiable x"
huffman@29169
   401
proof -
huffman@29169
   402
  from `f differentiable x` obtain df where "DERIV f x :> df" ..
huffman@29169
   403
  hence "DERIV (\<lambda>x. - f x) x :> - df" by (rule DERIV_minus)
huffman@29169
   404
  thus ?thesis by (rule differentiableI)
huffman@21164
   405
qed
huffman@21164
   406
huffman@29169
   407
lemma differentiable_diff [simp]:
huffman@21164
   408
  assumes "f differentiable x"
huffman@29169
   409
  assumes "g differentiable x"
huffman@21164
   410
  shows "(\<lambda>x. f x - g x) differentiable x"
huffman@29169
   411
  unfolding diff_minus using prems by simp
huffman@29169
   412
huffman@29169
   413
lemma differentiable_mult [simp]:
huffman@29169
   414
  assumes "f differentiable x"
huffman@29169
   415
  assumes "g differentiable x"
huffman@29169
   416
  shows "(\<lambda>x. f x * g x) differentiable x"
huffman@21164
   417
proof -
huffman@29169
   418
  from `f differentiable x` obtain df where "DERIV f x :> df" ..
huffman@21164
   419
  moreover
huffman@29169
   420
  from `g differentiable x` obtain dg where "DERIV g x :> dg" ..
huffman@29169
   421
  ultimately
huffman@29169
   422
  have "DERIV (\<lambda>x. f x * g x) x :> df * g x + dg * f x" by (rule DERIV_mult)
huffman@29169
   423
  thus ?thesis by (rule differentiableI)
huffman@21164
   424
qed
huffman@21164
   425
huffman@29169
   426
lemma differentiable_inverse [simp]:
huffman@29169
   427
  assumes "f differentiable x" and "f x \<noteq> 0"
huffman@29169
   428
  shows "(\<lambda>x. inverse (f x)) differentiable x"
huffman@21164
   429
proof -
huffman@29169
   430
  from `f differentiable x` obtain df where "DERIV f x :> df" ..
huffman@29169
   431
  hence "DERIV (\<lambda>x. inverse (f x)) x :> - (inverse (f x) * df * inverse (f x))"
huffman@29169
   432
    using `f x \<noteq> 0` by (rule DERIV_inverse')
huffman@29169
   433
  thus ?thesis by (rule differentiableI)
huffman@21164
   434
qed
huffman@21164
   435
huffman@29169
   436
lemma differentiable_divide [simp]:
huffman@29169
   437
  assumes "f differentiable x"
huffman@29169
   438
  assumes "g differentiable x" and "g x \<noteq> 0"
huffman@29169
   439
  shows "(\<lambda>x. f x / g x) differentiable x"
huffman@29169
   440
  unfolding divide_inverse using prems by simp
huffman@29169
   441
huffman@29169
   442
lemma differentiable_power [simp]:
haftmann@31017
   443
  fixes f :: "'a::{real_normed_field} \<Rightarrow> 'a"
huffman@29169
   444
  assumes "f differentiable x"
huffman@29169
   445
  shows "(\<lambda>x. f x ^ n) differentiable x"
huffman@30273
   446
  by (induct n, simp, simp add: prems)
huffman@29169
   447
huffman@22984
   448
huffman@21164
   449
subsection {* Nested Intervals and Bisection *}
huffman@21164
   450
huffman@21164
   451
text{*Lemmas about nested intervals and proof by bisection (cf.Harrison).
huffman@21164
   452
     All considerably tidied by lcp.*}
huffman@21164
   453
huffman@21164
   454
lemma lemma_f_mono_add [rule_format (no_asm)]: "(\<forall>n. (f::nat=>real) n \<le> f (Suc n)) --> f m \<le> f(m + no)"
huffman@21164
   455
apply (induct "no")
huffman@21164
   456
apply (auto intro: order_trans)
huffman@21164
   457
done
huffman@21164
   458
huffman@21164
   459
lemma f_inc_g_dec_Beq_f: "[| \<forall>n. f(n) \<le> f(Suc n);
huffman@21164
   460
         \<forall>n. g(Suc n) \<le> g(n);
huffman@21164
   461
         \<forall>n. f(n) \<le> g(n) |]
huffman@21164
   462
      ==> Bseq (f :: nat \<Rightarrow> real)"
huffman@21164
   463
apply (rule_tac k = "f 0" and K = "g 0" in BseqI2, rule allI)
huffman@21164
   464
apply (induct_tac "n")
huffman@21164
   465
apply (auto intro: order_trans)
huffman@21164
   466
apply (rule_tac y = "g (Suc na)" in order_trans)
huffman@21164
   467
apply (induct_tac [2] "na")
huffman@21164
   468
apply (auto intro: order_trans)
huffman@21164
   469
done
huffman@21164
   470
huffman@21164
   471
lemma f_inc_g_dec_Beq_g: "[| \<forall>n. f(n) \<le> f(Suc n);
huffman@21164
   472
         \<forall>n. g(Suc n) \<le> g(n);
huffman@21164
   473
         \<forall>n. f(n) \<le> g(n) |]
huffman@21164
   474
      ==> Bseq (g :: nat \<Rightarrow> real)"
huffman@21164
   475
apply (subst Bseq_minus_iff [symmetric])
huffman@21164
   476
apply (rule_tac g = "%x. - (f x)" in f_inc_g_dec_Beq_f)
huffman@21164
   477
apply auto
huffman@21164
   478
done
huffman@21164
   479
huffman@21164
   480
lemma f_inc_imp_le_lim:
huffman@21164
   481
  fixes f :: "nat \<Rightarrow> real"
huffman@21164
   482
  shows "\<lbrakk>\<forall>n. f n \<le> f (Suc n); convergent f\<rbrakk> \<Longrightarrow> f n \<le> lim f"
huffman@21164
   483
apply (rule linorder_not_less [THEN iffD1])
huffman@21164
   484
apply (auto simp add: convergent_LIMSEQ_iff LIMSEQ_iff monoseq_Suc)
huffman@21164
   485
apply (drule real_less_sum_gt_zero)
huffman@21164
   486
apply (drule_tac x = "f n + - lim f" in spec, safe)
huffman@21164
   487
apply (drule_tac P = "%na. no\<le>na --> ?Q na" and x = "no + n" in spec, auto)
huffman@21164
   488
apply (subgoal_tac "lim f \<le> f (no + n) ")
huffman@21164
   489
apply (drule_tac no=no and m=n in lemma_f_mono_add)
huffman@21164
   490
apply (auto simp add: add_commute)
huffman@21164
   491
apply (induct_tac "no")
huffman@21164
   492
apply simp
huffman@21164
   493
apply (auto intro: order_trans simp add: diff_minus abs_if)
huffman@21164
   494
done
huffman@21164
   495
huffman@31404
   496
lemma lim_uminus:
huffman@31404
   497
  fixes g :: "nat \<Rightarrow> 'a::real_normed_vector"
huffman@31404
   498
  shows "convergent g ==> lim (%x. - g x) = - (lim g)"
huffman@21164
   499
apply (rule LIMSEQ_minus [THEN limI])
huffman@21164
   500
apply (simp add: convergent_LIMSEQ_iff)
huffman@21164
   501
done
huffman@21164
   502
huffman@21164
   503
lemma g_dec_imp_lim_le:
huffman@21164
   504
  fixes g :: "nat \<Rightarrow> real"
huffman@21164
   505
  shows "\<lbrakk>\<forall>n. g (Suc n) \<le> g(n); convergent g\<rbrakk> \<Longrightarrow> lim g \<le> g n"
huffman@21164
   506
apply (subgoal_tac "- (g n) \<le> - (lim g) ")
huffman@21164
   507
apply (cut_tac [2] f = "%x. - (g x)" in f_inc_imp_le_lim)
huffman@21164
   508
apply (auto simp add: lim_uminus convergent_minus_iff [symmetric])
huffman@21164
   509
done
huffman@21164
   510
huffman@21164
   511
lemma lemma_nest: "[| \<forall>n. f(n) \<le> f(Suc n);
huffman@21164
   512
         \<forall>n. g(Suc n) \<le> g(n);
huffman@21164
   513
         \<forall>n. f(n) \<le> g(n) |]
huffman@21164
   514
      ==> \<exists>l m :: real. l \<le> m &  ((\<forall>n. f(n) \<le> l) & f ----> l) &
huffman@21164
   515
                            ((\<forall>n. m \<le> g(n)) & g ----> m)"
huffman@21164
   516
apply (subgoal_tac "monoseq f & monoseq g")
huffman@21164
   517
prefer 2 apply (force simp add: LIMSEQ_iff monoseq_Suc)
huffman@21164
   518
apply (subgoal_tac "Bseq f & Bseq g")
huffman@21164
   519
prefer 2 apply (blast intro: f_inc_g_dec_Beq_f f_inc_g_dec_Beq_g)
huffman@21164
   520
apply (auto dest!: Bseq_monoseq_convergent simp add: convergent_LIMSEQ_iff)
huffman@21164
   521
apply (rule_tac x = "lim f" in exI)
huffman@21164
   522
apply (rule_tac x = "lim g" in exI)
huffman@21164
   523
apply (auto intro: LIMSEQ_le)
huffman@21164
   524
apply (auto simp add: f_inc_imp_le_lim g_dec_imp_lim_le convergent_LIMSEQ_iff)
huffman@21164
   525
done
huffman@21164
   526
huffman@21164
   527
lemma lemma_nest_unique: "[| \<forall>n. f(n) \<le> f(Suc n);
huffman@21164
   528
         \<forall>n. g(Suc n) \<le> g(n);
huffman@21164
   529
         \<forall>n. f(n) \<le> g(n);
huffman@21164
   530
         (%n. f(n) - g(n)) ----> 0 |]
huffman@21164
   531
      ==> \<exists>l::real. ((\<forall>n. f(n) \<le> l) & f ----> l) &
huffman@21164
   532
                ((\<forall>n. l \<le> g(n)) & g ----> l)"
huffman@21164
   533
apply (drule lemma_nest, auto)
huffman@21164
   534
apply (subgoal_tac "l = m")
huffman@21164
   535
apply (drule_tac [2] X = f in LIMSEQ_diff)
huffman@21164
   536
apply (auto intro: LIMSEQ_unique)
huffman@21164
   537
done
huffman@21164
   538
huffman@21164
   539
text{*The universal quantifiers below are required for the declaration
huffman@21164
   540
  of @{text Bolzano_nest_unique} below.*}
huffman@21164
   541
huffman@21164
   542
lemma Bolzano_bisect_le:
huffman@21164
   543
 "a \<le> b ==> \<forall>n. fst (Bolzano_bisect P a b n) \<le> snd (Bolzano_bisect P a b n)"
huffman@21164
   544
apply (rule allI)
huffman@21164
   545
apply (induct_tac "n")
huffman@21164
   546
apply (auto simp add: Let_def split_def)
huffman@21164
   547
done
huffman@21164
   548
huffman@21164
   549
lemma Bolzano_bisect_fst_le_Suc: "a \<le> b ==>
huffman@21164
   550
   \<forall>n. fst(Bolzano_bisect P a b n) \<le> fst (Bolzano_bisect P a b (Suc n))"
huffman@21164
   551
apply (rule allI)
huffman@21164
   552
apply (induct_tac "n")
huffman@21164
   553
apply (auto simp add: Bolzano_bisect_le Let_def split_def)
huffman@21164
   554
done
huffman@21164
   555
huffman@21164
   556
lemma Bolzano_bisect_Suc_le_snd: "a \<le> b ==>
huffman@21164
   557
   \<forall>n. snd(Bolzano_bisect P a b (Suc n)) \<le> snd (Bolzano_bisect P a b n)"
huffman@21164
   558
apply (rule allI)
huffman@21164
   559
apply (induct_tac "n")
huffman@21164
   560
apply (auto simp add: Bolzano_bisect_le Let_def split_def)
huffman@21164
   561
done
huffman@21164
   562
huffman@21164
   563
lemma eq_divide_2_times_iff: "((x::real) = y / (2 * z)) = (2 * x = y/z)"
huffman@21164
   564
apply (auto)
huffman@21164
   565
apply (drule_tac f = "%u. (1/2) *u" in arg_cong)
huffman@21164
   566
apply (simp)
huffman@21164
   567
done
huffman@21164
   568
huffman@21164
   569
lemma Bolzano_bisect_diff:
huffman@21164
   570
     "a \<le> b ==>
huffman@21164
   571
      snd(Bolzano_bisect P a b n) - fst(Bolzano_bisect P a b n) =
huffman@21164
   572
      (b-a) / (2 ^ n)"
huffman@21164
   573
apply (induct "n")
huffman@21164
   574
apply (auto simp add: eq_divide_2_times_iff add_divide_distrib Let_def split_def)
huffman@21164
   575
done
huffman@21164
   576
huffman@21164
   577
lemmas Bolzano_nest_unique =
huffman@21164
   578
    lemma_nest_unique
huffman@21164
   579
    [OF Bolzano_bisect_fst_le_Suc Bolzano_bisect_Suc_le_snd Bolzano_bisect_le]
huffman@21164
   580
huffman@21164
   581
huffman@21164
   582
lemma not_P_Bolzano_bisect:
huffman@21164
   583
  assumes P:    "!!a b c. [| P(a,b); P(b,c); a \<le> b; b \<le> c|] ==> P(a,c)"
huffman@21164
   584
      and notP: "~ P(a,b)"
huffman@21164
   585
      and le:   "a \<le> b"
huffman@21164
   586
  shows "~ P(fst(Bolzano_bisect P a b n), snd(Bolzano_bisect P a b n))"
huffman@21164
   587
proof (induct n)
huffman@23441
   588
  case 0 show ?case using notP by simp
huffman@21164
   589
 next
huffman@21164
   590
  case (Suc n)
huffman@21164
   591
  thus ?case
huffman@21164
   592
 by (auto simp del: surjective_pairing [symmetric]
huffman@21164
   593
             simp add: Let_def split_def Bolzano_bisect_le [OF le]
huffman@21164
   594
     P [of "fst (Bolzano_bisect P a b n)" _ "snd (Bolzano_bisect P a b n)"])
huffman@21164
   595
qed
huffman@21164
   596
huffman@21164
   597
(*Now we re-package P_prem as a formula*)
huffman@21164
   598
lemma not_P_Bolzano_bisect':
huffman@21164
   599
     "[| \<forall>a b c. P(a,b) & P(b,c) & a \<le> b & b \<le> c --> P(a,c);
huffman@21164
   600
         ~ P(a,b);  a \<le> b |] ==>
huffman@21164
   601
      \<forall>n. ~ P(fst(Bolzano_bisect P a b n), snd(Bolzano_bisect P a b n))"
huffman@21164
   602
by (blast elim!: not_P_Bolzano_bisect [THEN [2] rev_notE])
huffman@21164
   603
huffman@21164
   604
huffman@21164
   605
huffman@21164
   606
lemma lemma_BOLZANO:
huffman@21164
   607
     "[| \<forall>a b c. P(a,b) & P(b,c) & a \<le> b & b \<le> c --> P(a,c);
huffman@21164
   608
         \<forall>x. \<exists>d::real. 0 < d &
huffman@21164
   609
                (\<forall>a b. a \<le> x & x \<le> b & (b-a) < d --> P(a,b));
huffman@21164
   610
         a \<le> b |]
huffman@21164
   611
      ==> P(a,b)"
huffman@21164
   612
apply (rule Bolzano_nest_unique [where P1=P, THEN exE], assumption+)
huffman@21164
   613
apply (rule LIMSEQ_minus_cancel)
huffman@21164
   614
apply (simp (no_asm_simp) add: Bolzano_bisect_diff LIMSEQ_divide_realpow_zero)
huffman@21164
   615
apply (rule ccontr)
huffman@21164
   616
apply (drule not_P_Bolzano_bisect', assumption+)
huffman@21164
   617
apply (rename_tac "l")
huffman@21164
   618
apply (drule_tac x = l in spec, clarify)
huffman@31336
   619
apply (simp add: LIMSEQ_iff)
huffman@21164
   620
apply (drule_tac P = "%r. 0<r --> ?Q r" and x = "d/2" in spec)
huffman@21164
   621
apply (drule_tac P = "%r. 0<r --> ?Q r" and x = "d/2" in spec)
huffman@21164
   622
apply (drule real_less_half_sum, auto)
huffman@21164
   623
apply (drule_tac x = "fst (Bolzano_bisect P a b (no + noa))" in spec)
huffman@21164
   624
apply (drule_tac x = "snd (Bolzano_bisect P a b (no + noa))" in spec)
huffman@21164
   625
apply safe
huffman@21164
   626
apply (simp_all (no_asm_simp))
huffman@21164
   627
apply (rule_tac y = "abs (fst (Bolzano_bisect P a b (no + noa)) - l) + abs (snd (Bolzano_bisect P a b (no + noa)) - l)" in order_le_less_trans)
huffman@21164
   628
apply (simp (no_asm_simp) add: abs_if)
huffman@21164
   629
apply (rule real_sum_of_halves [THEN subst])
huffman@21164
   630
apply (rule add_strict_mono)
huffman@21164
   631
apply (simp_all add: diff_minus [symmetric])
huffman@21164
   632
done
huffman@21164
   633
huffman@21164
   634
huffman@21164
   635
lemma lemma_BOLZANO2: "((\<forall>a b c. (a \<le> b & b \<le> c & P(a,b) & P(b,c)) --> P(a,c)) &
huffman@21164
   636
       (\<forall>x. \<exists>d::real. 0 < d &
huffman@21164
   637
                (\<forall>a b. a \<le> x & x \<le> b & (b-a) < d --> P(a,b))))
huffman@21164
   638
      --> (\<forall>a b. a \<le> b --> P(a,b))"
huffman@21164
   639
apply clarify
huffman@21164
   640
apply (blast intro: lemma_BOLZANO)
huffman@21164
   641
done
huffman@21164
   642
huffman@21164
   643
huffman@21164
   644
subsection {* Intermediate Value Theorem *}
huffman@21164
   645
huffman@21164
   646
text {*Prove Contrapositive by Bisection*}
huffman@21164
   647
huffman@21164
   648
lemma IVT: "[| f(a::real) \<le> (y::real); y \<le> f(b);
huffman@21164
   649
         a \<le> b;
huffman@21164
   650
         (\<forall>x. a \<le> x & x \<le> b --> isCont f x) |]
huffman@21164
   651
      ==> \<exists>x. a \<le> x & x \<le> b & f(x) = y"
huffman@21164
   652
apply (rule contrapos_pp, assumption)
huffman@21164
   653
apply (cut_tac P = "% (u,v) . a \<le> u & u \<le> v & v \<le> b --> ~ (f (u) \<le> y & y \<le> f (v))" in lemma_BOLZANO2)
huffman@21164
   654
apply safe
huffman@21164
   655
apply simp_all
huffman@31338
   656
apply (simp add: isCont_iff LIM_eq)
huffman@21164
   657
apply (rule ccontr)
huffman@21164
   658
apply (subgoal_tac "a \<le> x & x \<le> b")
huffman@21164
   659
 prefer 2
huffman@21164
   660
 apply simp
huffman@21164
   661
 apply (drule_tac P = "%d. 0<d --> ?P d" and x = 1 in spec, arith)
huffman@21164
   662
apply (drule_tac x = x in spec)+
huffman@21164
   663
apply simp
huffman@21164
   664
apply (drule_tac P = "%r. ?P r --> (\<exists>s>0. ?Q r s) " and x = "\<bar>y - f x\<bar>" in spec)
huffman@21164
   665
apply safe
huffman@21164
   666
apply simp
huffman@21164
   667
apply (drule_tac x = s in spec, clarify)
huffman@21164
   668
apply (cut_tac x = "f x" and y = y in linorder_less_linear, safe)
huffman@21164
   669
apply (drule_tac x = "ba-x" in spec)
huffman@21164
   670
apply (simp_all add: abs_if)
huffman@21164
   671
apply (drule_tac x = "aa-x" in spec)
huffman@21164
   672
apply (case_tac "x \<le> aa", simp_all)
huffman@21164
   673
done
huffman@21164
   674
huffman@21164
   675
lemma IVT2: "[| f(b::real) \<le> (y::real); y \<le> f(a);
huffman@21164
   676
         a \<le> b;
huffman@21164
   677
         (\<forall>x. a \<le> x & x \<le> b --> isCont f x)
huffman@21164
   678
      |] ==> \<exists>x. a \<le> x & x \<le> b & f(x) = y"
huffman@21164
   679
apply (subgoal_tac "- f a \<le> -y & -y \<le> - f b", clarify)
huffman@21164
   680
apply (drule IVT [where f = "%x. - f x"], assumption)
huffman@21164
   681
apply (auto intro: isCont_minus)
huffman@21164
   682
done
huffman@21164
   683
huffman@21164
   684
(*HOL style here: object-level formulations*)
huffman@21164
   685
lemma IVT_objl: "(f(a::real) \<le> (y::real) & y \<le> f(b) & a \<le> b &
huffman@21164
   686
      (\<forall>x. a \<le> x & x \<le> b --> isCont f x))
huffman@21164
   687
      --> (\<exists>x. a \<le> x & x \<le> b & f(x) = y)"
huffman@21164
   688
apply (blast intro: IVT)
huffman@21164
   689
done
huffman@21164
   690
huffman@21164
   691
lemma IVT2_objl: "(f(b::real) \<le> (y::real) & y \<le> f(a) & a \<le> b &
huffman@21164
   692
      (\<forall>x. a \<le> x & x \<le> b --> isCont f x))
huffman@21164
   693
      --> (\<exists>x. a \<le> x & x \<le> b & f(x) = y)"
huffman@21164
   694
apply (blast intro: IVT2)
huffman@21164
   695
done
huffman@21164
   696
huffman@29975
   697
huffman@29975
   698
subsection {* Boundedness of continuous functions *}
huffman@29975
   699
huffman@21164
   700
text{*By bisection, function continuous on closed interval is bounded above*}
huffman@21164
   701
huffman@21164
   702
lemma isCont_bounded:
huffman@21164
   703
     "[| a \<le> b; \<forall>x. a \<le> x & x \<le> b --> isCont f x |]
huffman@21164
   704
      ==> \<exists>M::real. \<forall>x::real. a \<le> x & x \<le> b --> f(x) \<le> M"
huffman@21164
   705
apply (cut_tac P = "% (u,v) . a \<le> u & u \<le> v & v \<le> b --> (\<exists>M. \<forall>x. u \<le> x & x \<le> v --> f x \<le> M)" in lemma_BOLZANO2)
huffman@21164
   706
apply safe
huffman@21164
   707
apply simp_all
huffman@21164
   708
apply (rename_tac x xa ya M Ma)
paulson@33654
   709
apply (metis linorder_not_less order_le_less real_le_trans)
huffman@21164
   710
apply (case_tac "a \<le> x & x \<le> b")
paulson@33654
   711
 prefer 2
paulson@33654
   712
 apply (rule_tac x = 1 in exI, force)
huffman@31338
   713
apply (simp add: LIM_eq isCont_iff)
huffman@21164
   714
apply (drule_tac x = x in spec, auto)
huffman@21164
   715
apply (erule_tac V = "\<forall>M. \<exists>x. a \<le> x & x \<le> b & ~ f x \<le> M" in thin_rl)
huffman@21164
   716
apply (drule_tac x = 1 in spec, auto)
huffman@21164
   717
apply (rule_tac x = s in exI, clarify)
huffman@21164
   718
apply (rule_tac x = "\<bar>f x\<bar> + 1" in exI, clarify)
huffman@21164
   719
apply (drule_tac x = "xa-x" in spec)
huffman@21164
   720
apply (auto simp add: abs_ge_self)
huffman@21164
   721
done
huffman@21164
   722
huffman@21164
   723
text{*Refine the above to existence of least upper bound*}
huffman@21164
   724
huffman@21164
   725
lemma lemma_reals_complete: "((\<exists>x. x \<in> S) & (\<exists>y. isUb UNIV S (y::real))) -->
huffman@21164
   726
      (\<exists>t. isLub UNIV S t)"
huffman@21164
   727
by (blast intro: reals_complete)
huffman@21164
   728
huffman@21164
   729
lemma isCont_has_Ub: "[| a \<le> b; \<forall>x. a \<le> x & x \<le> b --> isCont f x |]
huffman@21164
   730
         ==> \<exists>M::real. (\<forall>x::real. a \<le> x & x \<le> b --> f(x) \<le> M) &
huffman@21164
   731
                   (\<forall>N. N < M --> (\<exists>x. a \<le> x & x \<le> b & N < f(x)))"
huffman@21164
   732
apply (cut_tac S = "Collect (%y. \<exists>x. a \<le> x & x \<le> b & y = f x)"
huffman@21164
   733
        in lemma_reals_complete)
huffman@21164
   734
apply auto
huffman@21164
   735
apply (drule isCont_bounded, assumption)
huffman@21164
   736
apply (auto simp add: isUb_def leastP_def isLub_def setge_def setle_def)
huffman@21164
   737
apply (rule exI, auto)
huffman@21164
   738
apply (auto dest!: spec simp add: linorder_not_less)
huffman@21164
   739
done
huffman@21164
   740
huffman@21164
   741
text{*Now show that it attains its upper bound*}
huffman@21164
   742
huffman@21164
   743
lemma isCont_eq_Ub:
huffman@21164
   744
  assumes le: "a \<le> b"
huffman@21164
   745
      and con: "\<forall>x::real. a \<le> x & x \<le> b --> isCont f x"
huffman@21164
   746
  shows "\<exists>M::real. (\<forall>x. a \<le> x & x \<le> b --> f(x) \<le> M) &
huffman@21164
   747
             (\<exists>x. a \<le> x & x \<le> b & f(x) = M)"
huffman@21164
   748
proof -
huffman@21164
   749
  from isCont_has_Ub [OF le con]
huffman@21164
   750
  obtain M where M1: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M"
huffman@21164
   751
             and M2: "!!N. N<M ==> \<exists>x. a \<le> x \<and> x \<le> b \<and> N < f x"  by blast
huffman@21164
   752
  show ?thesis
huffman@21164
   753
  proof (intro exI, intro conjI)
huffman@21164
   754
    show " \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M" by (rule M1)
huffman@21164
   755
    show "\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = M"
huffman@21164
   756
    proof (rule ccontr)
huffman@21164
   757
      assume "\<not> (\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = M)"
huffman@21164
   758
      with M1 have M3: "\<forall>x. a \<le> x & x \<le> b --> f x < M"
huffman@21164
   759
        by (fastsimp simp add: linorder_not_le [symmetric])
huffman@21164
   760
      hence "\<forall>x. a \<le> x & x \<le> b --> isCont (%x. inverse (M - f x)) x"
huffman@21164
   761
        by (auto simp add: isCont_inverse isCont_diff con)
huffman@21164
   762
      from isCont_bounded [OF le this]
huffman@21164
   763
      obtain k where k: "!!x. a \<le> x & x \<le> b --> inverse (M - f x) \<le> k" by auto
huffman@21164
   764
      have Minv: "!!x. a \<le> x & x \<le> b --> 0 < inverse (M - f (x))"
nipkow@29667
   765
        by (simp add: M3 algebra_simps)
huffman@21164
   766
      have "!!x. a \<le> x & x \<le> b --> inverse (M - f x) < k+1" using k
huffman@21164
   767
        by (auto intro: order_le_less_trans [of _ k])
huffman@21164
   768
      with Minv
huffman@21164
   769
      have "!!x. a \<le> x & x \<le> b --> inverse(k+1) < inverse(inverse(M - f x))"
huffman@21164
   770
        by (intro strip less_imp_inverse_less, simp_all)
huffman@21164
   771
      hence invlt: "!!x. a \<le> x & x \<le> b --> inverse(k+1) < M - f x"
huffman@21164
   772
        by simp
huffman@21164
   773
      have "M - inverse (k+1) < M" using k [of a] Minv [of a] le
huffman@21164
   774
        by (simp, arith)
huffman@21164
   775
      from M2 [OF this]
huffman@21164
   776
      obtain x where ax: "a \<le> x & x \<le> b & M - inverse(k+1) < f x" ..
huffman@21164
   777
      thus False using invlt [of x] by force
huffman@21164
   778
    qed
huffman@21164
   779
  qed
huffman@21164
   780
qed
huffman@21164
   781
huffman@21164
   782
huffman@21164
   783
text{*Same theorem for lower bound*}
huffman@21164
   784
huffman@21164
   785
lemma isCont_eq_Lb: "[| a \<le> b; \<forall>x. a \<le> x & x \<le> b --> isCont f x |]
huffman@21164
   786
         ==> \<exists>M::real. (\<forall>x::real. a \<le> x & x \<le> b --> M \<le> f(x)) &
huffman@21164
   787
                   (\<exists>x. a \<le> x & x \<le> b & f(x) = M)"
huffman@21164
   788
apply (subgoal_tac "\<forall>x. a \<le> x & x \<le> b --> isCont (%x. - (f x)) x")
huffman@21164
   789
prefer 2 apply (blast intro: isCont_minus)
huffman@21164
   790
apply (drule_tac f = "(%x. - (f x))" in isCont_eq_Ub)
huffman@21164
   791
apply safe
huffman@21164
   792
apply auto
huffman@21164
   793
done
huffman@21164
   794
huffman@21164
   795
huffman@21164
   796
text{*Another version.*}
huffman@21164
   797
huffman@21164
   798
lemma isCont_Lb_Ub: "[|a \<le> b; \<forall>x. a \<le> x & x \<le> b --> isCont f x |]
huffman@21164
   799
      ==> \<exists>L M::real. (\<forall>x::real. a \<le> x & x \<le> b --> L \<le> f(x) & f(x) \<le> M) &
huffman@21164
   800
          (\<forall>y. L \<le> y & y \<le> M --> (\<exists>x. a \<le> x & x \<le> b & (f(x) = y)))"
huffman@21164
   801
apply (frule isCont_eq_Lb)
huffman@21164
   802
apply (frule_tac [2] isCont_eq_Ub)
huffman@21164
   803
apply (assumption+, safe)
huffman@21164
   804
apply (rule_tac x = "f x" in exI)
huffman@21164
   805
apply (rule_tac x = "f xa" in exI, simp, safe)
huffman@21164
   806
apply (cut_tac x = x and y = xa in linorder_linear, safe)
huffman@21164
   807
apply (cut_tac f = f and a = x and b = xa and y = y in IVT_objl)
huffman@21164
   808
apply (cut_tac [2] f = f and a = xa and b = x and y = y in IVT2_objl, safe)
huffman@21164
   809
apply (rule_tac [2] x = xb in exI)
huffman@21164
   810
apply (rule_tac [4] x = xb in exI, simp_all)
huffman@21164
   811
done
huffman@21164
   812
huffman@21164
   813
huffman@29975
   814
subsection {* Local extrema *}
huffman@29975
   815
huffman@21164
   816
text{*If @{term "0 < f'(x)"} then @{term x} is Locally Strictly Increasing At The Right*}
huffman@21164
   817
paulson@33654
   818
lemma DERIV_pos_inc_right:
huffman@21164
   819
  fixes f :: "real => real"
huffman@21164
   820
  assumes der: "DERIV f x :> l"
huffman@21164
   821
      and l:   "0 < l"
huffman@21164
   822
  shows "\<exists>d > 0. \<forall>h > 0. h < d --> f(x) < f(x + h)"
huffman@21164
   823
proof -
huffman@21164
   824
  from l der [THEN DERIV_D, THEN LIM_D [where r = "l"]]
huffman@21164
   825
  have "\<exists>s > 0. (\<forall>z. z \<noteq> 0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>(f(x+z) - f x) / z - l\<bar> < l)"
huffman@21164
   826
    by (simp add: diff_minus)
huffman@21164
   827
  then obtain s
huffman@21164
   828
        where s:   "0 < s"
huffman@21164
   829
          and all: "!!z. z \<noteq> 0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>(f(x+z) - f x) / z - l\<bar> < l"
huffman@21164
   830
    by auto
huffman@21164
   831
  thus ?thesis
huffman@21164
   832
  proof (intro exI conjI strip)
huffman@23441
   833
    show "0<s" using s .
huffman@21164
   834
    fix h::real
huffman@21164
   835
    assume "0 < h" "h < s"
huffman@21164
   836
    with all [of h] show "f x < f (x+h)"
huffman@21164
   837
    proof (simp add: abs_if pos_less_divide_eq diff_minus [symmetric]
huffman@21164
   838
    split add: split_if_asm)
huffman@21164
   839
      assume "~ (f (x+h) - f x) / h < l" and h: "0 < h"
huffman@21164
   840
      with l
huffman@21164
   841
      have "0 < (f (x+h) - f x) / h" by arith
huffman@21164
   842
      thus "f x < f (x+h)"
huffman@21164
   843
  by (simp add: pos_less_divide_eq h)
huffman@21164
   844
    qed
huffman@21164
   845
  qed
huffman@21164
   846
qed
huffman@21164
   847
paulson@33654
   848
lemma DERIV_neg_dec_left:
huffman@21164
   849
  fixes f :: "real => real"
huffman@21164
   850
  assumes der: "DERIV f x :> l"
huffman@21164
   851
      and l:   "l < 0"
huffman@21164
   852
  shows "\<exists>d > 0. \<forall>h > 0. h < d --> f(x) < f(x-h)"
huffman@21164
   853
proof -
huffman@21164
   854
  from l der [THEN DERIV_D, THEN LIM_D [where r = "-l"]]
huffman@21164
   855
  have "\<exists>s > 0. (\<forall>z. z \<noteq> 0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>(f(x+z) - f x) / z - l\<bar> < -l)"
huffman@21164
   856
    by (simp add: diff_minus)
huffman@21164
   857
  then obtain s
huffman@21164
   858
        where s:   "0 < s"
huffman@21164
   859
          and all: "!!z. z \<noteq> 0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>(f(x+z) - f x) / z - l\<bar> < -l"
huffman@21164
   860
    by auto
huffman@21164
   861
  thus ?thesis
huffman@21164
   862
  proof (intro exI conjI strip)
huffman@23441
   863
    show "0<s" using s .
huffman@21164
   864
    fix h::real
huffman@21164
   865
    assume "0 < h" "h < s"
huffman@21164
   866
    with all [of "-h"] show "f x < f (x-h)"
huffman@21164
   867
    proof (simp add: abs_if pos_less_divide_eq diff_minus [symmetric]
huffman@21164
   868
    split add: split_if_asm)
huffman@21164
   869
      assume " - ((f (x-h) - f x) / h) < l" and h: "0 < h"
huffman@21164
   870
      with l
huffman@21164
   871
      have "0 < (f (x-h) - f x) / h" by arith
huffman@21164
   872
      thus "f x < f (x-h)"
huffman@21164
   873
  by (simp add: pos_less_divide_eq h)
huffman@21164
   874
    qed
huffman@21164
   875
  qed
huffman@21164
   876
qed
huffman@21164
   877
paulson@33654
   878
paulson@33654
   879
lemma DERIV_pos_inc_left:
paulson@33654
   880
  fixes f :: "real => real"
paulson@33654
   881
  shows "DERIV f x :> l \<Longrightarrow> 0 < l \<Longrightarrow> \<exists>d > 0. \<forall>h > 0. h < d --> f(x - h) < f(x)"
paulson@33654
   882
  apply (rule DERIV_neg_dec_left [of "%x. - f x" x "-l", simplified])
paulson@33654
   883
  apply (auto simp add: DERIV_minus) 
paulson@33654
   884
  done
paulson@33654
   885
paulson@33654
   886
lemma DERIV_neg_dec_right:
paulson@33654
   887
  fixes f :: "real => real"
paulson@33654
   888
  shows "DERIV f x :> l \<Longrightarrow> l < 0 \<Longrightarrow> \<exists>d > 0. \<forall>h > 0. h < d --> f(x) > f(x + h)"
paulson@33654
   889
  apply (rule DERIV_pos_inc_right [of "%x. - f x" x "-l", simplified])
paulson@33654
   890
  apply (auto simp add: DERIV_minus) 
paulson@33654
   891
  done
paulson@33654
   892
huffman@21164
   893
lemma DERIV_local_max:
huffman@21164
   894
  fixes f :: "real => real"
huffman@21164
   895
  assumes der: "DERIV f x :> l"
huffman@21164
   896
      and d:   "0 < d"
huffman@21164
   897
      and le:  "\<forall>y. \<bar>x-y\<bar> < d --> f(y) \<le> f(x)"
huffman@21164
   898
  shows "l = 0"
huffman@21164
   899
proof (cases rule: linorder_cases [of l 0])
huffman@23441
   900
  case equal thus ?thesis .
huffman@21164
   901
next
huffman@21164
   902
  case less
paulson@33654
   903
  from DERIV_neg_dec_left [OF der less]
huffman@21164
   904
  obtain d' where d': "0 < d'"
huffman@21164
   905
             and lt: "\<forall>h > 0. h < d' \<longrightarrow> f x < f (x-h)" by blast
huffman@21164
   906
  from real_lbound_gt_zero [OF d d']
huffman@21164
   907
  obtain e where "0 < e \<and> e < d \<and> e < d'" ..
huffman@21164
   908
  with lt le [THEN spec [where x="x-e"]]
huffman@21164
   909
  show ?thesis by (auto simp add: abs_if)
huffman@21164
   910
next
huffman@21164
   911
  case greater
paulson@33654
   912
  from DERIV_pos_inc_right [OF der greater]
huffman@21164
   913
  obtain d' where d': "0 < d'"
huffman@21164
   914
             and lt: "\<forall>h > 0. h < d' \<longrightarrow> f x < f (x + h)" by blast
huffman@21164
   915
  from real_lbound_gt_zero [OF d d']
huffman@21164
   916
  obtain e where "0 < e \<and> e < d \<and> e < d'" ..
huffman@21164
   917
  with lt le [THEN spec [where x="x+e"]]
huffman@21164
   918
  show ?thesis by (auto simp add: abs_if)
huffman@21164
   919
qed
huffman@21164
   920
huffman@21164
   921
huffman@21164
   922
text{*Similar theorem for a local minimum*}
huffman@21164
   923
lemma DERIV_local_min:
huffman@21164
   924
  fixes f :: "real => real"
huffman@21164
   925
  shows "[| DERIV f x :> l; 0 < d; \<forall>y. \<bar>x-y\<bar> < d --> f(x) \<le> f(y) |] ==> l = 0"
huffman@21164
   926
by (drule DERIV_minus [THEN DERIV_local_max], auto)
huffman@21164
   927
huffman@21164
   928
huffman@21164
   929
text{*In particular, if a function is locally flat*}
huffman@21164
   930
lemma DERIV_local_const:
huffman@21164
   931
  fixes f :: "real => real"
huffman@21164
   932
  shows "[| DERIV f x :> l; 0 < d; \<forall>y. \<bar>x-y\<bar> < d --> f(x) = f(y) |] ==> l = 0"
huffman@21164
   933
by (auto dest!: DERIV_local_max)
huffman@21164
   934
huffman@29975
   935
huffman@29975
   936
subsection {* Rolle's Theorem *}
huffman@29975
   937
huffman@21164
   938
text{*Lemma about introducing open ball in open interval*}
huffman@21164
   939
lemma lemma_interval_lt:
huffman@21164
   940
     "[| a < x;  x < b |]
huffman@21164
   941
      ==> \<exists>d::real. 0 < d & (\<forall>y. \<bar>x-y\<bar> < d --> a < y & y < b)"
chaieb@27668
   942
huffman@22998
   943
apply (simp add: abs_less_iff)
huffman@21164
   944
apply (insert linorder_linear [of "x-a" "b-x"], safe)
huffman@21164
   945
apply (rule_tac x = "x-a" in exI)
huffman@21164
   946
apply (rule_tac [2] x = "b-x" in exI, auto)
huffman@21164
   947
done
huffman@21164
   948
huffman@21164
   949
lemma lemma_interval: "[| a < x;  x < b |] ==>
huffman@21164
   950
        \<exists>d::real. 0 < d &  (\<forall>y. \<bar>x-y\<bar> < d --> a \<le> y & y \<le> b)"
huffman@21164
   951
apply (drule lemma_interval_lt, auto)
huffman@21164
   952
apply (auto intro!: exI)
huffman@21164
   953
done
huffman@21164
   954
huffman@21164
   955
text{*Rolle's Theorem.
huffman@21164
   956
   If @{term f} is defined and continuous on the closed interval
huffman@21164
   957
   @{text "[a,b]"} and differentiable on the open interval @{text "(a,b)"},
huffman@21164
   958
   and @{term "f(a) = f(b)"},
huffman@21164
   959
   then there exists @{text "x0 \<in> (a,b)"} such that @{term "f'(x0) = 0"}*}
huffman@21164
   960
theorem Rolle:
huffman@21164
   961
  assumes lt: "a < b"
huffman@21164
   962
      and eq: "f(a) = f(b)"
huffman@21164
   963
      and con: "\<forall>x. a \<le> x & x \<le> b --> isCont f x"
huffman@21164
   964
      and dif [rule_format]: "\<forall>x. a < x & x < b --> f differentiable x"
huffman@21784
   965
  shows "\<exists>z::real. a < z & z < b & DERIV f z :> 0"
huffman@21164
   966
proof -
huffman@21164
   967
  have le: "a \<le> b" using lt by simp
huffman@21164
   968
  from isCont_eq_Ub [OF le con]
huffman@21164
   969
  obtain x where x_max: "\<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> f z \<le> f x"
huffman@21164
   970
             and alex: "a \<le> x" and xleb: "x \<le> b"
huffman@21164
   971
    by blast
huffman@21164
   972
  from isCont_eq_Lb [OF le con]
huffman@21164
   973
  obtain x' where x'_min: "\<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> f x' \<le> f z"
huffman@21164
   974
              and alex': "a \<le> x'" and x'leb: "x' \<le> b"
huffman@21164
   975
    by blast
huffman@21164
   976
  show ?thesis
huffman@21164
   977
  proof cases
huffman@21164
   978
    assume axb: "a < x & x < b"
huffman@21164
   979
        --{*@{term f} attains its maximum within the interval*}
chaieb@27668
   980
    hence ax: "a<x" and xb: "x<b" by arith + 
huffman@21164
   981
    from lemma_interval [OF ax xb]
huffman@21164
   982
    obtain d where d: "0<d" and bound: "\<forall>y. \<bar>x-y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b"
huffman@21164
   983
      by blast
huffman@21164
   984
    hence bound': "\<forall>y. \<bar>x-y\<bar> < d \<longrightarrow> f y \<le> f x" using x_max
huffman@21164
   985
      by blast
huffman@21164
   986
    from differentiableD [OF dif [OF axb]]
huffman@21164
   987
    obtain l where der: "DERIV f x :> l" ..
huffman@21164
   988
    have "l=0" by (rule DERIV_local_max [OF der d bound'])
huffman@21164
   989
        --{*the derivative at a local maximum is zero*}
huffman@21164
   990
    thus ?thesis using ax xb der by auto
huffman@21164
   991
  next
huffman@21164
   992
    assume notaxb: "~ (a < x & x < b)"
huffman@21164
   993
    hence xeqab: "x=a | x=b" using alex xleb by arith
huffman@21164
   994
    hence fb_eq_fx: "f b = f x" by (auto simp add: eq)
huffman@21164
   995
    show ?thesis
huffman@21164
   996
    proof cases
huffman@21164
   997
      assume ax'b: "a < x' & x' < b"
huffman@21164
   998
        --{*@{term f} attains its minimum within the interval*}
chaieb@27668
   999
      hence ax': "a<x'" and x'b: "x'<b" by arith+ 
huffman@21164
  1000
      from lemma_interval [OF ax' x'b]
huffman@21164
  1001
      obtain d where d: "0<d" and bound: "\<forall>y. \<bar>x'-y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b"
huffman@21164
  1002
  by blast
huffman@21164
  1003
      hence bound': "\<forall>y. \<bar>x'-y\<bar> < d \<longrightarrow> f x' \<le> f y" using x'_min
huffman@21164
  1004
  by blast
huffman@21164
  1005
      from differentiableD [OF dif [OF ax'b]]
huffman@21164
  1006
      obtain l where der: "DERIV f x' :> l" ..
huffman@21164
  1007
      have "l=0" by (rule DERIV_local_min [OF der d bound'])
huffman@21164
  1008
        --{*the derivative at a local minimum is zero*}
huffman@21164
  1009
      thus ?thesis using ax' x'b der by auto
huffman@21164
  1010
    next
huffman@21164
  1011
      assume notax'b: "~ (a < x' & x' < b)"
huffman@21164
  1012
        --{*@{term f} is constant througout the interval*}
huffman@21164
  1013
      hence x'eqab: "x'=a | x'=b" using alex' x'leb by arith
huffman@21164
  1014
      hence fb_eq_fx': "f b = f x'" by (auto simp add: eq)
huffman@21164
  1015
      from dense [OF lt]
huffman@21164
  1016
      obtain r where ar: "a < r" and rb: "r < b" by blast
huffman@21164
  1017
      from lemma_interval [OF ar rb]
huffman@21164
  1018
      obtain d where d: "0<d" and bound: "\<forall>y. \<bar>r-y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b"
huffman@21164
  1019
  by blast
huffman@21164
  1020
      have eq_fb: "\<forall>z. a \<le> z --> z \<le> b --> f z = f b"
huffman@21164
  1021
      proof (clarify)
huffman@21164
  1022
        fix z::real
huffman@21164
  1023
        assume az: "a \<le> z" and zb: "z \<le> b"
huffman@21164
  1024
        show "f z = f b"
huffman@21164
  1025
        proof (rule order_antisym)
huffman@21164
  1026
          show "f z \<le> f b" by (simp add: fb_eq_fx x_max az zb)
huffman@21164
  1027
          show "f b \<le> f z" by (simp add: fb_eq_fx' x'_min az zb)
huffman@21164
  1028
        qed
huffman@21164
  1029
      qed
huffman@21164
  1030
      have bound': "\<forall>y. \<bar>r-y\<bar> < d \<longrightarrow> f r = f y"
huffman@21164
  1031
      proof (intro strip)
huffman@21164
  1032
        fix y::real
huffman@21164
  1033
        assume lt: "\<bar>r-y\<bar> < d"
huffman@21164
  1034
        hence "f y = f b" by (simp add: eq_fb bound)
huffman@21164
  1035
        thus "f r = f y" by (simp add: eq_fb ar rb order_less_imp_le)
huffman@21164
  1036
      qed
huffman@21164
  1037
      from differentiableD [OF dif [OF conjI [OF ar rb]]]
huffman@21164
  1038
      obtain l where der: "DERIV f r :> l" ..
huffman@21164
  1039
      have "l=0" by (rule DERIV_local_const [OF der d bound'])
huffman@21164
  1040
        --{*the derivative of a constant function is zero*}
huffman@21164
  1041
      thus ?thesis using ar rb der by auto
huffman@21164
  1042
    qed
huffman@21164
  1043
  qed
huffman@21164
  1044
qed
huffman@21164
  1045
huffman@21164
  1046
huffman@21164
  1047
subsection{*Mean Value Theorem*}
huffman@21164
  1048
huffman@21164
  1049
lemma lemma_MVT:
huffman@21164
  1050
     "f a - (f b - f a)/(b-a) * a = f b - (f b - f a)/(b-a) * (b::real)"
huffman@21164
  1051
proof cases
huffman@21164
  1052
  assume "a=b" thus ?thesis by simp
huffman@21164
  1053
next
huffman@21164
  1054
  assume "a\<noteq>b"
huffman@21164
  1055
  hence ba: "b-a \<noteq> 0" by arith
huffman@21164
  1056
  show ?thesis
huffman@21164
  1057
    by (rule real_mult_left_cancel [OF ba, THEN iffD1],
huffman@21164
  1058
        simp add: right_diff_distrib,
huffman@21164
  1059
        simp add: left_diff_distrib)
huffman@21164
  1060
qed
huffman@21164
  1061
huffman@21164
  1062
theorem MVT:
huffman@21164
  1063
  assumes lt:  "a < b"
huffman@21164
  1064
      and con: "\<forall>x. a \<le> x & x \<le> b --> isCont f x"
huffman@21164
  1065
      and dif [rule_format]: "\<forall>x. a < x & x < b --> f differentiable x"
huffman@21784
  1066
  shows "\<exists>l z::real. a < z & z < b & DERIV f z :> l &
huffman@21164
  1067
                   (f(b) - f(a) = (b-a) * l)"
huffman@21164
  1068
proof -
huffman@21164
  1069
  let ?F = "%x. f x - ((f b - f a) / (b-a)) * x"
huffman@21164
  1070
  have contF: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont ?F x" using con
huffman@23069
  1071
    by (fast intro: isCont_diff isCont_const isCont_mult isCont_ident)
huffman@21164
  1072
  have difF: "\<forall>x. a < x \<and> x < b \<longrightarrow> ?F differentiable x"
huffman@21164
  1073
  proof (clarify)
huffman@21164
  1074
    fix x::real
huffman@21164
  1075
    assume ax: "a < x" and xb: "x < b"
huffman@21164
  1076
    from differentiableD [OF dif [OF conjI [OF ax xb]]]
huffman@21164
  1077
    obtain l where der: "DERIV f x :> l" ..
huffman@21164
  1078
    show "?F differentiable x"
huffman@21164
  1079
      by (rule differentiableI [where D = "l - (f b - f a)/(b-a)"],
huffman@21164
  1080
          blast intro: DERIV_diff DERIV_cmult_Id der)
huffman@21164
  1081
  qed
huffman@21164
  1082
  from Rolle [where f = ?F, OF lt lemma_MVT contF difF]
huffman@21164
  1083
  obtain z where az: "a < z" and zb: "z < b" and der: "DERIV ?F z :> 0"
huffman@21164
  1084
    by blast
huffman@21164
  1085
  have "DERIV (%x. ((f b - f a)/(b-a)) * x) z :> (f b - f a)/(b-a)"
huffman@21164
  1086
    by (rule DERIV_cmult_Id)
huffman@21164
  1087
  hence derF: "DERIV (\<lambda>x. ?F x + (f b - f a) / (b - a) * x) z
huffman@21164
  1088
                   :> 0 + (f b - f a) / (b - a)"
huffman@21164
  1089
    by (rule DERIV_add [OF der])
huffman@21164
  1090
  show ?thesis
huffman@21164
  1091
  proof (intro exI conjI)
huffman@23441
  1092
    show "a < z" using az .
huffman@23441
  1093
    show "z < b" using zb .
huffman@21164
  1094
    show "f b - f a = (b - a) * ((f b - f a)/(b-a))" by (simp)
huffman@21164
  1095
    show "DERIV f z :> ((f b - f a)/(b-a))"  using derF by simp
huffman@21164
  1096
  qed
huffman@21164
  1097
qed
huffman@21164
  1098
hoelzl@29803
  1099
lemma MVT2:
hoelzl@29803
  1100
     "[| a < b; \<forall>x. a \<le> x & x \<le> b --> DERIV f x :> f'(x) |]
hoelzl@29803
  1101
      ==> \<exists>z::real. a < z & z < b & (f b - f a = (b - a) * f'(z))"
hoelzl@29803
  1102
apply (drule MVT)
hoelzl@29803
  1103
apply (blast intro: DERIV_isCont)
hoelzl@29803
  1104
apply (force dest: order_less_imp_le simp add: differentiable_def)
hoelzl@29803
  1105
apply (blast dest: DERIV_unique order_less_imp_le)
hoelzl@29803
  1106
done
hoelzl@29803
  1107
huffman@21164
  1108
huffman@21164
  1109
text{*A function is constant if its derivative is 0 over an interval.*}
huffman@21164
  1110
huffman@21164
  1111
lemma DERIV_isconst_end:
huffman@21164
  1112
  fixes f :: "real => real"
huffman@21164
  1113
  shows "[| a < b;
huffman@21164
  1114
         \<forall>x. a \<le> x & x \<le> b --> isCont f x;
huffman@21164
  1115
         \<forall>x. a < x & x < b --> DERIV f x :> 0 |]
huffman@21164
  1116
        ==> f b = f a"
huffman@21164
  1117
apply (drule MVT, assumption)
huffman@21164
  1118
apply (blast intro: differentiableI)
huffman@21164
  1119
apply (auto dest!: DERIV_unique simp add: diff_eq_eq)
huffman@21164
  1120
done
huffman@21164
  1121
huffman@21164
  1122
lemma DERIV_isconst1:
huffman@21164
  1123
  fixes f :: "real => real"
huffman@21164
  1124
  shows "[| a < b;
huffman@21164
  1125
         \<forall>x. a \<le> x & x \<le> b --> isCont f x;
huffman@21164
  1126
         \<forall>x. a < x & x < b --> DERIV f x :> 0 |]
huffman@21164
  1127
        ==> \<forall>x. a \<le> x & x \<le> b --> f x = f a"
huffman@21164
  1128
apply safe
huffman@21164
  1129
apply (drule_tac x = a in order_le_imp_less_or_eq, safe)
huffman@21164
  1130
apply (drule_tac b = x in DERIV_isconst_end, auto)
huffman@21164
  1131
done
huffman@21164
  1132
huffman@21164
  1133
lemma DERIV_isconst2:
huffman@21164
  1134
  fixes f :: "real => real"
huffman@21164
  1135
  shows "[| a < b;
huffman@21164
  1136
         \<forall>x. a \<le> x & x \<le> b --> isCont f x;
huffman@21164
  1137
         \<forall>x. a < x & x < b --> DERIV f x :> 0;
huffman@21164
  1138
         a \<le> x; x \<le> b |]
huffman@21164
  1139
        ==> f x = f a"
huffman@21164
  1140
apply (blast dest: DERIV_isconst1)
huffman@21164
  1141
done
huffman@21164
  1142
hoelzl@29803
  1143
lemma DERIV_isconst3: fixes a b x y :: real
hoelzl@29803
  1144
  assumes "a < b" and "x \<in> {a <..< b}" and "y \<in> {a <..< b}"
hoelzl@29803
  1145
  assumes derivable: "\<And>x. x \<in> {a <..< b} \<Longrightarrow> DERIV f x :> 0"
hoelzl@29803
  1146
  shows "f x = f y"
hoelzl@29803
  1147
proof (cases "x = y")
hoelzl@29803
  1148
  case False
hoelzl@29803
  1149
  let ?a = "min x y"
hoelzl@29803
  1150
  let ?b = "max x y"
hoelzl@29803
  1151
  
hoelzl@29803
  1152
  have "\<forall>z. ?a \<le> z \<and> z \<le> ?b \<longrightarrow> DERIV f z :> 0"
hoelzl@29803
  1153
  proof (rule allI, rule impI)
hoelzl@29803
  1154
    fix z :: real assume "?a \<le> z \<and> z \<le> ?b"
hoelzl@29803
  1155
    hence "a < z" and "z < b" using `x \<in> {a <..< b}` and `y \<in> {a <..< b}` by auto
hoelzl@29803
  1156
    hence "z \<in> {a<..<b}" by auto
hoelzl@29803
  1157
    thus "DERIV f z :> 0" by (rule derivable)
hoelzl@29803
  1158
  qed
hoelzl@29803
  1159
  hence isCont: "\<forall>z. ?a \<le> z \<and> z \<le> ?b \<longrightarrow> isCont f z"
hoelzl@29803
  1160
    and DERIV: "\<forall>z. ?a < z \<and> z < ?b \<longrightarrow> DERIV f z :> 0" using DERIV_isCont by auto
hoelzl@29803
  1161
hoelzl@29803
  1162
  have "?a < ?b" using `x \<noteq> y` by auto
hoelzl@29803
  1163
  from DERIV_isconst2[OF this isCont DERIV, of x] and DERIV_isconst2[OF this isCont DERIV, of y]
hoelzl@29803
  1164
  show ?thesis by auto
hoelzl@29803
  1165
qed auto
hoelzl@29803
  1166
huffman@21164
  1167
lemma DERIV_isconst_all:
huffman@21164
  1168
  fixes f :: "real => real"
huffman@21164
  1169
  shows "\<forall>x. DERIV f x :> 0 ==> f(x) = f(y)"
huffman@21164
  1170
apply (rule linorder_cases [of x y])
huffman@21164
  1171
apply (blast intro: sym DERIV_isCont DERIV_isconst_end)+
huffman@21164
  1172
done
huffman@21164
  1173
huffman@21164
  1174
lemma DERIV_const_ratio_const:
huffman@21784
  1175
  fixes f :: "real => real"
huffman@21784
  1176
  shows "[|a \<noteq> b; \<forall>x. DERIV f x :> k |] ==> (f(b) - f(a)) = (b-a) * k"
huffman@21164
  1177
apply (rule linorder_cases [of a b], auto)
huffman@21164
  1178
apply (drule_tac [!] f = f in MVT)
huffman@21164
  1179
apply (auto dest: DERIV_isCont DERIV_unique simp add: differentiable_def)
nipkow@23477
  1180
apply (auto dest: DERIV_unique simp add: ring_distribs diff_minus)
huffman@21164
  1181
done
huffman@21164
  1182
huffman@21164
  1183
lemma DERIV_const_ratio_const2:
huffman@21784
  1184
  fixes f :: "real => real"
huffman@21784
  1185
  shows "[|a \<noteq> b; \<forall>x. DERIV f x :> k |] ==> (f(b) - f(a))/(b-a) = k"
huffman@21164
  1186
apply (rule_tac c1 = "b-a" in real_mult_right_cancel [THEN iffD1])
huffman@21164
  1187
apply (auto dest!: DERIV_const_ratio_const simp add: mult_assoc)
huffman@21164
  1188
done
huffman@21164
  1189
huffman@21164
  1190
lemma real_average_minus_first [simp]: "((a + b) /2 - a) = (b-a)/(2::real)"
huffman@21164
  1191
by (simp)
huffman@21164
  1192
huffman@21164
  1193
lemma real_average_minus_second [simp]: "((b + a)/2 - a) = (b-a)/(2::real)"
huffman@21164
  1194
by (simp)
huffman@21164
  1195
huffman@21164
  1196
text{*Gallileo's "trick": average velocity = av. of end velocities*}
huffman@21164
  1197
huffman@21164
  1198
lemma DERIV_const_average:
huffman@21164
  1199
  fixes v :: "real => real"
huffman@21164
  1200
  assumes neq: "a \<noteq> (b::real)"
huffman@21164
  1201
      and der: "\<forall>x. DERIV v x :> k"
huffman@21164
  1202
  shows "v ((a + b)/2) = (v a + v b)/2"
huffman@21164
  1203
proof (cases rule: linorder_cases [of a b])
huffman@21164
  1204
  case equal with neq show ?thesis by simp
huffman@21164
  1205
next
huffman@21164
  1206
  case less
huffman@21164
  1207
  have "(v b - v a) / (b - a) = k"
huffman@21164
  1208
    by (rule DERIV_const_ratio_const2 [OF neq der])
huffman@21164
  1209
  hence "(b-a) * ((v b - v a) / (b-a)) = (b-a) * k" by simp
huffman@21164
  1210
  moreover have "(v ((a + b) / 2) - v a) / ((a + b) / 2 - a) = k"
huffman@21164
  1211
    by (rule DERIV_const_ratio_const2 [OF _ der], simp add: neq)
huffman@21164
  1212
  ultimately show ?thesis using neq by force
huffman@21164
  1213
next
huffman@21164
  1214
  case greater
huffman@21164
  1215
  have "(v b - v a) / (b - a) = k"
huffman@21164
  1216
    by (rule DERIV_const_ratio_const2 [OF neq der])
huffman@21164
  1217
  hence "(b-a) * ((v b - v a) / (b-a)) = (b-a) * k" by simp
huffman@21164
  1218
  moreover have " (v ((b + a) / 2) - v a) / ((b + a) / 2 - a) = k"
huffman@21164
  1219
    by (rule DERIV_const_ratio_const2 [OF _ der], simp add: neq)
huffman@21164
  1220
  ultimately show ?thesis using neq by (force simp add: add_commute)
huffman@21164
  1221
qed
huffman@21164
  1222
paulson@33654
  1223
(* A function with positive derivative is increasing. 
paulson@33654
  1224
   A simple proof using the MVT, by Jeremy Avigad. And variants.
paulson@33654
  1225
*)
paulson@33654
  1226
lemma DERIV_pos_imp_increasing:
paulson@33654
  1227
  fixes a::real and b::real and f::"real => real"
paulson@33654
  1228
  assumes "a < b" and "\<forall>x. a \<le> x & x \<le> b --> (EX y. DERIV f x :> y & y > 0)"
paulson@33654
  1229
  shows "f a < f b"
paulson@33654
  1230
proof (rule ccontr)
paulson@33654
  1231
  assume "~ f a < f b"
wenzelm@33690
  1232
  have "EX l z. a < z & z < b & DERIV f z :> l
paulson@33654
  1233
      & f b - f a = (b - a) * l"
wenzelm@33690
  1234
    apply (rule MVT)
wenzelm@33690
  1235
      using assms
wenzelm@33690
  1236
      apply auto
wenzelm@33690
  1237
      apply (metis DERIV_isCont)
wenzelm@33690
  1238
     apply (metis differentiableI real_less_def)
wenzelm@33690
  1239
    done
paulson@33654
  1240
  then obtain l z where "a < z" and "z < b" and "DERIV f z :> l"
paulson@33654
  1241
      and "f b - f a = (b - a) * l"
paulson@33654
  1242
    by auto
paulson@33654
  1243
  
paulson@33654
  1244
  from prems have "~(l > 0)"
wenzelm@33690
  1245
    by (metis linorder_not_le mult_le_0_iff real_le_eq_diff)
paulson@33654
  1246
  with prems show False
paulson@33654
  1247
    by (metis DERIV_unique real_less_def)
paulson@33654
  1248
qed
paulson@33654
  1249
paulson@33654
  1250
lemma DERIV_nonneg_imp_nonincreasing:
paulson@33654
  1251
  fixes a::real and b::real and f::"real => real"
paulson@33654
  1252
  assumes "a \<le> b" and
paulson@33654
  1253
    "\<forall>x. a \<le> x & x \<le> b --> (\<exists>y. DERIV f x :> y & y \<ge> 0)"
paulson@33654
  1254
  shows "f a \<le> f b"
paulson@33654
  1255
proof (rule ccontr, cases "a = b")
paulson@33654
  1256
  assume "~ f a \<le> f b"
paulson@33654
  1257
  assume "a = b"
paulson@33654
  1258
  with prems show False by auto
paulson@33654
  1259
  next assume "~ f a \<le> f b"
paulson@33654
  1260
  assume "a ~= b"
paulson@33654
  1261
  with assms have "EX l z. a < z & z < b & DERIV f z :> l
paulson@33654
  1262
      & f b - f a = (b - a) * l"
wenzelm@33690
  1263
    apply -
wenzelm@33690
  1264
    apply (rule MVT)
wenzelm@33690
  1265
      apply auto
wenzelm@33690
  1266
      apply (metis DERIV_isCont)
wenzelm@33690
  1267
     apply (metis differentiableI real_less_def)
paulson@33654
  1268
    done
paulson@33654
  1269
  then obtain l z where "a < z" and "z < b" and "DERIV f z :> l"
paulson@33654
  1270
      and "f b - f a = (b - a) * l"
paulson@33654
  1271
    by auto
paulson@33654
  1272
  from prems have "~(l >= 0)"
wenzelm@33659
  1273
    by (metis diff_self le_eqI le_iff_diff_le_0 real_le_antisym real_le_linear
paulson@33654
  1274
              split_mult_pos_le)
paulson@33654
  1275
  with prems show False
paulson@33654
  1276
    by (metis DERIV_unique order_less_imp_le)
paulson@33654
  1277
qed
paulson@33654
  1278
paulson@33654
  1279
lemma DERIV_neg_imp_decreasing:
paulson@33654
  1280
  fixes a::real and b::real and f::"real => real"
paulson@33654
  1281
  assumes "a < b" and
paulson@33654
  1282
    "\<forall>x. a \<le> x & x \<le> b --> (\<exists>y. DERIV f x :> y & y < 0)"
paulson@33654
  1283
  shows "f a > f b"
paulson@33654
  1284
proof -
paulson@33654
  1285
  have "(%x. -f x) a < (%x. -f x) b"
paulson@33654
  1286
    apply (rule DERIV_pos_imp_increasing [of a b "%x. -f x"])
wenzelm@33690
  1287
    using assms
wenzelm@33690
  1288
    apply auto
paulson@33654
  1289
    apply (metis DERIV_minus neg_0_less_iff_less)
paulson@33654
  1290
    done
paulson@33654
  1291
  thus ?thesis
paulson@33654
  1292
    by simp
paulson@33654
  1293
qed
paulson@33654
  1294
paulson@33654
  1295
lemma DERIV_nonpos_imp_nonincreasing:
paulson@33654
  1296
  fixes a::real and b::real and f::"real => real"
paulson@33654
  1297
  assumes "a \<le> b" and
paulson@33654
  1298
    "\<forall>x. a \<le> x & x \<le> b --> (\<exists>y. DERIV f x :> y & y \<le> 0)"
paulson@33654
  1299
  shows "f a \<ge> f b"
paulson@33654
  1300
proof -
paulson@33654
  1301
  have "(%x. -f x) a \<le> (%x. -f x) b"
paulson@33654
  1302
    apply (rule DERIV_nonneg_imp_nonincreasing [of a b "%x. -f x"])
wenzelm@33690
  1303
    using assms
wenzelm@33690
  1304
    apply auto
paulson@33654
  1305
    apply (metis DERIV_minus neg_0_le_iff_le)
paulson@33654
  1306
    done
paulson@33654
  1307
  thus ?thesis
paulson@33654
  1308
    by simp
paulson@33654
  1309
qed
huffman@21164
  1310
huffman@29975
  1311
subsection {* Continuous injective functions *}
huffman@29975
  1312
huffman@21164
  1313
text{*Dull lemma: an continuous injection on an interval must have a
huffman@21164
  1314
strict maximum at an end point, not in the middle.*}
huffman@21164
  1315
huffman@21164
  1316
lemma lemma_isCont_inj:
huffman@21164
  1317
  fixes f :: "real \<Rightarrow> real"
huffman@21164
  1318
  assumes d: "0 < d"
huffman@21164
  1319
      and inj [rule_format]: "\<forall>z. \<bar>z-x\<bar> \<le> d --> g(f z) = z"
huffman@21164
  1320
      and cont: "\<forall>z. \<bar>z-x\<bar> \<le> d --> isCont f z"
huffman@21164
  1321
  shows "\<exists>z. \<bar>z-x\<bar> \<le> d & f x < f z"
huffman@21164
  1322
proof (rule ccontr)
huffman@21164
  1323
  assume  "~ (\<exists>z. \<bar>z-x\<bar> \<le> d & f x < f z)"
huffman@21164
  1324
  hence all [rule_format]: "\<forall>z. \<bar>z - x\<bar> \<le> d --> f z \<le> f x" by auto
huffman@21164
  1325
  show False
huffman@21164
  1326
  proof (cases rule: linorder_le_cases [of "f(x-d)" "f(x+d)"])
huffman@21164
  1327
    case le
huffman@21164
  1328
    from d cont all [of "x+d"]
huffman@21164
  1329
    have flef: "f(x+d) \<le> f x"
huffman@21164
  1330
     and xlex: "x - d \<le> x"
huffman@21164
  1331
     and cont': "\<forall>z. x - d \<le> z \<and> z \<le> x \<longrightarrow> isCont f z"
huffman@21164
  1332
       by (auto simp add: abs_if)
huffman@21164
  1333
    from IVT [OF le flef xlex cont']
huffman@21164
  1334
    obtain x' where "x-d \<le> x'" "x' \<le> x" "f x' = f(x+d)" by blast
huffman@21164
  1335
    moreover
huffman@21164
  1336
    hence "g(f x') = g (f(x+d))" by simp
huffman@21164
  1337
    ultimately show False using d inj [of x'] inj [of "x+d"]
huffman@22998
  1338
      by (simp add: abs_le_iff)
huffman@21164
  1339
  next
huffman@21164
  1340
    case ge
huffman@21164
  1341
    from d cont all [of "x-d"]
huffman@21164
  1342
    have flef: "f(x-d) \<le> f x"
huffman@21164
  1343
     and xlex: "x \<le> x+d"
huffman@21164
  1344
     and cont': "\<forall>z. x \<le> z \<and> z \<le> x+d \<longrightarrow> isCont f z"
huffman@21164
  1345
       by (auto simp add: abs_if)
huffman@21164
  1346
    from IVT2 [OF ge flef xlex cont']
huffman@21164
  1347
    obtain x' where "x \<le> x'" "x' \<le> x+d" "f x' = f(x-d)" by blast
huffman@21164
  1348
    moreover
huffman@21164
  1349
    hence "g(f x') = g (f(x-d))" by simp
huffman@21164
  1350
    ultimately show False using d inj [of x'] inj [of "x-d"]
huffman@22998
  1351
      by (simp add: abs_le_iff)
huffman@21164
  1352
  qed
huffman@21164
  1353
qed
huffman@21164
  1354
huffman@21164
  1355
huffman@21164
  1356
text{*Similar version for lower bound.*}
huffman@21164
  1357
huffman@21164
  1358
lemma lemma_isCont_inj2:
huffman@21164
  1359
  fixes f g :: "real \<Rightarrow> real"
huffman@21164
  1360
  shows "[|0 < d; \<forall>z. \<bar>z-x\<bar> \<le> d --> g(f z) = z;
huffman@21164
  1361
        \<forall>z. \<bar>z-x\<bar> \<le> d --> isCont f z |]
huffman@21164
  1362
      ==> \<exists>z. \<bar>z-x\<bar> \<le> d & f z < f x"
huffman@21164
  1363
apply (insert lemma_isCont_inj
huffman@21164
  1364
          [where f = "%x. - f x" and g = "%y. g(-y)" and x = x and d = d])
huffman@21164
  1365
apply (simp add: isCont_minus linorder_not_le)
huffman@21164
  1366
done
huffman@21164
  1367
huffman@21164
  1368
text{*Show there's an interval surrounding @{term "f(x)"} in
huffman@21164
  1369
@{text "f[[x - d, x + d]]"} .*}
huffman@21164
  1370
huffman@21164
  1371
lemma isCont_inj_range:
huffman@21164
  1372
  fixes f :: "real \<Rightarrow> real"
huffman@21164
  1373
  assumes d: "0 < d"
huffman@21164
  1374
      and inj: "\<forall>z. \<bar>z-x\<bar> \<le> d --> g(f z) = z"
huffman@21164
  1375
      and cont: "\<forall>z. \<bar>z-x\<bar> \<le> d --> isCont f z"
huffman@21164
  1376
  shows "\<exists>e>0. \<forall>y. \<bar>y - f x\<bar> \<le> e --> (\<exists>z. \<bar>z-x\<bar> \<le> d & f z = y)"
huffman@21164
  1377
proof -
huffman@21164
  1378
  have "x-d \<le> x+d" "\<forall>z. x-d \<le> z \<and> z \<le> x+d \<longrightarrow> isCont f z" using cont d
huffman@22998
  1379
    by (auto simp add: abs_le_iff)
huffman@21164
  1380
  from isCont_Lb_Ub [OF this]
huffman@21164
  1381
  obtain L M
huffman@21164
  1382
  where all1 [rule_format]: "\<forall>z. x-d \<le> z \<and> z \<le> x+d \<longrightarrow> L \<le> f z \<and> f z \<le> M"
huffman@21164
  1383
    and all2 [rule_format]:
huffman@21164
  1384
           "\<forall>y. L \<le> y \<and> y \<le> M \<longrightarrow> (\<exists>z. x-d \<le> z \<and> z \<le> x+d \<and> f z = y)"
huffman@21164
  1385
    by auto
huffman@21164
  1386
  with d have "L \<le> f x & f x \<le> M" by simp
huffman@21164
  1387
  moreover have "L \<noteq> f x"
huffman@21164
  1388
  proof -
huffman@21164
  1389
    from lemma_isCont_inj2 [OF d inj cont]
huffman@21164
  1390
    obtain u where "\<bar>u - x\<bar> \<le> d" "f u < f x"  by auto
huffman@21164
  1391
    thus ?thesis using all1 [of u] by arith
huffman@21164
  1392
  qed
huffman@21164
  1393
  moreover have "f x \<noteq> M"
huffman@21164
  1394
  proof -
huffman@21164
  1395
    from lemma_isCont_inj [OF d inj cont]
huffman@21164
  1396
    obtain u where "\<bar>u - x\<bar> \<le> d" "f x < f u"  by auto
huffman@21164
  1397
    thus ?thesis using all1 [of u] by arith
huffman@21164
  1398
  qed
huffman@21164
  1399
  ultimately have "L < f x & f x < M" by arith
huffman@21164
  1400
  hence "0 < f x - L" "0 < M - f x" by arith+
huffman@21164
  1401
  from real_lbound_gt_zero [OF this]
huffman@21164
  1402
  obtain e where e: "0 < e" "e < f x - L" "e < M - f x" by auto
huffman@21164
  1403
  thus ?thesis
huffman@21164
  1404
  proof (intro exI conjI)
huffman@23441
  1405
    show "0<e" using e(1) .
huffman@21164
  1406
    show "\<forall>y. \<bar>y - f x\<bar> \<le> e \<longrightarrow> (\<exists>z. \<bar>z - x\<bar> \<le> d \<and> f z = y)"
huffman@21164
  1407
    proof (intro strip)
huffman@21164
  1408
      fix y::real
huffman@21164
  1409
      assume "\<bar>y - f x\<bar> \<le> e"
huffman@21164
  1410
      with e have "L \<le> y \<and> y \<le> M" by arith
huffman@21164
  1411
      from all2 [OF this]
huffman@21164
  1412
      obtain z where "x - d \<le> z" "z \<le> x + d" "f z = y" by blast
chaieb@27668
  1413
      thus "\<exists>z. \<bar>z - x\<bar> \<le> d \<and> f z = y" 
huffman@22998
  1414
        by (force simp add: abs_le_iff)
huffman@21164
  1415
    qed
huffman@21164
  1416
  qed
huffman@21164
  1417
qed
huffman@21164
  1418
huffman@21164
  1419
huffman@21164
  1420
text{*Continuity of inverse function*}
huffman@21164
  1421
huffman@21164
  1422
lemma isCont_inverse_function:
huffman@21164
  1423
  fixes f g :: "real \<Rightarrow> real"
huffman@21164
  1424
  assumes d: "0 < d"
huffman@21164
  1425
      and inj: "\<forall>z. \<bar>z-x\<bar> \<le> d --> g(f z) = z"
huffman@21164
  1426
      and cont: "\<forall>z. \<bar>z-x\<bar> \<le> d --> isCont f z"
huffman@21164
  1427
  shows "isCont g (f x)"
huffman@21164
  1428
proof (simp add: isCont_iff LIM_eq)
huffman@21164
  1429
  show "\<forall>r. 0 < r \<longrightarrow>
huffman@21164
  1430
         (\<exists>s>0. \<forall>z. z\<noteq>0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>g(f x + z) - g(f x)\<bar> < r)"
huffman@21164
  1431
  proof (intro strip)
huffman@21164
  1432
    fix r::real
huffman@21164
  1433
    assume r: "0<r"
huffman@21164
  1434
    from real_lbound_gt_zero [OF r d]
huffman@21164
  1435
    obtain e where e: "0 < e" and e_lt: "e < r \<and> e < d" by blast
huffman@21164
  1436
    with inj cont
huffman@21164
  1437
    have e_simps: "\<forall>z. \<bar>z-x\<bar> \<le> e --> g (f z) = z"
huffman@21164
  1438
                  "\<forall>z. \<bar>z-x\<bar> \<le> e --> isCont f z"   by auto
huffman@21164
  1439
    from isCont_inj_range [OF e this]
huffman@21164
  1440
    obtain e' where e': "0 < e'"
huffman@21164
  1441
        and all: "\<forall>y. \<bar>y - f x\<bar> \<le> e' \<longrightarrow> (\<exists>z. \<bar>z - x\<bar> \<le> e \<and> f z = y)"
huffman@21164
  1442
          by blast
huffman@21164
  1443
    show "\<exists>s>0. \<forall>z. z\<noteq>0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>g(f x + z) - g(f x)\<bar> < r"
huffman@21164
  1444
    proof (intro exI conjI)
huffman@23441
  1445
      show "0<e'" using e' .
huffman@21164
  1446
      show "\<forall>z. z \<noteq> 0 \<and> \<bar>z\<bar> < e' \<longrightarrow> \<bar>g (f x + z) - g (f x)\<bar> < r"
huffman@21164
  1447
      proof (intro strip)
huffman@21164
  1448
        fix z::real
huffman@21164
  1449
        assume z: "z \<noteq> 0 \<and> \<bar>z\<bar> < e'"
huffman@21164
  1450
        with e e_lt e_simps all [rule_format, of "f x + z"]
huffman@21164
  1451
        show "\<bar>g (f x + z) - g (f x)\<bar> < r" by force
huffman@21164
  1452
      qed
huffman@21164
  1453
    qed
huffman@21164
  1454
  qed
huffman@21164
  1455
qed
huffman@21164
  1456
huffman@23041
  1457
text {* Derivative of inverse function *}
huffman@23041
  1458
huffman@23041
  1459
lemma DERIV_inverse_function:
huffman@23041
  1460
  fixes f g :: "real \<Rightarrow> real"
huffman@23041
  1461
  assumes der: "DERIV f (g x) :> D"
huffman@23041
  1462
  assumes neq: "D \<noteq> 0"
huffman@23044
  1463
  assumes a: "a < x" and b: "x < b"
huffman@23044
  1464
  assumes inj: "\<forall>y. a < y \<and> y < b \<longrightarrow> f (g y) = y"
huffman@23041
  1465
  assumes cont: "isCont g x"
huffman@23041
  1466
  shows "DERIV g x :> inverse D"
huffman@23041
  1467
unfolding DERIV_iff2
huffman@23044
  1468
proof (rule LIM_equal2)
huffman@23044
  1469
  show "0 < min (x - a) (b - x)"
chaieb@27668
  1470
    using a b by arith 
huffman@23044
  1471
next
huffman@23041
  1472
  fix y
huffman@23044
  1473
  assume "norm (y - x) < min (x - a) (b - x)"
chaieb@27668
  1474
  hence "a < y" and "y < b" 
huffman@23044
  1475
    by (simp_all add: abs_less_iff)
huffman@23041
  1476
  thus "(g y - g x) / (y - x) =
huffman@23041
  1477
        inverse ((f (g y) - x) / (g y - g x))"
huffman@23041
  1478
    by (simp add: inj)
huffman@23041
  1479
next
huffman@23041
  1480
  have "(\<lambda>z. (f z - f (g x)) / (z - g x)) -- g x --> D"
huffman@23041
  1481
    by (rule der [unfolded DERIV_iff2])
huffman@23041
  1482
  hence 1: "(\<lambda>z. (f z - x) / (z - g x)) -- g x --> D"
huffman@23044
  1483
    using inj a b by simp
huffman@23041
  1484
  have 2: "\<exists>d>0. \<forall>y. y \<noteq> x \<and> norm (y - x) < d \<longrightarrow> g y \<noteq> g x"
huffman@23041
  1485
  proof (safe intro!: exI)
huffman@23044
  1486
    show "0 < min (x - a) (b - x)"
huffman@23044
  1487
      using a b by simp
huffman@23041
  1488
  next
huffman@23041
  1489
    fix y
huffman@23044
  1490
    assume "norm (y - x) < min (x - a) (b - x)"
huffman@23044
  1491
    hence y: "a < y" "y < b"
huffman@23044
  1492
      by (simp_all add: abs_less_iff)
huffman@23041
  1493
    assume "g y = g x"
huffman@23041
  1494
    hence "f (g y) = f (g x)" by simp
huffman@23044
  1495
    hence "y = x" using inj y a b by simp
huffman@23041
  1496
    also assume "y \<noteq> x"
huffman@23041
  1497
    finally show False by simp
huffman@23041
  1498
  qed
huffman@23041
  1499
  have "(\<lambda>y. (f (g y) - x) / (g y - g x)) -- x --> D"
huffman@23041
  1500
    using cont 1 2 by (rule isCont_LIM_compose2)
huffman@23041
  1501
  thus "(\<lambda>y. inverse ((f (g y) - x) / (g y - g x)))
huffman@23041
  1502
        -- x --> inverse D"
huffman@23041
  1503
    using neq by (rule LIM_inverse)
huffman@23041
  1504
qed
huffman@23041
  1505
huffman@29975
  1506
huffman@29975
  1507
subsection {* Generalized Mean Value Theorem *}
huffman@29975
  1508
huffman@21164
  1509
theorem GMVT:
huffman@21784
  1510
  fixes a b :: real
huffman@21164
  1511
  assumes alb: "a < b"
huffman@21164
  1512
  and fc: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x"
huffman@21164
  1513
  and fd: "\<forall>x. a < x \<and> x < b \<longrightarrow> f differentiable x"
huffman@21164
  1514
  and gc: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont g x"
huffman@21164
  1515
  and gd: "\<forall>x. a < x \<and> x < b \<longrightarrow> g differentiable x"
huffman@21164
  1516
  shows "\<exists>g'c f'c c. DERIV g c :> g'c \<and> DERIV f c :> f'c \<and> a < c \<and> c < b \<and> ((f b - f a) * g'c) = ((g b - g a) * f'c)"
huffman@21164
  1517
proof -
huffman@21164
  1518
  let ?h = "\<lambda>x. (f b - f a)*(g x) - (g b - g a)*(f x)"
huffman@21164
  1519
  from prems have "a < b" by simp
huffman@21164
  1520
  moreover have "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont ?h x"
huffman@21164
  1521
  proof -
huffman@21164
  1522
    have "\<forall>x. a <= x \<and> x <= b \<longrightarrow> isCont (\<lambda>x. f b - f a) x" by simp
huffman@21164
  1523
    with gc have "\<forall>x. a <= x \<and> x <= b \<longrightarrow> isCont (\<lambda>x. (f b - f a) * g x) x"
huffman@21164
  1524
      by (auto intro: isCont_mult)
huffman@21164
  1525
    moreover
huffman@21164
  1526
    have "\<forall>x. a <= x \<and> x <= b \<longrightarrow> isCont (\<lambda>x. g b - g a) x" by simp
huffman@21164
  1527
    with fc have "\<forall>x. a <= x \<and> x <= b \<longrightarrow> isCont (\<lambda>x. (g b - g a) * f x) x"
huffman@21164
  1528
      by (auto intro: isCont_mult)
huffman@21164
  1529
    ultimately show ?thesis
huffman@21164
  1530
      by (fastsimp intro: isCont_diff)
huffman@21164
  1531
  qed
huffman@21164
  1532
  moreover
huffman@21164
  1533
  have "\<forall>x. a < x \<and> x < b \<longrightarrow> ?h differentiable x"
huffman@21164
  1534
  proof -
huffman@21164
  1535
    have "\<forall>x. a < x \<and> x < b \<longrightarrow> (\<lambda>x. f b - f a) differentiable x" by (simp add: differentiable_const)
huffman@21164
  1536
    with gd have "\<forall>x. a < x \<and> x < b \<longrightarrow> (\<lambda>x. (f b - f a) * g x) differentiable x" by (simp add: differentiable_mult)
huffman@21164
  1537
    moreover
huffman@21164
  1538
    have "\<forall>x. a < x \<and> x < b \<longrightarrow> (\<lambda>x. g b - g a) differentiable x" by (simp add: differentiable_const)
huffman@21164
  1539
    with fd have "\<forall>x. a < x \<and> x < b \<longrightarrow> (\<lambda>x. (g b - g a) * f x) differentiable x" by (simp add: differentiable_mult)
huffman@21164
  1540
    ultimately show ?thesis by (simp add: differentiable_diff)
huffman@21164
  1541
  qed
huffman@21164
  1542
  ultimately have "\<exists>l z. a < z \<and> z < b \<and> DERIV ?h z :> l \<and> ?h b - ?h a = (b - a) * l" by (rule MVT)
huffman@21164
  1543
  then obtain l where ldef: "\<exists>z. a < z \<and> z < b \<and> DERIV ?h z :> l \<and> ?h b - ?h a = (b - a) * l" ..
huffman@21164
  1544
  then obtain c where cdef: "a < c \<and> c < b \<and> DERIV ?h c :> l \<and> ?h b - ?h a = (b - a) * l" ..
huffman@21164
  1545
huffman@21164
  1546
  from cdef have cint: "a < c \<and> c < b" by auto
huffman@21164
  1547
  with gd have "g differentiable c" by simp
huffman@21164
  1548
  hence "\<exists>D. DERIV g c :> D" by (rule differentiableD)
huffman@21164
  1549
  then obtain g'c where g'cdef: "DERIV g c :> g'c" ..
huffman@21164
  1550
huffman@21164
  1551
  from cdef have "a < c \<and> c < b" by auto
huffman@21164
  1552
  with fd have "f differentiable c" by simp
huffman@21164
  1553
  hence "\<exists>D. DERIV f c :> D" by (rule differentiableD)
huffman@21164
  1554
  then obtain f'c where f'cdef: "DERIV f c :> f'c" ..
huffman@21164
  1555
huffman@21164
  1556
  from cdef have "DERIV ?h c :> l" by auto
huffman@21164
  1557
  moreover
huffman@21164
  1558
  {
huffman@23441
  1559
    have "DERIV (\<lambda>x. (f b - f a) * g x) c :> g'c * (f b - f a)"
huffman@21164
  1560
      apply (insert DERIV_const [where k="f b - f a"])
huffman@21164
  1561
      apply (drule meta_spec [of _ c])
huffman@23441
  1562
      apply (drule DERIV_mult [OF _ g'cdef])
huffman@23441
  1563
      by simp
huffman@23441
  1564
    moreover have "DERIV (\<lambda>x. (g b - g a) * f x) c :> f'c * (g b - g a)"
huffman@21164
  1565
      apply (insert DERIV_const [where k="g b - g a"])
huffman@21164
  1566
      apply (drule meta_spec [of _ c])
huffman@23441
  1567
      apply (drule DERIV_mult [OF _ f'cdef])
huffman@23441
  1568
      by simp
huffman@21164
  1569
    ultimately have "DERIV ?h c :>  g'c * (f b - f a) - f'c * (g b - g a)"
huffman@21164
  1570
      by (simp add: DERIV_diff)
huffman@21164
  1571
  }
huffman@21164
  1572
  ultimately have leq: "l =  g'c * (f b - f a) - f'c * (g b - g a)" by (rule DERIV_unique)
huffman@21164
  1573
huffman@21164
  1574
  {
huffman@21164
  1575
    from cdef have "?h b - ?h a = (b - a) * l" by auto
huffman@21164
  1576
    also with leq have "\<dots> = (b - a) * (g'c * (f b - f a) - f'c * (g b - g a))" by simp
huffman@21164
  1577
    finally have "?h b - ?h a = (b - a) * (g'c * (f b - f a) - f'c * (g b - g a))" by simp
huffman@21164
  1578
  }
huffman@21164
  1579
  moreover
huffman@21164
  1580
  {
huffman@21164
  1581
    have "?h b - ?h a =
huffman@21164
  1582
         ((f b)*(g b) - (f a)*(g b) - (g b)*(f b) + (g a)*(f b)) -
huffman@21164
  1583
          ((f b)*(g a) - (f a)*(g a) - (g b)*(f a) + (g a)*(f a))"
nipkow@29667
  1584
      by (simp add: algebra_simps)
huffman@21164
  1585
    hence "?h b - ?h a = 0" by auto
huffman@21164
  1586
  }
huffman@21164
  1587
  ultimately have "(b - a) * (g'c * (f b - f a) - f'c * (g b - g a)) = 0" by auto
huffman@21164
  1588
  with alb have "g'c * (f b - f a) - f'c * (g b - g a) = 0" by simp
huffman@21164
  1589
  hence "g'c * (f b - f a) = f'c * (g b - g a)" by simp
huffman@21164
  1590
  hence "(f b - f a) * g'c = (g b - g a) * f'c" by (simp add: mult_ac)
huffman@21164
  1591
huffman@21164
  1592
  with g'cdef f'cdef cint show ?thesis by auto
huffman@21164
  1593
qed
huffman@21164
  1594
huffman@29470
  1595
huffman@29166
  1596
subsection {* Theorems about Limits *}
huffman@29166
  1597
huffman@29166
  1598
(* need to rename second isCont_inverse *)
huffman@29166
  1599
huffman@29166
  1600
lemma isCont_inv_fun:
huffman@29166
  1601
  fixes f g :: "real \<Rightarrow> real"
huffman@29166
  1602
  shows "[| 0 < d; \<forall>z. \<bar>z - x\<bar> \<le> d --> g(f(z)) = z;  
huffman@29166
  1603
         \<forall>z. \<bar>z - x\<bar> \<le> d --> isCont f z |]  
huffman@29166
  1604
      ==> isCont g (f x)"
huffman@29166
  1605
by (rule isCont_inverse_function)
huffman@29166
  1606
huffman@29166
  1607
lemma isCont_inv_fun_inv:
huffman@29166
  1608
  fixes f g :: "real \<Rightarrow> real"
huffman@29166
  1609
  shows "[| 0 < d;  
huffman@29166
  1610
         \<forall>z. \<bar>z - x\<bar> \<le> d --> g(f(z)) = z;  
huffman@29166
  1611
         \<forall>z. \<bar>z - x\<bar> \<le> d --> isCont f z |]  
huffman@29166
  1612
       ==> \<exists>e. 0 < e &  
huffman@29166
  1613
             (\<forall>y. 0 < \<bar>y - f(x)\<bar> & \<bar>y - f(x)\<bar> < e --> f(g(y)) = y)"
huffman@29166
  1614
apply (drule isCont_inj_range)
huffman@29166
  1615
prefer 2 apply (assumption, assumption, auto)
huffman@29166
  1616
apply (rule_tac x = e in exI, auto)
huffman@29166
  1617
apply (rotate_tac 2)
huffman@29166
  1618
apply (drule_tac x = y in spec, auto)
huffman@29166
  1619
done
huffman@29166
  1620
huffman@29166
  1621
huffman@29166
  1622
text{*Bartle/Sherbert: Introduction to Real Analysis, Theorem 4.2.9, p. 110*}
huffman@29166
  1623
lemma LIM_fun_gt_zero:
huffman@29166
  1624
     "[| f -- c --> (l::real); 0 < l |]  
huffman@29166
  1625
         ==> \<exists>r. 0 < r & (\<forall>x::real. x \<noteq> c & \<bar>c - x\<bar> < r --> 0 < f x)"
huffman@31338
  1626
apply (auto simp add: LIM_eq)
huffman@29166
  1627
apply (drule_tac x = "l/2" in spec, safe, force)
huffman@29166
  1628
apply (rule_tac x = s in exI)
huffman@29166
  1629
apply (auto simp only: abs_less_iff)
huffman@29166
  1630
done
huffman@29166
  1631
huffman@29166
  1632
lemma LIM_fun_less_zero:
huffman@29166
  1633
     "[| f -- c --> (l::real); l < 0 |]  
huffman@29166
  1634
      ==> \<exists>r. 0 < r & (\<forall>x::real. x \<noteq> c & \<bar>c - x\<bar> < r --> f x < 0)"
huffman@31338
  1635
apply (auto simp add: LIM_eq)
huffman@29166
  1636
apply (drule_tac x = "-l/2" in spec, safe, force)
huffman@29166
  1637
apply (rule_tac x = s in exI)
huffman@29166
  1638
apply (auto simp only: abs_less_iff)
huffman@29166
  1639
done
huffman@29166
  1640
huffman@29166
  1641
huffman@29166
  1642
lemma LIM_fun_not_zero:
huffman@29166
  1643
     "[| f -- c --> (l::real); l \<noteq> 0 |] 
huffman@29166
  1644
      ==> \<exists>r. 0 < r & (\<forall>x::real. x \<noteq> c & \<bar>c - x\<bar> < r --> f x \<noteq> 0)"
huffman@29166
  1645
apply (cut_tac x = l and y = 0 in linorder_less_linear, auto)
huffman@29166
  1646
apply (drule LIM_fun_less_zero)
huffman@29166
  1647
apply (drule_tac [3] LIM_fun_gt_zero)
huffman@29166
  1648
apply force+
huffman@29166
  1649
done
huffman@29166
  1650
huffman@21164
  1651
end