src/ZF/Constructible/WF_absolute.thy
author paulson
Tue Oct 01 13:26:10 2002 +0200 (2002-10-01)
changeset 13615 449a70d88b38
parent 13564 1500a2e48d44
child 13634 99a593b49b04
permissions -rw-r--r--
Numerous cosmetic changes, prompted by the new simplifier
paulson@13505
     1
(*  Title:      ZF/Constructible/WF_absolute.thy
paulson@13505
     2
    ID:         $Id$
paulson@13505
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@13505
     4
    Copyright   2002  University of Cambridge
paulson@13505
     5
*)
paulson@13505
     6
paulson@13306
     7
header {*Absoluteness for Well-Founded Relations and Well-Founded Recursion*}
paulson@13306
     8
paulson@13242
     9
theory WF_absolute = WFrec:
paulson@13223
    10
paulson@13251
    11
subsection{*Every well-founded relation is a subset of some inverse image of
paulson@13247
    12
      an ordinal*}
paulson@13247
    13
paulson@13247
    14
lemma wf_rvimage_Ord: "Ord(i) \<Longrightarrow> wf(rvimage(A, f, Memrel(i)))"
paulson@13251
    15
by (blast intro: wf_rvimage wf_Memrel)
paulson@13247
    16
paulson@13247
    17
paulson@13247
    18
constdefs
paulson@13247
    19
  wfrank :: "[i,i]=>i"
paulson@13247
    20
    "wfrank(r,a) == wfrec(r, a, %x f. \<Union>y \<in> r-``{x}. succ(f`y))"
paulson@13247
    21
paulson@13247
    22
constdefs
paulson@13247
    23
  wftype :: "i=>i"
paulson@13247
    24
    "wftype(r) == \<Union>y \<in> range(r). succ(wfrank(r,y))"
paulson@13247
    25
paulson@13247
    26
lemma wfrank: "wf(r) ==> wfrank(r,a) = (\<Union>y \<in> r-``{a}. succ(wfrank(r,y)))"
paulson@13247
    27
by (subst wfrank_def [THEN def_wfrec], simp_all)
paulson@13247
    28
paulson@13247
    29
lemma Ord_wfrank: "wf(r) ==> Ord(wfrank(r,a))"
paulson@13339
    30
apply (rule_tac a=a in wf_induct, assumption)
paulson@13247
    31
apply (subst wfrank, assumption)
paulson@13251
    32
apply (rule Ord_succ [THEN Ord_UN], blast)
paulson@13247
    33
done
paulson@13247
    34
paulson@13247
    35
lemma wfrank_lt: "[|wf(r); <a,b> \<in> r|] ==> wfrank(r,a) < wfrank(r,b)"
paulson@13339
    36
apply (rule_tac a1 = b in wfrank [THEN ssubst], assumption)
paulson@13247
    37
apply (rule UN_I [THEN ltI])
paulson@13247
    38
apply (simp add: Ord_wfrank vimage_iff)+
paulson@13247
    39
done
paulson@13247
    40
paulson@13247
    41
lemma Ord_wftype: "wf(r) ==> Ord(wftype(r))"
paulson@13247
    42
by (simp add: wftype_def Ord_wfrank)
paulson@13247
    43
paulson@13247
    44
lemma wftypeI: "\<lbrakk>wf(r);  x \<in> field(r)\<rbrakk> \<Longrightarrow> wfrank(r,x) \<in> wftype(r)"
paulson@13251
    45
apply (simp add: wftype_def)
paulson@13251
    46
apply (blast intro: wfrank_lt [THEN ltD])
paulson@13247
    47
done
paulson@13247
    48
paulson@13247
    49
paulson@13247
    50
lemma wf_imp_subset_rvimage:
paulson@13247
    51
     "[|wf(r); r \<subseteq> A*A|] ==> \<exists>i f. Ord(i) & r <= rvimage(A, f, Memrel(i))"
paulson@13251
    52
apply (rule_tac x="wftype(r)" in exI)
paulson@13251
    53
apply (rule_tac x="\<lambda>x\<in>A. wfrank(r,x)" in exI)
paulson@13251
    54
apply (simp add: Ord_wftype, clarify)
paulson@13251
    55
apply (frule subsetD, assumption, clarify)
paulson@13247
    56
apply (simp add: rvimage_iff wfrank_lt [THEN ltD])
paulson@13251
    57
apply (blast intro: wftypeI)
paulson@13247
    58
done
paulson@13247
    59
paulson@13247
    60
theorem wf_iff_subset_rvimage:
paulson@13247
    61
  "relation(r) ==> wf(r) <-> (\<exists>i f A. Ord(i) & r <= rvimage(A, f, Memrel(i)))"
paulson@13247
    62
by (blast dest!: relation_field_times_field wf_imp_subset_rvimage
paulson@13247
    63
          intro: wf_rvimage_Ord [THEN wf_subset])
paulson@13247
    64
paulson@13247
    65
paulson@13223
    66
subsection{*Transitive closure without fixedpoints*}
paulson@13223
    67
paulson@13223
    68
constdefs
paulson@13223
    69
  rtrancl_alt :: "[i,i]=>i"
paulson@13251
    70
    "rtrancl_alt(A,r) ==
paulson@13223
    71
       {p \<in> A*A. \<exists>n\<in>nat. \<exists>f \<in> succ(n) -> A.
paulson@13242
    72
                 (\<exists>x y. p = <x,y> &  f`0 = x & f`n = y) &
paulson@13223
    73
                       (\<forall>i\<in>n. <f`i, f`succ(i)> \<in> r)}"
paulson@13223
    74
paulson@13251
    75
lemma alt_rtrancl_lemma1 [rule_format]:
paulson@13223
    76
    "n \<in> nat
paulson@13251
    77
     ==> \<forall>f \<in> succ(n) -> field(r).
paulson@13223
    78
         (\<forall>i\<in>n. \<langle>f`i, f ` succ(i)\<rangle> \<in> r) --> \<langle>f`0, f`n\<rangle> \<in> r^*"
paulson@13251
    79
apply (induct_tac n)
paulson@13251
    80
apply (simp_all add: apply_funtype rtrancl_refl, clarify)
paulson@13251
    81
apply (rename_tac n f)
paulson@13251
    82
apply (rule rtrancl_into_rtrancl)
paulson@13223
    83
 prefer 2 apply assumption
paulson@13223
    84
apply (drule_tac x="restrict(f,succ(n))" in bspec)
paulson@13251
    85
 apply (blast intro: restrict_type2)
paulson@13251
    86
apply (simp add: Ord_succ_mem_iff nat_0_le [THEN ltD] leI [THEN ltD] ltI)
paulson@13223
    87
done
paulson@13223
    88
paulson@13223
    89
lemma rtrancl_alt_subset_rtrancl: "rtrancl_alt(field(r),r) <= r^*"
paulson@13223
    90
apply (simp add: rtrancl_alt_def)
paulson@13251
    91
apply (blast intro: alt_rtrancl_lemma1)
paulson@13223
    92
done
paulson@13223
    93
paulson@13223
    94
lemma rtrancl_subset_rtrancl_alt: "r^* <= rtrancl_alt(field(r),r)"
paulson@13251
    95
apply (simp add: rtrancl_alt_def, clarify)
paulson@13251
    96
apply (frule rtrancl_type [THEN subsetD], clarify, simp)
paulson@13251
    97
apply (erule rtrancl_induct)
paulson@13223
    98
 txt{*Base case, trivial*}
paulson@13251
    99
 apply (rule_tac x=0 in bexI)
paulson@13251
   100
  apply (rule_tac x="lam x:1. xa" in bexI)
paulson@13251
   101
   apply simp_all
paulson@13223
   102
txt{*Inductive step*}
paulson@13251
   103
apply clarify
paulson@13251
   104
apply (rename_tac n f)
paulson@13251
   105
apply (rule_tac x="succ(n)" in bexI)
paulson@13223
   106
 apply (rule_tac x="lam i:succ(succ(n)). if i=succ(n) then z else f`i" in bexI)
paulson@13251
   107
  apply (simp add: Ord_succ_mem_iff nat_0_le [THEN ltD] leI [THEN ltD] ltI)
paulson@13251
   108
  apply (blast intro: mem_asym)
paulson@13251
   109
 apply typecheck
paulson@13251
   110
 apply auto
paulson@13223
   111
done
paulson@13223
   112
paulson@13223
   113
lemma rtrancl_alt_eq_rtrancl: "rtrancl_alt(field(r),r) = r^*"
paulson@13223
   114
by (blast del: subsetI
paulson@13251
   115
	  intro: rtrancl_alt_subset_rtrancl rtrancl_subset_rtrancl_alt)
paulson@13223
   116
paulson@13223
   117
paulson@13242
   118
constdefs
paulson@13242
   119
paulson@13324
   120
  rtran_closure_mem :: "[i=>o,i,i,i] => o"
paulson@13324
   121
    --{*The property of belonging to @{text "rtran_closure(r)"}*}
paulson@13324
   122
    "rtran_closure_mem(M,A,r,p) ==
paulson@13324
   123
	      \<exists>nnat[M]. \<exists>n[M]. \<exists>n'[M]. 
paulson@13324
   124
               omega(M,nnat) & n\<in>nnat & successor(M,n,n') &
paulson@13324
   125
	       (\<exists>f[M]. typed_function(M,n',A,f) &
paulson@13324
   126
		(\<exists>x[M]. \<exists>y[M]. \<exists>zero[M]. pair(M,x,y,p) & empty(M,zero) &
paulson@13324
   127
		  fun_apply(M,f,zero,x) & fun_apply(M,f,n,y)) &
paulson@13324
   128
		  (\<forall>j[M]. j\<in>n --> 
paulson@13324
   129
		    (\<exists>fj[M]. \<exists>sj[M]. \<exists>fsj[M]. \<exists>ffp[M]. 
paulson@13324
   130
		      fun_apply(M,f,j,fj) & successor(M,j,sj) &
paulson@13324
   131
		      fun_apply(M,f,sj,fsj) & pair(M,fj,fsj,ffp) & ffp \<in> r)))"
paulson@13324
   132
paulson@13242
   133
  rtran_closure :: "[i=>o,i,i] => o"
paulson@13324
   134
    "rtran_closure(M,r,s) == 
paulson@13324
   135
        \<forall>A[M]. is_field(M,r,A) -->
paulson@13324
   136
 	 (\<forall>p[M]. p \<in> s <-> rtran_closure_mem(M,A,r,p))"
paulson@13242
   137
paulson@13242
   138
  tran_closure :: "[i=>o,i,i] => o"
paulson@13251
   139
    "tran_closure(M,r,t) ==
paulson@13268
   140
         \<exists>s[M]. rtran_closure(M,r,s) & composition(M,r,s,t)"
paulson@13242
   141
paulson@13564
   142
lemma (in M_basic) rtran_closure_mem_iff:
paulson@13324
   143
     "[|M(A); M(r); M(p)|]
paulson@13324
   144
      ==> rtran_closure_mem(M,A,r,p) <->
paulson@13324
   145
          (\<exists>n[M]. n\<in>nat & 
paulson@13324
   146
           (\<exists>f[M]. f \<in> succ(n) -> A &
paulson@13324
   147
            (\<exists>x[M]. \<exists>y[M]. p = <x,y> & f`0 = x & f`n = y) &
paulson@13324
   148
                           (\<forall>i\<in>n. <f`i, f`succ(i)> \<in> r)))"
paulson@13352
   149
by (simp add: rtran_closure_mem_def Ord_succ_mem_iff nat_0_le [THEN ltD]) 
paulson@13352
   150
paulson@13242
   151
paulson@13564
   152
locale M_trancl = M_basic +
paulson@13242
   153
  assumes rtrancl_separation:
paulson@13324
   154
	 "[| M(r); M(A) |] ==> separation (M, rtran_closure_mem(M,A,r))"
paulson@13242
   155
      and wellfounded_trancl_separation:
paulson@13323
   156
	 "[| M(r); M(Z) |] ==> 
paulson@13323
   157
	  separation (M, \<lambda>x. 
paulson@13323
   158
	      \<exists>w[M]. \<exists>wx[M]. \<exists>rp[M]. 
paulson@13323
   159
	       w \<in> Z & pair(M,w,x,wx) & tran_closure(M,r,rp) & wx \<in> rp)"
paulson@13242
   160
paulson@13242
   161
paulson@13251
   162
lemma (in M_trancl) rtran_closure_rtrancl:
paulson@13242
   163
     "M(r) ==> rtran_closure(M,r,rtrancl(r))"
paulson@13324
   164
apply (simp add: rtran_closure_def rtran_closure_mem_iff 
paulson@13324
   165
                 rtrancl_alt_eq_rtrancl [symmetric] rtrancl_alt_def)
paulson@13339
   166
apply (auto simp add: nat_0_le [THEN ltD] apply_funtype) 
paulson@13242
   167
done
paulson@13242
   168
paulson@13251
   169
lemma (in M_trancl) rtrancl_closed [intro,simp]:
paulson@13242
   170
     "M(r) ==> M(rtrancl(r))"
paulson@13251
   171
apply (insert rtrancl_separation [of r "field(r)"])
paulson@13251
   172
apply (simp add: rtrancl_alt_eq_rtrancl [symmetric]
paulson@13324
   173
                 rtrancl_alt_def rtran_closure_mem_iff)
paulson@13242
   174
done
paulson@13242
   175
paulson@13251
   176
lemma (in M_trancl) rtrancl_abs [simp]:
paulson@13242
   177
     "[| M(r); M(z) |] ==> rtran_closure(M,r,z) <-> z = rtrancl(r)"
paulson@13242
   178
apply (rule iffI)
paulson@13242
   179
 txt{*Proving the right-to-left implication*}
paulson@13251
   180
 prefer 2 apply (blast intro: rtran_closure_rtrancl)
paulson@13242
   181
apply (rule M_equalityI)
paulson@13251
   182
apply (simp add: rtran_closure_def rtrancl_alt_eq_rtrancl [symmetric]
paulson@13324
   183
                 rtrancl_alt_def rtran_closure_mem_iff)
paulson@13339
   184
apply (auto simp add: nat_0_le [THEN ltD] apply_funtype) 
paulson@13242
   185
done
paulson@13242
   186
paulson@13251
   187
lemma (in M_trancl) trancl_closed [intro,simp]:
paulson@13242
   188
     "M(r) ==> M(trancl(r))"
paulson@13251
   189
by (simp add: trancl_def comp_closed rtrancl_closed)
paulson@13242
   190
paulson@13251
   191
lemma (in M_trancl) trancl_abs [simp]:
paulson@13242
   192
     "[| M(r); M(z) |] ==> tran_closure(M,r,z) <-> z = trancl(r)"
paulson@13251
   193
by (simp add: tran_closure_def trancl_def)
paulson@13242
   194
paulson@13323
   195
lemma (in M_trancl) wellfounded_trancl_separation':
paulson@13323
   196
     "[| M(r); M(Z) |] ==> separation (M, \<lambda>x. \<exists>w[M]. w \<in> Z & <w,x> \<in> r^+)"
paulson@13323
   197
by (insert wellfounded_trancl_separation [of r Z], simp) 
paulson@13242
   198
paulson@13251
   199
text{*Alternative proof of @{text wf_on_trancl}; inspiration for the
paulson@13242
   200
      relativized version.  Original version is on theory WF.*}
paulson@13242
   201
lemma "[| wf[A](r);  r-``A <= A |] ==> wf[A](r^+)"
paulson@13251
   202
apply (simp add: wf_on_def wf_def)
paulson@13242
   203
apply (safe intro!: equalityI)
paulson@13251
   204
apply (drule_tac x = "{x\<in>A. \<exists>w. \<langle>w,x\<rangle> \<in> r^+ & w \<in> Z}" in spec)
paulson@13251
   205
apply (blast elim: tranclE)
paulson@13242
   206
done
paulson@13242
   207
paulson@13242
   208
lemma (in M_trancl) wellfounded_on_trancl:
paulson@13242
   209
     "[| wellfounded_on(M,A,r);  r-``A <= A; M(r); M(A) |]
paulson@13251
   210
      ==> wellfounded_on(M,A,r^+)"
paulson@13251
   211
apply (simp add: wellfounded_on_def)
paulson@13242
   212
apply (safe intro!: equalityI)
paulson@13242
   213
apply (rename_tac Z x)
paulson@13268
   214
apply (subgoal_tac "M({x\<in>A. \<exists>w[M]. w \<in> Z & \<langle>w,x\<rangle> \<in> r^+})")
paulson@13251
   215
 prefer 2
paulson@13323
   216
 apply (blast intro: wellfounded_trancl_separation') 
paulson@13299
   217
apply (drule_tac x = "{x\<in>A. \<exists>w[M]. w \<in> Z & \<langle>w,x\<rangle> \<in> r^+}" in rspec, safe)
paulson@13251
   218
apply (blast dest: transM, simp)
paulson@13251
   219
apply (rename_tac y w)
paulson@13242
   220
apply (drule_tac x=w in bspec, assumption, clarify)
paulson@13242
   221
apply (erule tranclE)
paulson@13242
   222
  apply (blast dest: transM)   (*transM is needed to prove M(xa)*)
paulson@13251
   223
 apply blast
paulson@13242
   224
done
paulson@13242
   225
paulson@13251
   226
lemma (in M_trancl) wellfounded_trancl:
paulson@13251
   227
     "[|wellfounded(M,r); M(r)|] ==> wellfounded(M,r^+)"
paulson@13251
   228
apply (simp add: wellfounded_iff_wellfounded_on_field)
paulson@13251
   229
apply (rule wellfounded_on_subset_A, erule wellfounded_on_trancl)
paulson@13251
   230
   apply blast
paulson@13251
   231
  apply (simp_all add: trancl_type [THEN field_rel_subset])
paulson@13251
   232
done
paulson@13242
   233
paulson@13223
   234
text{*Relativized to M: Every well-founded relation is a subset of some
paulson@13251
   235
inverse image of an ordinal.  Key step is the construction (in M) of a
paulson@13223
   236
rank function.*}
paulson@13223
   237
paulson@13223
   238
wenzelm@13428
   239
locale M_wfrank = M_trancl +
paulson@13339
   240
  assumes wfrank_separation:
paulson@13251
   241
     "M(r) ==>
paulson@13339
   242
      separation (M, \<lambda>x. 
paulson@13348
   243
         \<forall>rplus[M]. tran_closure(M,r,rplus) -->
paulson@13352
   244
         ~ (\<exists>f[M]. M_is_recfun(M, %x f y. is_range(M,f,y), rplus, x, f)))"
paulson@13348
   245
 and wfrank_strong_replacement:
paulson@13242
   246
     "M(r) ==>
paulson@13348
   247
      strong_replacement(M, \<lambda>x z. 
paulson@13348
   248
         \<forall>rplus[M]. tran_closure(M,r,rplus) -->
paulson@13348
   249
         (\<exists>y[M]. \<exists>f[M]. pair(M,x,y,z)  & 
paulson@13352
   250
                        M_is_recfun(M, %x f y. is_range(M,f,y), rplus, x, f) &
paulson@13348
   251
                        is_range(M,f,y)))"
paulson@13242
   252
 and Ord_wfrank_separation:
paulson@13251
   253
     "M(r) ==>
paulson@13348
   254
      separation (M, \<lambda>x.
paulson@13348
   255
         \<forall>rplus[M]. tran_closure(M,r,rplus) --> 
paulson@13348
   256
          ~ (\<forall>f[M]. \<forall>rangef[M]. 
paulson@13348
   257
             is_range(M,f,rangef) -->
paulson@13352
   258
             M_is_recfun(M, \<lambda>x f y. is_range(M,f,y), rplus, x, f) -->
paulson@13348
   259
             ordinal(M,rangef)))" 
paulson@13348
   260
paulson@13348
   261
text{*Proving that the relativized instances of Separation or Replacement
paulson@13348
   262
agree with the "real" ones.*}
paulson@13339
   263
paulson@13339
   264
lemma (in M_wfrank) wfrank_separation':
paulson@13339
   265
     "M(r) ==>
paulson@13339
   266
      separation
paulson@13339
   267
	   (M, \<lambda>x. ~ (\<exists>f[M]. is_recfun(r^+, x, %x f. range(f), f)))"
paulson@13339
   268
apply (insert wfrank_separation [of r])
paulson@13353
   269
apply (simp add: relativize2_def is_recfun_abs [of "%x. range"])
paulson@13339
   270
done
paulson@13223
   271
paulson@13348
   272
lemma (in M_wfrank) wfrank_strong_replacement':
paulson@13348
   273
     "M(r) ==>
paulson@13348
   274
      strong_replacement(M, \<lambda>x z. \<exists>y[M]. \<exists>f[M]. 
paulson@13348
   275
		  pair(M,x,y,z) & is_recfun(r^+, x, %x f. range(f), f) &
paulson@13348
   276
		  y = range(f))"
paulson@13348
   277
apply (insert wfrank_strong_replacement [of r])
paulson@13353
   278
apply (simp add: relativize2_def is_recfun_abs [of "%x. range"])
paulson@13348
   279
done
paulson@13348
   280
paulson@13348
   281
lemma (in M_wfrank) Ord_wfrank_separation':
paulson@13348
   282
     "M(r) ==>
paulson@13348
   283
      separation (M, \<lambda>x. 
paulson@13348
   284
         ~ (\<forall>f[M]. is_recfun(r^+, x, \<lambda>x. range, f) --> Ord(range(f))))" 
paulson@13348
   285
apply (insert Ord_wfrank_separation [of r])
paulson@13353
   286
apply (simp add: relativize2_def is_recfun_abs [of "%x. range"])
paulson@13348
   287
done
paulson@13348
   288
paulson@13251
   289
text{*This function, defined using replacement, is a rank function for
paulson@13251
   290
well-founded relations within the class M.*}
paulson@13251
   291
constdefs
paulson@13242
   292
 wellfoundedrank :: "[i=>o,i,i] => i"
paulson@13251
   293
    "wellfoundedrank(M,r,A) ==
paulson@13268
   294
        {p. x\<in>A, \<exists>y[M]. \<exists>f[M]. 
paulson@13251
   295
                       p = <x,y> & is_recfun(r^+, x, %x f. range(f), f) &
paulson@13242
   296
                       y = range(f)}"
paulson@13223
   297
paulson@13268
   298
lemma (in M_wfrank) exists_wfrank:
paulson@13251
   299
    "[| wellfounded(M,r); M(a); M(r) |]
paulson@13268
   300
     ==> \<exists>f[M]. is_recfun(r^+, a, %x f. range(f), f)"
paulson@13251
   301
apply (rule wellfounded_exists_is_recfun)
paulson@13251
   302
      apply (blast intro: wellfounded_trancl)
paulson@13251
   303
     apply (rule trans_trancl)
paulson@13251
   304
    apply (erule wfrank_separation')
paulson@13251
   305
   apply (erule wfrank_strong_replacement')
paulson@13251
   306
apply (simp_all add: trancl_subset_times)
paulson@13223
   307
done
paulson@13223
   308
paulson@13268
   309
lemma (in M_wfrank) M_wellfoundedrank:
paulson@13251
   310
    "[| wellfounded(M,r); M(r); M(A) |] ==> M(wellfoundedrank(M,r,A))"
paulson@13251
   311
apply (insert wfrank_strong_replacement' [of r])
paulson@13251
   312
apply (simp add: wellfoundedrank_def)
paulson@13251
   313
apply (rule strong_replacement_closed)
paulson@13242
   314
   apply assumption+
paulson@13251
   315
 apply (rule univalent_is_recfun)
paulson@13251
   316
   apply (blast intro: wellfounded_trancl)
paulson@13251
   317
  apply (rule trans_trancl)
paulson@13505
   318
 apply (simp add: trancl_subset_times) 
paulson@13505
   319
apply (blast dest: transM) 
paulson@13223
   320
done
paulson@13223
   321
paulson@13268
   322
lemma (in M_wfrank) Ord_wfrank_range [rule_format]:
paulson@13251
   323
    "[| wellfounded(M,r); a\<in>A; M(r); M(A) |]
paulson@13348
   324
     ==> \<forall>f[M]. is_recfun(r^+, a, %x f. range(f), f) --> Ord(range(f))"
paulson@13251
   325
apply (drule wellfounded_trancl, assumption)
wenzelm@13428
   326
apply (rule wellfounded_induct, assumption, erule (1) transM)
paulson@13254
   327
  apply simp
paulson@13348
   328
 apply (blast intro: Ord_wfrank_separation', clarify)
paulson@13242
   329
txt{*The reasoning in both cases is that we get @{term y} such that
paulson@13251
   330
   @{term "\<langle>y, x\<rangle> \<in> r^+"}.  We find that
paulson@13242
   331
   @{term "f`y = restrict(f, r^+ -`` {y})"}. *}
paulson@13242
   332
apply (rule OrdI [OF _ Ord_is_Transset])
paulson@13242
   333
 txt{*An ordinal is a transitive set...*}
paulson@13251
   334
 apply (simp add: Transset_def)
paulson@13242
   335
 apply clarify
paulson@13251
   336
 apply (frule apply_recfun2, assumption)
paulson@13242
   337
 apply (force simp add: restrict_iff)
paulson@13251
   338
txt{*...of ordinals.  This second case requires the induction hyp.*}
paulson@13251
   339
apply clarify
paulson@13242
   340
apply (rename_tac i y)
paulson@13251
   341
apply (frule apply_recfun2, assumption)
paulson@13251
   342
apply (frule is_recfun_imp_in_r, assumption)
paulson@13251
   343
apply (frule is_recfun_restrict)
paulson@13242
   344
    (*simp_all won't work*)
paulson@13251
   345
    apply (simp add: trans_trancl trancl_subset_times)+
paulson@13242
   346
apply (drule spec [THEN mp], assumption)
paulson@13242
   347
apply (subgoal_tac "M(restrict(f, r^+ -`` {y}))")
paulson@13348
   348
 apply (drule_tac x="restrict(f, r^+ -`` {y})" in rspec)
paulson@13348
   349
apply assumption
paulson@13242
   350
 apply (simp add: function_apply_equality [OF _ is_recfun_imp_function])
paulson@13242
   351
apply (blast dest: pair_components_in_M)
paulson@13223
   352
done
paulson@13223
   353
paulson@13268
   354
lemma (in M_wfrank) Ord_range_wellfoundedrank:
paulson@13251
   355
    "[| wellfounded(M,r); r \<subseteq> A*A;  M(r); M(A) |]
paulson@13242
   356
     ==> Ord (range(wellfoundedrank(M,r,A)))"
paulson@13251
   357
apply (frule wellfounded_trancl, assumption)
paulson@13251
   358
apply (frule trancl_subset_times)
paulson@13242
   359
apply (simp add: wellfoundedrank_def)
paulson@13242
   360
apply (rule OrdI [OF _ Ord_is_Transset])
paulson@13242
   361
 prefer 2
paulson@13251
   362
 txt{*by our previous result the range consists of ordinals.*}
paulson@13251
   363
 apply (blast intro: Ord_wfrank_range)
paulson@13242
   364
txt{*We still must show that the range is a transitive set.*}
paulson@13247
   365
apply (simp add: Transset_def, clarify, simp)
paulson@13293
   366
apply (rename_tac x i f u)
paulson@13251
   367
apply (frule is_recfun_imp_in_r, assumption)
paulson@13251
   368
apply (subgoal_tac "M(u) & M(i) & M(x)")
paulson@13251
   369
 prefer 2 apply (blast dest: transM, clarify)
paulson@13251
   370
apply (rule_tac a=u in rangeI)
paulson@13293
   371
apply (rule_tac x=u in ReplaceI)
paulson@13293
   372
  apply simp 
paulson@13293
   373
  apply (rule_tac x="restrict(f, r^+ -`` {u})" in rexI)
paulson@13293
   374
   apply (blast intro: is_recfun_restrict trans_trancl dest: apply_recfun2)
paulson@13293
   375
  apply simp 
paulson@13293
   376
apply blast 
paulson@13251
   377
txt{*Unicity requirement of Replacement*}
paulson@13242
   378
apply clarify
paulson@13251
   379
apply (frule apply_recfun2, assumption)
paulson@13293
   380
apply (simp add: trans_trancl is_recfun_cut)
paulson@13223
   381
done
paulson@13223
   382
paulson@13268
   383
lemma (in M_wfrank) function_wellfoundedrank:
paulson@13251
   384
    "[| wellfounded(M,r); M(r); M(A)|]
paulson@13242
   385
     ==> function(wellfoundedrank(M,r,A))"
paulson@13251
   386
apply (simp add: wellfoundedrank_def function_def, clarify)
paulson@13242
   387
txt{*Uniqueness: repeated below!*}
paulson@13242
   388
apply (drule is_recfun_functional, assumption)
paulson@13251
   389
     apply (blast intro: wellfounded_trancl)
paulson@13251
   390
    apply (simp_all add: trancl_subset_times trans_trancl)
paulson@13223
   391
done
paulson@13223
   392
paulson@13268
   393
lemma (in M_wfrank) domain_wellfoundedrank:
paulson@13251
   394
    "[| wellfounded(M,r); M(r); M(A)|]
paulson@13242
   395
     ==> domain(wellfoundedrank(M,r,A)) = A"
paulson@13251
   396
apply (simp add: wellfoundedrank_def function_def)
paulson@13242
   397
apply (rule equalityI, auto)
paulson@13251
   398
apply (frule transM, assumption)
paulson@13251
   399
apply (frule_tac a=x in exists_wfrank, assumption+, clarify)
paulson@13293
   400
apply (rule_tac b="range(f)" in domainI)
paulson@13293
   401
apply (rule_tac x=x in ReplaceI)
paulson@13293
   402
  apply simp 
paulson@13268
   403
  apply (rule_tac x=f in rexI, blast, simp_all)
paulson@13242
   404
txt{*Uniqueness (for Replacement): repeated above!*}
paulson@13242
   405
apply clarify
paulson@13242
   406
apply (drule is_recfun_functional, assumption)
paulson@13251
   407
    apply (blast intro: wellfounded_trancl)
paulson@13251
   408
    apply (simp_all add: trancl_subset_times trans_trancl)
paulson@13223
   409
done
paulson@13223
   410
paulson@13268
   411
lemma (in M_wfrank) wellfoundedrank_type:
paulson@13251
   412
    "[| wellfounded(M,r);  M(r); M(A)|]
paulson@13242
   413
     ==> wellfoundedrank(M,r,A) \<in> A -> range(wellfoundedrank(M,r,A))"
paulson@13251
   414
apply (frule function_wellfoundedrank [of r A], assumption+)
paulson@13251
   415
apply (frule function_imp_Pi)
paulson@13251
   416
 apply (simp add: wellfoundedrank_def relation_def)
paulson@13251
   417
 apply blast
paulson@13242
   418
apply (simp add: domain_wellfoundedrank)
paulson@13223
   419
done
paulson@13223
   420
paulson@13268
   421
lemma (in M_wfrank) Ord_wellfoundedrank:
paulson@13251
   422
    "[| wellfounded(M,r); a \<in> A; r \<subseteq> A*A;  M(r); M(A) |]
paulson@13242
   423
     ==> Ord(wellfoundedrank(M,r,A) ` a)"
paulson@13242
   424
by (blast intro: apply_funtype [OF wellfoundedrank_type]
paulson@13242
   425
                 Ord_in_Ord [OF Ord_range_wellfoundedrank])
paulson@13223
   426
paulson@13268
   427
lemma (in M_wfrank) wellfoundedrank_eq:
paulson@13242
   428
     "[| is_recfun(r^+, a, %x. range, f);
paulson@13251
   429
         wellfounded(M,r);  a \<in> A; M(f); M(r); M(A)|]
paulson@13242
   430
      ==> wellfoundedrank(M,r,A) ` a = range(f)"
paulson@13251
   431
apply (rule apply_equality)
paulson@13251
   432
 prefer 2 apply (blast intro: wellfoundedrank_type)
paulson@13242
   433
apply (simp add: wellfoundedrank_def)
paulson@13242
   434
apply (rule ReplaceI)
paulson@13268
   435
  apply (rule_tac x="range(f)" in rexI) 
paulson@13251
   436
  apply blast
paulson@13268
   437
 apply simp_all
paulson@13251
   438
txt{*Unicity requirement of Replacement*}
paulson@13242
   439
apply clarify
paulson@13242
   440
apply (drule is_recfun_functional, assumption)
paulson@13251
   441
    apply (blast intro: wellfounded_trancl)
paulson@13251
   442
    apply (simp_all add: trancl_subset_times trans_trancl)
paulson@13223
   443
done
paulson@13223
   444
paulson@13247
   445
paulson@13268
   446
lemma (in M_wfrank) wellfoundedrank_lt:
paulson@13247
   447
     "[| <a,b> \<in> r;
paulson@13251
   448
         wellfounded(M,r); r \<subseteq> A*A;  M(r); M(A)|]
paulson@13247
   449
      ==> wellfoundedrank(M,r,A) ` a < wellfoundedrank(M,r,A) ` b"
paulson@13251
   450
apply (frule wellfounded_trancl, assumption)
paulson@13247
   451
apply (subgoal_tac "a\<in>A & b\<in>A")
paulson@13247
   452
 prefer 2 apply blast
paulson@13251
   453
apply (simp add: lt_def Ord_wellfoundedrank, clarify)
wenzelm@13428
   454
apply (frule exists_wfrank [of concl: _ b], erule (1) transM, assumption)
wenzelm@13428
   455
apply clarify
paulson@13247
   456
apply (rename_tac fb)
paulson@13251
   457
apply (frule is_recfun_restrict [of concl: "r^+" a])
paulson@13251
   458
    apply (rule trans_trancl, assumption)
paulson@13251
   459
   apply (simp_all add: r_into_trancl trancl_subset_times)
paulson@13247
   460
txt{*Still the same goal, but with new @{text is_recfun} assumptions.*}
paulson@13251
   461
apply (simp add: wellfoundedrank_eq)
paulson@13247
   462
apply (frule_tac a=a in wellfoundedrank_eq, assumption+)
paulson@13247
   463
   apply (simp_all add: transM [of a])
paulson@13247
   464
txt{*We have used equations for wellfoundedrank and now must use some
paulson@13247
   465
    for  @{text is_recfun}. *}
paulson@13251
   466
apply (rule_tac a=a in rangeI)
paulson@13251
   467
apply (simp add: is_recfun_type [THEN apply_iff] vimage_singleton_iff
paulson@13251
   468
                 r_into_trancl apply_recfun r_into_trancl)
paulson@13247
   469
done
paulson@13247
   470
paulson@13247
   471
paulson@13268
   472
lemma (in M_wfrank) wellfounded_imp_subset_rvimage:
paulson@13251
   473
     "[|wellfounded(M,r); r \<subseteq> A*A; M(r); M(A)|]
paulson@13247
   474
      ==> \<exists>i f. Ord(i) & r <= rvimage(A, f, Memrel(i))"
paulson@13247
   475
apply (rule_tac x="range(wellfoundedrank(M,r,A))" in exI)
paulson@13247
   476
apply (rule_tac x="wellfoundedrank(M,r,A)" in exI)
paulson@13251
   477
apply (simp add: Ord_range_wellfoundedrank, clarify)
paulson@13251
   478
apply (frule subsetD, assumption, clarify)
paulson@13247
   479
apply (simp add: rvimage_iff wellfoundedrank_lt [THEN ltD])
paulson@13251
   480
apply (blast intro: apply_rangeI wellfoundedrank_type)
paulson@13247
   481
done
paulson@13247
   482
paulson@13268
   483
lemma (in M_wfrank) wellfounded_imp_wf:
paulson@13251
   484
     "[|wellfounded(M,r); relation(r); M(r)|] ==> wf(r)"
paulson@13247
   485
by (blast dest!: relation_field_times_field wellfounded_imp_subset_rvimage
paulson@13247
   486
          intro: wf_rvimage_Ord [THEN wf_subset])
paulson@13247
   487
paulson@13268
   488
lemma (in M_wfrank) wellfounded_on_imp_wf_on:
paulson@13251
   489
     "[|wellfounded_on(M,A,r); relation(r); M(r); M(A)|] ==> wf[A](r)"
paulson@13251
   490
apply (simp add: wellfounded_on_iff_wellfounded wf_on_def)
paulson@13247
   491
apply (rule wellfounded_imp_wf)
paulson@13251
   492
apply (simp_all add: relation_def)
paulson@13247
   493
done
paulson@13247
   494
paulson@13247
   495
paulson@13268
   496
theorem (in M_wfrank) wf_abs [simp]:
paulson@13247
   497
     "[|relation(r); M(r)|] ==> wellfounded(M,r) <-> wf(r)"
paulson@13251
   498
by (blast intro: wellfounded_imp_wf wf_imp_relativized)
paulson@13247
   499
paulson@13268
   500
theorem (in M_wfrank) wf_on_abs [simp]:
paulson@13247
   501
     "[|relation(r); M(r); M(A)|] ==> wellfounded_on(M,A,r) <-> wf[A](r)"
paulson@13251
   502
by (blast intro: wellfounded_on_imp_wf_on wf_on_imp_relativized)
paulson@13247
   503
paulson@13254
   504
paulson@13254
   505
text{*absoluteness for wfrec-defined functions.*}
paulson@13254
   506
paulson@13254
   507
(*first use is_recfun, then M_is_recfun*)
paulson@13254
   508
paulson@13254
   509
lemma (in M_trancl) wfrec_relativize:
paulson@13254
   510
  "[|wf(r); M(a); M(r);  
paulson@13268
   511
     strong_replacement(M, \<lambda>x z. \<exists>y[M]. \<exists>g[M].
paulson@13254
   512
          pair(M,x,y,z) & 
paulson@13254
   513
          is_recfun(r^+, x, \<lambda>x f. H(x, restrict(f, r -`` {x})), g) & 
paulson@13254
   514
          y = H(x, restrict(g, r -`` {x}))); 
paulson@13254
   515
     \<forall>x[M]. \<forall>g[M]. function(g) --> M(H(x,g))|] 
paulson@13254
   516
   ==> wfrec(r,a,H) = z <-> 
paulson@13268
   517
       (\<exists>f[M]. is_recfun(r^+, a, \<lambda>x f. H(x, restrict(f, r -`` {x})), f) & 
paulson@13254
   518
            z = H(a,restrict(f,r-``{a})))"
paulson@13254
   519
apply (frule wf_trancl) 
paulson@13254
   520
apply (simp add: wftrec_def wfrec_def, safe)
paulson@13254
   521
 apply (frule wf_exists_is_recfun 
paulson@13254
   522
              [of concl: "r^+" a "\<lambda>x f. H(x, restrict(f, r -`` {x}))"]) 
paulson@13254
   523
      apply (simp_all add: trans_trancl function_restrictI trancl_subset_times)
paulson@13268
   524
 apply (clarify, rule_tac x=x in rexI) 
paulson@13254
   525
 apply (simp_all add: the_recfun_eq trans_trancl trancl_subset_times)
paulson@13254
   526
done
paulson@13254
   527
paulson@13254
   528
paulson@13254
   529
text{*Assuming @{term r} is transitive simplifies the occurrences of @{text H}.
paulson@13254
   530
      The premise @{term "relation(r)"} is necessary 
paulson@13254
   531
      before we can replace @{term "r^+"} by @{term r}. *}
paulson@13254
   532
theorem (in M_trancl) trans_wfrec_relativize:
paulson@13254
   533
  "[|wf(r);  trans(r);  relation(r);  M(r);  M(a);
paulson@13353
   534
     wfrec_replacement(M,MH,r);  relativize2(M,MH,H);
paulson@13254
   535
     \<forall>x[M]. \<forall>g[M]. function(g) --> M(H(x,g))|] 
paulson@13268
   536
   ==> wfrec(r,a,H) = z <-> (\<exists>f[M]. is_recfun(r,a,H,f) & z = H(a,f))" 
paulson@13353
   537
apply (frule wfrec_replacement', assumption+) 
paulson@13353
   538
apply (simp cong: is_recfun_cong
paulson@13353
   539
           add: wfrec_relativize trancl_eq_r
paulson@13353
   540
                is_recfun_restrict_idem domain_restrict_idem)
paulson@13353
   541
done
paulson@13254
   542
paulson@13353
   543
theorem (in M_trancl) trans_wfrec_abs:
paulson@13353
   544
  "[|wf(r);  trans(r);  relation(r);  M(r);  M(a);  M(z);
paulson@13353
   545
     wfrec_replacement(M,MH,r);  relativize2(M,MH,H);
paulson@13353
   546
     \<forall>x[M]. \<forall>g[M]. function(g) --> M(H(x,g))|] 
paulson@13353
   547
   ==> is_wfrec(M,MH,r,a,z) <-> z=wfrec(r,a,H)" 
paulson@13353
   548
apply (simp add: trans_wfrec_relativize [THEN iff_sym] is_wfrec_abs, blast) 
paulson@13353
   549
done
paulson@13254
   550
paulson@13254
   551
lemma (in M_trancl) trans_eq_pair_wfrec_iff:
paulson@13254
   552
  "[|wf(r);  trans(r); relation(r); M(r);  M(y); 
paulson@13353
   553
     wfrec_replacement(M,MH,r);  relativize2(M,MH,H);
paulson@13254
   554
     \<forall>x[M]. \<forall>g[M]. function(g) --> M(H(x,g))|] 
paulson@13254
   555
   ==> y = <x, wfrec(r, x, H)> <-> 
paulson@13268
   556
       (\<exists>f[M]. is_recfun(r,x,H,f) & y = <x, H(x,f)>)"
paulson@13293
   557
apply safe 
paulson@13293
   558
 apply (simp add: trans_wfrec_relativize [THEN iff_sym, of concl: _ x]) 
paulson@13254
   559
txt{*converse direction*}
paulson@13254
   560
apply (rule sym)
paulson@13254
   561
apply (simp add: trans_wfrec_relativize, blast) 
paulson@13254
   562
done
paulson@13254
   563
paulson@13254
   564
paulson@13254
   565
subsection{*M is closed under well-founded recursion*}
paulson@13254
   566
paulson@13254
   567
text{*Lemma with the awkward premise mentioning @{text wfrec}.*}
paulson@13268
   568
lemma (in M_wfrank) wfrec_closed_lemma [rule_format]:
paulson@13254
   569
     "[|wf(r); M(r); 
paulson@13254
   570
        strong_replacement(M, \<lambda>x y. y = \<langle>x, wfrec(r, x, H)\<rangle>);
paulson@13254
   571
        \<forall>x[M]. \<forall>g[M]. function(g) --> M(H(x,g)) |] 
paulson@13254
   572
      ==> M(a) --> M(wfrec(r,a,H))"
paulson@13254
   573
apply (rule_tac a=a in wf_induct, assumption+)
paulson@13254
   574
apply (subst wfrec, assumption, clarify)
paulson@13254
   575
apply (drule_tac x1=x and x="\<lambda>x\<in>r -`` {x}. wfrec(r, x, H)" 
paulson@13254
   576
       in rspec [THEN rspec]) 
paulson@13254
   577
apply (simp_all add: function_lam) 
paulson@13505
   578
apply (blast intro: lam_closed dest: pair_components_in_M) 
paulson@13254
   579
done
paulson@13254
   580
paulson@13254
   581
text{*Eliminates one instance of replacement.*}
paulson@13268
   582
lemma (in M_wfrank) wfrec_replacement_iff:
paulson@13353
   583
     "strong_replacement(M, \<lambda>x z. 
paulson@13353
   584
          \<exists>y[M]. pair(M,x,y,z) & (\<exists>g[M]. is_recfun(r,x,H,g) & y = H(x,g))) <->
paulson@13254
   585
      strong_replacement(M, 
paulson@13268
   586
           \<lambda>x y. \<exists>f[M]. is_recfun(r,x,H,f) & y = <x, H(x,f)>)"
paulson@13254
   587
apply simp 
paulson@13254
   588
apply (rule strong_replacement_cong, blast) 
paulson@13254
   589
done
paulson@13254
   590
paulson@13254
   591
text{*Useful version for transitive relations*}
paulson@13268
   592
theorem (in M_wfrank) trans_wfrec_closed:
paulson@13254
   593
     "[|wf(r); trans(r); relation(r); M(r); M(a);
paulson@13353
   594
       wfrec_replacement(M,MH,r);  relativize2(M,MH,H);
paulson@13254
   595
        \<forall>x[M]. \<forall>g[M]. function(g) --> M(H(x,g)) |] 
paulson@13254
   596
      ==> M(wfrec(r,a,H))"
paulson@13353
   597
apply (frule wfrec_replacement', assumption+) 
paulson@13254
   598
apply (frule wfrec_replacement_iff [THEN iffD1]) 
paulson@13254
   599
apply (rule wfrec_closed_lemma, assumption+) 
paulson@13254
   600
apply (simp_all add: wfrec_replacement_iff trans_eq_pair_wfrec_iff) 
paulson@13254
   601
done
paulson@13254
   602
paulson@13506
   603
subsection{*Absoluteness without assuming transitivity*}
paulson@13254
   604
lemma (in M_trancl) eq_pair_wfrec_iff:
paulson@13254
   605
  "[|wf(r);  M(r);  M(y); 
paulson@13268
   606
     strong_replacement(M, \<lambda>x z. \<exists>y[M]. \<exists>g[M].
paulson@13254
   607
          pair(M,x,y,z) & 
paulson@13254
   608
          is_recfun(r^+, x, \<lambda>x f. H(x, restrict(f, r -`` {x})), g) & 
paulson@13254
   609
          y = H(x, restrict(g, r -`` {x}))); 
paulson@13254
   610
     \<forall>x[M]. \<forall>g[M]. function(g) --> M(H(x,g))|] 
paulson@13254
   611
   ==> y = <x, wfrec(r, x, H)> <-> 
paulson@13268
   612
       (\<exists>f[M]. is_recfun(r^+, x, \<lambda>x f. H(x, restrict(f, r -`` {x})), f) & 
paulson@13254
   613
            y = <x, H(x,restrict(f,r-``{x}))>)"
paulson@13254
   614
apply safe  
paulson@13293
   615
 apply (simp add: wfrec_relativize [THEN iff_sym, of concl: _ x]) 
paulson@13254
   616
txt{*converse direction*}
paulson@13254
   617
apply (rule sym)
paulson@13254
   618
apply (simp add: wfrec_relativize, blast) 
paulson@13254
   619
done
paulson@13254
   620
paulson@13254
   621
text{*Full version not assuming transitivity, but maybe not very useful.*}
paulson@13268
   622
theorem (in M_wfrank) wfrec_closed:
paulson@13254
   623
     "[|wf(r); M(r); M(a);
paulson@13353
   624
        wfrec_replacement(M,MH,r^+);  
paulson@13353
   625
        relativize2(M,MH, \<lambda>x f. H(x, restrict(f, r -`` {x})));
paulson@13254
   626
        \<forall>x[M]. \<forall>g[M]. function(g) --> M(H(x,g)) |] 
paulson@13254
   627
      ==> M(wfrec(r,a,H))"
paulson@13353
   628
apply (frule wfrec_replacement' 
paulson@13353
   629
               [of MH "r^+" "\<lambda>x f. H(x, restrict(f, r -`` {x}))"])
paulson@13353
   630
   prefer 4
paulson@13353
   631
   apply (frule wfrec_replacement_iff [THEN iffD1]) 
paulson@13353
   632
   apply (rule wfrec_closed_lemma, assumption+) 
paulson@13353
   633
     apply (simp_all add: eq_pair_wfrec_iff func.function_restrictI) 
paulson@13254
   634
done
paulson@13254
   635
paulson@13223
   636
end