src/HOL/List.ML
author nipkow
Wed Feb 12 18:53:59 1997 +0100 (1997-02-12)
changeset 2608 450c9b682a92
parent 2512 0231e4f467f2
child 2739 5481b1c73d84
permissions -rw-r--r--
New class "order" and accompanying changes.
In particular reflexivity of <= is now one rewrite rule.
clasohm@1465
     1
(*  Title:      HOL/List
clasohm@923
     2
    ID:         $Id$
clasohm@1465
     3
    Author:     Tobias Nipkow
clasohm@923
     4
    Copyright   1994 TU Muenchen
clasohm@923
     5
clasohm@923
     6
List lemmas
clasohm@923
     7
*)
clasohm@923
     8
clasohm@923
     9
open List;
clasohm@923
    10
paulson@1985
    11
AddIffs list.distinct;
paulson@1985
    12
AddIffs list.inject;
clasohm@923
    13
clasohm@923
    14
bind_thm("Cons_inject", (hd list.inject) RS iffD1 RS conjE);
clasohm@923
    15
clasohm@923
    16
goal List.thy "!x. xs ~= x#xs";
clasohm@923
    17
by (list.induct_tac "xs" 1);
clasohm@1264
    18
by (ALLGOALS Asm_simp_tac);
nipkow@2608
    19
qed_spec_mp "not_Cons_self";
nipkow@2512
    20
Addsimps [not_Cons_self];
clasohm@923
    21
clasohm@923
    22
goal List.thy "(xs ~= []) = (? y ys. xs = y#ys)";
clasohm@923
    23
by (list.induct_tac "xs" 1);
clasohm@1264
    24
by (Simp_tac 1);
clasohm@1264
    25
by (Asm_simp_tac 1);
lcp@1169
    26
by (REPEAT(resolve_tac [exI,refl,conjI] 1));
clasohm@923
    27
qed "neq_Nil_conv";
clasohm@923
    28
clasohm@923
    29
nipkow@2608
    30
(** list_case **)
nipkow@2608
    31
nipkow@2608
    32
goal List.thy
nipkow@2608
    33
 "P(list_case a f xs) = ((xs=[] --> P(a)) & \
nipkow@2608
    34
\                         (!y ys. xs=y#ys --> P(f y ys)))";
nipkow@2608
    35
by (list.induct_tac "xs" 1);
nipkow@2608
    36
by (ALLGOALS Asm_simp_tac);
nipkow@2608
    37
by (Fast_tac 1);
nipkow@2608
    38
qed "expand_list_case";
nipkow@2608
    39
nipkow@2608
    40
val prems = goal List.thy "[| P([]); !!x xs. P(x#xs) |] ==> P(xs)";
nipkow@2608
    41
by(list.induct_tac "xs" 1);
nipkow@2608
    42
by(REPEAT(resolve_tac prems 1));
nipkow@2608
    43
qed "list_cases";
nipkow@2608
    44
nipkow@2608
    45
goal List.thy  "(xs=[] --> P([])) & (!y ys. xs=y#ys --> P(y#ys)) --> P(xs)";
nipkow@2608
    46
by (list.induct_tac "xs" 1);
nipkow@2608
    47
by (Fast_tac 1);
nipkow@2608
    48
by (Fast_tac 1);
nipkow@2608
    49
bind_thm("list_eq_cases",
nipkow@2608
    50
  impI RSN (2,allI RSN (2,allI RSN (2,impI RS (conjI RS (result() RS mp))))));
nipkow@2608
    51
nipkow@2608
    52
clasohm@923
    53
(** @ - append **)
clasohm@923
    54
clasohm@923
    55
goal List.thy "(xs@ys)@zs = xs@(ys@zs)";
clasohm@923
    56
by (list.induct_tac "xs" 1);
clasohm@1264
    57
by (ALLGOALS Asm_simp_tac);
clasohm@923
    58
qed "append_assoc";
nipkow@2512
    59
Addsimps [append_assoc];
clasohm@923
    60
clasohm@923
    61
goal List.thy "xs @ [] = xs";
clasohm@923
    62
by (list.induct_tac "xs" 1);
clasohm@1264
    63
by (ALLGOALS Asm_simp_tac);
clasohm@923
    64
qed "append_Nil2";
nipkow@2512
    65
Addsimps [append_Nil2];
clasohm@923
    66
clasohm@923
    67
goal List.thy "(xs@ys = []) = (xs=[] & ys=[])";
clasohm@923
    68
by (list.induct_tac "xs" 1);
clasohm@1264
    69
by (ALLGOALS Asm_simp_tac);
nipkow@2608
    70
qed "append_is_Nil_conv";
nipkow@2608
    71
AddIffs [append_is_Nil_conv];
nipkow@2608
    72
nipkow@2608
    73
goal List.thy "([] = xs@ys) = (xs=[] & ys=[])";
nipkow@2608
    74
by (list.induct_tac "xs" 1);
nipkow@2608
    75
by (ALLGOALS Asm_simp_tac);
nipkow@2608
    76
by(Fast_tac 1);
nipkow@2608
    77
qed "Nil_is_append_conv";
nipkow@2608
    78
AddIffs [Nil_is_append_conv];
clasohm@923
    79
clasohm@923
    80
goal List.thy "(xs @ ys = xs @ zs) = (ys=zs)";
clasohm@923
    81
by (list.induct_tac "xs" 1);
clasohm@1264
    82
by (ALLGOALS Asm_simp_tac);
clasohm@923
    83
qed "same_append_eq";
nipkow@2608
    84
AddIffs [same_append_eq];
nipkow@2608
    85
nipkow@2608
    86
goal List.thy "!ys. (xs @ [x] = ys @ [y]) = (xs = ys & x = y)"; 
nipkow@2608
    87
by(list.induct_tac "xs" 1);
nipkow@2608
    88
 br allI 1;
nipkow@2608
    89
 by(list.induct_tac "ys" 1);
nipkow@2608
    90
  by(ALLGOALS Asm_simp_tac);
nipkow@2608
    91
br allI 1;
nipkow@2608
    92
by(list.induct_tac "ys" 1);
nipkow@2608
    93
 by(ALLGOALS Asm_simp_tac);
nipkow@2608
    94
qed_spec_mp "append1_eq_conv";
nipkow@2608
    95
AddIffs [append1_eq_conv];
nipkow@2608
    96
nipkow@2608
    97
goal List.thy "xs ~= [] --> hd xs # tl xs = xs";
nipkow@2608
    98
by(list.induct_tac "xs" 1);
nipkow@2608
    99
by(ALLGOALS Asm_simp_tac);
nipkow@2608
   100
qed_spec_mp "hd_Cons_tl";
nipkow@2608
   101
Addsimps [hd_Cons_tl];
clasohm@923
   102
nipkow@1327
   103
goal List.thy "hd(xs@ys) = (if xs=[] then hd ys else hd xs)";
nipkow@1327
   104
by (list.induct_tac "xs" 1);
nipkow@1327
   105
by (ALLGOALS Asm_simp_tac);
nipkow@1327
   106
qed "hd_append";
clasohm@923
   107
nipkow@2608
   108
goal List.thy "tl(xs@ys) = (case xs of [] => tl(ys) | z#zs => zs@ys)";
nipkow@2608
   109
by(simp_tac (!simpset setloop(split_tac[expand_list_case])) 1);
nipkow@2608
   110
qed "tl_append";
nipkow@2608
   111
nipkow@2608
   112
(** map **)
nipkow@2608
   113
nipkow@2608
   114
goal List.thy
nipkow@2608
   115
  "(!x. x : set_of_list xs --> f x = g x) --> map f xs = map g xs";
nipkow@2608
   116
by(list.induct_tac "xs" 1);
nipkow@2608
   117
by(ALLGOALS Asm_simp_tac);
nipkow@2608
   118
bind_thm("map_ext", impI RS (allI RS (result() RS mp)));
nipkow@2608
   119
nipkow@2608
   120
goal List.thy "map (%x.x) = (%xs.xs)";
nipkow@2608
   121
by (rtac ext 1);
nipkow@2608
   122
by (list.induct_tac "xs" 1);
nipkow@2608
   123
by (ALLGOALS Asm_simp_tac);
nipkow@2608
   124
qed "map_ident";
nipkow@2608
   125
Addsimps[map_ident];
nipkow@2608
   126
nipkow@2608
   127
goal List.thy "map f (xs@ys) = map f xs @ map f ys";
nipkow@2608
   128
by (list.induct_tac "xs" 1);
nipkow@2608
   129
by (ALLGOALS Asm_simp_tac);
nipkow@2608
   130
qed "map_append";
nipkow@2608
   131
Addsimps[map_append];
nipkow@2608
   132
nipkow@2608
   133
goalw List.thy [o_def] "map (f o g) xs = map f (map g xs)";
nipkow@2608
   134
by (list.induct_tac "xs" 1);
nipkow@2608
   135
by (ALLGOALS Asm_simp_tac);
nipkow@2608
   136
qed "map_compose";
nipkow@2608
   137
Addsimps[map_compose];
nipkow@2608
   138
nipkow@2608
   139
goal List.thy "rev(map f xs) = map f (rev xs)";
nipkow@2608
   140
by (list.induct_tac "xs" 1);
nipkow@2608
   141
by (ALLGOALS Asm_simp_tac);
nipkow@2608
   142
qed "rev_map";
nipkow@2608
   143
lcp@1169
   144
(** rev **)
lcp@1169
   145
lcp@1169
   146
goal List.thy "rev(xs@ys) = rev(ys) @ rev(xs)";
lcp@1169
   147
by (list.induct_tac "xs" 1);
nipkow@2512
   148
by (ALLGOALS Asm_simp_tac);
lcp@1169
   149
qed "rev_append";
nipkow@2512
   150
Addsimps[rev_append];
lcp@1169
   151
lcp@1169
   152
goal List.thy "rev(rev l) = l";
lcp@1169
   153
by (list.induct_tac "l" 1);
nipkow@2512
   154
by (ALLGOALS Asm_simp_tac);
lcp@1169
   155
qed "rev_rev_ident";
nipkow@2512
   156
Addsimps[rev_rev_ident];
lcp@1169
   157
nipkow@2608
   158
clasohm@923
   159
(** mem **)
clasohm@923
   160
clasohm@923
   161
goal List.thy "x mem (xs@ys) = (x mem xs | x mem ys)";
clasohm@923
   162
by (list.induct_tac "xs" 1);
clasohm@1264
   163
by (ALLGOALS (asm_simp_tac (!simpset setloop (split_tac [expand_if]))));
clasohm@923
   164
qed "mem_append";
nipkow@2512
   165
Addsimps[mem_append];
clasohm@923
   166
clasohm@923
   167
goal List.thy "x mem [x:xs.P(x)] = (x mem xs & P(x))";
clasohm@923
   168
by (list.induct_tac "xs" 1);
clasohm@1264
   169
by (ALLGOALS (asm_simp_tac (!simpset setloop (split_tac [expand_if]))));
clasohm@923
   170
qed "mem_filter";
nipkow@2512
   171
Addsimps[mem_filter];
clasohm@923
   172
paulson@1908
   173
(** set_of_list **)
paulson@1812
   174
paulson@1908
   175
goal thy "set_of_list (xs@ys) = (set_of_list xs Un set_of_list ys)";
paulson@1812
   176
by (list.induct_tac "xs" 1);
paulson@1812
   177
by (ALLGOALS Asm_simp_tac);
paulson@1812
   178
by (Fast_tac 1);
paulson@1908
   179
qed "set_of_list_append";
nipkow@2512
   180
Addsimps[set_of_list_append];
paulson@1812
   181
paulson@1908
   182
goal thy "(x mem xs) = (x: set_of_list xs)";
paulson@1812
   183
by (list.induct_tac "xs" 1);
paulson@1812
   184
by (ALLGOALS (asm_simp_tac (!simpset setloop (split_tac [expand_if]))));
paulson@1812
   185
by (Fast_tac 1);
paulson@1908
   186
qed "set_of_list_mem_eq";
paulson@1812
   187
paulson@1936
   188
goal List.thy "set_of_list l <= set_of_list (x#l)";
paulson@1936
   189
by (Simp_tac 1);
paulson@1936
   190
by (Fast_tac 1);
paulson@1936
   191
qed "set_of_list_subset_Cons";
paulson@1936
   192
nipkow@2608
   193
goal List.thy "(set_of_list xs = {}) = (xs = [])";
nipkow@2608
   194
by(list.induct_tac "xs" 1);
nipkow@2608
   195
by(ALLGOALS Asm_simp_tac);
nipkow@2608
   196
qed "set_of_list_empty";
nipkow@2608
   197
Addsimps [set_of_list_empty];
nipkow@2608
   198
nipkow@2608
   199
goal List.thy "set_of_list(rev xs) = set_of_list(xs)";
nipkow@2608
   200
by(list.induct_tac "xs" 1);
nipkow@2608
   201
by(ALLGOALS Asm_simp_tac);
nipkow@2608
   202
by(Fast_tac 1);
nipkow@2608
   203
qed "set_of_list_rev";
nipkow@2608
   204
Addsimps [set_of_list_rev];
nipkow@2608
   205
nipkow@2608
   206
goal List.thy "set_of_list(map f xs) = f``(set_of_list xs)";
nipkow@2608
   207
by(list.induct_tac "xs" 1);
nipkow@2608
   208
by(ALLGOALS Asm_simp_tac);
nipkow@2608
   209
qed "set_of_list_map";
nipkow@2608
   210
Addsimps [set_of_list_map];
nipkow@2608
   211
paulson@1812
   212
clasohm@923
   213
(** list_all **)
clasohm@923
   214
nipkow@2512
   215
goal List.thy "list_all (%x.True) xs = True";
clasohm@923
   216
by (list.induct_tac "xs" 1);
clasohm@1264
   217
by (ALLGOALS Asm_simp_tac);
clasohm@923
   218
qed "list_all_True";
nipkow@2512
   219
Addsimps [list_all_True];
clasohm@923
   220
clasohm@923
   221
goal List.thy "list_all p (xs@ys) = (list_all p xs & list_all p ys)";
clasohm@923
   222
by (list.induct_tac "xs" 1);
clasohm@1264
   223
by (ALLGOALS Asm_simp_tac);
nipkow@2512
   224
qed "list_all_append";
nipkow@2512
   225
Addsimps [list_all_append];
clasohm@923
   226
nipkow@2512
   227
goal List.thy "list_all P xs = (!x. x mem xs --> P(x))";
clasohm@923
   228
by (list.induct_tac "xs" 1);
clasohm@1264
   229
by (ALLGOALS (asm_simp_tac (!simpset setloop (split_tac [expand_if]))));
berghofe@1760
   230
by (Fast_tac 1);
clasohm@923
   231
qed "list_all_mem_conv";
clasohm@923
   232
clasohm@923
   233
nipkow@2608
   234
(** filter **)
clasohm@923
   235
nipkow@2608
   236
goal List.thy "[x:xs@ys . P] = [x:xs . P] @ [y:ys . P]";
nipkow@2608
   237
by(list.induct_tac "xs" 1);
nipkow@2608
   238
 by(ALLGOALS (asm_simp_tac (!simpset setloop (split_tac [expand_if]))));
nipkow@2608
   239
qed "filter_append";
nipkow@2608
   240
Addsimps [filter_append];
nipkow@2608
   241
nipkow@2608
   242
nipkow@2608
   243
(** concat **)
nipkow@2608
   244
nipkow@2608
   245
goal List.thy  "concat(xs@ys) = concat(xs)@concat(ys)";
clasohm@923
   246
by (list.induct_tac "xs" 1);
clasohm@1264
   247
by (ALLGOALS Asm_simp_tac);
nipkow@2608
   248
qed"concat_append";
nipkow@2608
   249
Addsimps [concat_append];
nipkow@2512
   250
nipkow@2608
   251
goal List.thy "rev(concat ls) = concat (map rev (rev ls))";
nipkow@2608
   252
by (list.induct_tac "ls" 1);
nipkow@2512
   253
by (ALLGOALS Asm_simp_tac);
nipkow@2608
   254
qed "rev_concat";
clasohm@923
   255
nipkow@962
   256
(** length **)
nipkow@962
   257
nipkow@962
   258
goal List.thy "length(xs@ys) = length(xs)+length(ys)";
nipkow@962
   259
by (list.induct_tac "xs" 1);
clasohm@1264
   260
by (ALLGOALS Asm_simp_tac);
nipkow@962
   261
qed"length_append";
nipkow@1301
   262
Addsimps [length_append];
nipkow@1301
   263
nipkow@1301
   264
goal List.thy "length (map f l) = length l";
nipkow@1301
   265
by (list.induct_tac "l" 1);
nipkow@1301
   266
by (ALLGOALS Simp_tac);
nipkow@1301
   267
qed "length_map";
nipkow@1301
   268
Addsimps [length_map];
nipkow@962
   269
lcp@1169
   270
goal List.thy "length(rev xs) = length(xs)";
lcp@1169
   271
by (list.induct_tac "xs" 1);
nipkow@1301
   272
by (ALLGOALS Asm_simp_tac);
lcp@1169
   273
qed "length_rev";
nipkow@1301
   274
Addsimps [length_rev];
lcp@1169
   275
nipkow@2608
   276
goal List.thy "(length xs = 0) = (xs = [])";
nipkow@2608
   277
by(list.induct_tac "xs" 1);
nipkow@2608
   278
by(ALLGOALS Asm_simp_tac);
nipkow@2608
   279
qed "length_0_conv";
nipkow@2608
   280
AddIffs [length_0_conv];
nipkow@2608
   281
nipkow@2608
   282
goal List.thy "(0 < length xs) = (xs ~= [])";
nipkow@2608
   283
by(list.induct_tac "xs" 1);
nipkow@2608
   284
by(ALLGOALS Asm_simp_tac);
nipkow@2608
   285
qed "length_greater_0_conv";
nipkow@2608
   286
AddIffs [length_greater_0_conv];
nipkow@2608
   287
nipkow@2608
   288
clasohm@923
   289
(** nth **)
clasohm@923
   290
clasohm@923
   291
val [nth_0,nth_Suc] = nat_recs nth_def; 
clasohm@923
   292
store_thm("nth_0",nth_0);
clasohm@923
   293
store_thm("nth_Suc",nth_Suc);
nipkow@1301
   294
Addsimps [nth_0,nth_Suc];
nipkow@1301
   295
nipkow@2608
   296
goal List.thy
nipkow@2608
   297
  "!xs. nth n (xs@ys) = \
nipkow@2608
   298
\          (if n < length xs then nth n xs else nth (n - length xs) ys)";
nipkow@2608
   299
by(nat_ind_tac "n" 1);
nipkow@2608
   300
 by(Asm_simp_tac 1);
nipkow@2608
   301
 br allI 1;
nipkow@2608
   302
 by(res_inst_tac [("xs","xs")]list_cases 1);
nipkow@2608
   303
  by(ALLGOALS Asm_simp_tac);
nipkow@2608
   304
br allI 1;
nipkow@2608
   305
by(res_inst_tac [("xs","xs")]list_cases 1);
nipkow@2608
   306
 by(ALLGOALS Asm_simp_tac);
nipkow@2608
   307
qed_spec_mp "nth_append";
nipkow@2608
   308
nipkow@1301
   309
goal List.thy "!n. n < length xs --> nth n (map f xs) = f (nth n xs)";
nipkow@1301
   310
by (list.induct_tac "xs" 1);
nipkow@1301
   311
(* case [] *)
nipkow@1301
   312
by (Asm_full_simp_tac 1);
nipkow@1301
   313
(* case x#xl *)
nipkow@1301
   314
by (rtac allI 1);
nipkow@1301
   315
by (nat_ind_tac "n" 1);
nipkow@1301
   316
by (ALLGOALS Asm_full_simp_tac);
nipkow@1485
   317
qed_spec_mp "nth_map";
nipkow@1301
   318
Addsimps [nth_map];
nipkow@1301
   319
nipkow@1301
   320
goal List.thy "!n. n < length xs --> list_all P xs --> P(nth n xs)";
nipkow@1301
   321
by (list.induct_tac "xs" 1);
nipkow@1301
   322
(* case [] *)
nipkow@1301
   323
by (Simp_tac 1);
nipkow@1301
   324
(* case x#xl *)
nipkow@1301
   325
by (rtac allI 1);
nipkow@1301
   326
by (nat_ind_tac "n" 1);
nipkow@1301
   327
by (ALLGOALS Asm_full_simp_tac);
nipkow@1485
   328
qed_spec_mp "list_all_nth";
nipkow@1301
   329
nipkow@1301
   330
goal List.thy "!n. n < length xs --> (nth n xs) mem xs";
nipkow@1301
   331
by (list.induct_tac "xs" 1);
nipkow@1301
   332
(* case [] *)
nipkow@1301
   333
by (Simp_tac 1);
nipkow@1301
   334
(* case x#xl *)
nipkow@1301
   335
by (rtac allI 1);
nipkow@1301
   336
by (nat_ind_tac "n" 1);
nipkow@1301
   337
(* case 0 *)
nipkow@1301
   338
by (Asm_full_simp_tac 1);
nipkow@1301
   339
(* case Suc x *)
nipkow@1301
   340
by (asm_full_simp_tac (!simpset setloop (split_tac [expand_if])) 1);
nipkow@1485
   341
qed_spec_mp "nth_mem";
nipkow@1301
   342
Addsimps [nth_mem];
nipkow@1301
   343
nipkow@1327
   344
nipkow@2608
   345
(** take  & drop **)
nipkow@2608
   346
section "take & drop";
nipkow@1327
   347
nipkow@1419
   348
goal thy "take 0 xs = []";
nipkow@1419
   349
by (list.induct_tac "xs" 1);
nipkow@1419
   350
by (ALLGOALS Asm_simp_tac);
nipkow@1327
   351
qed "take_0";
nipkow@1327
   352
nipkow@2608
   353
goal thy "drop 0 xs = xs";
nipkow@2608
   354
by (list.induct_tac "xs" 1);
nipkow@2608
   355
by (ALLGOALS Asm_simp_tac);
nipkow@2608
   356
qed "drop_0";
nipkow@2608
   357
nipkow@1419
   358
goal thy "take (Suc n) (x#xs) = x # take n xs";
paulson@1552
   359
by (Simp_tac 1);
nipkow@1419
   360
qed "take_Suc_Cons";
nipkow@1327
   361
nipkow@2608
   362
goal thy "drop (Suc n) (x#xs) = drop n xs";
nipkow@2608
   363
by (Simp_tac 1);
nipkow@2608
   364
qed "drop_Suc_Cons";
nipkow@2608
   365
nipkow@2608
   366
Delsimps [take_Cons,drop_Cons];
nipkow@2608
   367
Addsimps [take_0,take_Suc_Cons,drop_0,drop_Suc_Cons];
nipkow@2608
   368
nipkow@2608
   369
goal List.thy "!xs. length(take n xs) = min (length xs) n";
nipkow@2608
   370
by(nat_ind_tac "n" 1);
nipkow@2608
   371
 by(ALLGOALS Asm_simp_tac);
nipkow@2608
   372
br allI 1;
nipkow@2608
   373
by(res_inst_tac [("xs","xs")]list_cases 1);
nipkow@2608
   374
 by(ALLGOALS Asm_simp_tac);
nipkow@2608
   375
qed_spec_mp "length_take";
nipkow@2608
   376
Addsimps [length_take];
clasohm@923
   377
nipkow@2608
   378
goal List.thy "!xs. length(drop n xs) = (length xs - n)";
nipkow@2608
   379
by(nat_ind_tac "n" 1);
nipkow@2608
   380
 by(ALLGOALS Asm_simp_tac);
nipkow@2608
   381
br allI 1;
nipkow@2608
   382
by(res_inst_tac [("xs","xs")]list_cases 1);
nipkow@2608
   383
 by(ALLGOALS Asm_simp_tac);
nipkow@2608
   384
qed_spec_mp "length_drop";
nipkow@2608
   385
Addsimps [length_drop];
nipkow@2608
   386
nipkow@2608
   387
goal List.thy "!xs. length xs <= n --> take n xs = xs";
nipkow@2608
   388
by(nat_ind_tac "n" 1);
nipkow@2608
   389
 by(ALLGOALS Asm_simp_tac);
nipkow@2608
   390
br allI 1;
nipkow@2608
   391
by(res_inst_tac [("xs","xs")]list_cases 1);
nipkow@2608
   392
 by(ALLGOALS Asm_simp_tac);
nipkow@2608
   393
qed_spec_mp "take_all";
clasohm@923
   394
nipkow@2608
   395
goal List.thy "!xs. length xs <= n --> drop n xs = []";
nipkow@2608
   396
by(nat_ind_tac "n" 1);
nipkow@2608
   397
 by(ALLGOALS Asm_simp_tac);
nipkow@2608
   398
br allI 1;
nipkow@2608
   399
by(res_inst_tac [("xs","xs")]list_cases 1);
nipkow@2608
   400
 by(ALLGOALS Asm_simp_tac);
nipkow@2608
   401
qed_spec_mp "drop_all";
nipkow@2608
   402
nipkow@2608
   403
goal List.thy 
nipkow@2608
   404
  "!xs. take n (xs @ ys) = (take n xs @ take (n - length xs) ys)";
nipkow@2608
   405
by(nat_ind_tac "n" 1);
nipkow@2608
   406
 by(ALLGOALS Asm_simp_tac);
nipkow@2608
   407
br allI 1;
nipkow@2608
   408
by(res_inst_tac [("xs","xs")]list_cases 1);
nipkow@2608
   409
 by(ALLGOALS Asm_simp_tac);
nipkow@2608
   410
qed_spec_mp "take_append";
nipkow@2608
   411
Addsimps [take_append];
nipkow@2608
   412
nipkow@2608
   413
goal List.thy "!xs. drop n (xs@ys) = drop n xs @ drop (n - length xs) ys"; 
nipkow@2608
   414
by(nat_ind_tac "n" 1);
nipkow@2608
   415
 by(ALLGOALS Asm_simp_tac);
nipkow@2608
   416
br allI 1;
nipkow@2608
   417
by(res_inst_tac [("xs","xs")]list_cases 1);
nipkow@2608
   418
 by(ALLGOALS Asm_simp_tac);
nipkow@2608
   419
qed_spec_mp "drop_append";
nipkow@2608
   420
Addsimps [drop_append];
nipkow@2608
   421
nipkow@2608
   422
goal List.thy "!xs n. take n (take m xs) = take (min n m) xs"; 
nipkow@2608
   423
by(nat_ind_tac "m" 1);
nipkow@2608
   424
 by(ALLGOALS Asm_simp_tac);
nipkow@2608
   425
br allI 1;
nipkow@2608
   426
by(res_inst_tac [("xs","xs")]list_cases 1);
nipkow@2608
   427
 by(ALLGOALS Asm_simp_tac);
nipkow@2608
   428
br allI 1;
nipkow@2608
   429
by(res_inst_tac [("n","n")]natE 1);
nipkow@2608
   430
 by(ALLGOALS Asm_simp_tac);
nipkow@2608
   431
qed_spec_mp "take_take";
nipkow@2608
   432
nipkow@2608
   433
goal List.thy "!xs. drop n (drop m xs) = drop (n + m) xs"; 
nipkow@2608
   434
by(nat_ind_tac "m" 1);
nipkow@2608
   435
 by(ALLGOALS Asm_simp_tac);
nipkow@2608
   436
br allI 1;
nipkow@2608
   437
by(res_inst_tac [("xs","xs")]list_cases 1);
nipkow@2608
   438
 by(ALLGOALS Asm_simp_tac);
nipkow@2608
   439
qed_spec_mp "drop_drop";
clasohm@923
   440
nipkow@2608
   441
goal List.thy "!xs n. take n (drop m xs) = drop m (take (n + m) xs)"; 
nipkow@2608
   442
by(nat_ind_tac "m" 1);
nipkow@2608
   443
 by(ALLGOALS Asm_simp_tac);
nipkow@2608
   444
br allI 1;
nipkow@2608
   445
by(res_inst_tac [("xs","xs")]list_cases 1);
nipkow@2608
   446
 by(ALLGOALS Asm_simp_tac);
nipkow@2608
   447
qed_spec_mp "take_drop";
nipkow@2608
   448
nipkow@2608
   449
goal List.thy "!xs. take n (map f xs) = map f (take n xs)"; 
nipkow@2608
   450
by(nat_ind_tac "n" 1);
nipkow@2608
   451
by(ALLGOALS Asm_simp_tac);
nipkow@2608
   452
br allI 1;
nipkow@2608
   453
by(res_inst_tac [("xs","xs")]list_cases 1);
nipkow@2608
   454
by(ALLGOALS Asm_simp_tac);
nipkow@2608
   455
qed_spec_mp "take_map"; 
nipkow@2608
   456
nipkow@2608
   457
goal List.thy "!xs. drop n (map f xs) = map f (drop n xs)"; 
nipkow@2608
   458
by(nat_ind_tac "n" 1);
nipkow@2608
   459
by(ALLGOALS Asm_simp_tac);
nipkow@2608
   460
br allI 1;
nipkow@2608
   461
by(res_inst_tac [("xs","xs")]list_cases 1);
nipkow@2608
   462
by(ALLGOALS Asm_simp_tac);
nipkow@2608
   463
qed_spec_mp "drop_map";
nipkow@2608
   464
nipkow@2608
   465
goal List.thy
nipkow@2608
   466
  "!n i. i < n --> nth i (take n xs) = nth i xs";
nipkow@2608
   467
by(list.induct_tac "xs" 1);
nipkow@2608
   468
 by(ALLGOALS Asm_simp_tac);
nipkow@2608
   469
by(strip_tac 1);
nipkow@2608
   470
by(res_inst_tac [("n","n")] natE 1);
nipkow@2608
   471
 by(Fast_tac 1);
nipkow@2608
   472
by(res_inst_tac [("n","i")] natE 1);
nipkow@2608
   473
by(ALLGOALS (hyp_subst_tac THEN' Asm_full_simp_tac));
nipkow@2608
   474
qed_spec_mp "nth_take";
nipkow@2608
   475
Addsimps [nth_take];
clasohm@923
   476
nipkow@2608
   477
goal List.thy
nipkow@2608
   478
  "!xs i. n + i < length xs --> nth i (drop n xs) = nth (n + i) xs";
nipkow@2608
   479
by(nat_ind_tac "n" 1);
nipkow@2608
   480
 by(ALLGOALS Asm_simp_tac);
nipkow@2608
   481
br allI 1;
nipkow@2608
   482
by(res_inst_tac [("xs","xs")]list_cases 1);
nipkow@2608
   483
 by(ALLGOALS Asm_simp_tac);
nipkow@2608
   484
qed_spec_mp "nth_drop";
nipkow@2608
   485
Addsimps [nth_drop];
nipkow@2608
   486
nipkow@2608
   487
(** takeWhile & dropWhile **)
nipkow@2608
   488
nipkow@2608
   489
goal List.thy
nipkow@2608
   490
  "x:set_of_list xs & ~P(x) --> takeWhile P (xs @ ys) = takeWhile P xs";
nipkow@2608
   491
by(list.induct_tac "xs" 1);
nipkow@2608
   492
 by(Simp_tac 1);
nipkow@2608
   493
by(asm_full_simp_tac (!simpset setloop (split_tac[expand_if])) 1);
nipkow@2608
   494
by(Fast_tac 1);
nipkow@2608
   495
bind_thm("takeWhile_append1", conjI RS (result() RS mp));
nipkow@2608
   496
Addsimps [takeWhile_append1];
clasohm@923
   497
nipkow@2608
   498
goal List.thy
nipkow@2608
   499
  "(!x:set_of_list xs.P(x)) --> takeWhile P (xs @ ys) = xs @ takeWhile P ys";
nipkow@2608
   500
by(list.induct_tac "xs" 1);
nipkow@2608
   501
 by(Simp_tac 1);
nipkow@2608
   502
by(asm_full_simp_tac (!simpset setloop (split_tac[expand_if])) 1);
nipkow@2608
   503
bind_thm("takeWhile_append2", ballI RS (result() RS mp));
nipkow@2608
   504
Addsimps [takeWhile_append2];
lcp@1169
   505
nipkow@2608
   506
goal List.thy
nipkow@2608
   507
  "x:set_of_list xs & ~P(x) --> dropWhile P (xs @ ys) = (dropWhile P xs)@ys";
nipkow@2608
   508
by(list.induct_tac "xs" 1);
nipkow@2608
   509
 by(Simp_tac 1);
nipkow@2608
   510
by(asm_full_simp_tac (!simpset setloop (split_tac[expand_if])) 1);
nipkow@2608
   511
by(Fast_tac 1);
nipkow@2608
   512
bind_thm("dropWhile_append1", conjI RS (result() RS mp));
nipkow@2608
   513
Addsimps [dropWhile_append1];
nipkow@2608
   514
nipkow@2608
   515
goal List.thy
nipkow@2608
   516
  "(!x:set_of_list xs.P(x)) --> dropWhile P (xs @ ys) = dropWhile P ys";
nipkow@2608
   517
by(list.induct_tac "xs" 1);
nipkow@2608
   518
 by(Simp_tac 1);
nipkow@2608
   519
by(asm_full_simp_tac (!simpset setloop (split_tac[expand_if])) 1);
nipkow@2608
   520
bind_thm("dropWhile_append2", ballI RS (result() RS mp));
nipkow@2608
   521
Addsimps [dropWhile_append2];
nipkow@2608
   522
nipkow@2608
   523
goal List.thy "x:set_of_list(takeWhile P xs) --> x:set_of_list xs & P x";
nipkow@2608
   524
by(list.induct_tac "xs" 1);
nipkow@2608
   525
 by(Simp_tac 1);
nipkow@2608
   526
by(asm_full_simp_tac (!simpset setloop (split_tac[expand_if])) 1);
nipkow@2608
   527
qed_spec_mp"set_of_list_take_whileD";
nipkow@2608
   528