src/HOL/Integ/presburger.ML
author wenzelm
Thu Jul 14 19:28:18 2005 +0200 (2005-07-14)
changeset 16836 45a3dc4688bc
parent 15661 9ef583b08647
child 17465 93fc1211603f
permissions -rw-r--r--
improved oracle setup;
berghofe@13876
     1
(*  Title:      HOL/Integ/presburger.ML
berghofe@13876
     2
    ID:         $Id$
berghofe@13876
     3
    Author:     Amine Chaieb and Stefan Berghofer, TU Muenchen
berghofe@13876
     4
berghofe@13876
     5
Tactic for solving arithmetical Goals in Presburger Arithmetic
berghofe@13876
     6
*)
berghofe@13876
     7
chaieb@14811
     8
(* This version of presburger deals with occurences of functional symbols in the subgoal and abstract over them to try to prove the more general formula. It then resolves with the subgoal. To enable this feature call the procedure with the parameter abs
chaieb@14758
     9
*)
chaieb@14758
    10
berghofe@13876
    11
signature PRESBURGER = 
berghofe@13876
    12
sig
chaieb@14758
    13
 val presburger_tac : bool -> bool -> int -> tactic
chaieb@14758
    14
 val presburger_method : bool -> bool -> int -> Proof.method
berghofe@13876
    15
 val setup : (theory -> theory) list
berghofe@13876
    16
 val trace : bool ref
berghofe@13876
    17
end;
berghofe@13876
    18
berghofe@13876
    19
structure Presburger: PRESBURGER =
berghofe@13876
    20
struct
berghofe@13876
    21
berghofe@13876
    22
val trace = ref false;
berghofe@13876
    23
fun trace_msg s = if !trace then tracing s else ();
berghofe@13876
    24
berghofe@13876
    25
(*-----------------------------------------------------------------*)
berghofe@13876
    26
(*cooper_pp: provefunction for the one-exstance quantifier elimination*)
berghofe@13876
    27
(* Here still only one problem : The proof for the arithmetical transformations done on the dvd atomic formulae*)
berghofe@13876
    28
(*-----------------------------------------------------------------*)
berghofe@13876
    29
chaieb@14941
    30
berghofe@14801
    31
val presburger_ss = simpset_of (theory "Presburger");
berghofe@14801
    32
chaieb@14758
    33
fun cooper_pp sg (fm as e$Abs(xn,xT,p)) = 
berghofe@13876
    34
  let val (xn1,p1) = variant_abs (xn,xT,p)
chaieb@14758
    35
  in (CooperProof.cooper_prv sg (Free (xn1, xT)) p1) end;
berghofe@13876
    36
berghofe@13876
    37
fun mnnf_pp sg fm = CooperProof.proof_of_cnnf sg fm
berghofe@13876
    38
  (CooperProof.proof_of_evalc sg);
berghofe@13876
    39
chaieb@14758
    40
fun tmproof_of_int_qelim sg fm =
chaieb@14758
    41
  Qelim.tproof_of_mlift_qelim sg CooperDec.is_arith_rel
berghofe@13876
    42
    (CooperProof.proof_of_linform sg) (mnnf_pp sg) (cooper_pp sg) fm;
berghofe@13876
    43
chaieb@14758
    44
berghofe@13876
    45
(* Theorems to be used in this tactic*)
berghofe@13876
    46
berghofe@13876
    47
val zdvd_int = thm "zdvd_int";
berghofe@13876
    48
val zdiff_int_split = thm "zdiff_int_split";
berghofe@13876
    49
val all_nat = thm "all_nat";
berghofe@13876
    50
val ex_nat = thm "ex_nat";
berghofe@13876
    51
val number_of1 = thm "number_of1";
berghofe@13876
    52
val number_of2 = thm "number_of2";
berghofe@13876
    53
val split_zdiv = thm "split_zdiv";
berghofe@13876
    54
val split_zmod = thm "split_zmod";
berghofe@13876
    55
val mod_div_equality' = thm "mod_div_equality'";
berghofe@13876
    56
val split_div' = thm "split_div'";
berghofe@13876
    57
val Suc_plus1 = thm "Suc_plus1";
berghofe@13876
    58
val imp_le_cong = thm "imp_le_cong";
berghofe@13876
    59
val conj_le_cong = thm "conj_le_cong";
berghofe@13876
    60
berghofe@13876
    61
(* extract all the constants in a term*)
berghofe@13876
    62
fun add_term_typed_consts (Const (c, T), cs) = (c,T) ins cs
berghofe@13876
    63
  | add_term_typed_consts (t $ u, cs) =
berghofe@13876
    64
      add_term_typed_consts (t, add_term_typed_consts (u, cs))
berghofe@13876
    65
  | add_term_typed_consts (Abs (_, _, t), cs) = add_term_typed_consts (t, cs)
berghofe@13876
    66
  | add_term_typed_consts (_, cs) = cs;
berghofe@13876
    67
berghofe@13876
    68
fun term_typed_consts t = add_term_typed_consts(t,[]);
berghofe@13876
    69
wenzelm@15661
    70
(* Some Types*)
berghofe@13876
    71
val bT = HOLogic.boolT;
paulson@15620
    72
val bitT = HOLogic.bitT;
berghofe@13876
    73
val iT = HOLogic.intT;
berghofe@13876
    74
val binT = HOLogic.binT;
berghofe@13876
    75
val nT = HOLogic.natT;
berghofe@13876
    76
berghofe@13876
    77
(* Allowed Consts in formulae for presburger tactic*)
berghofe@13876
    78
berghofe@13876
    79
val allowed_consts =
berghofe@13876
    80
  [("All", (iT --> bT) --> bT),
berghofe@13876
    81
   ("Ex", (iT --> bT) --> bT),
berghofe@13876
    82
   ("All", (nT --> bT) --> bT),
berghofe@13876
    83
   ("Ex", (nT --> bT) --> bT),
berghofe@13876
    84
berghofe@13876
    85
   ("op &", bT --> bT --> bT),
berghofe@13876
    86
   ("op |", bT --> bT --> bT),
berghofe@13876
    87
   ("op -->", bT --> bT --> bT),
berghofe@13876
    88
   ("op =", bT --> bT --> bT),
berghofe@13876
    89
   ("Not", bT --> bT),
berghofe@13876
    90
berghofe@13876
    91
   ("op <=", iT --> iT --> bT),
berghofe@13876
    92
   ("op =", iT --> iT --> bT),
berghofe@13876
    93
   ("op <", iT --> iT --> bT),
berghofe@13876
    94
   ("Divides.op dvd", iT --> iT --> bT),
berghofe@13876
    95
   ("Divides.op div", iT --> iT --> iT),
berghofe@13876
    96
   ("Divides.op mod", iT --> iT --> iT),
berghofe@13876
    97
   ("op +", iT --> iT --> iT),
berghofe@13876
    98
   ("op -", iT --> iT --> iT),
berghofe@13876
    99
   ("op *", iT --> iT --> iT), 
berghofe@13876
   100
   ("HOL.abs", iT --> iT),
berghofe@13876
   101
   ("uminus", iT --> iT),
berghofe@14801
   102
   ("HOL.max", iT --> iT --> iT),
berghofe@14801
   103
   ("HOL.min", iT --> iT --> iT),
berghofe@13876
   104
berghofe@13876
   105
   ("op <=", nT --> nT --> bT),
berghofe@13876
   106
   ("op =", nT --> nT --> bT),
berghofe@13876
   107
   ("op <", nT --> nT --> bT),
berghofe@13876
   108
   ("Divides.op dvd", nT --> nT --> bT),
berghofe@13876
   109
   ("Divides.op div", nT --> nT --> nT),
berghofe@13876
   110
   ("Divides.op mod", nT --> nT --> nT),
berghofe@13876
   111
   ("op +", nT --> nT --> nT),
berghofe@13876
   112
   ("op -", nT --> nT --> nT),
berghofe@13876
   113
   ("op *", nT --> nT --> nT), 
berghofe@13876
   114
   ("Suc", nT --> nT),
berghofe@14801
   115
   ("HOL.max", nT --> nT --> nT),
berghofe@14801
   116
   ("HOL.min", nT --> nT --> nT),
berghofe@13876
   117
paulson@15620
   118
   ("Numeral.bit.B0", bitT),
paulson@15620
   119
   ("Numeral.bit.B1", bitT),
paulson@15620
   120
   ("Numeral.Bit", binT --> bitT --> binT),
paulson@15013
   121
   ("Numeral.Pls", binT),
paulson@15013
   122
   ("Numeral.Min", binT),
berghofe@13876
   123
   ("Numeral.number_of", binT --> iT),
berghofe@13876
   124
   ("Numeral.number_of", binT --> nT),
berghofe@13876
   125
   ("0", nT),
berghofe@13876
   126
   ("0", iT),
berghofe@13876
   127
   ("1", nT),
berghofe@13876
   128
   ("1", iT),
berghofe@13876
   129
   ("False", bT),
berghofe@13876
   130
   ("True", bT)];
berghofe@13876
   131
berghofe@13876
   132
(* Preparation of the formula to be sent to the Integer quantifier *)
berghofe@13876
   133
(* elimination procedure                                           *)
berghofe@13876
   134
(* Transforms meta implications and meta quantifiers to object     *)
berghofe@13876
   135
(* implications and object quantifiers                             *)
berghofe@13876
   136
chaieb@14758
   137
chaieb@14758
   138
(*==================================*)
chaieb@14758
   139
(* Abstracting on subterms  ========*)
chaieb@14758
   140
(*==================================*)
chaieb@14758
   141
(* Returns occurences of terms that are function application of type int or nat*)
chaieb@14758
   142
chaieb@14758
   143
fun getfuncs fm = case strip_comb fm of
chaieb@14758
   144
    (Free (_, T), ts as _ :: _) =>
chaieb@14758
   145
      if body_type T mem [iT, nT] 
chaieb@14758
   146
         andalso not (ts = []) andalso forall (null o loose_bnos) ts 
chaieb@14758
   147
      then [fm]
skalberg@15570
   148
      else Library.foldl op union ([], map getfuncs ts)
chaieb@14758
   149
  | (Var (_, T), ts as _ :: _) =>
chaieb@14758
   150
      if body_type T mem [iT, nT] 
chaieb@14758
   151
         andalso not (ts = []) andalso forall (null o loose_bnos) ts then [fm]
skalberg@15570
   152
      else Library.foldl op union ([], map getfuncs ts)
chaieb@14758
   153
  | (Const (s, T), ts) =>
chaieb@14758
   154
      if (s, T) mem allowed_consts orelse not (body_type T mem [iT, nT])
skalberg@15570
   155
      then Library.foldl op union ([], map getfuncs ts)
chaieb@14758
   156
      else [fm]
chaieb@14758
   157
  | (Abs (s, T, t), _) => getfuncs t
chaieb@14758
   158
  | _ => [];
chaieb@14758
   159
chaieb@14758
   160
chaieb@14758
   161
fun abstract_pres sg fm = 
skalberg@15574
   162
  foldr (fn (t, u) =>
chaieb@14758
   163
      let val T = fastype_of t
chaieb@14758
   164
      in all T $ Abs ("x", T, abstract_over (t, u)) end)
skalberg@15574
   165
         fm (getfuncs fm);
chaieb@14758
   166
chaieb@14758
   167
chaieb@14758
   168
chaieb@14758
   169
(* hasfuncs_on_bounds dont care of the type of the functions applied!
chaieb@14758
   170
 It returns true if there is a subterm coresponding to the application of
chaieb@14758
   171
 a function on a bounded variable.
chaieb@14758
   172
chaieb@14758
   173
 Function applications are allowed only for well predefined functions a 
chaieb@14758
   174
 consts*)
chaieb@14758
   175
chaieb@14758
   176
fun has_free_funcs fm  = case strip_comb fm of
chaieb@14758
   177
    (Free (_, T), ts as _ :: _) => 
chaieb@14758
   178
      if (body_type T mem [iT,nT]) andalso (not (T mem [iT,nT]))
chaieb@14758
   179
      then true
chaieb@14758
   180
      else exists (fn x => x) (map has_free_funcs ts)
chaieb@14758
   181
  | (Var (_, T), ts as _ :: _) =>
chaieb@14758
   182
      if (body_type T mem [iT,nT]) andalso not (T mem [iT,nT])
chaieb@14758
   183
      then true
chaieb@14758
   184
      else exists (fn x => x) (map has_free_funcs ts)
chaieb@14758
   185
  | (Const (s, T), ts) =>  exists (fn x => x) (map has_free_funcs ts)
chaieb@14758
   186
  | (Abs (s, T, t), _) => has_free_funcs t
chaieb@14758
   187
  |_ => false;
chaieb@14758
   188
chaieb@14758
   189
chaieb@14758
   190
(*returns true if the formula is relevant for presburger arithmetic tactic
chaieb@14758
   191
The constants occuring in term t should be a subset of the allowed_consts
chaieb@14758
   192
 There also should be no occurences of application of functions on bounded 
chaieb@14758
   193
 variables. Whenever this function will be used, it will be ensured that t 
chaieb@14758
   194
 will not contain subterms with function symbols that could have been 
chaieb@14758
   195
 abstracted over.*)
chaieb@14758
   196
 
chaieb@14758
   197
fun relevant ps t = (term_typed_consts t) subset allowed_consts andalso 
skalberg@15570
   198
  map (fn i => snd (List.nth (ps, i))) (loose_bnos t) @
chaieb@14758
   199
  map (snd o dest_Free) (term_frees t) @ map (snd o dest_Var) (term_vars t)
chaieb@14758
   200
  subset [iT, nT]
chaieb@14758
   201
  andalso not (has_free_funcs t);
chaieb@14758
   202
chaieb@14758
   203
chaieb@14758
   204
fun prepare_for_presburger sg q fm = 
berghofe@13876
   205
  let
berghofe@13876
   206
    val ps = Logic.strip_params fm
berghofe@13876
   207
    val hs = map HOLogic.dest_Trueprop (Logic.strip_assums_hyp fm)
berghofe@13876
   208
    val c = HOLogic.dest_Trueprop (Logic.strip_assums_concl fm)
chaieb@14758
   209
    val _ = if relevant (rev ps) c then () 
chaieb@14758
   210
               else  (trace_msg ("Conclusion is not a presburger term:\n" ^
chaieb@14758
   211
             Sign.string_of_term sg c); raise CooperDec.COOPER)
berghofe@13876
   212
    fun mk_all ((s, T), (P,n)) =
berghofe@13876
   213
      if 0 mem loose_bnos P then
berghofe@13876
   214
        (HOLogic.all_const T $ Abs (s, T, P), n)
berghofe@13876
   215
      else (incr_boundvars ~1 P, n-1)
berghofe@13876
   216
    fun mk_all2 (v, t) = HOLogic.all_const (fastype_of v) $ lambda v t;
skalberg@15570
   217
    val (rhs,irhs) = List.partition (relevant (rev ps)) hs
berghofe@13876
   218
    val np = length ps
skalberg@15574
   219
    val (fm',np) =  foldr (fn ((x, T), (fm,n)) => mk_all ((x, T), (fm,n)))
skalberg@15574
   220
      (foldr HOLogic.mk_imp c rhs, np) ps
skalberg@15570
   221
    val (vs, _) = List.partition (fn t => q orelse (type_of t) = nT)
berghofe@13876
   222
      (term_frees fm' @ term_vars fm');
skalberg@15574
   223
    val fm2 = foldr mk_all2 fm' vs
berghofe@13876
   224
  in (fm2, np + length vs, length rhs) end;
berghofe@13876
   225
berghofe@13876
   226
(*Object quantifier to meta --*)
berghofe@13876
   227
fun spec_step n th = if (n=0) then th else (spec_step (n-1) th) RS spec ;
berghofe@13876
   228
berghofe@13876
   229
(* object implication to meta---*)
berghofe@13876
   230
fun mp_step n th = if (n=0) then th else (mp_step (n-1) th) RS mp;
berghofe@13876
   231
berghofe@13876
   232
(* the presburger tactic*)
chaieb@14758
   233
chaieb@14758
   234
(* Parameters : q = flag for quantify ofer free variables ; 
chaieb@14758
   235
                a = flag for abstracting over function occurences
chaieb@14758
   236
                i = subgoal  *)
chaieb@14758
   237
chaieb@14758
   238
fun presburger_tac q a i = ObjectLogic.atomize_tac i THEN (fn st =>
berghofe@13876
   239
  let
chaieb@14758
   240
    val g = BasisLibrary.List.nth (prems_of st, i - 1)
chaieb@14758
   241
    val sg = sign_of_thm st
chaieb@14758
   242
    (* The Abstraction step *)
chaieb@14758
   243
    val g' = if a then abstract_pres sg g else g
berghofe@13876
   244
    (* Transform the term*)
chaieb@14758
   245
    val (t,np,nh) = prepare_for_presburger sg q g'
wenzelm@15661
   246
    (* Some simpsets for dealing with mod div abs and nat*)
berghofe@13876
   247
    val simpset0 = HOL_basic_ss
berghofe@13876
   248
      addsimps [mod_div_equality', Suc_plus1]
berghofe@13997
   249
      addsplits [split_zdiv, split_zmod, split_div', split_min, split_max]
berghofe@13876
   250
    (* Simp rules for changing (n::int) to int n *)
berghofe@13876
   251
    val simpset1 = HOL_basic_ss
berghofe@13876
   252
      addsimps [nat_number_of_def, zdvd_int] @ map (fn r => r RS sym)
berghofe@13876
   253
        [int_int_eq, zle_int, zless_int, zadd_int, zmult_int]
berghofe@13876
   254
      addsplits [zdiff_int_split]
berghofe@13876
   255
    (*simp rules for elimination of int n*)
berghofe@13876
   256
berghofe@13876
   257
    val simpset2 = HOL_basic_ss
berghofe@13876
   258
      addsimps [nat_0_le, all_nat, ex_nat, number_of1, number_of2, int_0, int_1]
berghofe@13876
   259
      addcongs [conj_le_cong, imp_le_cong]
berghofe@13876
   260
    (* simp rules for elimination of abs *)
paulson@14353
   261
    val simpset3 = HOL_basic_ss addsplits [abs_split]
berghofe@13876
   262
    val ct = cterm_of sg (HOLogic.mk_Trueprop t)
berghofe@13876
   263
    (* Theorem for the nat --> int transformation *)
berghofe@13876
   264
    val pre_thm = Seq.hd (EVERY
chaieb@14758
   265
      [simp_tac simpset0 1,
chaieb@14758
   266
       TRY (simp_tac simpset1 1), TRY (simp_tac simpset2 1),
berghofe@14801
   267
       TRY (simp_tac simpset3 1), TRY (simp_tac presburger_ss 1)]
berghofe@13876
   268
      (trivial ct))
chaieb@14758
   269
    fun assm_tac i = REPEAT_DETERM_N nh (assume_tac i)
berghofe@13876
   270
    (* The result of the quantifier elimination *)
berghofe@13876
   271
    val (th, tac) = case (prop_of pre_thm) of
berghofe@13876
   272
        Const ("==>", _) $ (Const ("Trueprop", _) $ t1) $ _ =>
chaieb@14920
   273
    let val pth = 
chaieb@14920
   274
          (* If quick_and_dirty then run without proof generation as oracle*)
chaieb@14920
   275
             if !quick_and_dirty 
wenzelm@16836
   276
             then presburger_oracle sg (Pattern.eta_long [] t1)
chaieb@14941
   277
(*
chaieb@14941
   278
assume (cterm_of sg 
chaieb@14920
   279
	       (HOLogic.mk_Trueprop(HOLogic.mk_eq(t1,CooperDec.integer_qelim (Pattern.eta_long [] t1)))))
chaieb@14941
   280
*)
chaieb@14920
   281
	     else tmproof_of_int_qelim sg (Pattern.eta_long [] t1)
chaieb@14920
   282
    in 
berghofe@13876
   283
          (trace_msg ("calling procedure with term:\n" ^
berghofe@13876
   284
             Sign.string_of_term sg t1);
chaieb@14920
   285
           ((pth RS iffD2) RS pre_thm,
berghofe@13876
   286
            assm_tac (i + 1) THEN (if q then I else TRY) (rtac TrueI i)))
chaieb@14920
   287
    end
berghofe@13876
   288
      | _ => (pre_thm, assm_tac i)
chaieb@14758
   289
  in (rtac (((mp_step nh) o (spec_step np)) th) i 
chaieb@14758
   290
      THEN tac) st
berghofe@14130
   291
  end handle Subscript => no_tac st | CooperDec.COOPER => no_tac st);
berghofe@13876
   292
berghofe@13876
   293
fun presburger_args meth =
chaieb@14758
   294
 let val parse_flag = 
chaieb@14758
   295
         Args.$$$ "no_quantify" >> K (apfst (K false))
chaieb@14811
   296
      || Args.$$$ "abs" >> K (apsnd (K true));
chaieb@14758
   297
 in
chaieb@14758
   298
   Method.simple_args 
wenzelm@14882
   299
  (Scan.optional (Args.$$$ "(" |-- Scan.repeat1 parse_flag --| Args.$$$ ")") [] >>
skalberg@15570
   300
    curry (Library.foldl op |>) (true, false))
chaieb@14758
   301
    (fn (q,a) => fn _ => meth q a 1)
chaieb@14758
   302
  end;
berghofe@13876
   303
chaieb@14758
   304
fun presburger_method q a i = Method.METHOD (fn facts =>
chaieb@14758
   305
  Method.insert_tac facts 1 THEN presburger_tac q a i)
berghofe@13876
   306
berghofe@13876
   307
val setup =
berghofe@13876
   308
  [Method.add_method ("presburger",
berghofe@13876
   309
     presburger_args presburger_method,
berghofe@13876
   310
     "decision procedure for Presburger arithmetic"),
berghofe@13876
   311
   ArithTheoryData.map (fn {splits, inj_consts, discrete, presburger} =>
berghofe@13876
   312
     {splits = splits, inj_consts = inj_consts, discrete = discrete,
skalberg@15531
   313
      presburger = SOME (presburger_tac true false)})];
berghofe@13876
   314
berghofe@13876
   315
end;
berghofe@13876
   316
chaieb@14920
   317
val presburger_tac = Presburger.presburger_tac true false;