src/HOL/Groebner_Basis.thy
author haftmann
Wed May 05 16:46:19 2010 +0200 (2010-05-05)
changeset 36698 45f1a487cd27
parent 36409 d323e7773aa8
child 36699 816da1023508
permissions -rw-r--r--
dropped unused file
wenzelm@23252
     1
(*  Title:      HOL/Groebner_Basis.thy
wenzelm@23252
     2
    Author:     Amine Chaieb, TU Muenchen
wenzelm@23252
     3
*)
wenzelm@23252
     4
wenzelm@23252
     5
header {* Semiring normalization and Groebner Bases *}
haftmann@28402
     6
wenzelm@23252
     7
theory Groebner_Basis
haftmann@33361
     8
imports Numeral_Simprocs
wenzelm@23252
     9
uses
wenzelm@23252
    10
  "Tools/Groebner_Basis/normalizer_data.ML"
wenzelm@23252
    11
  ("Tools/Groebner_Basis/normalizer.ML")
chaieb@23312
    12
  ("Tools/Groebner_Basis/groebner.ML")
wenzelm@23252
    13
begin
wenzelm@23252
    14
wenzelm@23252
    15
subsection {* Semiring normalization *}
wenzelm@23252
    16
wenzelm@23252
    17
setup NormalizerData.setup
wenzelm@23252
    18
wenzelm@23252
    19
wenzelm@23258
    20
locale gb_semiring =
wenzelm@23252
    21
  fixes add mul pwr r0 r1
wenzelm@23252
    22
  assumes add_a:"(add x (add y z) = add (add x y) z)"
wenzelm@23252
    23
    and add_c: "add x y = add y x" and add_0:"add r0 x = x"
wenzelm@23252
    24
    and mul_a:"mul x (mul y z) = mul (mul x y) z" and mul_c:"mul x y = mul y x"
wenzelm@23252
    25
    and mul_1:"mul r1 x = x" and  mul_0:"mul r0 x = r0"
wenzelm@23252
    26
    and mul_d:"mul x (add y z) = add (mul x y) (mul x z)"
wenzelm@23252
    27
    and pwr_0:"pwr x 0 = r1" and pwr_Suc:"pwr x (Suc n) = mul x (pwr x n)"
wenzelm@23252
    28
begin
wenzelm@23252
    29
wenzelm@23252
    30
lemma mul_pwr:"mul (pwr x p) (pwr x q) = pwr x (p + q)"
wenzelm@23252
    31
proof (induct p)
wenzelm@23252
    32
  case 0
wenzelm@23252
    33
  then show ?case by (auto simp add: pwr_0 mul_1)
wenzelm@23252
    34
next
wenzelm@23252
    35
  case Suc
wenzelm@23252
    36
  from this [symmetric] show ?case
wenzelm@23252
    37
    by (auto simp add: pwr_Suc mul_1 mul_a)
wenzelm@23252
    38
qed
wenzelm@23252
    39
wenzelm@23252
    40
lemma pwr_mul: "pwr (mul x y) q = mul (pwr x q) (pwr y q)"
wenzelm@23252
    41
proof (induct q arbitrary: x y, auto simp add:pwr_0 pwr_Suc mul_1)
wenzelm@23252
    42
  fix q x y
wenzelm@23252
    43
  assume "\<And>x y. pwr (mul x y) q = mul (pwr x q) (pwr y q)"
wenzelm@23252
    44
  have "mul (mul x y) (mul (pwr x q) (pwr y q)) = mul x (mul y (mul (pwr x q) (pwr y q)))"
wenzelm@23252
    45
    by (simp add: mul_a)
wenzelm@23252
    46
  also have "\<dots> = (mul (mul y (mul (pwr y q) (pwr x q))) x)" by (simp add: mul_c)
wenzelm@23252
    47
  also have "\<dots> = (mul (mul y (pwr y q)) (mul (pwr x q) x))" by (simp add: mul_a)
wenzelm@23252
    48
  finally show "mul (mul x y) (mul (pwr x q) (pwr y q)) =
wenzelm@23252
    49
    mul (mul x (pwr x q)) (mul y (pwr y q))" by (simp add: mul_c)
wenzelm@23252
    50
qed
wenzelm@23252
    51
wenzelm@23252
    52
lemma pwr_pwr: "pwr (pwr x p) q = pwr x (p * q)"
wenzelm@23252
    53
proof (induct p arbitrary: q)
wenzelm@23252
    54
  case 0
wenzelm@23252
    55
  show ?case using pwr_Suc mul_1 pwr_0 by (induct q) auto
wenzelm@23252
    56
next
wenzelm@23252
    57
  case Suc
wenzelm@23252
    58
  thus ?case by (auto simp add: mul_pwr [symmetric] pwr_mul pwr_Suc)
wenzelm@23252
    59
qed
wenzelm@23252
    60
wenzelm@23252
    61
wenzelm@23252
    62
subsubsection {* Declaring the abstract theory *}
wenzelm@23252
    63
wenzelm@23252
    64
lemma semiring_ops:
wenzelm@23252
    65
  shows "TERM (add x y)" and "TERM (mul x y)" and "TERM (pwr x n)"
wenzelm@28856
    66
    and "TERM r0" and "TERM r1" .
wenzelm@23252
    67
wenzelm@23252
    68
lemma semiring_rules:
wenzelm@23252
    69
  "add (mul a m) (mul b m) = mul (add a b) m"
wenzelm@23252
    70
  "add (mul a m) m = mul (add a r1) m"
wenzelm@23252
    71
  "add m (mul a m) = mul (add a r1) m"
wenzelm@23252
    72
  "add m m = mul (add r1 r1) m"
wenzelm@23252
    73
  "add r0 a = a"
wenzelm@23252
    74
  "add a r0 = a"
wenzelm@23252
    75
  "mul a b = mul b a"
wenzelm@23252
    76
  "mul (add a b) c = add (mul a c) (mul b c)"
wenzelm@23252
    77
  "mul r0 a = r0"
wenzelm@23252
    78
  "mul a r0 = r0"
wenzelm@23252
    79
  "mul r1 a = a"
wenzelm@23252
    80
  "mul a r1 = a"
wenzelm@23252
    81
  "mul (mul lx ly) (mul rx ry) = mul (mul lx rx) (mul ly ry)"
wenzelm@23252
    82
  "mul (mul lx ly) (mul rx ry) = mul lx (mul ly (mul rx ry))"
wenzelm@23252
    83
  "mul (mul lx ly) (mul rx ry) = mul rx (mul (mul lx ly) ry)"
wenzelm@23252
    84
  "mul (mul lx ly) rx = mul (mul lx rx) ly"
wenzelm@23252
    85
  "mul (mul lx ly) rx = mul lx (mul ly rx)"
wenzelm@23252
    86
  "mul lx (mul rx ry) = mul (mul lx rx) ry"
wenzelm@23252
    87
  "mul lx (mul rx ry) = mul rx (mul lx ry)"
wenzelm@23252
    88
  "add (add a b) (add c d) = add (add a c) (add b d)"
wenzelm@23252
    89
  "add (add a b) c = add a (add b c)"
wenzelm@23252
    90
  "add a (add c d) = add c (add a d)"
wenzelm@23252
    91
  "add (add a b) c = add (add a c) b"
wenzelm@23252
    92
  "add a c = add c a"
wenzelm@23252
    93
  "add a (add c d) = add (add a c) d"
wenzelm@23252
    94
  "mul (pwr x p) (pwr x q) = pwr x (p + q)"
wenzelm@23252
    95
  "mul x (pwr x q) = pwr x (Suc q)"
wenzelm@23252
    96
  "mul (pwr x q) x = pwr x (Suc q)"
wenzelm@23252
    97
  "mul x x = pwr x 2"
wenzelm@23252
    98
  "pwr (mul x y) q = mul (pwr x q) (pwr y q)"
wenzelm@23252
    99
  "pwr (pwr x p) q = pwr x (p * q)"
wenzelm@23252
   100
  "pwr x 0 = r1"
wenzelm@23252
   101
  "pwr x 1 = x"
wenzelm@23252
   102
  "mul x (add y z) = add (mul x y) (mul x z)"
wenzelm@23252
   103
  "pwr x (Suc q) = mul x (pwr x q)"
wenzelm@23252
   104
  "pwr x (2*n) = mul (pwr x n) (pwr x n)"
wenzelm@23252
   105
  "pwr x (Suc (2*n)) = mul x (mul (pwr x n) (pwr x n))"
wenzelm@23252
   106
proof -
wenzelm@23252
   107
  show "add (mul a m) (mul b m) = mul (add a b) m" using mul_d mul_c by simp
wenzelm@23252
   108
next show"add (mul a m) m = mul (add a r1) m" using mul_d mul_c mul_1 by simp
wenzelm@23252
   109
next show "add m (mul a m) = mul (add a r1) m" using mul_c mul_d mul_1 add_c by simp
wenzelm@23252
   110
next show "add m m = mul (add r1 r1) m" using mul_c mul_d mul_1 by simp
wenzelm@23252
   111
next show "add r0 a = a" using add_0 by simp
wenzelm@23252
   112
next show "add a r0 = a" using add_0 add_c by simp
wenzelm@23252
   113
next show "mul a b = mul b a" using mul_c by simp
wenzelm@23252
   114
next show "mul (add a b) c = add (mul a c) (mul b c)" using mul_c mul_d by simp
wenzelm@23252
   115
next show "mul r0 a = r0" using mul_0 by simp
wenzelm@23252
   116
next show "mul a r0 = r0" using mul_0 mul_c by simp
wenzelm@23252
   117
next show "mul r1 a = a" using mul_1 by simp
wenzelm@23252
   118
next show "mul a r1 = a" using mul_1 mul_c by simp
wenzelm@23252
   119
next show "mul (mul lx ly) (mul rx ry) = mul (mul lx rx) (mul ly ry)"
wenzelm@23252
   120
    using mul_c mul_a by simp
wenzelm@23252
   121
next show "mul (mul lx ly) (mul rx ry) = mul lx (mul ly (mul rx ry))"
wenzelm@23252
   122
    using mul_a by simp
wenzelm@23252
   123
next
wenzelm@23252
   124
  have "mul (mul lx ly) (mul rx ry) = mul (mul rx ry) (mul lx ly)" by (rule mul_c)
wenzelm@23252
   125
  also have "\<dots> = mul rx (mul ry (mul lx ly))" using mul_a by simp
wenzelm@23252
   126
  finally
wenzelm@23252
   127
  show "mul (mul lx ly) (mul rx ry) = mul rx (mul (mul lx ly) ry)"
wenzelm@23252
   128
    using mul_c by simp
wenzelm@23252
   129
next show "mul (mul lx ly) rx = mul (mul lx rx) ly" using mul_c mul_a by simp
wenzelm@23252
   130
next
wenzelm@23252
   131
  show "mul (mul lx ly) rx = mul lx (mul ly rx)" by (simp add: mul_a)
wenzelm@23252
   132
next show "mul lx (mul rx ry) = mul (mul lx rx) ry" by (simp add: mul_a )
wenzelm@23252
   133
next show "mul lx (mul rx ry) = mul rx (mul lx ry)" by (simp add: mul_a,simp add: mul_c)
wenzelm@23252
   134
next show "add (add a b) (add c d) = add (add a c) (add b d)"
wenzelm@23252
   135
    using add_c add_a by simp
wenzelm@23252
   136
next show "add (add a b) c = add a (add b c)" using add_a by simp
wenzelm@23252
   137
next show "add a (add c d) = add c (add a d)"
wenzelm@23252
   138
    apply (simp add: add_a) by (simp only: add_c)
wenzelm@23252
   139
next show "add (add a b) c = add (add a c) b" using add_a add_c by simp
wenzelm@23252
   140
next show "add a c = add c a" by (rule add_c)
wenzelm@23252
   141
next show "add a (add c d) = add (add a c) d" using add_a by simp
wenzelm@23252
   142
next show "mul (pwr x p) (pwr x q) = pwr x (p + q)" by (rule mul_pwr)
wenzelm@23252
   143
next show "mul x (pwr x q) = pwr x (Suc q)" using pwr_Suc by simp
wenzelm@23252
   144
next show "mul (pwr x q) x = pwr x (Suc q)" using pwr_Suc mul_c by simp
huffman@35216
   145
next show "mul x x = pwr x 2" by (simp add: nat_number' pwr_Suc pwr_0 mul_1 mul_c)
wenzelm@23252
   146
next show "pwr (mul x y) q = mul (pwr x q) (pwr y q)" by (rule pwr_mul)
wenzelm@23252
   147
next show "pwr (pwr x p) q = pwr x (p * q)" by (rule pwr_pwr)
wenzelm@23252
   148
next show "pwr x 0 = r1" using pwr_0 .
huffman@35216
   149
next show "pwr x 1 = x" unfolding One_nat_def by (simp add: nat_number' pwr_Suc pwr_0 mul_1 mul_c)
wenzelm@23252
   150
next show "mul x (add y z) = add (mul x y) (mul x z)" using mul_d by simp
wenzelm@23252
   151
next show "pwr x (Suc q) = mul x (pwr x q)" using pwr_Suc by simp
huffman@35216
   152
next show "pwr x (2 * n) = mul (pwr x n) (pwr x n)" by (simp add: nat_number' mul_pwr)
wenzelm@23252
   153
next show "pwr x (Suc (2 * n)) = mul x (mul (pwr x n) (pwr x n))"
huffman@35216
   154
    by (simp add: nat_number' pwr_Suc mul_pwr)
wenzelm@23252
   155
qed
wenzelm@23252
   156
wenzelm@23252
   157
wenzelm@26462
   158
lemmas gb_semiring_axioms' =
wenzelm@26314
   159
  gb_semiring_axioms [normalizer
wenzelm@23252
   160
    semiring ops: semiring_ops
wenzelm@26314
   161
    semiring rules: semiring_rules]
wenzelm@23252
   162
wenzelm@23252
   163
end
wenzelm@23252
   164
wenzelm@30729
   165
interpretation class_semiring: gb_semiring
haftmann@31017
   166
    "op +" "op *" "op ^" "0::'a::{comm_semiring_1}" "1"
huffman@35216
   167
  proof qed (auto simp add: algebra_simps)
wenzelm@23252
   168
wenzelm@23252
   169
lemmas nat_arith =
huffman@28987
   170
  add_nat_number_of
huffman@28987
   171
  diff_nat_number_of
huffman@28987
   172
  mult_nat_number_of
huffman@28987
   173
  eq_nat_number_of
huffman@28987
   174
  less_nat_number_of
wenzelm@23252
   175
wenzelm@23252
   176
lemma not_iszero_Numeral1: "\<not> iszero (Numeral1::'a::number_ring)"
huffman@35216
   177
  by simp
huffman@28986
   178
huffman@29039
   179
lemmas comp_arith =
huffman@29039
   180
  Let_def arith_simps nat_arith rel_simps neg_simps if_False
wenzelm@23252
   181
  if_True add_0 add_Suc add_number_of_left mult_number_of_left
nipkow@31790
   182
  numeral_1_eq_1[symmetric] Suc_eq_plus1
huffman@28986
   183
  numeral_0_eq_0[symmetric] numerals[symmetric]
huffman@28986
   184
  iszero_simps not_iszero_Numeral1
wenzelm@23252
   185
wenzelm@23252
   186
lemmas semiring_norm = comp_arith
wenzelm@23252
   187
wenzelm@23252
   188
ML {*
wenzelm@23573
   189
local
wenzelm@23252
   190
wenzelm@23573
   191
open Conv;
wenzelm@23573
   192
chaieb@30866
   193
fun numeral_is_const ct = can HOLogic.dest_number (Thm.term_of ct);
wenzelm@23252
   194
wenzelm@23573
   195
fun int_of_rat x =
wenzelm@23573
   196
  (case Rat.quotient_of_rat x of (i, 1) => i
wenzelm@23573
   197
  | _ => error "int_of_rat: bad int");
wenzelm@23252
   198
wenzelm@23573
   199
val numeral_conv =
wenzelm@23573
   200
  Simplifier.rewrite (HOL_basic_ss addsimps @{thms semiring_norm}) then_conv
wenzelm@23573
   201
  Simplifier.rewrite (HOL_basic_ss addsimps
wenzelm@23573
   202
    (@{thms numeral_1_eq_1} @ @{thms numeral_0_eq_0} @ @{thms numerals(1-2)}));
wenzelm@23573
   203
wenzelm@23573
   204
in
wenzelm@23573
   205
wenzelm@23573
   206
fun normalizer_funs key =
wenzelm@23573
   207
  NormalizerData.funs key
wenzelm@23252
   208
   {is_const = fn phi => numeral_is_const,
wenzelm@23252
   209
    dest_const = fn phi => fn ct =>
wenzelm@23252
   210
      Rat.rat_of_int (snd
wenzelm@23252
   211
        (HOLogic.dest_number (Thm.term_of ct)
wenzelm@23252
   212
          handle TERM _ => error "ring_dest_const")),
wenzelm@23573
   213
    mk_const = fn phi => fn cT => fn x => Numeral.mk_cnumber cT (int_of_rat x),
chaieb@23330
   214
    conv = fn phi => K numeral_conv}
wenzelm@23573
   215
wenzelm@23573
   216
end
wenzelm@23252
   217
*}
wenzelm@23252
   218
wenzelm@26462
   219
declaration {* normalizer_funs @{thm class_semiring.gb_semiring_axioms'} *}
wenzelm@23573
   220
wenzelm@23252
   221
wenzelm@23258
   222
locale gb_ring = gb_semiring +
wenzelm@23252
   223
  fixes sub :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
wenzelm@23252
   224
    and neg :: "'a \<Rightarrow> 'a"
wenzelm@23252
   225
  assumes neg_mul: "neg x = mul (neg r1) x"
wenzelm@23252
   226
    and sub_add: "sub x y = add x (neg y)"
wenzelm@23252
   227
begin
wenzelm@23252
   228
wenzelm@28856
   229
lemma ring_ops: shows "TERM (sub x y)" and "TERM (neg x)" .
wenzelm@23252
   230
wenzelm@23252
   231
lemmas ring_rules = neg_mul sub_add
wenzelm@23252
   232
wenzelm@26462
   233
lemmas gb_ring_axioms' =
wenzelm@26314
   234
  gb_ring_axioms [normalizer
wenzelm@26314
   235
    semiring ops: semiring_ops
wenzelm@26314
   236
    semiring rules: semiring_rules
wenzelm@26314
   237
    ring ops: ring_ops
wenzelm@26314
   238
    ring rules: ring_rules]
wenzelm@23252
   239
wenzelm@23252
   240
end
wenzelm@23252
   241
wenzelm@23252
   242
wenzelm@30729
   243
interpretation class_ring: gb_ring "op +" "op *" "op ^"
haftmann@31017
   244
    "0::'a::{comm_semiring_1,number_ring}" 1 "op -" "uminus"
haftmann@28823
   245
  proof qed simp_all
wenzelm@23252
   246
wenzelm@23252
   247
wenzelm@26462
   248
declaration {* normalizer_funs @{thm class_ring.gb_ring_axioms'} *}
wenzelm@23252
   249
wenzelm@23252
   250
use "Tools/Groebner_Basis/normalizer.ML"
wenzelm@23252
   251
chaieb@27666
   252
wenzelm@23252
   253
method_setup sring_norm = {*
wenzelm@30549
   254
  Scan.succeed (SIMPLE_METHOD' o Normalizer.semiring_normalize_tac)
wenzelm@23458
   255
*} "semiring normalizer"
wenzelm@23252
   256
wenzelm@23252
   257
chaieb@23327
   258
locale gb_field = gb_ring +
chaieb@23327
   259
  fixes divide :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
chaieb@23327
   260
    and inverse:: "'a \<Rightarrow> 'a"
chaieb@30866
   261
  assumes divide_inverse: "divide x y = mul x (inverse y)"
chaieb@30866
   262
     and inverse_divide: "inverse x = divide r1 x"
chaieb@23327
   263
begin
chaieb@23327
   264
chaieb@30866
   265
lemma field_ops: shows "TERM (divide x y)" and "TERM (inverse x)" .
chaieb@30866
   266
chaieb@30866
   267
lemmas field_rules = divide_inverse inverse_divide
chaieb@30866
   268
wenzelm@26462
   269
lemmas gb_field_axioms' =
wenzelm@26314
   270
  gb_field_axioms [normalizer
wenzelm@26314
   271
    semiring ops: semiring_ops
wenzelm@26314
   272
    semiring rules: semiring_rules
wenzelm@26314
   273
    ring ops: ring_ops
chaieb@30866
   274
    ring rules: ring_rules
chaieb@30866
   275
    field ops: field_ops
chaieb@30866
   276
    field rules: field_rules]
chaieb@23327
   277
chaieb@23327
   278
end
chaieb@23327
   279
wenzelm@23458
   280
wenzelm@23266
   281
subsection {* Groebner Bases *}
wenzelm@23252
   282
wenzelm@23258
   283
locale semiringb = gb_semiring +
wenzelm@23252
   284
  assumes add_cancel: "add (x::'a) y = add x z \<longleftrightarrow> y = z"
wenzelm@23252
   285
  and add_mul_solve: "add (mul w y) (mul x z) =
wenzelm@23252
   286
    add (mul w z) (mul x y) \<longleftrightarrow> w = x \<or> y = z"
wenzelm@23252
   287
begin
wenzelm@23252
   288
wenzelm@23252
   289
lemma noteq_reduce: "a \<noteq> b \<and> c \<noteq> d \<longleftrightarrow> add (mul a c) (mul b d) \<noteq> add (mul a d) (mul b c)"
wenzelm@23252
   290
proof-
wenzelm@23252
   291
  have "a \<noteq> b \<and> c \<noteq> d \<longleftrightarrow> \<not> (a = b \<or> c = d)" by simp
wenzelm@23252
   292
  also have "\<dots> \<longleftrightarrow> add (mul a c) (mul b d) \<noteq> add (mul a d) (mul b c)"
wenzelm@23252
   293
    using add_mul_solve by blast
wenzelm@23252
   294
  finally show "a \<noteq> b \<and> c \<noteq> d \<longleftrightarrow> add (mul a c) (mul b d) \<noteq> add (mul a d) (mul b c)"
wenzelm@23252
   295
    by simp
wenzelm@23252
   296
qed
wenzelm@23252
   297
wenzelm@23252
   298
lemma add_scale_eq_noteq: "\<lbrakk>r \<noteq> r0 ; (a = b) \<and> ~(c = d)\<rbrakk>
wenzelm@23252
   299
  \<Longrightarrow> add a (mul r c) \<noteq> add b (mul r d)"
wenzelm@23252
   300
proof(clarify)
wenzelm@23252
   301
  assume nz: "r\<noteq> r0" and cnd: "c\<noteq>d"
wenzelm@23252
   302
    and eq: "add b (mul r c) = add b (mul r d)"
wenzelm@23252
   303
  hence "mul r c = mul r d" using cnd add_cancel by simp
wenzelm@23252
   304
  hence "add (mul r0 d) (mul r c) = add (mul r0 c) (mul r d)"
wenzelm@23252
   305
    using mul_0 add_cancel by simp
wenzelm@23252
   306
  thus "False" using add_mul_solve nz cnd by simp
wenzelm@23252
   307
qed
wenzelm@23252
   308
chaieb@25250
   309
lemma add_r0_iff: " x = add x a \<longleftrightarrow> a = r0"
chaieb@25250
   310
proof-
chaieb@25250
   311
  have "a = r0 \<longleftrightarrow> add x a = add x r0" by (simp add: add_cancel)
chaieb@25250
   312
  thus "x = add x a \<longleftrightarrow> a = r0" by (auto simp add: add_c add_0)
chaieb@25250
   313
qed
chaieb@25250
   314
wenzelm@26462
   315
declare gb_semiring_axioms' [normalizer del]
wenzelm@23252
   316
wenzelm@26462
   317
lemmas semiringb_axioms' = semiringb_axioms [normalizer
wenzelm@23252
   318
  semiring ops: semiring_ops
wenzelm@23252
   319
  semiring rules: semiring_rules
wenzelm@26314
   320
  idom rules: noteq_reduce add_scale_eq_noteq]
wenzelm@23252
   321
wenzelm@23252
   322
end
wenzelm@23252
   323
chaieb@25250
   324
locale ringb = semiringb + gb_ring + 
chaieb@25250
   325
  assumes subr0_iff: "sub x y = r0 \<longleftrightarrow> x = y"
wenzelm@23252
   326
begin
wenzelm@23252
   327
wenzelm@26462
   328
declare gb_ring_axioms' [normalizer del]
wenzelm@23252
   329
wenzelm@26462
   330
lemmas ringb_axioms' = ringb_axioms [normalizer
wenzelm@23252
   331
  semiring ops: semiring_ops
wenzelm@23252
   332
  semiring rules: semiring_rules
wenzelm@23252
   333
  ring ops: ring_ops
wenzelm@23252
   334
  ring rules: ring_rules
chaieb@25250
   335
  idom rules: noteq_reduce add_scale_eq_noteq
wenzelm@26314
   336
  ideal rules: subr0_iff add_r0_iff]
wenzelm@23252
   337
wenzelm@23252
   338
end
wenzelm@23252
   339
chaieb@25250
   340
wenzelm@23252
   341
lemma no_zero_divirors_neq0:
wenzelm@23252
   342
  assumes az: "(a::'a::no_zero_divisors) \<noteq> 0"
wenzelm@23252
   343
    and ab: "a*b = 0" shows "b = 0"
wenzelm@23252
   344
proof -
wenzelm@23252
   345
  { assume bz: "b \<noteq> 0"
wenzelm@23252
   346
    from no_zero_divisors [OF az bz] ab have False by blast }
wenzelm@23252
   347
  thus "b = 0" by blast
wenzelm@23252
   348
qed
wenzelm@23252
   349
wenzelm@30729
   350
interpretation class_ringb: ringb
haftmann@31017
   351
  "op +" "op *" "op ^" "0::'a::{idom,number_ring}" "1" "op -" "uminus"
huffman@35216
   352
proof(unfold_locales, simp add: algebra_simps, auto)
haftmann@31017
   353
  fix w x y z ::"'a::{idom,number_ring}"
wenzelm@23252
   354
  assume p: "w * y + x * z = w * z + x * y" and ynz: "y \<noteq> z"
wenzelm@23252
   355
  hence ynz': "y - z \<noteq> 0" by simp
wenzelm@23252
   356
  from p have "w * y + x* z - w*z - x*y = 0" by simp
nipkow@29667
   357
  hence "w* (y - z) - x * (y - z) = 0" by (simp add: algebra_simps)
nipkow@29667
   358
  hence "(y - z) * (w - x) = 0" by (simp add: algebra_simps)
wenzelm@23252
   359
  with  no_zero_divirors_neq0 [OF ynz']
wenzelm@23252
   360
  have "w - x = 0" by blast
wenzelm@23252
   361
  thus "w = x"  by simp
wenzelm@23252
   362
qed
wenzelm@23252
   363
wenzelm@26462
   364
declaration {* normalizer_funs @{thm class_ringb.ringb_axioms'} *}
wenzelm@23252
   365
wenzelm@30729
   366
interpretation natgb: semiringb
ballarin@29223
   367
  "op +" "op *" "op ^" "0::nat" "1"
huffman@35216
   368
proof (unfold_locales, simp add: algebra_simps)
wenzelm@23252
   369
  fix w x y z ::"nat"
wenzelm@23252
   370
  { assume p: "w * y + x * z = w * z + x * y" and ynz: "y \<noteq> z"
wenzelm@23252
   371
    hence "y < z \<or> y > z" by arith
wenzelm@23252
   372
    moreover {
wenzelm@23252
   373
      assume lt:"y <z" hence "\<exists>k. z = y + k \<and> k > 0" by (rule_tac x="z - y" in exI, auto)
wenzelm@23252
   374
      then obtain k where kp: "k>0" and yz:"z = y + k" by blast
nipkow@29667
   375
      from p have "(w * y + x *y) + x*k = (w * y + x*y) + w*k" by (simp add: yz algebra_simps)
wenzelm@23252
   376
      hence "x*k = w*k" by simp
huffman@35216
   377
      hence "w = x" using kp by simp }
wenzelm@23252
   378
    moreover {
wenzelm@23252
   379
      assume lt: "y >z" hence "\<exists>k. y = z + k \<and> k>0" by (rule_tac x="y - z" in exI, auto)
wenzelm@23252
   380
      then obtain k where kp: "k>0" and yz:"y = z + k" by blast
nipkow@29667
   381
      from p have "(w * z + x *z) + w*k = (w * z + x*z) + x*k" by (simp add: yz algebra_simps)
wenzelm@23252
   382
      hence "w*k = x*k" by simp
huffman@35216
   383
      hence "w = x" using kp by simp }
wenzelm@23252
   384
    ultimately have "w=x" by blast }
wenzelm@23252
   385
  thus "(w * y + x * z = w * z + x * y) = (w = x \<or> y = z)" by auto
wenzelm@23252
   386
qed
wenzelm@23252
   387
wenzelm@26462
   388
declaration {* normalizer_funs @{thm natgb.semiringb_axioms'} *}
wenzelm@23252
   389
chaieb@23327
   390
locale fieldgb = ringb + gb_field
chaieb@23327
   391
begin
chaieb@23327
   392
wenzelm@26462
   393
declare gb_field_axioms' [normalizer del]
chaieb@23327
   394
wenzelm@26462
   395
lemmas fieldgb_axioms' = fieldgb_axioms [normalizer
chaieb@23327
   396
  semiring ops: semiring_ops
chaieb@23327
   397
  semiring rules: semiring_rules
chaieb@23327
   398
  ring ops: ring_ops
chaieb@23327
   399
  ring rules: ring_rules
chaieb@30866
   400
  field ops: field_ops
chaieb@30866
   401
  field rules: field_rules
chaieb@25250
   402
  idom rules: noteq_reduce add_scale_eq_noteq
wenzelm@26314
   403
  ideal rules: subr0_iff add_r0_iff]
wenzelm@26314
   404
chaieb@23327
   405
end
chaieb@23327
   406
chaieb@23327
   407
wenzelm@23258
   408
lemmas bool_simps = simp_thms(1-34)
wenzelm@23252
   409
lemma dnf:
wenzelm@23252
   410
    "(P & (Q | R)) = ((P&Q) | (P&R))" "((Q | R) & P) = ((Q&P) | (R&P))"
wenzelm@23252
   411
    "(P \<and> Q) = (Q \<and> P)" "(P \<or> Q) = (Q \<or> P)"
wenzelm@23252
   412
  by blast+
wenzelm@23252
   413
wenzelm@23252
   414
lemmas weak_dnf_simps = dnf bool_simps
wenzelm@23252
   415
wenzelm@23252
   416
lemma nnf_simps:
wenzelm@23252
   417
    "(\<not>(P \<and> Q)) = (\<not>P \<or> \<not>Q)" "(\<not>(P \<or> Q)) = (\<not>P \<and> \<not>Q)" "(P \<longrightarrow> Q) = (\<not>P \<or> Q)"
wenzelm@23252
   418
    "(P = Q) = ((P \<and> Q) \<or> (\<not>P \<and> \<not> Q))" "(\<not> \<not>(P)) = P"
wenzelm@23252
   419
  by blast+
wenzelm@23252
   420
wenzelm@23252
   421
lemma PFalse:
wenzelm@23252
   422
    "P \<equiv> False \<Longrightarrow> \<not> P"
wenzelm@23252
   423
    "\<not> P \<Longrightarrow> (P \<equiv> False)"
wenzelm@23252
   424
  by auto
wenzelm@23252
   425
use "Tools/Groebner_Basis/groebner.ML"
wenzelm@23252
   426
chaieb@23332
   427
method_setup algebra =
wenzelm@23458
   428
{*
chaieb@23332
   429
let
chaieb@23332
   430
 fun keyword k = Scan.lift (Args.$$$ k -- Args.colon) >> K ()
chaieb@23332
   431
 val addN = "add"
chaieb@23332
   432
 val delN = "del"
chaieb@23332
   433
 val any_keyword = keyword addN || keyword delN
chaieb@23332
   434
 val thms = Scan.repeat (Scan.unless any_keyword Attrib.multi_thm) >> flat;
chaieb@23332
   435
in
wenzelm@30549
   436
  ((Scan.optional (keyword addN |-- thms) []) -- 
wenzelm@30549
   437
   (Scan.optional (keyword delN |-- thms) [])) >>
wenzelm@30549
   438
  (fn (add_ths, del_ths) => fn ctxt =>
wenzelm@30510
   439
       SIMPLE_METHOD' (Groebner.algebra_tac add_ths del_ths ctxt))
chaieb@23332
   440
end
chaieb@25250
   441
*} "solve polynomial equations over (semi)rings and ideal membership problems using Groebner bases"
chaieb@27666
   442
declare dvd_def[algebra]
chaieb@27666
   443
declare dvd_eq_mod_eq_0[symmetric, algebra]
nipkow@30027
   444
declare mod_div_trivial[algebra]
nipkow@30027
   445
declare mod_mod_trivial[algebra]
chaieb@27666
   446
declare conjunct1[OF DIVISION_BY_ZERO, algebra]
chaieb@27666
   447
declare conjunct2[OF DIVISION_BY_ZERO, algebra]
chaieb@27666
   448
declare zmod_zdiv_equality[symmetric,algebra]
chaieb@27666
   449
declare zdiv_zmod_equality[symmetric, algebra]
chaieb@27666
   450
declare zdiv_zminus_zminus[algebra]
chaieb@27666
   451
declare zmod_zminus_zminus[algebra]
chaieb@27666
   452
declare zdiv_zminus2[algebra]
chaieb@27666
   453
declare zmod_zminus2[algebra]
chaieb@27666
   454
declare zdiv_zero[algebra]
chaieb@27666
   455
declare zmod_zero[algebra]
nipkow@30031
   456
declare mod_by_1[algebra]
nipkow@30031
   457
declare div_by_1[algebra]
chaieb@27666
   458
declare zmod_minus1_right[algebra]
chaieb@27666
   459
declare zdiv_minus1_right[algebra]
chaieb@27666
   460
declare mod_div_trivial[algebra]
chaieb@27666
   461
declare mod_mod_trivial[algebra]
nipkow@30034
   462
declare mod_mult_self2_is_0[algebra]
nipkow@30034
   463
declare mod_mult_self1_is_0[algebra]
chaieb@27666
   464
declare zmod_eq_0_iff[algebra]
nipkow@30042
   465
declare dvd_0_left_iff[algebra]
chaieb@27666
   466
declare zdvd1_eq[algebra]
chaieb@27666
   467
declare zmod_eq_dvd_iff[algebra]
chaieb@27666
   468
declare nat_mod_eq_iff[algebra]
wenzelm@23252
   469
haftmann@28402
   470
subsection{* Groebner Bases for fields *}
haftmann@28402
   471
wenzelm@30729
   472
interpretation class_fieldgb:
haftmann@31017
   473
  fieldgb "op +" "op *" "op ^" "0::'a::{field,number_ring}" "1" "op -" "uminus" "op /" "inverse" apply (unfold_locales) by (simp_all add: divide_inverse)
haftmann@28402
   474
haftmann@36409
   475
lemma divide_Numeral1: "(x::'a::{field, number_ring}) / Numeral1 = x" by simp
haftmann@36409
   476
lemma divide_Numeral0: "(x::'a::{field_inverse_zero, number_ring}) / Numeral0 = 0"
haftmann@28402
   477
  by simp
haftmann@36409
   478
lemma mult_frac_frac: "((x::'a::field_inverse_zero) / y) * (z / w) = (x*z) / (y*w)"
haftmann@28402
   479
  by simp
haftmann@36409
   480
lemma mult_frac_num: "((x::'a::field_inverse_zero) / y) * z  = (x*z) / y"
haftmann@28402
   481
  by simp
haftmann@36409
   482
lemma mult_num_frac: "((x::'a::field_inverse_zero) / y) * z  = (x*z) / y"
haftmann@28402
   483
  by simp
haftmann@28402
   484
haftmann@28402
   485
lemma Numeral1_eq1_nat: "(1::nat) = Numeral1" by simp
haftmann@28402
   486
haftmann@36409
   487
lemma add_frac_num: "y\<noteq> 0 \<Longrightarrow> (x::'a::field_inverse_zero) / y + z = (x + z*y) / y"
haftmann@28402
   488
  by (simp add: add_divide_distrib)
haftmann@36409
   489
lemma add_num_frac: "y\<noteq> 0 \<Longrightarrow> z + (x::'a::field_inverse_zero) / y = (x + z*y) / y"
haftmann@28402
   490
  by (simp add: add_divide_distrib)
haftmann@35084
   491
haftmann@35084
   492
ML {*
haftmann@35084
   493
let open Conv
haftmann@35084
   494
in fconv_rule (arg_conv (arg1_conv (rewr_conv (mk_meta_eq @{thm mult_commute})))) (@{thm field_divide_inverse} RS sym)
haftmann@35084
   495
end
haftmann@35084
   496
*}
haftmann@35084
   497
haftmann@28402
   498
ML{* 
haftmann@28402
   499
local
haftmann@28402
   500
 val zr = @{cpat "0"}
haftmann@28402
   501
 val zT = ctyp_of_term zr
haftmann@28402
   502
 val geq = @{cpat "op ="}
haftmann@28402
   503
 val eqT = Thm.dest_ctyp (ctyp_of_term geq) |> hd
haftmann@28402
   504
 val add_frac_eq = mk_meta_eq @{thm "add_frac_eq"}
haftmann@28402
   505
 val add_frac_num = mk_meta_eq @{thm "add_frac_num"}
haftmann@28402
   506
 val add_num_frac = mk_meta_eq @{thm "add_num_frac"}
haftmann@28402
   507
haftmann@28402
   508
 fun prove_nz ss T t =
haftmann@28402
   509
    let
haftmann@28402
   510
      val z = instantiate_cterm ([(zT,T)],[]) zr
haftmann@28402
   511
      val eq = instantiate_cterm ([(eqT,T)],[]) geq
wenzelm@35410
   512
      val th = Simplifier.rewrite (ss addsimps @{thms simp_thms})
haftmann@28402
   513
           (Thm.capply @{cterm "Trueprop"} (Thm.capply @{cterm "Not"}
haftmann@28402
   514
                  (Thm.capply (Thm.capply eq t) z)))
haftmann@28402
   515
    in equal_elim (symmetric th) TrueI
haftmann@28402
   516
    end
haftmann@28402
   517
haftmann@28402
   518
 fun proc phi ss ct =
haftmann@28402
   519
  let
haftmann@28402
   520
    val ((x,y),(w,z)) =
haftmann@28402
   521
         (Thm.dest_binop #> (fn (a,b) => (Thm.dest_binop a, Thm.dest_binop b))) ct
haftmann@28402
   522
    val _ = map (HOLogic.dest_number o term_of) [x,y,z,w]
haftmann@28402
   523
    val T = ctyp_of_term x
haftmann@28402
   524
    val [y_nz, z_nz] = map (prove_nz ss T) [y, z]
haftmann@28402
   525
    val th = instantiate' [SOME T] (map SOME [y,z,x,w]) add_frac_eq
haftmann@28402
   526
  in SOME (implies_elim (implies_elim th y_nz) z_nz)
haftmann@28402
   527
  end
haftmann@28402
   528
  handle CTERM _ => NONE | TERM _ => NONE | THM _ => NONE
haftmann@28402
   529
haftmann@28402
   530
 fun proc2 phi ss ct =
haftmann@28402
   531
  let
haftmann@28402
   532
    val (l,r) = Thm.dest_binop ct
haftmann@28402
   533
    val T = ctyp_of_term l
haftmann@28402
   534
  in (case (term_of l, term_of r) of
haftmann@35084
   535
      (Const(@{const_name Rings.divide},_)$_$_, _) =>
haftmann@28402
   536
        let val (x,y) = Thm.dest_binop l val z = r
haftmann@28402
   537
            val _ = map (HOLogic.dest_number o term_of) [x,y,z]
haftmann@28402
   538
            val ynz = prove_nz ss T y
haftmann@28402
   539
        in SOME (implies_elim (instantiate' [SOME T] (map SOME [y,x,z]) add_frac_num) ynz)
haftmann@28402
   540
        end
haftmann@35084
   541
     | (_, Const (@{const_name Rings.divide},_)$_$_) =>
haftmann@28402
   542
        let val (x,y) = Thm.dest_binop r val z = l
haftmann@28402
   543
            val _ = map (HOLogic.dest_number o term_of) [x,y,z]
haftmann@28402
   544
            val ynz = prove_nz ss T y
haftmann@28402
   545
        in SOME (implies_elim (instantiate' [SOME T] (map SOME [y,z,x]) add_num_frac) ynz)
haftmann@28402
   546
        end
haftmann@28402
   547
     | _ => NONE)
haftmann@28402
   548
  end
haftmann@28402
   549
  handle CTERM _ => NONE | TERM _ => NONE | THM _ => NONE
haftmann@28402
   550
haftmann@35084
   551
 fun is_number (Const(@{const_name Rings.divide},_)$a$b) = is_number a andalso is_number b
haftmann@28402
   552
   | is_number t = can HOLogic.dest_number t
haftmann@28402
   553
haftmann@28402
   554
 val is_number = is_number o term_of
haftmann@28402
   555
haftmann@28402
   556
 fun proc3 phi ss ct =
haftmann@28402
   557
  (case term_of ct of
haftmann@35092
   558
    Const(@{const_name Orderings.less},_)$(Const(@{const_name Rings.divide},_)$_$_)$_ =>
haftmann@28402
   559
      let
haftmann@28402
   560
        val ((a,b),c) = Thm.dest_binop ct |>> Thm.dest_binop
haftmann@28402
   561
        val _ = map is_number [a,b,c]
haftmann@28402
   562
        val T = ctyp_of_term c
haftmann@28402
   563
        val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "divide_less_eq"}
haftmann@28402
   564
      in SOME (mk_meta_eq th) end
haftmann@35092
   565
  | Const(@{const_name Orderings.less_eq},_)$(Const(@{const_name Rings.divide},_)$_$_)$_ =>
haftmann@28402
   566
      let
haftmann@28402
   567
        val ((a,b),c) = Thm.dest_binop ct |>> Thm.dest_binop
haftmann@28402
   568
        val _ = map is_number [a,b,c]
haftmann@28402
   569
        val T = ctyp_of_term c
haftmann@28402
   570
        val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "divide_le_eq"}
haftmann@28402
   571
      in SOME (mk_meta_eq th) end
haftmann@35084
   572
  | Const("op =",_)$(Const(@{const_name Rings.divide},_)$_$_)$_ =>
haftmann@28402
   573
      let
haftmann@28402
   574
        val ((a,b),c) = Thm.dest_binop ct |>> Thm.dest_binop
haftmann@28402
   575
        val _ = map is_number [a,b,c]
haftmann@28402
   576
        val T = ctyp_of_term c
haftmann@28402
   577
        val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "divide_eq_eq"}
haftmann@28402
   578
      in SOME (mk_meta_eq th) end
haftmann@35092
   579
  | Const(@{const_name Orderings.less},_)$_$(Const(@{const_name Rings.divide},_)$_$_) =>
haftmann@28402
   580
    let
haftmann@28402
   581
      val (a,(b,c)) = Thm.dest_binop ct ||> Thm.dest_binop
haftmann@28402
   582
        val _ = map is_number [a,b,c]
haftmann@28402
   583
        val T = ctyp_of_term c
haftmann@28402
   584
        val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "less_divide_eq"}
haftmann@28402
   585
      in SOME (mk_meta_eq th) end
haftmann@35092
   586
  | Const(@{const_name Orderings.less_eq},_)$_$(Const(@{const_name Rings.divide},_)$_$_) =>
haftmann@28402
   587
    let
haftmann@28402
   588
      val (a,(b,c)) = Thm.dest_binop ct ||> Thm.dest_binop
haftmann@28402
   589
        val _ = map is_number [a,b,c]
haftmann@28402
   590
        val T = ctyp_of_term c
haftmann@28402
   591
        val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "le_divide_eq"}
haftmann@28402
   592
      in SOME (mk_meta_eq th) end
haftmann@35084
   593
  | Const("op =",_)$_$(Const(@{const_name Rings.divide},_)$_$_) =>
haftmann@28402
   594
    let
haftmann@28402
   595
      val (a,(b,c)) = Thm.dest_binop ct ||> Thm.dest_binop
haftmann@28402
   596
        val _ = map is_number [a,b,c]
haftmann@28402
   597
        val T = ctyp_of_term c
haftmann@28402
   598
        val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "eq_divide_eq"}
haftmann@28402
   599
      in SOME (mk_meta_eq th) end
haftmann@28402
   600
  | _ => NONE)
haftmann@28402
   601
  handle TERM _ => NONE | CTERM _ => NONE | THM _ => NONE
haftmann@28402
   602
haftmann@28402
   603
val add_frac_frac_simproc =
haftmann@28402
   604
       make_simproc {lhss = [@{cpat "(?x::?'a::field)/?y + (?w::?'a::field)/?z"}],
haftmann@28402
   605
                     name = "add_frac_frac_simproc",
haftmann@28402
   606
                     proc = proc, identifier = []}
haftmann@28402
   607
haftmann@28402
   608
val add_frac_num_simproc =
haftmann@28402
   609
       make_simproc {lhss = [@{cpat "(?x::?'a::field)/?y + ?z"}, @{cpat "?z + (?x::?'a::field)/?y"}],
haftmann@28402
   610
                     name = "add_frac_num_simproc",
haftmann@28402
   611
                     proc = proc2, identifier = []}
haftmann@28402
   612
haftmann@28402
   613
val ord_frac_simproc =
haftmann@28402
   614
  make_simproc
haftmann@28402
   615
    {lhss = [@{cpat "(?a::(?'a::{field, ord}))/?b < ?c"},
haftmann@28402
   616
             @{cpat "(?a::(?'a::{field, ord}))/?b \<le> ?c"},
haftmann@28402
   617
             @{cpat "?c < (?a::(?'a::{field, ord}))/?b"},
haftmann@28402
   618
             @{cpat "?c \<le> (?a::(?'a::{field, ord}))/?b"},
haftmann@28402
   619
             @{cpat "?c = ((?a::(?'a::{field, ord}))/?b)"},
haftmann@28402
   620
             @{cpat "((?a::(?'a::{field, ord}))/ ?b) = ?c"}],
haftmann@28402
   621
             name = "ord_frac_simproc", proc = proc3, identifier = []}
haftmann@28402
   622
chaieb@30869
   623
local
chaieb@30869
   624
open Conv
chaieb@30869
   625
in
chaieb@30869
   626
haftmann@28402
   627
val ths = [@{thm "mult_numeral_1"}, @{thm "mult_numeral_1_right"},
haftmann@28402
   628
           @{thm "divide_Numeral1"},
haftmann@36305
   629
           @{thm "divide_zero"}, @{thm "divide_Numeral0"},
haftmann@28402
   630
           @{thm "divide_divide_eq_left"}, @{thm "mult_frac_frac"},
haftmann@28402
   631
           @{thm "mult_num_frac"}, @{thm "mult_frac_num"},
haftmann@28402
   632
           @{thm "mult_frac_frac"}, @{thm "times_divide_eq_right"},
haftmann@28402
   633
           @{thm "times_divide_eq_left"}, @{thm "divide_divide_eq_right"},
haftmann@28402
   634
           @{thm "diff_def"}, @{thm "minus_divide_left"},
chaieb@30869
   635
           @{thm "Numeral1_eq1_nat"}, @{thm "add_divide_distrib"} RS sym,
haftmann@35084
   636
           @{thm field_divide_inverse} RS sym, @{thm inverse_divide}, 
chaieb@30869
   637
           fconv_rule (arg_conv (arg1_conv (rewr_conv (mk_meta_eq @{thm mult_commute}))))   
haftmann@35084
   638
           (@{thm field_divide_inverse} RS sym)]
haftmann@28402
   639
haftmann@28402
   640
val comp_conv = (Simplifier.rewrite
haftmann@28402
   641
(HOL_basic_ss addsimps @{thms "Groebner_Basis.comp_arith"}
wenzelm@35410
   642
              addsimps ths addsimps @{thms simp_thms}
haftmann@31068
   643
              addsimprocs Numeral_Simprocs.field_cancel_numeral_factors
haftmann@28402
   644
               addsimprocs [add_frac_frac_simproc, add_frac_num_simproc,
haftmann@28402
   645
                            ord_frac_simproc]
haftmann@28402
   646
                addcongs [@{thm "if_weak_cong"}]))
haftmann@28402
   647
then_conv (Simplifier.rewrite (HOL_basic_ss addsimps
haftmann@28402
   648
  [@{thm numeral_1_eq_1},@{thm numeral_0_eq_0}] @ @{thms numerals(1-2)}))
wenzelm@23252
   649
end
haftmann@28402
   650
haftmann@28402
   651
fun numeral_is_const ct =
haftmann@28402
   652
  case term_of ct of
haftmann@35084
   653
   Const (@{const_name Rings.divide},_) $ a $ b =>
chaieb@30866
   654
     can HOLogic.dest_number a andalso can HOLogic.dest_number b
haftmann@35084
   655
 | Const (@{const_name Rings.inverse},_)$t => can HOLogic.dest_number t
haftmann@28402
   656
 | t => can HOLogic.dest_number t
haftmann@28402
   657
haftmann@28402
   658
fun dest_const ct = ((case term_of ct of
haftmann@35084
   659
   Const (@{const_name Rings.divide},_) $ a $ b=>
haftmann@28402
   660
    Rat.rat_of_quotient (snd (HOLogic.dest_number a), snd (HOLogic.dest_number b))
haftmann@35084
   661
 | Const (@{const_name Rings.inverse},_)$t => 
chaieb@30869
   662
               Rat.inv (Rat.rat_of_int (snd (HOLogic.dest_number t)))
haftmann@28402
   663
 | t => Rat.rat_of_int (snd (HOLogic.dest_number t))) 
haftmann@28402
   664
   handle TERM _ => error "ring_dest_const")
haftmann@28402
   665
haftmann@28402
   666
fun mk_const phi cT x =
haftmann@28402
   667
 let val (a, b) = Rat.quotient_of_rat x
haftmann@28402
   668
 in if b = 1 then Numeral.mk_cnumber cT a
haftmann@28402
   669
    else Thm.capply
haftmann@28402
   670
         (Thm.capply (Drule.cterm_rule (instantiate' [SOME cT] []) @{cpat "op /"})
haftmann@28402
   671
                     (Numeral.mk_cnumber cT a))
haftmann@28402
   672
         (Numeral.mk_cnumber cT b)
haftmann@28402
   673
  end
haftmann@28402
   674
haftmann@28402
   675
in
haftmann@28402
   676
 val field_comp_conv = comp_conv;
haftmann@28402
   677
 val fieldgb_declaration = 
haftmann@28402
   678
  NormalizerData.funs @{thm class_fieldgb.fieldgb_axioms'}
haftmann@28402
   679
   {is_const = K numeral_is_const,
haftmann@28402
   680
    dest_const = K dest_const,
haftmann@28402
   681
    mk_const = mk_const,
haftmann@28402
   682
    conv = K (K comp_conv)}
haftmann@28402
   683
end;
haftmann@28402
   684
*}
haftmann@28402
   685
haftmann@28402
   686
declaration fieldgb_declaration
haftmann@28402
   687
haftmann@28402
   688
end