paulson@13957
|
1 |
(* Title: Complex.thy
|
paulson@13957
|
2 |
Author: Jacques D. Fleuriot
|
paulson@13957
|
3 |
Copyright: 2001 University of Edinburgh
|
paulson@14387
|
4 |
Conversion to Isar and new proofs by Lawrence C Paulson, 2003/4
|
paulson@13957
|
5 |
*)
|
paulson@13957
|
6 |
|
paulson@14377
|
7 |
header {* Complex Numbers: Rectangular and Polar Representations *}
|
paulson@14373
|
8 |
|
nipkow@15131
|
9 |
theory Complex
|
haftmann@28952
|
10 |
imports Transcendental
|
nipkow@15131
|
11 |
begin
|
paulson@13957
|
12 |
|
paulson@14373
|
13 |
datatype complex = Complex real real
|
paulson@13957
|
14 |
|
haftmann@25712
|
15 |
primrec
|
haftmann@25712
|
16 |
Re :: "complex \<Rightarrow> real"
|
haftmann@25712
|
17 |
where
|
haftmann@25712
|
18 |
Re: "Re (Complex x y) = x"
|
paulson@14373
|
19 |
|
haftmann@25712
|
20 |
primrec
|
haftmann@25712
|
21 |
Im :: "complex \<Rightarrow> real"
|
haftmann@25712
|
22 |
where
|
haftmann@25712
|
23 |
Im: "Im (Complex x y) = y"
|
paulson@14373
|
24 |
|
paulson@14373
|
25 |
lemma complex_surj [simp]: "Complex (Re z) (Im z) = z"
|
paulson@14373
|
26 |
by (induct z) simp
|
paulson@13957
|
27 |
|
huffman@23125
|
28 |
lemma complex_equality [intro?]: "\<lbrakk>Re x = Re y; Im x = Im y\<rbrakk> \<Longrightarrow> x = y"
|
haftmann@25712
|
29 |
by (induct x, induct y) simp
|
huffman@23125
|
30 |
|
haftmann@25599
|
31 |
lemma expand_complex_eq: "x = y \<longleftrightarrow> Re x = Re y \<and> Im x = Im y"
|
haftmann@25712
|
32 |
by (induct x, induct y) simp
|
huffman@23125
|
33 |
|
huffman@23125
|
34 |
lemmas complex_Re_Im_cancel_iff = expand_complex_eq
|
huffman@23125
|
35 |
|
huffman@23125
|
36 |
|
huffman@23125
|
37 |
subsection {* Addition and Subtraction *}
|
huffman@23125
|
38 |
|
haftmann@25599
|
39 |
instantiation complex :: ab_group_add
|
haftmann@25571
|
40 |
begin
|
haftmann@25571
|
41 |
|
haftmann@25571
|
42 |
definition
|
haftmann@25571
|
43 |
complex_zero_def: "0 = Complex 0 0"
|
haftmann@25571
|
44 |
|
haftmann@25571
|
45 |
definition
|
haftmann@25571
|
46 |
complex_add_def: "x + y = Complex (Re x + Re y) (Im x + Im y)"
|
huffman@23124
|
47 |
|
haftmann@25571
|
48 |
definition
|
haftmann@25571
|
49 |
complex_minus_def: "- x = Complex (- Re x) (- Im x)"
|
paulson@14323
|
50 |
|
haftmann@25571
|
51 |
definition
|
haftmann@25571
|
52 |
complex_diff_def: "x - (y\<Colon>complex) = x + - y"
|
haftmann@25571
|
53 |
|
haftmann@25599
|
54 |
lemma Complex_eq_0 [simp]: "Complex a b = 0 \<longleftrightarrow> a = 0 \<and> b = 0"
|
haftmann@25599
|
55 |
by (simp add: complex_zero_def)
|
paulson@14323
|
56 |
|
paulson@14374
|
57 |
lemma complex_Re_zero [simp]: "Re 0 = 0"
|
haftmann@25599
|
58 |
by (simp add: complex_zero_def)
|
paulson@14374
|
59 |
|
paulson@14374
|
60 |
lemma complex_Im_zero [simp]: "Im 0 = 0"
|
haftmann@25599
|
61 |
by (simp add: complex_zero_def)
|
haftmann@25599
|
62 |
|
haftmann@25712
|
63 |
lemma complex_add [simp]:
|
haftmann@25712
|
64 |
"Complex a b + Complex c d = Complex (a + c) (b + d)"
|
haftmann@25712
|
65 |
by (simp add: complex_add_def)
|
haftmann@25712
|
66 |
|
haftmann@25599
|
67 |
lemma complex_Re_add [simp]: "Re (x + y) = Re x + Re y"
|
haftmann@25599
|
68 |
by (simp add: complex_add_def)
|
haftmann@25599
|
69 |
|
haftmann@25599
|
70 |
lemma complex_Im_add [simp]: "Im (x + y) = Im x + Im y"
|
haftmann@25599
|
71 |
by (simp add: complex_add_def)
|
paulson@14323
|
72 |
|
haftmann@25712
|
73 |
lemma complex_minus [simp]:
|
haftmann@25712
|
74 |
"- (Complex a b) = Complex (- a) (- b)"
|
haftmann@25599
|
75 |
by (simp add: complex_minus_def)
|
huffman@23125
|
76 |
|
huffman@23125
|
77 |
lemma complex_Re_minus [simp]: "Re (- x) = - Re x"
|
haftmann@25599
|
78 |
by (simp add: complex_minus_def)
|
huffman@23125
|
79 |
|
huffman@23125
|
80 |
lemma complex_Im_minus [simp]: "Im (- x) = - Im x"
|
haftmann@25599
|
81 |
by (simp add: complex_minus_def)
|
huffman@23125
|
82 |
|
huffman@23275
|
83 |
lemma complex_diff [simp]:
|
huffman@23125
|
84 |
"Complex a b - Complex c d = Complex (a - c) (b - d)"
|
haftmann@25599
|
85 |
by (simp add: complex_diff_def)
|
huffman@23125
|
86 |
|
huffman@23125
|
87 |
lemma complex_Re_diff [simp]: "Re (x - y) = Re x - Re y"
|
haftmann@25599
|
88 |
by (simp add: complex_diff_def)
|
huffman@23125
|
89 |
|
huffman@23125
|
90 |
lemma complex_Im_diff [simp]: "Im (x - y) = Im x - Im y"
|
haftmann@25599
|
91 |
by (simp add: complex_diff_def)
|
huffman@23125
|
92 |
|
haftmann@25712
|
93 |
instance
|
haftmann@25712
|
94 |
by intro_classes (simp_all add: complex_add_def complex_diff_def)
|
haftmann@25712
|
95 |
|
haftmann@25712
|
96 |
end
|
haftmann@25712
|
97 |
|
haftmann@25712
|
98 |
|
huffman@23125
|
99 |
|
huffman@23125
|
100 |
subsection {* Multiplication and Division *}
|
huffman@23125
|
101 |
|
haftmann@25712
|
102 |
instantiation complex :: "{field, division_by_zero}"
|
haftmann@25571
|
103 |
begin
|
haftmann@25571
|
104 |
|
haftmann@25571
|
105 |
definition
|
haftmann@25571
|
106 |
complex_one_def: "1 = Complex 1 0"
|
haftmann@25571
|
107 |
|
haftmann@25571
|
108 |
definition
|
haftmann@25571
|
109 |
complex_mult_def: "x * y =
|
haftmann@25571
|
110 |
Complex (Re x * Re y - Im x * Im y) (Re x * Im y + Im x * Re y)"
|
huffman@23125
|
111 |
|
haftmann@25571
|
112 |
definition
|
haftmann@25571
|
113 |
complex_inverse_def: "inverse x =
|
haftmann@25571
|
114 |
Complex (Re x / ((Re x)\<twosuperior> + (Im x)\<twosuperior>)) (- Im x / ((Re x)\<twosuperior> + (Im x)\<twosuperior>))"
|
huffman@23125
|
115 |
|
haftmann@25571
|
116 |
definition
|
haftmann@25571
|
117 |
complex_divide_def: "x / (y\<Colon>complex) = x * inverse y"
|
haftmann@25571
|
118 |
|
huffman@23125
|
119 |
lemma Complex_eq_1 [simp]: "(Complex a b = 1) = (a = 1 \<and> b = 0)"
|
haftmann@25712
|
120 |
by (simp add: complex_one_def)
|
huffman@22861
|
121 |
|
paulson@14374
|
122 |
lemma complex_Re_one [simp]: "Re 1 = 1"
|
haftmann@25712
|
123 |
by (simp add: complex_one_def)
|
paulson@14323
|
124 |
|
paulson@14374
|
125 |
lemma complex_Im_one [simp]: "Im 1 = 0"
|
haftmann@25712
|
126 |
by (simp add: complex_one_def)
|
paulson@14323
|
127 |
|
huffman@23125
|
128 |
lemma complex_mult [simp]:
|
huffman@23125
|
129 |
"Complex a b * Complex c d = Complex (a * c - b * d) (a * d + b * c)"
|
haftmann@25712
|
130 |
by (simp add: complex_mult_def)
|
paulson@14323
|
131 |
|
huffman@23125
|
132 |
lemma complex_Re_mult [simp]: "Re (x * y) = Re x * Re y - Im x * Im y"
|
haftmann@25712
|
133 |
by (simp add: complex_mult_def)
|
paulson@14323
|
134 |
|
huffman@23125
|
135 |
lemma complex_Im_mult [simp]: "Im (x * y) = Re x * Im y + Im x * Re y"
|
haftmann@25712
|
136 |
by (simp add: complex_mult_def)
|
paulson@14323
|
137 |
|
paulson@14377
|
138 |
lemma complex_inverse [simp]:
|
huffman@23125
|
139 |
"inverse (Complex a b) = Complex (a / (a\<twosuperior> + b\<twosuperior>)) (- b / (a\<twosuperior> + b\<twosuperior>))"
|
haftmann@25712
|
140 |
by (simp add: complex_inverse_def)
|
paulson@14335
|
141 |
|
huffman@23125
|
142 |
lemma complex_Re_inverse:
|
huffman@23125
|
143 |
"Re (inverse x) = Re x / ((Re x)\<twosuperior> + (Im x)\<twosuperior>)"
|
haftmann@25712
|
144 |
by (simp add: complex_inverse_def)
|
paulson@14323
|
145 |
|
huffman@23125
|
146 |
lemma complex_Im_inverse:
|
huffman@23125
|
147 |
"Im (inverse x) = - Im x / ((Re x)\<twosuperior> + (Im x)\<twosuperior>)"
|
haftmann@25712
|
148 |
by (simp add: complex_inverse_def)
|
paulson@14335
|
149 |
|
haftmann@25712
|
150 |
instance
|
haftmann@25712
|
151 |
by intro_classes (simp_all add: complex_mult_def
|
haftmann@25712
|
152 |
right_distrib left_distrib right_diff_distrib left_diff_distrib
|
haftmann@25712
|
153 |
complex_inverse_def complex_divide_def
|
haftmann@25712
|
154 |
power2_eq_square add_divide_distrib [symmetric]
|
haftmann@25712
|
155 |
expand_complex_eq)
|
paulson@14335
|
156 |
|
haftmann@25712
|
157 |
end
|
huffman@23125
|
158 |
|
huffman@23125
|
159 |
|
huffman@23125
|
160 |
subsection {* Exponentiation *}
|
huffman@23125
|
161 |
|
haftmann@25712
|
162 |
instantiation complex :: recpower
|
haftmann@25712
|
163 |
begin
|
huffman@23125
|
164 |
|
haftmann@25712
|
165 |
primrec power_complex where
|
huffman@30273
|
166 |
"z ^ 0 = (1\<Colon>complex)"
|
huffman@30273
|
167 |
| "z ^ Suc n = (z\<Colon>complex) * z ^ n"
|
haftmann@25712
|
168 |
|
huffman@30273
|
169 |
instance proof
|
huffman@30273
|
170 |
qed simp_all
|
huffman@30273
|
171 |
|
huffman@30273
|
172 |
declare power_complex.simps [simp del]
|
haftmann@25712
|
173 |
|
haftmann@25712
|
174 |
end
|
paulson@14335
|
175 |
|
paulson@14323
|
176 |
|
huffman@23125
|
177 |
subsection {* Numerals and Arithmetic *}
|
huffman@23125
|
178 |
|
haftmann@25571
|
179 |
instantiation complex :: number_ring
|
haftmann@25571
|
180 |
begin
|
huffman@23125
|
181 |
|
haftmann@25712
|
182 |
definition number_of_complex where
|
haftmann@25571
|
183 |
complex_number_of_def: "number_of w = (of_int w \<Colon> complex)"
|
haftmann@25571
|
184 |
|
haftmann@25571
|
185 |
instance
|
haftmann@25712
|
186 |
by intro_classes (simp only: complex_number_of_def)
|
haftmann@25571
|
187 |
|
haftmann@25571
|
188 |
end
|
huffman@23125
|
189 |
|
huffman@23125
|
190 |
lemma complex_Re_of_nat [simp]: "Re (of_nat n) = of_nat n"
|
huffman@23125
|
191 |
by (induct n) simp_all
|
huffman@20556
|
192 |
|
huffman@23125
|
193 |
lemma complex_Im_of_nat [simp]: "Im (of_nat n) = 0"
|
huffman@23125
|
194 |
by (induct n) simp_all
|
huffman@23125
|
195 |
|
huffman@23125
|
196 |
lemma complex_Re_of_int [simp]: "Re (of_int z) = of_int z"
|
huffman@23125
|
197 |
by (cases z rule: int_diff_cases) simp
|
huffman@23125
|
198 |
|
huffman@23125
|
199 |
lemma complex_Im_of_int [simp]: "Im (of_int z) = 0"
|
huffman@23125
|
200 |
by (cases z rule: int_diff_cases) simp
|
huffman@23125
|
201 |
|
huffman@23125
|
202 |
lemma complex_Re_number_of [simp]: "Re (number_of v) = number_of v"
|
haftmann@25502
|
203 |
unfolding number_of_eq by (rule complex_Re_of_int)
|
huffman@20556
|
204 |
|
huffman@23125
|
205 |
lemma complex_Im_number_of [simp]: "Im (number_of v) = 0"
|
haftmann@25502
|
206 |
unfolding number_of_eq by (rule complex_Im_of_int)
|
huffman@23125
|
207 |
|
huffman@23125
|
208 |
lemma Complex_eq_number_of [simp]:
|
huffman@23125
|
209 |
"(Complex a b = number_of w) = (a = number_of w \<and> b = 0)"
|
huffman@23125
|
210 |
by (simp add: expand_complex_eq)
|
huffman@23125
|
211 |
|
huffman@23125
|
212 |
|
huffman@23125
|
213 |
subsection {* Scalar Multiplication *}
|
huffman@20556
|
214 |
|
haftmann@25712
|
215 |
instantiation complex :: real_field
|
haftmann@25571
|
216 |
begin
|
haftmann@25571
|
217 |
|
haftmann@25571
|
218 |
definition
|
haftmann@25571
|
219 |
complex_scaleR_def: "scaleR r x = Complex (r * Re x) (r * Im x)"
|
haftmann@25571
|
220 |
|
huffman@23125
|
221 |
lemma complex_scaleR [simp]:
|
huffman@23125
|
222 |
"scaleR r (Complex a b) = Complex (r * a) (r * b)"
|
haftmann@25712
|
223 |
unfolding complex_scaleR_def by simp
|
huffman@23125
|
224 |
|
huffman@23125
|
225 |
lemma complex_Re_scaleR [simp]: "Re (scaleR r x) = r * Re x"
|
haftmann@25712
|
226 |
unfolding complex_scaleR_def by simp
|
huffman@23125
|
227 |
|
huffman@23125
|
228 |
lemma complex_Im_scaleR [simp]: "Im (scaleR r x) = r * Im x"
|
haftmann@25712
|
229 |
unfolding complex_scaleR_def by simp
|
huffman@22972
|
230 |
|
haftmann@25712
|
231 |
instance
|
huffman@20556
|
232 |
proof
|
huffman@23125
|
233 |
fix a b :: real and x y :: complex
|
huffman@23125
|
234 |
show "scaleR a (x + y) = scaleR a x + scaleR a y"
|
huffman@23125
|
235 |
by (simp add: expand_complex_eq right_distrib)
|
huffman@23125
|
236 |
show "scaleR (a + b) x = scaleR a x + scaleR b x"
|
huffman@23125
|
237 |
by (simp add: expand_complex_eq left_distrib)
|
huffman@23125
|
238 |
show "scaleR a (scaleR b x) = scaleR (a * b) x"
|
huffman@23125
|
239 |
by (simp add: expand_complex_eq mult_assoc)
|
huffman@23125
|
240 |
show "scaleR 1 x = x"
|
huffman@23125
|
241 |
by (simp add: expand_complex_eq)
|
huffman@23125
|
242 |
show "scaleR a x * y = scaleR a (x * y)"
|
nipkow@29667
|
243 |
by (simp add: expand_complex_eq algebra_simps)
|
huffman@23125
|
244 |
show "x * scaleR a y = scaleR a (x * y)"
|
nipkow@29667
|
245 |
by (simp add: expand_complex_eq algebra_simps)
|
huffman@20556
|
246 |
qed
|
huffman@20556
|
247 |
|
haftmann@25712
|
248 |
end
|
haftmann@25712
|
249 |
|
huffman@20556
|
250 |
|
huffman@23125
|
251 |
subsection{* Properties of Embedding from Reals *}
|
paulson@14323
|
252 |
|
huffman@20557
|
253 |
abbreviation
|
huffman@23125
|
254 |
complex_of_real :: "real \<Rightarrow> complex" where
|
huffman@23125
|
255 |
"complex_of_real \<equiv> of_real"
|
huffman@20557
|
256 |
|
huffman@20557
|
257 |
lemma complex_of_real_def: "complex_of_real r = Complex r 0"
|
huffman@20557
|
258 |
by (simp add: of_real_def complex_scaleR_def)
|
huffman@20557
|
259 |
|
huffman@20557
|
260 |
lemma Re_complex_of_real [simp]: "Re (complex_of_real z) = z"
|
huffman@20557
|
261 |
by (simp add: complex_of_real_def)
|
huffman@20557
|
262 |
|
huffman@20557
|
263 |
lemma Im_complex_of_real [simp]: "Im (complex_of_real z) = 0"
|
huffman@20557
|
264 |
by (simp add: complex_of_real_def)
|
huffman@20557
|
265 |
|
paulson@14377
|
266 |
lemma Complex_add_complex_of_real [simp]:
|
paulson@14377
|
267 |
"Complex x y + complex_of_real r = Complex (x+r) y"
|
paulson@14377
|
268 |
by (simp add: complex_of_real_def)
|
paulson@14377
|
269 |
|
paulson@14377
|
270 |
lemma complex_of_real_add_Complex [simp]:
|
paulson@14377
|
271 |
"complex_of_real r + Complex x y = Complex (r+x) y"
|
huffman@23125
|
272 |
by (simp add: complex_of_real_def)
|
paulson@14377
|
273 |
|
paulson@14377
|
274 |
lemma Complex_mult_complex_of_real:
|
paulson@14377
|
275 |
"Complex x y * complex_of_real r = Complex (x*r) (y*r)"
|
paulson@14377
|
276 |
by (simp add: complex_of_real_def)
|
paulson@14377
|
277 |
|
paulson@14377
|
278 |
lemma complex_of_real_mult_Complex:
|
paulson@14377
|
279 |
"complex_of_real r * Complex x y = Complex (r*x) (r*y)"
|
huffman@23125
|
280 |
by (simp add: complex_of_real_def)
|
huffman@20557
|
281 |
|
paulson@14377
|
282 |
|
huffman@23125
|
283 |
subsection {* Vector Norm *}
|
paulson@14323
|
284 |
|
haftmann@25712
|
285 |
instantiation complex :: real_normed_field
|
haftmann@25571
|
286 |
begin
|
haftmann@25571
|
287 |
|
haftmann@25571
|
288 |
definition
|
haftmann@25571
|
289 |
complex_norm_def: "norm z = sqrt ((Re z)\<twosuperior> + (Im z)\<twosuperior>)"
|
haftmann@25571
|
290 |
|
huffman@20557
|
291 |
abbreviation
|
huffman@22861
|
292 |
cmod :: "complex \<Rightarrow> real" where
|
haftmann@25712
|
293 |
"cmod \<equiv> norm"
|
haftmann@25571
|
294 |
|
haftmann@25571
|
295 |
definition
|
haftmann@25571
|
296 |
complex_sgn_def: "sgn x = x /\<^sub>R cmod x"
|
haftmann@25571
|
297 |
|
huffman@20557
|
298 |
lemmas cmod_def = complex_norm_def
|
huffman@20557
|
299 |
|
huffman@23125
|
300 |
lemma complex_norm [simp]: "cmod (Complex x y) = sqrt (x\<twosuperior> + y\<twosuperior>)"
|
haftmann@25712
|
301 |
by (simp add: complex_norm_def)
|
huffman@22852
|
302 |
|
haftmann@25712
|
303 |
instance
|
huffman@20557
|
304 |
proof
|
huffman@23125
|
305 |
fix r :: real and x y :: complex
|
huffman@23125
|
306 |
show "0 \<le> norm x"
|
huffman@22861
|
307 |
by (induct x) simp
|
huffman@23125
|
308 |
show "(norm x = 0) = (x = 0)"
|
huffman@22861
|
309 |
by (induct x) simp
|
huffman@23125
|
310 |
show "norm (x + y) \<le> norm x + norm y"
|
huffman@23125
|
311 |
by (induct x, induct y)
|
huffman@23125
|
312 |
(simp add: real_sqrt_sum_squares_triangle_ineq)
|
huffman@23125
|
313 |
show "norm (scaleR r x) = \<bar>r\<bar> * norm x"
|
huffman@23125
|
314 |
by (induct x)
|
huffman@23125
|
315 |
(simp add: power_mult_distrib right_distrib [symmetric] real_sqrt_mult)
|
huffman@23125
|
316 |
show "norm (x * y) = norm x * norm y"
|
huffman@23125
|
317 |
by (induct x, induct y)
|
nipkow@29667
|
318 |
(simp add: real_sqrt_mult [symmetric] power2_eq_square algebra_simps)
|
nipkow@24506
|
319 |
show "sgn x = x /\<^sub>R cmod x" by(simp add: complex_sgn_def)
|
huffman@24520
|
320 |
qed
|
huffman@20557
|
321 |
|
haftmann@25712
|
322 |
end
|
haftmann@25712
|
323 |
|
huffman@22861
|
324 |
lemma cmod_unit_one [simp]: "cmod (Complex (cos a) (sin a)) = 1"
|
huffman@22861
|
325 |
by simp
|
paulson@14323
|
326 |
|
huffman@22861
|
327 |
lemma cmod_complex_polar [simp]:
|
huffman@22861
|
328 |
"cmod (complex_of_real r * Complex (cos a) (sin a)) = abs r"
|
huffman@23125
|
329 |
by (simp add: norm_mult)
|
huffman@22861
|
330 |
|
huffman@22861
|
331 |
lemma complex_Re_le_cmod: "Re x \<le> cmod x"
|
huffman@22861
|
332 |
unfolding complex_norm_def
|
huffman@22861
|
333 |
by (rule real_sqrt_sum_squares_ge1)
|
huffman@22861
|
334 |
|
huffman@22861
|
335 |
lemma complex_mod_minus_le_complex_mod [simp]: "- cmod x \<le> cmod x"
|
huffman@22861
|
336 |
by (rule order_trans [OF _ norm_ge_zero], simp)
|
huffman@22861
|
337 |
|
huffman@22861
|
338 |
lemma complex_mod_triangle_ineq2 [simp]: "cmod(b + a) - cmod b \<le> cmod a"
|
huffman@22861
|
339 |
by (rule ord_le_eq_trans [OF norm_triangle_ineq2], simp)
|
paulson@14323
|
340 |
|
huffman@22861
|
341 |
lemmas real_sum_squared_expand = power2_sum [where 'a=real]
|
paulson@14323
|
342 |
|
chaieb@26117
|
343 |
lemma abs_Re_le_cmod: "\<bar>Re x\<bar> \<le> cmod x"
|
chaieb@26117
|
344 |
by (cases x) simp
|
chaieb@26117
|
345 |
|
chaieb@26117
|
346 |
lemma abs_Im_le_cmod: "\<bar>Im x\<bar> \<le> cmod x"
|
chaieb@26117
|
347 |
by (cases x) simp
|
paulson@14354
|
348 |
|
huffman@23123
|
349 |
subsection {* Completeness of the Complexes *}
|
huffman@23123
|
350 |
|
wenzelm@30729
|
351 |
interpretation Re: bounded_linear "Re"
|
huffman@23123
|
352 |
apply (unfold_locales, simp, simp)
|
huffman@23123
|
353 |
apply (rule_tac x=1 in exI)
|
huffman@23123
|
354 |
apply (simp add: complex_norm_def)
|
huffman@23123
|
355 |
done
|
huffman@23123
|
356 |
|
wenzelm@30729
|
357 |
interpretation Im: bounded_linear "Im"
|
huffman@23123
|
358 |
apply (unfold_locales, simp, simp)
|
huffman@23123
|
359 |
apply (rule_tac x=1 in exI)
|
huffman@23123
|
360 |
apply (simp add: complex_norm_def)
|
huffman@23123
|
361 |
done
|
huffman@23123
|
362 |
|
huffman@23123
|
363 |
lemma LIMSEQ_Complex:
|
huffman@23123
|
364 |
"\<lbrakk>X ----> a; Y ----> b\<rbrakk> \<Longrightarrow> (\<lambda>n. Complex (X n) (Y n)) ----> Complex a b"
|
huffman@23123
|
365 |
apply (rule LIMSEQ_I)
|
huffman@23123
|
366 |
apply (subgoal_tac "0 < r / sqrt 2")
|
huffman@23123
|
367 |
apply (drule_tac r="r / sqrt 2" in LIMSEQ_D, safe)
|
huffman@23123
|
368 |
apply (drule_tac r="r / sqrt 2" in LIMSEQ_D, safe)
|
huffman@23123
|
369 |
apply (rename_tac M N, rule_tac x="max M N" in exI, safe)
|
huffman@23123
|
370 |
apply (simp add: real_sqrt_sum_squares_less)
|
huffman@23123
|
371 |
apply (simp add: divide_pos_pos)
|
huffman@23123
|
372 |
done
|
huffman@23123
|
373 |
|
huffman@23123
|
374 |
instance complex :: banach
|
huffman@23123
|
375 |
proof
|
huffman@23123
|
376 |
fix X :: "nat \<Rightarrow> complex"
|
huffman@23123
|
377 |
assume X: "Cauchy X"
|
huffman@23123
|
378 |
from Re.Cauchy [OF X] have 1: "(\<lambda>n. Re (X n)) ----> lim (\<lambda>n. Re (X n))"
|
huffman@23123
|
379 |
by (simp add: Cauchy_convergent_iff convergent_LIMSEQ_iff)
|
huffman@23123
|
380 |
from Im.Cauchy [OF X] have 2: "(\<lambda>n. Im (X n)) ----> lim (\<lambda>n. Im (X n))"
|
huffman@23123
|
381 |
by (simp add: Cauchy_convergent_iff convergent_LIMSEQ_iff)
|
huffman@23123
|
382 |
have "X ----> Complex (lim (\<lambda>n. Re (X n))) (lim (\<lambda>n. Im (X n)))"
|
huffman@23123
|
383 |
using LIMSEQ_Complex [OF 1 2] by simp
|
huffman@23123
|
384 |
thus "convergent X"
|
huffman@23123
|
385 |
by (rule convergentI)
|
huffman@23123
|
386 |
qed
|
huffman@23123
|
387 |
|
huffman@23123
|
388 |
|
huffman@23125
|
389 |
subsection {* The Complex Number @{term "\<i>"} *}
|
huffman@23125
|
390 |
|
huffman@23125
|
391 |
definition
|
huffman@23125
|
392 |
"ii" :: complex ("\<i>") where
|
huffman@23125
|
393 |
i_def: "ii \<equiv> Complex 0 1"
|
huffman@23125
|
394 |
|
huffman@23125
|
395 |
lemma complex_Re_i [simp]: "Re ii = 0"
|
huffman@23125
|
396 |
by (simp add: i_def)
|
paulson@14354
|
397 |
|
huffman@23125
|
398 |
lemma complex_Im_i [simp]: "Im ii = 1"
|
huffman@23125
|
399 |
by (simp add: i_def)
|
huffman@23125
|
400 |
|
huffman@23125
|
401 |
lemma Complex_eq_i [simp]: "(Complex x y = ii) = (x = 0 \<and> y = 1)"
|
huffman@23125
|
402 |
by (simp add: i_def)
|
huffman@23125
|
403 |
|
huffman@23125
|
404 |
lemma complex_i_not_zero [simp]: "ii \<noteq> 0"
|
huffman@23125
|
405 |
by (simp add: expand_complex_eq)
|
huffman@23125
|
406 |
|
huffman@23125
|
407 |
lemma complex_i_not_one [simp]: "ii \<noteq> 1"
|
huffman@23125
|
408 |
by (simp add: expand_complex_eq)
|
huffman@23124
|
409 |
|
huffman@23125
|
410 |
lemma complex_i_not_number_of [simp]: "ii \<noteq> number_of w"
|
huffman@23125
|
411 |
by (simp add: expand_complex_eq)
|
huffman@23125
|
412 |
|
huffman@23125
|
413 |
lemma i_mult_Complex [simp]: "ii * Complex a b = Complex (- b) a"
|
huffman@23125
|
414 |
by (simp add: expand_complex_eq)
|
huffman@23125
|
415 |
|
huffman@23125
|
416 |
lemma Complex_mult_i [simp]: "Complex a b * ii = Complex (- b) a"
|
huffman@23125
|
417 |
by (simp add: expand_complex_eq)
|
huffman@23125
|
418 |
|
huffman@23125
|
419 |
lemma i_complex_of_real [simp]: "ii * complex_of_real r = Complex 0 r"
|
huffman@23125
|
420 |
by (simp add: i_def complex_of_real_def)
|
huffman@23125
|
421 |
|
huffman@23125
|
422 |
lemma complex_of_real_i [simp]: "complex_of_real r * ii = Complex 0 r"
|
huffman@23125
|
423 |
by (simp add: i_def complex_of_real_def)
|
huffman@23125
|
424 |
|
huffman@23125
|
425 |
lemma i_squared [simp]: "ii * ii = -1"
|
huffman@23125
|
426 |
by (simp add: i_def)
|
huffman@23125
|
427 |
|
huffman@23125
|
428 |
lemma power2_i [simp]: "ii\<twosuperior> = -1"
|
huffman@23125
|
429 |
by (simp add: power2_eq_square)
|
huffman@23125
|
430 |
|
huffman@23125
|
431 |
lemma inverse_i [simp]: "inverse ii = - ii"
|
huffman@23125
|
432 |
by (rule inverse_unique, simp)
|
paulson@14354
|
433 |
|
paulson@14354
|
434 |
|
huffman@23125
|
435 |
subsection {* Complex Conjugation *}
|
huffman@23125
|
436 |
|
huffman@23125
|
437 |
definition
|
huffman@23125
|
438 |
cnj :: "complex \<Rightarrow> complex" where
|
huffman@23125
|
439 |
"cnj z = Complex (Re z) (- Im z)"
|
huffman@23125
|
440 |
|
huffman@23125
|
441 |
lemma complex_cnj [simp]: "cnj (Complex a b) = Complex a (- b)"
|
huffman@23125
|
442 |
by (simp add: cnj_def)
|
huffman@23125
|
443 |
|
huffman@23125
|
444 |
lemma complex_Re_cnj [simp]: "Re (cnj x) = Re x"
|
huffman@23125
|
445 |
by (simp add: cnj_def)
|
huffman@23125
|
446 |
|
huffman@23125
|
447 |
lemma complex_Im_cnj [simp]: "Im (cnj x) = - Im x"
|
huffman@23125
|
448 |
by (simp add: cnj_def)
|
huffman@23125
|
449 |
|
huffman@23125
|
450 |
lemma complex_cnj_cancel_iff [simp]: "(cnj x = cnj y) = (x = y)"
|
huffman@23125
|
451 |
by (simp add: expand_complex_eq)
|
huffman@23125
|
452 |
|
huffman@23125
|
453 |
lemma complex_cnj_cnj [simp]: "cnj (cnj z) = z"
|
huffman@23125
|
454 |
by (simp add: cnj_def)
|
huffman@23125
|
455 |
|
huffman@23125
|
456 |
lemma complex_cnj_zero [simp]: "cnj 0 = 0"
|
huffman@23125
|
457 |
by (simp add: expand_complex_eq)
|
huffman@23125
|
458 |
|
huffman@23125
|
459 |
lemma complex_cnj_zero_iff [iff]: "(cnj z = 0) = (z = 0)"
|
huffman@23125
|
460 |
by (simp add: expand_complex_eq)
|
huffman@23125
|
461 |
|
huffman@23125
|
462 |
lemma complex_cnj_add: "cnj (x + y) = cnj x + cnj y"
|
huffman@23125
|
463 |
by (simp add: expand_complex_eq)
|
huffman@23125
|
464 |
|
huffman@23125
|
465 |
lemma complex_cnj_diff: "cnj (x - y) = cnj x - cnj y"
|
huffman@23125
|
466 |
by (simp add: expand_complex_eq)
|
huffman@23125
|
467 |
|
huffman@23125
|
468 |
lemma complex_cnj_minus: "cnj (- x) = - cnj x"
|
huffman@23125
|
469 |
by (simp add: expand_complex_eq)
|
huffman@23125
|
470 |
|
huffman@23125
|
471 |
lemma complex_cnj_one [simp]: "cnj 1 = 1"
|
huffman@23125
|
472 |
by (simp add: expand_complex_eq)
|
huffman@23125
|
473 |
|
huffman@23125
|
474 |
lemma complex_cnj_mult: "cnj (x * y) = cnj x * cnj y"
|
huffman@23125
|
475 |
by (simp add: expand_complex_eq)
|
huffman@23125
|
476 |
|
huffman@23125
|
477 |
lemma complex_cnj_inverse: "cnj (inverse x) = inverse (cnj x)"
|
huffman@23125
|
478 |
by (simp add: complex_inverse_def)
|
paulson@14323
|
479 |
|
huffman@23125
|
480 |
lemma complex_cnj_divide: "cnj (x / y) = cnj x / cnj y"
|
huffman@23125
|
481 |
by (simp add: complex_divide_def complex_cnj_mult complex_cnj_inverse)
|
huffman@23125
|
482 |
|
huffman@23125
|
483 |
lemma complex_cnj_power: "cnj (x ^ n) = cnj x ^ n"
|
huffman@23125
|
484 |
by (induct n, simp_all add: complex_cnj_mult)
|
huffman@23125
|
485 |
|
huffman@23125
|
486 |
lemma complex_cnj_of_nat [simp]: "cnj (of_nat n) = of_nat n"
|
huffman@23125
|
487 |
by (simp add: expand_complex_eq)
|
huffman@23125
|
488 |
|
huffman@23125
|
489 |
lemma complex_cnj_of_int [simp]: "cnj (of_int z) = of_int z"
|
huffman@23125
|
490 |
by (simp add: expand_complex_eq)
|
huffman@23125
|
491 |
|
huffman@23125
|
492 |
lemma complex_cnj_number_of [simp]: "cnj (number_of w) = number_of w"
|
huffman@23125
|
493 |
by (simp add: expand_complex_eq)
|
huffman@23125
|
494 |
|
huffman@23125
|
495 |
lemma complex_cnj_scaleR: "cnj (scaleR r x) = scaleR r (cnj x)"
|
huffman@23125
|
496 |
by (simp add: expand_complex_eq)
|
huffman@23125
|
497 |
|
huffman@23125
|
498 |
lemma complex_mod_cnj [simp]: "cmod (cnj z) = cmod z"
|
huffman@23125
|
499 |
by (simp add: complex_norm_def)
|
paulson@14323
|
500 |
|
huffman@23125
|
501 |
lemma complex_cnj_complex_of_real [simp]: "cnj (of_real x) = of_real x"
|
huffman@23125
|
502 |
by (simp add: expand_complex_eq)
|
huffman@23125
|
503 |
|
huffman@23125
|
504 |
lemma complex_cnj_i [simp]: "cnj ii = - ii"
|
huffman@23125
|
505 |
by (simp add: expand_complex_eq)
|
huffman@23125
|
506 |
|
huffman@23125
|
507 |
lemma complex_add_cnj: "z + cnj z = complex_of_real (2 * Re z)"
|
huffman@23125
|
508 |
by (simp add: expand_complex_eq)
|
huffman@23125
|
509 |
|
huffman@23125
|
510 |
lemma complex_diff_cnj: "z - cnj z = complex_of_real (2 * Im z) * ii"
|
huffman@23125
|
511 |
by (simp add: expand_complex_eq)
|
paulson@14354
|
512 |
|
huffman@23125
|
513 |
lemma complex_mult_cnj: "z * cnj z = complex_of_real ((Re z)\<twosuperior> + (Im z)\<twosuperior>)"
|
huffman@23125
|
514 |
by (simp add: expand_complex_eq power2_eq_square)
|
huffman@23125
|
515 |
|
huffman@23125
|
516 |
lemma complex_mod_mult_cnj: "cmod (z * cnj z) = (cmod z)\<twosuperior>"
|
huffman@23125
|
517 |
by (simp add: norm_mult power2_eq_square)
|
huffman@23125
|
518 |
|
wenzelm@30729
|
519 |
interpretation cnj: bounded_linear "cnj"
|
huffman@23125
|
520 |
apply (unfold_locales)
|
huffman@23125
|
521 |
apply (rule complex_cnj_add)
|
huffman@23125
|
522 |
apply (rule complex_cnj_scaleR)
|
huffman@23125
|
523 |
apply (rule_tac x=1 in exI, simp)
|
huffman@23125
|
524 |
done
|
paulson@14354
|
525 |
|
paulson@14354
|
526 |
|
huffman@22972
|
527 |
subsection{*The Functions @{term sgn} and @{term arg}*}
|
paulson@14323
|
528 |
|
huffman@22972
|
529 |
text {*------------ Argand -------------*}
|
huffman@20557
|
530 |
|
wenzelm@21404
|
531 |
definition
|
wenzelm@21404
|
532 |
arg :: "complex => real" where
|
huffman@20557
|
533 |
"arg z = (SOME a. Re(sgn z) = cos a & Im(sgn z) = sin a & -pi < a & a \<le> pi)"
|
huffman@20557
|
534 |
|
paulson@14374
|
535 |
lemma sgn_eq: "sgn z = z / complex_of_real (cmod z)"
|
nipkow@24506
|
536 |
by (simp add: complex_sgn_def divide_inverse scaleR_conv_of_real mult_commute)
|
paulson@14323
|
537 |
|
paulson@14323
|
538 |
lemma i_mult_eq: "ii * ii = complex_of_real (-1)"
|
huffman@20725
|
539 |
by (simp add: i_def complex_of_real_def)
|
paulson@14323
|
540 |
|
paulson@14374
|
541 |
lemma i_mult_eq2 [simp]: "ii * ii = -(1::complex)"
|
huffman@20725
|
542 |
by (simp add: i_def complex_one_def)
|
paulson@14323
|
543 |
|
paulson@14374
|
544 |
lemma complex_eq_cancel_iff2 [simp]:
|
paulson@14377
|
545 |
"(Complex x y = complex_of_real xa) = (x = xa & y = 0)"
|
paulson@14377
|
546 |
by (simp add: complex_of_real_def)
|
paulson@14323
|
547 |
|
paulson@14374
|
548 |
lemma Re_sgn [simp]: "Re(sgn z) = Re(z)/cmod z"
|
nipkow@24506
|
549 |
by (simp add: complex_sgn_def divide_inverse)
|
paulson@14323
|
550 |
|
paulson@14374
|
551 |
lemma Im_sgn [simp]: "Im(sgn z) = Im(z)/cmod z"
|
nipkow@24506
|
552 |
by (simp add: complex_sgn_def divide_inverse)
|
paulson@14323
|
553 |
|
paulson@14323
|
554 |
lemma complex_inverse_complex_split:
|
paulson@14323
|
555 |
"inverse(complex_of_real x + ii * complex_of_real y) =
|
paulson@14323
|
556 |
complex_of_real(x/(x ^ 2 + y ^ 2)) -
|
paulson@14323
|
557 |
ii * complex_of_real(y/(x ^ 2 + y ^ 2))"
|
huffman@20725
|
558 |
by (simp add: complex_of_real_def i_def diff_minus divide_inverse)
|
paulson@14323
|
559 |
|
paulson@14323
|
560 |
(*----------------------------------------------------------------------------*)
|
paulson@14323
|
561 |
(* Many of the theorems below need to be moved elsewhere e.g. Transc. Also *)
|
paulson@14323
|
562 |
(* many of the theorems are not used - so should they be kept? *)
|
paulson@14323
|
563 |
(*----------------------------------------------------------------------------*)
|
paulson@14323
|
564 |
|
paulson@14354
|
565 |
lemma cos_arg_i_mult_zero_pos:
|
paulson@14377
|
566 |
"0 < y ==> cos (arg(Complex 0 y)) = 0"
|
paulson@14373
|
567 |
apply (simp add: arg_def abs_if)
|
paulson@14334
|
568 |
apply (rule_tac a = "pi/2" in someI2, auto)
|
paulson@14334
|
569 |
apply (rule order_less_trans [of _ 0], auto)
|
paulson@14323
|
570 |
done
|
paulson@14323
|
571 |
|
paulson@14354
|
572 |
lemma cos_arg_i_mult_zero_neg:
|
paulson@14377
|
573 |
"y < 0 ==> cos (arg(Complex 0 y)) = 0"
|
paulson@14373
|
574 |
apply (simp add: arg_def abs_if)
|
paulson@14334
|
575 |
apply (rule_tac a = "- pi/2" in someI2, auto)
|
paulson@14334
|
576 |
apply (rule order_trans [of _ 0], auto)
|
paulson@14323
|
577 |
done
|
paulson@14323
|
578 |
|
paulson@14374
|
579 |
lemma cos_arg_i_mult_zero [simp]:
|
paulson@14377
|
580 |
"y \<noteq> 0 ==> cos (arg(Complex 0 y)) = 0"
|
paulson@14377
|
581 |
by (auto simp add: linorder_neq_iff cos_arg_i_mult_zero_pos cos_arg_i_mult_zero_neg)
|
paulson@14323
|
582 |
|
paulson@14323
|
583 |
|
paulson@14323
|
584 |
subsection{*Finally! Polar Form for Complex Numbers*}
|
paulson@14323
|
585 |
|
huffman@20557
|
586 |
definition
|
huffman@20557
|
587 |
|
huffman@20557
|
588 |
(* abbreviation for (cos a + i sin a) *)
|
wenzelm@21404
|
589 |
cis :: "real => complex" where
|
huffman@20557
|
590 |
"cis a = Complex (cos a) (sin a)"
|
huffman@20557
|
591 |
|
wenzelm@21404
|
592 |
definition
|
huffman@20557
|
593 |
(* abbreviation for r*(cos a + i sin a) *)
|
wenzelm@21404
|
594 |
rcis :: "[real, real] => complex" where
|
huffman@20557
|
595 |
"rcis r a = complex_of_real r * cis a"
|
huffman@20557
|
596 |
|
wenzelm@21404
|
597 |
definition
|
huffman@20557
|
598 |
(* e ^ (x + iy) *)
|
wenzelm@21404
|
599 |
expi :: "complex => complex" where
|
huffman@20557
|
600 |
"expi z = complex_of_real(exp (Re z)) * cis (Im z)"
|
huffman@20557
|
601 |
|
paulson@14374
|
602 |
lemma complex_split_polar:
|
paulson@14377
|
603 |
"\<exists>r a. z = complex_of_real r * (Complex (cos a) (sin a))"
|
huffman@20725
|
604 |
apply (induct z)
|
paulson@14377
|
605 |
apply (auto simp add: polar_Ex complex_of_real_mult_Complex)
|
paulson@14323
|
606 |
done
|
paulson@14323
|
607 |
|
paulson@14354
|
608 |
lemma rcis_Ex: "\<exists>r a. z = rcis r a"
|
huffman@20725
|
609 |
apply (induct z)
|
paulson@14377
|
610 |
apply (simp add: rcis_def cis_def polar_Ex complex_of_real_mult_Complex)
|
paulson@14323
|
611 |
done
|
paulson@14323
|
612 |
|
paulson@14374
|
613 |
lemma Re_rcis [simp]: "Re(rcis r a) = r * cos a"
|
paulson@14373
|
614 |
by (simp add: rcis_def cis_def)
|
paulson@14323
|
615 |
|
paulson@14348
|
616 |
lemma Im_rcis [simp]: "Im(rcis r a) = r * sin a"
|
paulson@14373
|
617 |
by (simp add: rcis_def cis_def)
|
paulson@14323
|
618 |
|
paulson@14377
|
619 |
lemma sin_cos_squared_add2_mult: "(r * cos a)\<twosuperior> + (r * sin a)\<twosuperior> = r\<twosuperior>"
|
paulson@14377
|
620 |
proof -
|
paulson@14377
|
621 |
have "(r * cos a)\<twosuperior> + (r * sin a)\<twosuperior> = r\<twosuperior> * ((cos a)\<twosuperior> + (sin a)\<twosuperior>)"
|
huffman@20725
|
622 |
by (simp only: power_mult_distrib right_distrib)
|
paulson@14377
|
623 |
thus ?thesis by simp
|
paulson@14377
|
624 |
qed
|
paulson@14323
|
625 |
|
paulson@14374
|
626 |
lemma complex_mod_rcis [simp]: "cmod(rcis r a) = abs r"
|
paulson@14377
|
627 |
by (simp add: rcis_def cis_def sin_cos_squared_add2_mult)
|
paulson@14323
|
628 |
|
huffman@23125
|
629 |
lemma complex_mod_sqrt_Re_mult_cnj: "cmod z = sqrt (Re (z * cnj z))"
|
huffman@23125
|
630 |
by (simp add: cmod_def power2_eq_square)
|
huffman@23125
|
631 |
|
paulson@14374
|
632 |
lemma complex_In_mult_cnj_zero [simp]: "Im (z * cnj z) = 0"
|
huffman@23125
|
633 |
by simp
|
paulson@14323
|
634 |
|
paulson@14323
|
635 |
|
paulson@14323
|
636 |
(*---------------------------------------------------------------------------*)
|
paulson@14323
|
637 |
(* (r1 * cis a) * (r2 * cis b) = r1 * r2 * cis (a + b) *)
|
paulson@14323
|
638 |
(*---------------------------------------------------------------------------*)
|
paulson@14323
|
639 |
|
paulson@14323
|
640 |
lemma cis_rcis_eq: "cis a = rcis 1 a"
|
paulson@14373
|
641 |
by (simp add: rcis_def)
|
paulson@14323
|
642 |
|
paulson@14374
|
643 |
lemma rcis_mult: "rcis r1 a * rcis r2 b = rcis (r1*r2) (a + b)"
|
paulson@15013
|
644 |
by (simp add: rcis_def cis_def cos_add sin_add right_distrib right_diff_distrib
|
paulson@15013
|
645 |
complex_of_real_def)
|
paulson@14323
|
646 |
|
paulson@14323
|
647 |
lemma cis_mult: "cis a * cis b = cis (a + b)"
|
paulson@14373
|
648 |
by (simp add: cis_rcis_eq rcis_mult)
|
paulson@14323
|
649 |
|
paulson@14374
|
650 |
lemma cis_zero [simp]: "cis 0 = 1"
|
paulson@14377
|
651 |
by (simp add: cis_def complex_one_def)
|
paulson@14323
|
652 |
|
paulson@14374
|
653 |
lemma rcis_zero_mod [simp]: "rcis 0 a = 0"
|
paulson@14373
|
654 |
by (simp add: rcis_def)
|
paulson@14323
|
655 |
|
paulson@14374
|
656 |
lemma rcis_zero_arg [simp]: "rcis r 0 = complex_of_real r"
|
paulson@14373
|
657 |
by (simp add: rcis_def)
|
paulson@14323
|
658 |
|
paulson@14323
|
659 |
lemma complex_of_real_minus_one:
|
paulson@14323
|
660 |
"complex_of_real (-(1::real)) = -(1::complex)"
|
huffman@20725
|
661 |
by (simp add: complex_of_real_def complex_one_def)
|
paulson@14323
|
662 |
|
paulson@14374
|
663 |
lemma complex_i_mult_minus [simp]: "ii * (ii * x) = - x"
|
huffman@23125
|
664 |
by (simp add: mult_assoc [symmetric])
|
paulson@14323
|
665 |
|
paulson@14323
|
666 |
|
paulson@14323
|
667 |
lemma cis_real_of_nat_Suc_mult:
|
paulson@14323
|
668 |
"cis (real (Suc n) * a) = cis a * cis (real n * a)"
|
paulson@14377
|
669 |
by (simp add: cis_def real_of_nat_Suc left_distrib cos_add sin_add right_distrib)
|
paulson@14323
|
670 |
|
paulson@14323
|
671 |
lemma DeMoivre: "(cis a) ^ n = cis (real n * a)"
|
paulson@14323
|
672 |
apply (induct_tac "n")
|
paulson@14323
|
673 |
apply (auto simp add: cis_real_of_nat_Suc_mult)
|
paulson@14323
|
674 |
done
|
paulson@14323
|
675 |
|
paulson@14374
|
676 |
lemma DeMoivre2: "(rcis r a) ^ n = rcis (r ^ n) (real n * a)"
|
huffman@22890
|
677 |
by (simp add: rcis_def power_mult_distrib DeMoivre)
|
paulson@14323
|
678 |
|
paulson@14374
|
679 |
lemma cis_inverse [simp]: "inverse(cis a) = cis (-a)"
|
huffman@20725
|
680 |
by (simp add: cis_def complex_inverse_complex_split diff_minus)
|
paulson@14323
|
681 |
|
paulson@14323
|
682 |
lemma rcis_inverse: "inverse(rcis r a) = rcis (1/r) (-a)"
|
huffman@22884
|
683 |
by (simp add: divide_inverse rcis_def)
|
paulson@14323
|
684 |
|
paulson@14323
|
685 |
lemma cis_divide: "cis a / cis b = cis (a - b)"
|
paulson@14373
|
686 |
by (simp add: complex_divide_def cis_mult real_diff_def)
|
paulson@14323
|
687 |
|
paulson@14354
|
688 |
lemma rcis_divide: "rcis r1 a / rcis r2 b = rcis (r1/r2) (a - b)"
|
paulson@14373
|
689 |
apply (simp add: complex_divide_def)
|
paulson@14373
|
690 |
apply (case_tac "r2=0", simp)
|
paulson@14373
|
691 |
apply (simp add: rcis_inverse rcis_mult real_diff_def)
|
paulson@14323
|
692 |
done
|
paulson@14323
|
693 |
|
paulson@14374
|
694 |
lemma Re_cis [simp]: "Re(cis a) = cos a"
|
paulson@14373
|
695 |
by (simp add: cis_def)
|
paulson@14323
|
696 |
|
paulson@14374
|
697 |
lemma Im_cis [simp]: "Im(cis a) = sin a"
|
paulson@14373
|
698 |
by (simp add: cis_def)
|
paulson@14323
|
699 |
|
paulson@14323
|
700 |
lemma cos_n_Re_cis_pow_n: "cos (real n * a) = Re(cis a ^ n)"
|
paulson@14334
|
701 |
by (auto simp add: DeMoivre)
|
paulson@14323
|
702 |
|
paulson@14323
|
703 |
lemma sin_n_Im_cis_pow_n: "sin (real n * a) = Im(cis a ^ n)"
|
paulson@14334
|
704 |
by (auto simp add: DeMoivre)
|
paulson@14323
|
705 |
|
paulson@14323
|
706 |
lemma expi_add: "expi(a + b) = expi(a) * expi(b)"
|
huffman@20725
|
707 |
by (simp add: expi_def exp_add cis_mult [symmetric] mult_ac)
|
paulson@14323
|
708 |
|
paulson@14374
|
709 |
lemma expi_zero [simp]: "expi (0::complex) = 1"
|
paulson@14373
|
710 |
by (simp add: expi_def)
|
paulson@14323
|
711 |
|
paulson@14374
|
712 |
lemma complex_expi_Ex: "\<exists>a r. z = complex_of_real r * expi a"
|
paulson@14373
|
713 |
apply (insert rcis_Ex [of z])
|
huffman@23125
|
714 |
apply (auto simp add: expi_def rcis_def mult_assoc [symmetric])
|
paulson@14334
|
715 |
apply (rule_tac x = "ii * complex_of_real a" in exI, auto)
|
paulson@14323
|
716 |
done
|
paulson@14323
|
717 |
|
paulson@14387
|
718 |
lemma expi_two_pi_i [simp]: "expi((2::complex) * complex_of_real pi * ii) = 1"
|
huffman@23125
|
719 |
by (simp add: expi_def cis_def)
|
paulson@14387
|
720 |
|
paulson@13957
|
721 |
end
|