src/HOL/Numeral_Simprocs.thy
author wenzelm
Thu Feb 11 23:00:22 2010 +0100 (2010-02-11)
changeset 35115 446c5063e4fd
parent 33366 b0096ac3b731
child 37886 2f9d3fc1a8ac
permissions -rw-r--r--
modernized translations;
formal markup of @{syntax_const} and @{const_syntax};
minor tuning;
haftmann@33366
     1
(* Author: Various *)
haftmann@33366
     2
haftmann@33366
     3
header {* Combination and Cancellation Simprocs for Numeral Expressions *}
haftmann@33366
     4
haftmann@33366
     5
theory Numeral_Simprocs
haftmann@33366
     6
imports Divides
haftmann@33366
     7
uses
haftmann@33366
     8
  "~~/src/Provers/Arith/assoc_fold.ML"
haftmann@33366
     9
  "~~/src/Provers/Arith/cancel_numerals.ML"
haftmann@33366
    10
  "~~/src/Provers/Arith/combine_numerals.ML"
haftmann@33366
    11
  "~~/src/Provers/Arith/cancel_numeral_factor.ML"
haftmann@33366
    12
  "~~/src/Provers/Arith/extract_common_term.ML"
haftmann@33366
    13
  ("Tools/numeral_simprocs.ML")
haftmann@33366
    14
  ("Tools/nat_numeral_simprocs.ML")
haftmann@33366
    15
begin
haftmann@33366
    16
haftmann@33366
    17
declare split_div [of _ _ "number_of k", standard, arith_split]
haftmann@33366
    18
declare split_mod [of _ _ "number_of k", standard, arith_split]
haftmann@33366
    19
haftmann@33366
    20
text {* For @{text combine_numerals} *}
haftmann@33366
    21
haftmann@33366
    22
lemma left_add_mult_distrib: "i*u + (j*u + k) = (i+j)*u + (k::nat)"
haftmann@33366
    23
by (simp add: add_mult_distrib)
haftmann@33366
    24
haftmann@33366
    25
text {* For @{text cancel_numerals} *}
haftmann@33366
    26
haftmann@33366
    27
lemma nat_diff_add_eq1:
haftmann@33366
    28
     "j <= (i::nat) ==> ((i*u + m) - (j*u + n)) = (((i-j)*u + m) - n)"
haftmann@33366
    29
by (simp split add: nat_diff_split add: add_mult_distrib)
haftmann@33366
    30
haftmann@33366
    31
lemma nat_diff_add_eq2:
haftmann@33366
    32
     "i <= (j::nat) ==> ((i*u + m) - (j*u + n)) = (m - ((j-i)*u + n))"
haftmann@33366
    33
by (simp split add: nat_diff_split add: add_mult_distrib)
haftmann@33366
    34
haftmann@33366
    35
lemma nat_eq_add_iff1:
haftmann@33366
    36
     "j <= (i::nat) ==> (i*u + m = j*u + n) = ((i-j)*u + m = n)"
haftmann@33366
    37
by (auto split add: nat_diff_split simp add: add_mult_distrib)
haftmann@33366
    38
haftmann@33366
    39
lemma nat_eq_add_iff2:
haftmann@33366
    40
     "i <= (j::nat) ==> (i*u + m = j*u + n) = (m = (j-i)*u + n)"
haftmann@33366
    41
by (auto split add: nat_diff_split simp add: add_mult_distrib)
haftmann@33366
    42
haftmann@33366
    43
lemma nat_less_add_iff1:
haftmann@33366
    44
     "j <= (i::nat) ==> (i*u + m < j*u + n) = ((i-j)*u + m < n)"
haftmann@33366
    45
by (auto split add: nat_diff_split simp add: add_mult_distrib)
haftmann@33366
    46
haftmann@33366
    47
lemma nat_less_add_iff2:
haftmann@33366
    48
     "i <= (j::nat) ==> (i*u + m < j*u + n) = (m < (j-i)*u + n)"
haftmann@33366
    49
by (auto split add: nat_diff_split simp add: add_mult_distrib)
haftmann@33366
    50
haftmann@33366
    51
lemma nat_le_add_iff1:
haftmann@33366
    52
     "j <= (i::nat) ==> (i*u + m <= j*u + n) = ((i-j)*u + m <= n)"
haftmann@33366
    53
by (auto split add: nat_diff_split simp add: add_mult_distrib)
haftmann@33366
    54
haftmann@33366
    55
lemma nat_le_add_iff2:
haftmann@33366
    56
     "i <= (j::nat) ==> (i*u + m <= j*u + n) = (m <= (j-i)*u + n)"
haftmann@33366
    57
by (auto split add: nat_diff_split simp add: add_mult_distrib)
haftmann@33366
    58
haftmann@33366
    59
text {* For @{text cancel_numeral_factors} *}
haftmann@33366
    60
haftmann@33366
    61
lemma nat_mult_le_cancel1: "(0::nat) < k ==> (k*m <= k*n) = (m<=n)"
haftmann@33366
    62
by auto
haftmann@33366
    63
haftmann@33366
    64
lemma nat_mult_less_cancel1: "(0::nat) < k ==> (k*m < k*n) = (m<n)"
haftmann@33366
    65
by auto
haftmann@33366
    66
haftmann@33366
    67
lemma nat_mult_eq_cancel1: "(0::nat) < k ==> (k*m = k*n) = (m=n)"
haftmann@33366
    68
by auto
haftmann@33366
    69
haftmann@33366
    70
lemma nat_mult_div_cancel1: "(0::nat) < k ==> (k*m) div (k*n) = (m div n)"
haftmann@33366
    71
by auto
haftmann@33366
    72
haftmann@33366
    73
lemma nat_mult_dvd_cancel_disj[simp]:
haftmann@33366
    74
  "(k*m) dvd (k*n) = (k=0 | m dvd (n::nat))"
haftmann@33366
    75
by(auto simp: dvd_eq_mod_eq_0 mod_mult_distrib2[symmetric])
haftmann@33366
    76
haftmann@33366
    77
lemma nat_mult_dvd_cancel1: "0 < k \<Longrightarrow> (k*m) dvd (k*n::nat) = (m dvd n)"
haftmann@33366
    78
by(auto)
haftmann@33366
    79
haftmann@33366
    80
text {* For @{text cancel_factor} *}
haftmann@33366
    81
haftmann@33366
    82
lemma nat_mult_le_cancel_disj: "(k*m <= k*n) = ((0::nat) < k --> m<=n)"
haftmann@33366
    83
by auto
haftmann@33366
    84
haftmann@33366
    85
lemma nat_mult_less_cancel_disj: "(k*m < k*n) = ((0::nat) < k & m<n)"
haftmann@33366
    86
by auto
haftmann@33366
    87
haftmann@33366
    88
lemma nat_mult_eq_cancel_disj: "(k*m = k*n) = (k = (0::nat) | m=n)"
haftmann@33366
    89
by auto
haftmann@33366
    90
haftmann@33366
    91
lemma nat_mult_div_cancel_disj[simp]:
haftmann@33366
    92
     "(k*m) div (k*n) = (if k = (0::nat) then 0 else m div n)"
haftmann@33366
    93
by (simp add: nat_mult_div_cancel1)
haftmann@33366
    94
haftmann@33366
    95
haftmann@33366
    96
use "Tools/numeral_simprocs.ML"
haftmann@33366
    97
haftmann@33366
    98
use "Tools/nat_numeral_simprocs.ML"
haftmann@33366
    99
haftmann@33366
   100
declaration {* 
haftmann@33366
   101
  K (Lin_Arith.add_simps (@{thms neg_simps} @ [@{thm Suc_nat_number_of}, @{thm int_nat_number_of}])
haftmann@33366
   102
  #> Lin_Arith.add_simps (@{thms ring_distribs} @ [@{thm Let_number_of}, @{thm Let_0}, @{thm Let_1},
haftmann@33366
   103
     @{thm nat_0}, @{thm nat_1},
haftmann@33366
   104
     @{thm add_nat_number_of}, @{thm diff_nat_number_of}, @{thm mult_nat_number_of},
haftmann@33366
   105
     @{thm eq_nat_number_of}, @{thm less_nat_number_of}, @{thm le_number_of_eq_not_less},
haftmann@33366
   106
     @{thm le_Suc_number_of}, @{thm le_number_of_Suc},
haftmann@33366
   107
     @{thm less_Suc_number_of}, @{thm less_number_of_Suc},
haftmann@33366
   108
     @{thm Suc_eq_number_of}, @{thm eq_number_of_Suc},
haftmann@33366
   109
     @{thm mult_Suc}, @{thm mult_Suc_right},
haftmann@33366
   110
     @{thm add_Suc}, @{thm add_Suc_right},
haftmann@33366
   111
     @{thm eq_number_of_0}, @{thm eq_0_number_of}, @{thm less_0_number_of},
haftmann@33366
   112
     @{thm of_int_number_of_eq}, @{thm of_nat_number_of_eq}, @{thm nat_number_of},
haftmann@33366
   113
     @{thm if_True}, @{thm if_False}])
haftmann@33366
   114
  #> Lin_Arith.add_simprocs (Numeral_Simprocs.assoc_fold_simproc
haftmann@33366
   115
      :: Numeral_Simprocs.combine_numerals
haftmann@33366
   116
      :: Numeral_Simprocs.cancel_numerals)
haftmann@33366
   117
  #> Lin_Arith.add_simprocs (Nat_Numeral_Simprocs.combine_numerals :: Nat_Numeral_Simprocs.cancel_numerals))
haftmann@33366
   118
*}
haftmann@33366
   119
haftmann@33366
   120
end