src/HOL/Library/Product_Vector.thy
author wenzelm
Thu Feb 11 23:00:22 2010 +0100 (2010-02-11)
changeset 35115 446c5063e4fd
parent 34110 4c113c744b86
child 36332 3ddb2bc07784
permissions -rw-r--r--
modernized translations;
formal markup of @{syntax_const} and @{const_syntax};
minor tuning;
huffman@30019
     1
(*  Title:      HOL/Library/Product_Vector.thy
huffman@30019
     2
    Author:     Brian Huffman
huffman@30019
     3
*)
huffman@30019
     4
huffman@30019
     5
header {* Cartesian Products as Vector Spaces *}
huffman@30019
     6
huffman@30019
     7
theory Product_Vector
huffman@30019
     8
imports Inner_Product Product_plus
huffman@30019
     9
begin
huffman@30019
    10
huffman@30019
    11
subsection {* Product is a real vector space *}
huffman@30019
    12
huffman@30019
    13
instantiation "*" :: (real_vector, real_vector) real_vector
huffman@30019
    14
begin
huffman@30019
    15
huffman@30019
    16
definition scaleR_prod_def:
huffman@30019
    17
  "scaleR r A = (scaleR r (fst A), scaleR r (snd A))"
huffman@30019
    18
huffman@30019
    19
lemma fst_scaleR [simp]: "fst (scaleR r A) = scaleR r (fst A)"
huffman@30019
    20
  unfolding scaleR_prod_def by simp
huffman@30019
    21
huffman@30019
    22
lemma snd_scaleR [simp]: "snd (scaleR r A) = scaleR r (snd A)"
huffman@30019
    23
  unfolding scaleR_prod_def by simp
huffman@30019
    24
huffman@30019
    25
lemma scaleR_Pair [simp]: "scaleR r (a, b) = (scaleR r a, scaleR r b)"
huffman@30019
    26
  unfolding scaleR_prod_def by simp
huffman@30019
    27
huffman@30019
    28
instance proof
huffman@30019
    29
  fix a b :: real and x y :: "'a \<times> 'b"
huffman@30019
    30
  show "scaleR a (x + y) = scaleR a x + scaleR a y"
huffman@30019
    31
    by (simp add: expand_prod_eq scaleR_right_distrib)
huffman@30019
    32
  show "scaleR (a + b) x = scaleR a x + scaleR b x"
huffman@30019
    33
    by (simp add: expand_prod_eq scaleR_left_distrib)
huffman@30019
    34
  show "scaleR a (scaleR b x) = scaleR (a * b) x"
huffman@30019
    35
    by (simp add: expand_prod_eq)
huffman@30019
    36
  show "scaleR 1 x = x"
huffman@30019
    37
    by (simp add: expand_prod_eq)
huffman@30019
    38
qed
huffman@30019
    39
huffman@30019
    40
end
huffman@30019
    41
huffman@31415
    42
subsection {* Product is a topological space *}
huffman@31415
    43
huffman@31415
    44
instantiation
huffman@31415
    45
  "*" :: (topological_space, topological_space) topological_space
huffman@31415
    46
begin
huffman@31415
    47
huffman@31492
    48
definition open_prod_def:
huffman@31492
    49
  "open (S :: ('a \<times> 'b) set) \<longleftrightarrow>
huffman@31492
    50
    (\<forall>x\<in>S. \<exists>A B. open A \<and> open B \<and> x \<in> A \<times> B \<and> A \<times> B \<subseteq> S)"
huffman@31415
    51
huffman@31415
    52
instance proof
huffman@31492
    53
  show "open (UNIV :: ('a \<times> 'b) set)"
huffman@31492
    54
    unfolding open_prod_def by auto
huffman@31415
    55
next
huffman@31415
    56
  fix S T :: "('a \<times> 'b) set"
huffman@31492
    57
  assume "open S" "open T" thus "open (S \<inter> T)"
huffman@31492
    58
    unfolding open_prod_def
huffman@31415
    59
    apply clarify
huffman@31415
    60
    apply (drule (1) bspec)+
huffman@31415
    61
    apply (clarify, rename_tac Sa Ta Sb Tb)
huffman@31492
    62
    apply (rule_tac x="Sa \<inter> Ta" in exI)
huffman@31492
    63
    apply (rule_tac x="Sb \<inter> Tb" in exI)
huffman@31492
    64
    apply (simp add: open_Int)
huffman@31415
    65
    apply fast
huffman@31415
    66
    done
huffman@31415
    67
next
huffman@31492
    68
  fix K :: "('a \<times> 'b) set set"
huffman@31492
    69
  assume "\<forall>S\<in>K. open S" thus "open (\<Union>K)"
huffman@31492
    70
    unfolding open_prod_def by fast
huffman@31415
    71
qed
huffman@31415
    72
huffman@31415
    73
end
huffman@31415
    74
huffman@31562
    75
lemma open_Times: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<times> T)"
huffman@31562
    76
unfolding open_prod_def by auto
huffman@31562
    77
huffman@31562
    78
lemma fst_vimage_eq_Times: "fst -` S = S \<times> UNIV"
huffman@31562
    79
by auto
huffman@31562
    80
huffman@31562
    81
lemma snd_vimage_eq_Times: "snd -` S = UNIV \<times> S"
huffman@31562
    82
by auto
huffman@31562
    83
huffman@31562
    84
lemma open_vimage_fst: "open S \<Longrightarrow> open (fst -` S)"
huffman@31562
    85
by (simp add: fst_vimage_eq_Times open_Times)
huffman@31562
    86
huffman@31562
    87
lemma open_vimage_snd: "open S \<Longrightarrow> open (snd -` S)"
huffman@31562
    88
by (simp add: snd_vimage_eq_Times open_Times)
huffman@31562
    89
huffman@31568
    90
lemma closed_vimage_fst: "closed S \<Longrightarrow> closed (fst -` S)"
huffman@31568
    91
unfolding closed_open vimage_Compl [symmetric]
huffman@31568
    92
by (rule open_vimage_fst)
huffman@31568
    93
huffman@31568
    94
lemma closed_vimage_snd: "closed S \<Longrightarrow> closed (snd -` S)"
huffman@31568
    95
unfolding closed_open vimage_Compl [symmetric]
huffman@31568
    96
by (rule open_vimage_snd)
huffman@31568
    97
huffman@31568
    98
lemma closed_Times: "closed S \<Longrightarrow> closed T \<Longrightarrow> closed (S \<times> T)"
huffman@31568
    99
proof -
huffman@31568
   100
  have "S \<times> T = (fst -` S) \<inter> (snd -` T)" by auto
huffman@31568
   101
  thus "closed S \<Longrightarrow> closed T \<Longrightarrow> closed (S \<times> T)"
huffman@31568
   102
    by (simp add: closed_vimage_fst closed_vimage_snd closed_Int)
huffman@31568
   103
qed
huffman@31568
   104
huffman@34110
   105
lemma openI: (* TODO: move *)
huffman@34110
   106
  assumes "\<And>x. x \<in> S \<Longrightarrow> \<exists>T. open T \<and> x \<in> T \<and> T \<subseteq> S"
huffman@34110
   107
  shows "open S"
huffman@34110
   108
proof -
huffman@34110
   109
  have "open (\<Union>{T. open T \<and> T \<subseteq> S})" by auto
huffman@34110
   110
  moreover have "\<Union>{T. open T \<and> T \<subseteq> S} = S" by (auto dest!: assms)
huffman@34110
   111
  ultimately show "open S" by simp
huffman@34110
   112
qed
huffman@34110
   113
huffman@34110
   114
lemma subset_fst_imageI: "A \<times> B \<subseteq> S \<Longrightarrow> y \<in> B \<Longrightarrow> A \<subseteq> fst ` S"
huffman@34110
   115
  unfolding image_def subset_eq by force
huffman@34110
   116
huffman@34110
   117
lemma subset_snd_imageI: "A \<times> B \<subseteq> S \<Longrightarrow> x \<in> A \<Longrightarrow> B \<subseteq> snd ` S"
huffman@34110
   118
  unfolding image_def subset_eq by force
huffman@34110
   119
huffman@34110
   120
lemma open_image_fst: assumes "open S" shows "open (fst ` S)"
huffman@34110
   121
proof (rule openI)
huffman@34110
   122
  fix x assume "x \<in> fst ` S"
huffman@34110
   123
  then obtain y where "(x, y) \<in> S" by auto
huffman@34110
   124
  then obtain A B where "open A" "open B" "x \<in> A" "y \<in> B" "A \<times> B \<subseteq> S"
huffman@34110
   125
    using `open S` unfolding open_prod_def by auto
huffman@34110
   126
  from `A \<times> B \<subseteq> S` `y \<in> B` have "A \<subseteq> fst ` S" by (rule subset_fst_imageI)
huffman@34110
   127
  with `open A` `x \<in> A` have "open A \<and> x \<in> A \<and> A \<subseteq> fst ` S" by simp
huffman@34110
   128
  then show "\<exists>T. open T \<and> x \<in> T \<and> T \<subseteq> fst ` S" by - (rule exI)
huffman@34110
   129
qed
huffman@34110
   130
huffman@34110
   131
lemma open_image_snd: assumes "open S" shows "open (snd ` S)"
huffman@34110
   132
proof (rule openI)
huffman@34110
   133
  fix y assume "y \<in> snd ` S"
huffman@34110
   134
  then obtain x where "(x, y) \<in> S" by auto
huffman@34110
   135
  then obtain A B where "open A" "open B" "x \<in> A" "y \<in> B" "A \<times> B \<subseteq> S"
huffman@34110
   136
    using `open S` unfolding open_prod_def by auto
huffman@34110
   137
  from `A \<times> B \<subseteq> S` `x \<in> A` have "B \<subseteq> snd ` S" by (rule subset_snd_imageI)
huffman@34110
   138
  with `open B` `y \<in> B` have "open B \<and> y \<in> B \<and> B \<subseteq> snd ` S" by simp
huffman@34110
   139
  then show "\<exists>T. open T \<and> y \<in> T \<and> T \<subseteq> snd ` S" by - (rule exI)
huffman@34110
   140
qed
huffman@31568
   141
huffman@31339
   142
subsection {* Product is a metric space *}
huffman@31339
   143
huffman@31339
   144
instantiation
huffman@31339
   145
  "*" :: (metric_space, metric_space) metric_space
huffman@31339
   146
begin
huffman@31339
   147
huffman@31339
   148
definition dist_prod_def:
huffman@31339
   149
  "dist (x::'a \<times> 'b) y = sqrt ((dist (fst x) (fst y))\<twosuperior> + (dist (snd x) (snd y))\<twosuperior>)"
huffman@31339
   150
huffman@31339
   151
lemma dist_Pair_Pair: "dist (a, b) (c, d) = sqrt ((dist a c)\<twosuperior> + (dist b d)\<twosuperior>)"
huffman@31339
   152
  unfolding dist_prod_def by simp
huffman@31339
   153
huffman@31339
   154
instance proof
huffman@31339
   155
  fix x y :: "'a \<times> 'b"
huffman@31339
   156
  show "dist x y = 0 \<longleftrightarrow> x = y"
huffman@31563
   157
    unfolding dist_prod_def expand_prod_eq by simp
huffman@31339
   158
next
huffman@31339
   159
  fix x y z :: "'a \<times> 'b"
huffman@31339
   160
  show "dist x y \<le> dist x z + dist y z"
huffman@31339
   161
    unfolding dist_prod_def
huffman@31563
   162
    by (intro order_trans [OF _ real_sqrt_sum_squares_triangle_ineq]
huffman@31563
   163
        real_sqrt_le_mono add_mono power_mono dist_triangle2 zero_le_dist)
huffman@31415
   164
next
huffman@31415
   165
  (* FIXME: long proof! *)
huffman@31415
   166
  (* Maybe it would be easier to define topological spaces *)
huffman@31415
   167
  (* in terms of neighborhoods instead of open sets? *)
huffman@31492
   168
  fix S :: "('a \<times> 'b) set"
huffman@31492
   169
  show "open S \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S)"
huffman@31563
   170
  proof
huffman@31563
   171
    assume "open S" thus "\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S"
huffman@31492
   172
    unfolding open_prod_def open_dist
huffman@31492
   173
    apply safe
huffman@31415
   174
    apply (drule (1) bspec)
huffman@31415
   175
    apply clarify
huffman@31415
   176
    apply (drule (1) bspec)+
huffman@31415
   177
    apply (clarify, rename_tac r s)
huffman@31415
   178
    apply (rule_tac x="min r s" in exI, simp)
huffman@31415
   179
    apply (clarify, rename_tac c d)
huffman@31415
   180
    apply (erule subsetD)
huffman@31415
   181
    apply (simp add: dist_Pair_Pair)
huffman@31415
   182
    apply (rule conjI)
huffman@31415
   183
    apply (drule spec, erule mp)
huffman@31415
   184
    apply (erule le_less_trans [OF real_sqrt_sum_squares_ge1])
huffman@31415
   185
    apply (drule spec, erule mp)
huffman@31415
   186
    apply (erule le_less_trans [OF real_sqrt_sum_squares_ge2])
huffman@31563
   187
    done
huffman@31563
   188
  next
huffman@31563
   189
    assume "\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S" thus "open S"
huffman@31563
   190
    unfolding open_prod_def open_dist
huffman@31563
   191
    apply safe
huffman@31415
   192
    apply (drule (1) bspec)
huffman@31415
   193
    apply clarify
huffman@31415
   194
    apply (subgoal_tac "\<exists>r>0. \<exists>s>0. e = sqrt (r\<twosuperior> + s\<twosuperior>)")
huffman@31415
   195
    apply clarify
huffman@31492
   196
    apply (rule_tac x="{y. dist y a < r}" in exI)
huffman@31492
   197
    apply (rule_tac x="{y. dist y b < s}" in exI)
huffman@31492
   198
    apply (rule conjI)
huffman@31415
   199
    apply clarify
huffman@31415
   200
    apply (rule_tac x="r - dist x a" in exI, rule conjI, simp)
huffman@31415
   201
    apply clarify
huffman@31563
   202
    apply (simp add: less_diff_eq)
huffman@31563
   203
    apply (erule le_less_trans [OF dist_triangle])
huffman@31492
   204
    apply (rule conjI)
huffman@31415
   205
    apply clarify
huffman@31415
   206
    apply (rule_tac x="s - dist x b" in exI, rule conjI, simp)
huffman@31415
   207
    apply clarify
huffman@31563
   208
    apply (simp add: less_diff_eq)
huffman@31563
   209
    apply (erule le_less_trans [OF dist_triangle])
huffman@31415
   210
    apply (rule conjI)
huffman@31415
   211
    apply simp
huffman@31415
   212
    apply (clarify, rename_tac c d)
huffman@31415
   213
    apply (drule spec, erule mp)
huffman@31415
   214
    apply (simp add: dist_Pair_Pair add_strict_mono power_strict_mono)
huffman@31415
   215
    apply (rule_tac x="e / sqrt 2" in exI, simp add: divide_pos_pos)
huffman@31415
   216
    apply (rule_tac x="e / sqrt 2" in exI, simp add: divide_pos_pos)
huffman@31415
   217
    apply (simp add: power_divide)
huffman@31415
   218
    done
huffman@31563
   219
  qed
huffman@31339
   220
qed
huffman@31339
   221
huffman@31339
   222
end
huffman@31339
   223
huffman@31405
   224
subsection {* Continuity of operations *}
huffman@31405
   225
huffman@31405
   226
lemma dist_fst_le: "dist (fst x) (fst y) \<le> dist x y"
huffman@31405
   227
unfolding dist_prod_def by simp
huffman@31405
   228
huffman@31405
   229
lemma dist_snd_le: "dist (snd x) (snd y) \<le> dist x y"
huffman@31405
   230
unfolding dist_prod_def by simp
huffman@31405
   231
huffman@31565
   232
lemma tendsto_fst [tendsto_intros]:
huffman@31491
   233
  assumes "(f ---> a) net"
huffman@31491
   234
  shows "((\<lambda>x. fst (f x)) ---> fst a) net"
huffman@31491
   235
proof (rule topological_tendstoI)
huffman@31492
   236
  fix S assume "open S" "fst a \<in> S"
huffman@31492
   237
  then have "open (fst -` S)" "a \<in> fst -` S"
huffman@31492
   238
    unfolding open_prod_def
huffman@31491
   239
    apply simp_all
huffman@31491
   240
    apply clarify
huffman@31492
   241
    apply (rule exI, erule conjI)
huffman@31492
   242
    apply (rule exI, rule conjI [OF open_UNIV])
huffman@31491
   243
    apply auto
huffman@31491
   244
    done
huffman@31491
   245
  with assms have "eventually (\<lambda>x. f x \<in> fst -` S) net"
huffman@31491
   246
    by (rule topological_tendstoD)
huffman@31491
   247
  then show "eventually (\<lambda>x. fst (f x) \<in> S) net"
huffman@31491
   248
    by simp
huffman@31405
   249
qed
huffman@31405
   250
huffman@31565
   251
lemma tendsto_snd [tendsto_intros]:
huffman@31491
   252
  assumes "(f ---> a) net"
huffman@31491
   253
  shows "((\<lambda>x. snd (f x)) ---> snd a) net"
huffman@31491
   254
proof (rule topological_tendstoI)
huffman@31492
   255
  fix S assume "open S" "snd a \<in> S"
huffman@31492
   256
  then have "open (snd -` S)" "a \<in> snd -` S"
huffman@31492
   257
    unfolding open_prod_def
huffman@31491
   258
    apply simp_all
huffman@31491
   259
    apply clarify
huffman@31492
   260
    apply (rule exI, rule conjI [OF open_UNIV])
huffman@31492
   261
    apply (rule exI, erule conjI)
huffman@31491
   262
    apply auto
huffman@31491
   263
    done
huffman@31491
   264
  with assms have "eventually (\<lambda>x. f x \<in> snd -` S) net"
huffman@31491
   265
    by (rule topological_tendstoD)
huffman@31491
   266
  then show "eventually (\<lambda>x. snd (f x) \<in> S) net"
huffman@31491
   267
    by simp
huffman@31405
   268
qed
huffman@31405
   269
huffman@31565
   270
lemma tendsto_Pair [tendsto_intros]:
huffman@31491
   271
  assumes "(f ---> a) net" and "(g ---> b) net"
huffman@31491
   272
  shows "((\<lambda>x. (f x, g x)) ---> (a, b)) net"
huffman@31491
   273
proof (rule topological_tendstoI)
huffman@31492
   274
  fix S assume "open S" "(a, b) \<in> S"
huffman@31492
   275
  then obtain A B where "open A" "open B" "a \<in> A" "b \<in> B" "A \<times> B \<subseteq> S"
huffman@31492
   276
    unfolding open_prod_def by auto
huffman@31491
   277
  have "eventually (\<lambda>x. f x \<in> A) net"
huffman@31492
   278
    using `(f ---> a) net` `open A` `a \<in> A`
huffman@31491
   279
    by (rule topological_tendstoD)
huffman@31405
   280
  moreover
huffman@31491
   281
  have "eventually (\<lambda>x. g x \<in> B) net"
huffman@31492
   282
    using `(g ---> b) net` `open B` `b \<in> B`
huffman@31491
   283
    by (rule topological_tendstoD)
huffman@31405
   284
  ultimately
huffman@31491
   285
  show "eventually (\<lambda>x. (f x, g x) \<in> S) net"
huffman@31405
   286
    by (rule eventually_elim2)
huffman@31491
   287
       (simp add: subsetD [OF `A \<times> B \<subseteq> S`])
huffman@31405
   288
qed
huffman@31405
   289
huffman@31405
   290
lemma LIMSEQ_fst: "(X ----> a) \<Longrightarrow> (\<lambda>n. fst (X n)) ----> fst a"
huffman@31405
   291
unfolding LIMSEQ_conv_tendsto by (rule tendsto_fst)
huffman@31405
   292
huffman@31405
   293
lemma LIMSEQ_snd: "(X ----> a) \<Longrightarrow> (\<lambda>n. snd (X n)) ----> snd a"
huffman@31405
   294
unfolding LIMSEQ_conv_tendsto by (rule tendsto_snd)
huffman@31405
   295
huffman@31405
   296
lemma LIMSEQ_Pair:
huffman@31405
   297
  assumes "X ----> a" and "Y ----> b"
huffman@31405
   298
  shows "(\<lambda>n. (X n, Y n)) ----> (a, b)"
huffman@31405
   299
using assms unfolding LIMSEQ_conv_tendsto
huffman@31405
   300
by (rule tendsto_Pair)
huffman@31405
   301
huffman@31405
   302
lemma LIM_fst: "f -- x --> a \<Longrightarrow> (\<lambda>x. fst (f x)) -- x --> fst a"
huffman@31405
   303
unfolding LIM_conv_tendsto by (rule tendsto_fst)
huffman@31405
   304
huffman@31405
   305
lemma LIM_snd: "f -- x --> a \<Longrightarrow> (\<lambda>x. snd (f x)) -- x --> snd a"
huffman@31405
   306
unfolding LIM_conv_tendsto by (rule tendsto_snd)
huffman@31405
   307
huffman@31405
   308
lemma LIM_Pair:
huffman@31405
   309
  assumes "f -- x --> a" and "g -- x --> b"
huffman@31405
   310
  shows "(\<lambda>x. (f x, g x)) -- x --> (a, b)"
huffman@31405
   311
using assms unfolding LIM_conv_tendsto
huffman@31405
   312
by (rule tendsto_Pair)
huffman@31405
   313
huffman@31405
   314
lemma Cauchy_fst: "Cauchy X \<Longrightarrow> Cauchy (\<lambda>n. fst (X n))"
huffman@31405
   315
unfolding Cauchy_def by (fast elim: le_less_trans [OF dist_fst_le])
huffman@31405
   316
huffman@31405
   317
lemma Cauchy_snd: "Cauchy X \<Longrightarrow> Cauchy (\<lambda>n. snd (X n))"
huffman@31405
   318
unfolding Cauchy_def by (fast elim: le_less_trans [OF dist_snd_le])
huffman@31405
   319
huffman@31405
   320
lemma Cauchy_Pair:
huffman@31405
   321
  assumes "Cauchy X" and "Cauchy Y"
huffman@31405
   322
  shows "Cauchy (\<lambda>n. (X n, Y n))"
huffman@31405
   323
proof (rule metric_CauchyI)
huffman@31405
   324
  fix r :: real assume "0 < r"
huffman@31405
   325
  then have "0 < r / sqrt 2" (is "0 < ?s")
huffman@31405
   326
    by (simp add: divide_pos_pos)
huffman@31405
   327
  obtain M where M: "\<forall>m\<ge>M. \<forall>n\<ge>M. dist (X m) (X n) < ?s"
huffman@31405
   328
    using metric_CauchyD [OF `Cauchy X` `0 < ?s`] ..
huffman@31405
   329
  obtain N where N: "\<forall>m\<ge>N. \<forall>n\<ge>N. dist (Y m) (Y n) < ?s"
huffman@31405
   330
    using metric_CauchyD [OF `Cauchy Y` `0 < ?s`] ..
huffman@31405
   331
  have "\<forall>m\<ge>max M N. \<forall>n\<ge>max M N. dist (X m, Y m) (X n, Y n) < r"
huffman@31405
   332
    using M N by (simp add: real_sqrt_sum_squares_less dist_Pair_Pair)
huffman@31405
   333
  then show "\<exists>n0. \<forall>m\<ge>n0. \<forall>n\<ge>n0. dist (X m, Y m) (X n, Y n) < r" ..
huffman@31405
   334
qed
huffman@31405
   335
huffman@31405
   336
lemma isCont_Pair [simp]:
huffman@31405
   337
  "\<lbrakk>isCont f x; isCont g x\<rbrakk> \<Longrightarrow> isCont (\<lambda>x. (f x, g x)) x"
huffman@31405
   338
  unfolding isCont_def by (rule LIM_Pair)
huffman@31405
   339
huffman@31405
   340
subsection {* Product is a complete metric space *}
huffman@31405
   341
huffman@31405
   342
instance "*" :: (complete_space, complete_space) complete_space
huffman@31405
   343
proof
huffman@31405
   344
  fix X :: "nat \<Rightarrow> 'a \<times> 'b" assume "Cauchy X"
huffman@31405
   345
  have 1: "(\<lambda>n. fst (X n)) ----> lim (\<lambda>n. fst (X n))"
huffman@31405
   346
    using Cauchy_fst [OF `Cauchy X`]
huffman@31405
   347
    by (simp add: Cauchy_convergent_iff convergent_LIMSEQ_iff)
huffman@31405
   348
  have 2: "(\<lambda>n. snd (X n)) ----> lim (\<lambda>n. snd (X n))"
huffman@31405
   349
    using Cauchy_snd [OF `Cauchy X`]
huffman@31405
   350
    by (simp add: Cauchy_convergent_iff convergent_LIMSEQ_iff)
huffman@31405
   351
  have "X ----> (lim (\<lambda>n. fst (X n)), lim (\<lambda>n. snd (X n)))"
huffman@31405
   352
    using LIMSEQ_Pair [OF 1 2] by simp
huffman@31405
   353
  then show "convergent X"
huffman@31405
   354
    by (rule convergentI)
huffman@31405
   355
qed
huffman@31405
   356
huffman@30019
   357
subsection {* Product is a normed vector space *}
huffman@30019
   358
huffman@30019
   359
instantiation
huffman@30019
   360
  "*" :: (real_normed_vector, real_normed_vector) real_normed_vector
huffman@30019
   361
begin
huffman@30019
   362
huffman@30019
   363
definition norm_prod_def:
huffman@30019
   364
  "norm x = sqrt ((norm (fst x))\<twosuperior> + (norm (snd x))\<twosuperior>)"
huffman@30019
   365
huffman@30019
   366
definition sgn_prod_def:
huffman@30019
   367
  "sgn (x::'a \<times> 'b) = scaleR (inverse (norm x)) x"
huffman@30019
   368
huffman@30019
   369
lemma norm_Pair: "norm (a, b) = sqrt ((norm a)\<twosuperior> + (norm b)\<twosuperior>)"
huffman@30019
   370
  unfolding norm_prod_def by simp
huffman@30019
   371
huffman@30019
   372
instance proof
huffman@30019
   373
  fix r :: real and x y :: "'a \<times> 'b"
huffman@30019
   374
  show "0 \<le> norm x"
huffman@30019
   375
    unfolding norm_prod_def by simp
huffman@30019
   376
  show "norm x = 0 \<longleftrightarrow> x = 0"
huffman@30019
   377
    unfolding norm_prod_def
huffman@30019
   378
    by (simp add: expand_prod_eq)
huffman@30019
   379
  show "norm (x + y) \<le> norm x + norm y"
huffman@30019
   380
    unfolding norm_prod_def
huffman@30019
   381
    apply (rule order_trans [OF _ real_sqrt_sum_squares_triangle_ineq])
huffman@30019
   382
    apply (simp add: add_mono power_mono norm_triangle_ineq)
huffman@30019
   383
    done
huffman@30019
   384
  show "norm (scaleR r x) = \<bar>r\<bar> * norm x"
huffman@30019
   385
    unfolding norm_prod_def
huffman@31587
   386
    apply (simp add: power_mult_distrib)
huffman@30019
   387
    apply (simp add: right_distrib [symmetric])
huffman@30019
   388
    apply (simp add: real_sqrt_mult_distrib)
huffman@30019
   389
    done
huffman@30019
   390
  show "sgn x = scaleR (inverse (norm x)) x"
huffman@30019
   391
    by (rule sgn_prod_def)
huffman@31290
   392
  show "dist x y = norm (x - y)"
huffman@31339
   393
    unfolding dist_prod_def norm_prod_def
huffman@31339
   394
    by (simp add: dist_norm)
huffman@30019
   395
qed
huffman@30019
   396
huffman@30019
   397
end
huffman@30019
   398
huffman@31405
   399
instance "*" :: (banach, banach) banach ..
huffman@31405
   400
huffman@30019
   401
subsection {* Product is an inner product space *}
huffman@30019
   402
huffman@30019
   403
instantiation "*" :: (real_inner, real_inner) real_inner
huffman@30019
   404
begin
huffman@30019
   405
huffman@30019
   406
definition inner_prod_def:
huffman@30019
   407
  "inner x y = inner (fst x) (fst y) + inner (snd x) (snd y)"
huffman@30019
   408
huffman@30019
   409
lemma inner_Pair [simp]: "inner (a, b) (c, d) = inner a c + inner b d"
huffman@30019
   410
  unfolding inner_prod_def by simp
huffman@30019
   411
huffman@30019
   412
instance proof
huffman@30019
   413
  fix r :: real
huffman@30019
   414
  fix x y z :: "'a::real_inner * 'b::real_inner"
huffman@30019
   415
  show "inner x y = inner y x"
huffman@30019
   416
    unfolding inner_prod_def
huffman@30019
   417
    by (simp add: inner_commute)
huffman@30019
   418
  show "inner (x + y) z = inner x z + inner y z"
huffman@30019
   419
    unfolding inner_prod_def
huffman@31590
   420
    by (simp add: inner_add_left)
huffman@30019
   421
  show "inner (scaleR r x) y = r * inner x y"
huffman@30019
   422
    unfolding inner_prod_def
huffman@31590
   423
    by (simp add: right_distrib)
huffman@30019
   424
  show "0 \<le> inner x x"
huffman@30019
   425
    unfolding inner_prod_def
huffman@30019
   426
    by (intro add_nonneg_nonneg inner_ge_zero)
huffman@30019
   427
  show "inner x x = 0 \<longleftrightarrow> x = 0"
huffman@30019
   428
    unfolding inner_prod_def expand_prod_eq
huffman@30019
   429
    by (simp add: add_nonneg_eq_0_iff)
huffman@30019
   430
  show "norm x = sqrt (inner x x)"
huffman@30019
   431
    unfolding norm_prod_def inner_prod_def
huffman@30019
   432
    by (simp add: power2_norm_eq_inner)
huffman@30019
   433
qed
huffman@30019
   434
huffman@30019
   435
end
huffman@30019
   436
huffman@31405
   437
subsection {* Pair operations are linear *}
huffman@30019
   438
wenzelm@30729
   439
interpretation fst: bounded_linear fst
huffman@30019
   440
  apply (unfold_locales)
huffman@30019
   441
  apply (rule fst_add)
huffman@30019
   442
  apply (rule fst_scaleR)
huffman@30019
   443
  apply (rule_tac x="1" in exI, simp add: norm_Pair)
huffman@30019
   444
  done
huffman@30019
   445
wenzelm@30729
   446
interpretation snd: bounded_linear snd
huffman@30019
   447
  apply (unfold_locales)
huffman@30019
   448
  apply (rule snd_add)
huffman@30019
   449
  apply (rule snd_scaleR)
huffman@30019
   450
  apply (rule_tac x="1" in exI, simp add: norm_Pair)
huffman@30019
   451
  done
huffman@30019
   452
huffman@30019
   453
text {* TODO: move to NthRoot *}
huffman@30019
   454
lemma sqrt_add_le_add_sqrt:
huffman@30019
   455
  assumes x: "0 \<le> x" and y: "0 \<le> y"
huffman@30019
   456
  shows "sqrt (x + y) \<le> sqrt x + sqrt y"
huffman@30019
   457
apply (rule power2_le_imp_le)
huffman@30019
   458
apply (simp add: real_sum_squared_expand add_nonneg_nonneg x y)
huffman@30019
   459
apply (simp add: mult_nonneg_nonneg x y)
huffman@30019
   460
apply (simp add: add_nonneg_nonneg x y)
huffman@30019
   461
done
huffman@30019
   462
huffman@30019
   463
lemma bounded_linear_Pair:
huffman@30019
   464
  assumes f: "bounded_linear f"
huffman@30019
   465
  assumes g: "bounded_linear g"
huffman@30019
   466
  shows "bounded_linear (\<lambda>x. (f x, g x))"
huffman@30019
   467
proof
huffman@30019
   468
  interpret f: bounded_linear f by fact
huffman@30019
   469
  interpret g: bounded_linear g by fact
huffman@30019
   470
  fix x y and r :: real
huffman@30019
   471
  show "(f (x + y), g (x + y)) = (f x, g x) + (f y, g y)"
huffman@30019
   472
    by (simp add: f.add g.add)
huffman@30019
   473
  show "(f (r *\<^sub>R x), g (r *\<^sub>R x)) = r *\<^sub>R (f x, g x)"
huffman@30019
   474
    by (simp add: f.scaleR g.scaleR)
huffman@30019
   475
  obtain Kf where "0 < Kf" and norm_f: "\<And>x. norm (f x) \<le> norm x * Kf"
huffman@30019
   476
    using f.pos_bounded by fast
huffman@30019
   477
  obtain Kg where "0 < Kg" and norm_g: "\<And>x. norm (g x) \<le> norm x * Kg"
huffman@30019
   478
    using g.pos_bounded by fast
huffman@30019
   479
  have "\<forall>x. norm (f x, g x) \<le> norm x * (Kf + Kg)"
huffman@30019
   480
    apply (rule allI)
huffman@30019
   481
    apply (simp add: norm_Pair)
huffman@30019
   482
    apply (rule order_trans [OF sqrt_add_le_add_sqrt], simp, simp)
huffman@30019
   483
    apply (simp add: right_distrib)
huffman@30019
   484
    apply (rule add_mono [OF norm_f norm_g])
huffman@30019
   485
    done
huffman@30019
   486
  then show "\<exists>K. \<forall>x. norm (f x, g x) \<le> norm x * K" ..
huffman@30019
   487
qed
huffman@30019
   488
huffman@30019
   489
subsection {* Frechet derivatives involving pairs *}
huffman@30019
   490
huffman@30019
   491
lemma FDERIV_Pair:
huffman@30019
   492
  assumes f: "FDERIV f x :> f'" and g: "FDERIV g x :> g'"
huffman@30019
   493
  shows "FDERIV (\<lambda>x. (f x, g x)) x :> (\<lambda>h. (f' h, g' h))"
huffman@30019
   494
apply (rule FDERIV_I)
huffman@30019
   495
apply (rule bounded_linear_Pair)
huffman@30019
   496
apply (rule FDERIV_bounded_linear [OF f])
huffman@30019
   497
apply (rule FDERIV_bounded_linear [OF g])
huffman@30019
   498
apply (simp add: norm_Pair)
huffman@30019
   499
apply (rule real_LIM_sandwich_zero)
huffman@30019
   500
apply (rule LIM_add_zero)
huffman@30019
   501
apply (rule FDERIV_D [OF f])
huffman@30019
   502
apply (rule FDERIV_D [OF g])
huffman@30019
   503
apply (rename_tac h)
huffman@30019
   504
apply (simp add: divide_nonneg_pos)
huffman@30019
   505
apply (rename_tac h)
huffman@30019
   506
apply (subst add_divide_distrib [symmetric])
huffman@30019
   507
apply (rule divide_right_mono [OF _ norm_ge_zero])
huffman@30019
   508
apply (rule order_trans [OF sqrt_add_le_add_sqrt])
huffman@30019
   509
apply simp
huffman@30019
   510
apply simp
huffman@30019
   511
apply simp
huffman@30019
   512
done
huffman@30019
   513
huffman@30019
   514
end