src/HOL/Typerep.thy
author wenzelm
Thu Feb 11 23:00:22 2010 +0100 (2010-02-11)
changeset 35115 446c5063e4fd
parent 33553 35f2b30593a8
child 35299 4f4d5bf4ea08
permissions -rw-r--r--
modernized translations;
formal markup of @{syntax_const} and @{const_syntax};
minor tuning;
haftmann@31048
     1
(* Author: Florian Haftmann, TU Muenchen *)
haftmann@26168
     2
haftmann@26168
     3
header {* Reflecting Pure types into HOL *}
haftmann@26168
     4
haftmann@28952
     5
theory Typerep
haftmann@31048
     6
imports Plain String
haftmann@26168
     7
begin
haftmann@26168
     8
haftmann@31205
     9
datatype typerep = Typerep String.literal "typerep list"
haftmann@26168
    10
haftmann@28335
    11
class typerep =
haftmann@31031
    12
  fixes typerep :: "'a itself \<Rightarrow> typerep"
haftmann@26168
    13
begin
haftmann@26168
    14
haftmann@29574
    15
definition typerep_of :: "'a \<Rightarrow> typerep" where
haftmann@28335
    16
  [simp]: "typerep_of x = typerep TYPE('a)"
haftmann@26168
    17
haftmann@26168
    18
end
haftmann@26168
    19
wenzelm@35115
    20
syntax
wenzelm@35115
    21
  "_TYPEREP" :: "type => logic"  ("(1TYPEREP/(1'(_')))")
wenzelm@35115
    22
wenzelm@35115
    23
parse_translation {*
haftmann@26168
    24
let
haftmann@28335
    25
  fun typerep_tr (*"_TYPEREP"*) [ty] =
wenzelm@35115
    26
        Syntax.const @{const_syntax typerep} $
wenzelm@35115
    27
          (Syntax.const @{syntax_const "_constrain"} $ Syntax.const @{const_syntax "TYPE"} $
wenzelm@35115
    28
            (Syntax.const "itself" $ ty))  (* FIXME @{type_syntax} *)
haftmann@28335
    29
    | typerep_tr (*"_TYPEREP"*) ts = raise TERM ("typerep_tr", ts);
wenzelm@35115
    30
in [(@{syntax_const "_TYPEREP"}, typerep_tr)] end
wenzelm@35115
    31
*}
wenzelm@35115
    32
wenzelm@35115
    33
typed_print_translation {*
wenzelm@35115
    34
let
wenzelm@35115
    35
  fun typerep_tr' show_sorts (*"typerep"*)  (* FIXME @{type_syntax} *)
haftmann@26168
    36
          (Type ("fun", [Type ("itself", [T]), _])) (Const (@{const_syntax TYPE}, _) :: ts) =
wenzelm@35115
    37
        Term.list_comb
wenzelm@35115
    38
          (Syntax.const @{syntax_const "_TYPEREP"} $ Syntax.term_of_typ show_sorts T, ts)
haftmann@28335
    39
    | typerep_tr' _ T ts = raise Match;
wenzelm@35115
    40
in [(@{const_syntax typerep}, typerep_tr')] end
haftmann@26168
    41
*}
haftmann@26168
    42
haftmann@31137
    43
setup {*
haftmann@31137
    44
let
haftmann@26168
    45
haftmann@31137
    46
fun add_typerep tyco thy =
haftmann@26168
    47
  let
haftmann@28335
    48
    val sorts = replicate (Sign.arity_number thy tyco) @{sort typerep};
haftmann@26168
    49
    val vs = Name.names Name.context "'a" sorts;
haftmann@26168
    50
    val ty = Type (tyco, map TFree vs);
haftmann@28335
    51
    val lhs = Const (@{const_name typerep}, Term.itselfT ty --> @{typ typerep})
haftmann@26168
    52
      $ Free ("T", Term.itselfT ty);
haftmann@31205
    53
    val rhs = @{term Typerep} $ HOLogic.mk_literal tyco
haftmann@31137
    54
      $ HOLogic.mk_list @{typ typerep} (map (HOLogic.mk_typerep o TFree) vs);
haftmann@26168
    55
    val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs));
haftmann@26168
    56
  in
haftmann@26168
    57
    thy
wenzelm@33553
    58
    |> Theory_Target.instantiation ([tyco], vs, @{sort typerep})
haftmann@26168
    59
    |> `(fn lthy => Syntax.check_term lthy eq)
haftmann@28965
    60
    |-> (fn eq => Specification.definition (NONE, (Attrib.empty_binding, eq)))
haftmann@26168
    61
    |> snd
haftmann@31137
    62
    |> Class.prove_instantiation_exit (K (Class.intro_classes_tac []))
haftmann@26168
    63
  end;
haftmann@26168
    64
haftmann@31137
    65
fun ensure_typerep tyco thy = if not (can (Sorts.mg_domain (Sign.classes_of thy) tyco) @{sort typerep})
haftmann@31137
    66
  andalso can (Sorts.mg_domain (Sign.classes_of thy) tyco) @{sort type}
haftmann@31137
    67
  then add_typerep tyco thy else thy;
haftmann@31137
    68
haftmann@31137
    69
in
haftmann@26168
    70
haftmann@31137
    71
add_typerep @{type_name fun}
haftmann@31723
    72
#> Typedef.interpretation ensure_typerep
haftmann@31137
    73
#> Code.type_interpretation (ensure_typerep o fst)
haftmann@26168
    74
haftmann@31137
    75
end
haftmann@26168
    76
*}
haftmann@26168
    77
haftmann@28562
    78
lemma [code]:
haftmann@28346
    79
  "eq_class.eq (Typerep tyco1 tys1) (Typerep tyco2 tys2) \<longleftrightarrow> eq_class.eq tyco1 tyco2
haftmann@28346
    80
     \<and> list_all2 eq_class.eq tys1 tys2"
haftmann@28346
    81
  by (auto simp add: equals_eq [symmetric] list_all2_eq [symmetric])
haftmann@26168
    82
haftmann@28335
    83
code_type typerep
haftmann@31031
    84
  (Eval "Term.typ")
haftmann@26168
    85
haftmann@28335
    86
code_const Typerep
haftmann@31031
    87
  (Eval "Term.Type/ (_, _)")
haftmann@26168
    88
haftmann@31031
    89
code_reserved Eval Term
haftmann@26168
    90
haftmann@28335
    91
hide (open) const typerep Typerep
haftmann@26168
    92
haftmann@26168
    93
end