haftmann@32139
|
1 |
(* Author: Tobias Nipkow, Lawrence C Paulson and Markus Wenzel; Florian Haftmann, TU Muenchen *)
|
wenzelm@11979
|
2 |
|
haftmann@32139
|
3 |
header {* Complete lattices, with special focus on sets *}
|
haftmann@32077
|
4 |
|
haftmann@32139
|
5 |
theory Complete_Lattice
|
haftmann@32139
|
6 |
imports Set
|
haftmann@32139
|
7 |
begin
|
haftmann@32077
|
8 |
|
haftmann@32077
|
9 |
notation
|
haftmann@34007
|
10 |
less_eq (infix "\<sqsubseteq>" 50) and
|
haftmann@32077
|
11 |
less (infix "\<sqsubset>" 50) and
|
haftmann@34007
|
12 |
inf (infixl "\<sqinter>" 70) and
|
haftmann@34007
|
13 |
sup (infixl "\<squnion>" 65) and
|
haftmann@32678
|
14 |
top ("\<top>") and
|
haftmann@32678
|
15 |
bot ("\<bottom>")
|
haftmann@32077
|
16 |
|
haftmann@32139
|
17 |
|
haftmann@32879
|
18 |
subsection {* Syntactic infimum and supremum operations *}
|
haftmann@32879
|
19 |
|
haftmann@32879
|
20 |
class Inf =
|
haftmann@32879
|
21 |
fixes Inf :: "'a set \<Rightarrow> 'a" ("\<Sqinter>_" [900] 900)
|
haftmann@32879
|
22 |
|
haftmann@32879
|
23 |
class Sup =
|
haftmann@32879
|
24 |
fixes Sup :: "'a set \<Rightarrow> 'a" ("\<Squnion>_" [900] 900)
|
haftmann@32879
|
25 |
|
haftmann@32139
|
26 |
subsection {* Abstract complete lattices *}
|
haftmann@32139
|
27 |
|
haftmann@34007
|
28 |
class complete_lattice = bounded_lattice + Inf + Sup +
|
haftmann@32077
|
29 |
assumes Inf_lower: "x \<in> A \<Longrightarrow> \<Sqinter>A \<sqsubseteq> x"
|
haftmann@32077
|
30 |
and Inf_greatest: "(\<And>x. x \<in> A \<Longrightarrow> z \<sqsubseteq> x) \<Longrightarrow> z \<sqsubseteq> \<Sqinter>A"
|
haftmann@32077
|
31 |
assumes Sup_upper: "x \<in> A \<Longrightarrow> x \<sqsubseteq> \<Squnion>A"
|
haftmann@32077
|
32 |
and Sup_least: "(\<And>x. x \<in> A \<Longrightarrow> x \<sqsubseteq> z) \<Longrightarrow> \<Squnion>A \<sqsubseteq> z"
|
haftmann@32077
|
33 |
begin
|
haftmann@32077
|
34 |
|
haftmann@32678
|
35 |
lemma dual_complete_lattice:
|
haftmann@32879
|
36 |
"complete_lattice Sup Inf (op \<ge>) (op >) (op \<squnion>) (op \<sqinter>) \<top> \<bottom>"
|
haftmann@34007
|
37 |
by (auto intro!: complete_lattice.intro dual_bounded_lattice)
|
haftmann@34007
|
38 |
(unfold_locales, (fact bot_least top_greatest
|
haftmann@34007
|
39 |
Sup_upper Sup_least Inf_lower Inf_greatest)+)
|
haftmann@32678
|
40 |
|
haftmann@34007
|
41 |
lemma Inf_Sup: "\<Sqinter>A = \<Squnion>{b. \<forall>a \<in> A. b \<sqsubseteq> a}"
|
haftmann@32077
|
42 |
by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least)
|
haftmann@32077
|
43 |
|
haftmann@34007
|
44 |
lemma Sup_Inf: "\<Squnion>A = \<Sqinter>{b. \<forall>a \<in> A. a \<sqsubseteq> b}"
|
haftmann@32077
|
45 |
by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least)
|
haftmann@32077
|
46 |
|
haftmann@34007
|
47 |
lemma Inf_empty:
|
haftmann@34007
|
48 |
"\<Sqinter>{} = \<top>"
|
haftmann@34007
|
49 |
by (auto intro: antisym Inf_greatest)
|
haftmann@32077
|
50 |
|
haftmann@34007
|
51 |
lemma Sup_empty:
|
haftmann@34007
|
52 |
"\<Squnion>{} = \<bottom>"
|
haftmann@34007
|
53 |
by (auto intro: antisym Sup_least)
|
haftmann@32077
|
54 |
|
haftmann@32077
|
55 |
lemma Inf_insert: "\<Sqinter>insert a A = a \<sqinter> \<Sqinter>A"
|
haftmann@32077
|
56 |
by (auto intro: le_infI le_infI1 le_infI2 antisym Inf_greatest Inf_lower)
|
haftmann@32077
|
57 |
|
haftmann@32077
|
58 |
lemma Sup_insert: "\<Squnion>insert a A = a \<squnion> \<Squnion>A"
|
haftmann@32077
|
59 |
by (auto intro: le_supI le_supI1 le_supI2 antisym Sup_least Sup_upper)
|
haftmann@32077
|
60 |
|
haftmann@32077
|
61 |
lemma Inf_singleton [simp]:
|
haftmann@32077
|
62 |
"\<Sqinter>{a} = a"
|
haftmann@32077
|
63 |
by (auto intro: antisym Inf_lower Inf_greatest)
|
haftmann@32077
|
64 |
|
haftmann@32077
|
65 |
lemma Sup_singleton [simp]:
|
haftmann@32077
|
66 |
"\<Squnion>{a} = a"
|
haftmann@32077
|
67 |
by (auto intro: antisym Sup_upper Sup_least)
|
haftmann@32077
|
68 |
|
haftmann@32077
|
69 |
lemma Inf_binary:
|
haftmann@32077
|
70 |
"\<Sqinter>{a, b} = a \<sqinter> b"
|
haftmann@34007
|
71 |
by (simp add: Inf_empty Inf_insert)
|
haftmann@32077
|
72 |
|
haftmann@32077
|
73 |
lemma Sup_binary:
|
haftmann@32077
|
74 |
"\<Squnion>{a, b} = a \<squnion> b"
|
haftmann@34007
|
75 |
by (simp add: Sup_empty Sup_insert)
|
haftmann@32077
|
76 |
|
haftmann@34007
|
77 |
lemma Inf_UNIV:
|
haftmann@34007
|
78 |
"\<Sqinter>UNIV = bot"
|
haftmann@34007
|
79 |
by (simp add: Sup_Inf Sup_empty [symmetric])
|
haftmann@32077
|
80 |
|
haftmann@34007
|
81 |
lemma Sup_UNIV:
|
haftmann@34007
|
82 |
"\<Squnion>UNIV = top"
|
haftmann@34007
|
83 |
by (simp add: Inf_Sup Inf_empty [symmetric])
|
haftmann@32077
|
84 |
|
huffman@35629
|
85 |
lemma Sup_le_iff: "Sup A \<sqsubseteq> b \<longleftrightarrow> (\<forall>a\<in>A. a \<sqsubseteq> b)"
|
huffman@35629
|
86 |
by (auto intro: Sup_least dest: Sup_upper)
|
huffman@35629
|
87 |
|
huffman@35629
|
88 |
lemma le_Inf_iff: "b \<sqsubseteq> Inf A \<longleftrightarrow> (\<forall>a\<in>A. b \<sqsubseteq> a)"
|
huffman@35629
|
89 |
by (auto intro: Inf_greatest dest: Inf_lower)
|
huffman@35629
|
90 |
|
haftmann@32077
|
91 |
definition SUPR :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
|
haftmann@32117
|
92 |
"SUPR A f = \<Squnion> (f ` A)"
|
haftmann@32077
|
93 |
|
haftmann@32077
|
94 |
definition INFI :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
|
haftmann@32117
|
95 |
"INFI A f = \<Sqinter> (f ` A)"
|
haftmann@32077
|
96 |
|
haftmann@32077
|
97 |
end
|
haftmann@32077
|
98 |
|
haftmann@32077
|
99 |
syntax
|
haftmann@32077
|
100 |
"_SUP1" :: "pttrns => 'b => 'b" ("(3SUP _./ _)" [0, 10] 10)
|
haftmann@32077
|
101 |
"_SUP" :: "pttrn => 'a set => 'b => 'b" ("(3SUP _:_./ _)" [0, 10] 10)
|
haftmann@32077
|
102 |
"_INF1" :: "pttrns => 'b => 'b" ("(3INF _./ _)" [0, 10] 10)
|
haftmann@32077
|
103 |
"_INF" :: "pttrn => 'a set => 'b => 'b" ("(3INF _:_./ _)" [0, 10] 10)
|
haftmann@32077
|
104 |
|
haftmann@32077
|
105 |
translations
|
haftmann@32077
|
106 |
"SUP x y. B" == "SUP x. SUP y. B"
|
haftmann@32077
|
107 |
"SUP x. B" == "CONST SUPR CONST UNIV (%x. B)"
|
haftmann@32077
|
108 |
"SUP x. B" == "SUP x:CONST UNIV. B"
|
haftmann@32077
|
109 |
"SUP x:A. B" == "CONST SUPR A (%x. B)"
|
haftmann@32077
|
110 |
"INF x y. B" == "INF x. INF y. B"
|
haftmann@32077
|
111 |
"INF x. B" == "CONST INFI CONST UNIV (%x. B)"
|
haftmann@32077
|
112 |
"INF x. B" == "INF x:CONST UNIV. B"
|
haftmann@32077
|
113 |
"INF x:A. B" == "CONST INFI A (%x. B)"
|
haftmann@32077
|
114 |
|
wenzelm@35115
|
115 |
print_translation {*
|
wenzelm@35115
|
116 |
[Syntax.preserve_binder_abs2_tr' @{const_syntax SUPR} @{syntax_const "_SUP"},
|
wenzelm@35115
|
117 |
Syntax.preserve_binder_abs2_tr' @{const_syntax INFI} @{syntax_const "_INF"}]
|
wenzelm@35115
|
118 |
*} -- {* to avoid eta-contraction of body *}
|
wenzelm@11979
|
119 |
|
haftmann@32077
|
120 |
context complete_lattice
|
haftmann@32077
|
121 |
begin
|
haftmann@32077
|
122 |
|
haftmann@34007
|
123 |
lemma le_SUPI: "i : A \<Longrightarrow> M i \<sqsubseteq> (SUP i:A. M i)"
|
haftmann@32077
|
124 |
by (auto simp add: SUPR_def intro: Sup_upper)
|
haftmann@32077
|
125 |
|
haftmann@34007
|
126 |
lemma SUP_leI: "(\<And>i. i : A \<Longrightarrow> M i \<sqsubseteq> u) \<Longrightarrow> (SUP i:A. M i) \<sqsubseteq> u"
|
haftmann@32077
|
127 |
by (auto simp add: SUPR_def intro: Sup_least)
|
haftmann@32077
|
128 |
|
haftmann@34007
|
129 |
lemma INF_leI: "i : A \<Longrightarrow> (INF i:A. M i) \<sqsubseteq> M i"
|
haftmann@32077
|
130 |
by (auto simp add: INFI_def intro: Inf_lower)
|
haftmann@32077
|
131 |
|
haftmann@34007
|
132 |
lemma le_INFI: "(\<And>i. i : A \<Longrightarrow> u \<sqsubseteq> M i) \<Longrightarrow> u \<sqsubseteq> (INF i:A. M i)"
|
haftmann@32077
|
133 |
by (auto simp add: INFI_def intro: Inf_greatest)
|
haftmann@32077
|
134 |
|
huffman@35629
|
135 |
lemma SUP_le_iff: "(SUP i:A. M i) \<sqsubseteq> u \<longleftrightarrow> (\<forall>i \<in> A. M i \<sqsubseteq> u)"
|
huffman@35629
|
136 |
unfolding SUPR_def by (auto simp add: Sup_le_iff)
|
huffman@35629
|
137 |
|
huffman@35629
|
138 |
lemma le_INF_iff: "u \<sqsubseteq> (INF i:A. M i) \<longleftrightarrow> (\<forall>i \<in> A. u \<sqsubseteq> M i)"
|
huffman@35629
|
139 |
unfolding INFI_def by (auto simp add: le_Inf_iff)
|
huffman@35629
|
140 |
|
haftmann@32077
|
141 |
lemma SUP_const[simp]: "A \<noteq> {} \<Longrightarrow> (SUP i:A. M) = M"
|
haftmann@32077
|
142 |
by (auto intro: antisym SUP_leI le_SUPI)
|
haftmann@32077
|
143 |
|
haftmann@32077
|
144 |
lemma INF_const[simp]: "A \<noteq> {} \<Longrightarrow> (INF i:A. M) = M"
|
haftmann@32077
|
145 |
by (auto intro: antisym INF_leI le_INFI)
|
haftmann@32077
|
146 |
|
haftmann@32077
|
147 |
end
|
haftmann@32077
|
148 |
|
haftmann@32077
|
149 |
|
haftmann@32139
|
150 |
subsection {* @{typ bool} and @{typ "_ \<Rightarrow> _"} as complete lattice *}
|
haftmann@32077
|
151 |
|
haftmann@32077
|
152 |
instantiation bool :: complete_lattice
|
haftmann@32077
|
153 |
begin
|
haftmann@32077
|
154 |
|
haftmann@32077
|
155 |
definition
|
haftmann@32077
|
156 |
Inf_bool_def: "\<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x)"
|
haftmann@32077
|
157 |
|
haftmann@32077
|
158 |
definition
|
haftmann@32077
|
159 |
Sup_bool_def: "\<Squnion>A \<longleftrightarrow> (\<exists>x\<in>A. x)"
|
haftmann@32077
|
160 |
|
haftmann@32077
|
161 |
instance proof
|
haftmann@32077
|
162 |
qed (auto simp add: Inf_bool_def Sup_bool_def le_bool_def)
|
haftmann@32077
|
163 |
|
haftmann@32077
|
164 |
end
|
haftmann@32077
|
165 |
|
haftmann@32077
|
166 |
lemma Inf_empty_bool [simp]:
|
haftmann@32077
|
167 |
"\<Sqinter>{}"
|
haftmann@32077
|
168 |
unfolding Inf_bool_def by auto
|
haftmann@32077
|
169 |
|
haftmann@32077
|
170 |
lemma not_Sup_empty_bool [simp]:
|
haftmann@32077
|
171 |
"\<not> \<Squnion>{}"
|
haftmann@32077
|
172 |
unfolding Sup_bool_def by auto
|
haftmann@32077
|
173 |
|
haftmann@32120
|
174 |
lemma INFI_bool_eq:
|
haftmann@32120
|
175 |
"INFI = Ball"
|
haftmann@32120
|
176 |
proof (rule ext)+
|
haftmann@32120
|
177 |
fix A :: "'a set"
|
haftmann@32120
|
178 |
fix P :: "'a \<Rightarrow> bool"
|
haftmann@32120
|
179 |
show "(INF x:A. P x) \<longleftrightarrow> (\<forall>x \<in> A. P x)"
|
haftmann@32120
|
180 |
by (auto simp add: Ball_def INFI_def Inf_bool_def)
|
haftmann@32120
|
181 |
qed
|
haftmann@32120
|
182 |
|
haftmann@32120
|
183 |
lemma SUPR_bool_eq:
|
haftmann@32120
|
184 |
"SUPR = Bex"
|
haftmann@32120
|
185 |
proof (rule ext)+
|
haftmann@32120
|
186 |
fix A :: "'a set"
|
haftmann@32120
|
187 |
fix P :: "'a \<Rightarrow> bool"
|
haftmann@32120
|
188 |
show "(SUP x:A. P x) \<longleftrightarrow> (\<exists>x \<in> A. P x)"
|
haftmann@32120
|
189 |
by (auto simp add: Bex_def SUPR_def Sup_bool_def)
|
haftmann@32120
|
190 |
qed
|
haftmann@32120
|
191 |
|
haftmann@32077
|
192 |
instantiation "fun" :: (type, complete_lattice) complete_lattice
|
haftmann@32077
|
193 |
begin
|
haftmann@32077
|
194 |
|
haftmann@32077
|
195 |
definition
|
haftmann@32077
|
196 |
Inf_fun_def [code del]: "\<Sqinter>A = (\<lambda>x. \<Sqinter>{y. \<exists>f\<in>A. y = f x})"
|
haftmann@32077
|
197 |
|
haftmann@32077
|
198 |
definition
|
haftmann@32077
|
199 |
Sup_fun_def [code del]: "\<Squnion>A = (\<lambda>x. \<Squnion>{y. \<exists>f\<in>A. y = f x})"
|
haftmann@32077
|
200 |
|
haftmann@32077
|
201 |
instance proof
|
haftmann@32077
|
202 |
qed (auto simp add: Inf_fun_def Sup_fun_def le_fun_def
|
haftmann@32077
|
203 |
intro: Inf_lower Sup_upper Inf_greatest Sup_least)
|
haftmann@32077
|
204 |
|
haftmann@32077
|
205 |
end
|
haftmann@32077
|
206 |
|
haftmann@32077
|
207 |
lemma Inf_empty_fun:
|
haftmann@32077
|
208 |
"\<Sqinter>{} = (\<lambda>_. \<Sqinter>{})"
|
haftmann@32135
|
209 |
by (simp add: Inf_fun_def)
|
haftmann@32077
|
210 |
|
haftmann@32077
|
211 |
lemma Sup_empty_fun:
|
haftmann@32077
|
212 |
"\<Squnion>{} = (\<lambda>_. \<Squnion>{})"
|
haftmann@32135
|
213 |
by (simp add: Sup_fun_def)
|
haftmann@32077
|
214 |
|
haftmann@32077
|
215 |
|
haftmann@32139
|
216 |
subsection {* Union *}
|
haftmann@32115
|
217 |
|
haftmann@32587
|
218 |
abbreviation Union :: "'a set set \<Rightarrow> 'a set" where
|
haftmann@32587
|
219 |
"Union S \<equiv> \<Squnion>S"
|
haftmann@32115
|
220 |
|
haftmann@32115
|
221 |
notation (xsymbols)
|
haftmann@32115
|
222 |
Union ("\<Union>_" [90] 90)
|
haftmann@32115
|
223 |
|
haftmann@32135
|
224 |
lemma Union_eq:
|
haftmann@32135
|
225 |
"\<Union>A = {x. \<exists>B \<in> A. x \<in> B}"
|
haftmann@32115
|
226 |
proof (rule set_ext)
|
haftmann@32115
|
227 |
fix x
|
haftmann@32135
|
228 |
have "(\<exists>Q\<in>{P. \<exists>B\<in>A. P \<longleftrightarrow> x \<in> B}. Q) \<longleftrightarrow> (\<exists>B\<in>A. x \<in> B)"
|
haftmann@32115
|
229 |
by auto
|
haftmann@32135
|
230 |
then show "x \<in> \<Union>A \<longleftrightarrow> x \<in> {x. \<exists>B\<in>A. x \<in> B}"
|
haftmann@32587
|
231 |
by (simp add: Sup_fun_def Sup_bool_def) (simp add: mem_def)
|
haftmann@32115
|
232 |
qed
|
haftmann@32115
|
233 |
|
blanchet@35828
|
234 |
lemma Union_iff [simp, no_atp]:
|
haftmann@32115
|
235 |
"A \<in> \<Union>C \<longleftrightarrow> (\<exists>X\<in>C. A\<in>X)"
|
haftmann@32115
|
236 |
by (unfold Union_eq) blast
|
haftmann@32115
|
237 |
|
haftmann@32115
|
238 |
lemma UnionI [intro]:
|
haftmann@32115
|
239 |
"X \<in> C \<Longrightarrow> A \<in> X \<Longrightarrow> A \<in> \<Union>C"
|
haftmann@32115
|
240 |
-- {* The order of the premises presupposes that @{term C} is rigid;
|
haftmann@32115
|
241 |
@{term A} may be flexible. *}
|
haftmann@32115
|
242 |
by auto
|
haftmann@32115
|
243 |
|
haftmann@32115
|
244 |
lemma UnionE [elim!]:
|
haftmann@32115
|
245 |
"A \<in> \<Union>C \<Longrightarrow> (\<And>X. A\<in>X \<Longrightarrow> X\<in>C \<Longrightarrow> R) \<Longrightarrow> R"
|
haftmann@32115
|
246 |
by auto
|
haftmann@32115
|
247 |
|
haftmann@32135
|
248 |
lemma Union_upper: "B \<in> A ==> B \<subseteq> Union A"
|
haftmann@32135
|
249 |
by (iprover intro: subsetI UnionI)
|
haftmann@32135
|
250 |
|
haftmann@32135
|
251 |
lemma Union_least: "(!!X. X \<in> A ==> X \<subseteq> C) ==> Union A \<subseteq> C"
|
haftmann@32135
|
252 |
by (iprover intro: subsetI elim: UnionE dest: subsetD)
|
haftmann@32135
|
253 |
|
haftmann@32135
|
254 |
lemma Un_eq_Union: "A \<union> B = \<Union>{A, B}"
|
haftmann@32135
|
255 |
by blast
|
haftmann@32135
|
256 |
|
haftmann@32135
|
257 |
lemma Union_empty [simp]: "Union({}) = {}"
|
haftmann@32135
|
258 |
by blast
|
haftmann@32135
|
259 |
|
haftmann@32135
|
260 |
lemma Union_UNIV [simp]: "Union UNIV = UNIV"
|
haftmann@32135
|
261 |
by blast
|
haftmann@32135
|
262 |
|
haftmann@32135
|
263 |
lemma Union_insert [simp]: "Union (insert a B) = a \<union> \<Union>B"
|
haftmann@32135
|
264 |
by blast
|
haftmann@32135
|
265 |
|
haftmann@32135
|
266 |
lemma Union_Un_distrib [simp]: "\<Union>(A Un B) = \<Union>A \<union> \<Union>B"
|
haftmann@32135
|
267 |
by blast
|
haftmann@32135
|
268 |
|
haftmann@32135
|
269 |
lemma Union_Int_subset: "\<Union>(A \<inter> B) \<subseteq> \<Union>A \<inter> \<Union>B"
|
haftmann@32135
|
270 |
by blast
|
haftmann@32135
|
271 |
|
blanchet@35828
|
272 |
lemma Union_empty_conv [simp,no_atp]: "(\<Union>A = {}) = (\<forall>x\<in>A. x = {})"
|
haftmann@32135
|
273 |
by blast
|
haftmann@32135
|
274 |
|
blanchet@35828
|
275 |
lemma empty_Union_conv [simp,no_atp]: "({} = \<Union>A) = (\<forall>x\<in>A. x = {})"
|
haftmann@32135
|
276 |
by blast
|
haftmann@32135
|
277 |
|
haftmann@32135
|
278 |
lemma Union_disjoint: "(\<Union>C \<inter> A = {}) = (\<forall>B\<in>C. B \<inter> A = {})"
|
haftmann@32135
|
279 |
by blast
|
haftmann@32135
|
280 |
|
haftmann@32135
|
281 |
lemma subset_Pow_Union: "A \<subseteq> Pow (\<Union>A)"
|
haftmann@32135
|
282 |
by blast
|
haftmann@32135
|
283 |
|
haftmann@32135
|
284 |
lemma Union_Pow_eq [simp]: "\<Union>(Pow A) = A"
|
haftmann@32135
|
285 |
by blast
|
haftmann@32135
|
286 |
|
haftmann@32135
|
287 |
lemma Union_mono: "A \<subseteq> B ==> \<Union>A \<subseteq> \<Union>B"
|
haftmann@32135
|
288 |
by blast
|
haftmann@32135
|
289 |
|
haftmann@32115
|
290 |
|
haftmann@32139
|
291 |
subsection {* Unions of families *}
|
haftmann@32077
|
292 |
|
haftmann@32606
|
293 |
abbreviation UNION :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where
|
haftmann@32606
|
294 |
"UNION \<equiv> SUPR"
|
haftmann@32077
|
295 |
|
haftmann@32077
|
296 |
syntax
|
wenzelm@35115
|
297 |
"_UNION1" :: "pttrns => 'b set => 'b set" ("(3UN _./ _)" [0, 10] 10)
|
wenzelm@35115
|
298 |
"_UNION" :: "pttrn => 'a set => 'b set => 'b set" ("(3UN _:_./ _)" [0, 10] 10)
|
haftmann@32077
|
299 |
|
haftmann@32077
|
300 |
syntax (xsymbols)
|
wenzelm@35115
|
301 |
"_UNION1" :: "pttrns => 'b set => 'b set" ("(3\<Union>_./ _)" [0, 10] 10)
|
wenzelm@35115
|
302 |
"_UNION" :: "pttrn => 'a set => 'b set => 'b set" ("(3\<Union>_\<in>_./ _)" [0, 10] 10)
|
haftmann@32077
|
303 |
|
haftmann@32077
|
304 |
syntax (latex output)
|
wenzelm@35115
|
305 |
"_UNION1" :: "pttrns => 'b set => 'b set" ("(3\<Union>(00\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
|
wenzelm@35115
|
306 |
"_UNION" :: "pttrn => 'a set => 'b set => 'b set" ("(3\<Union>(00\<^bsub>_\<in>_\<^esub>)/ _)" [0, 10] 10)
|
haftmann@32077
|
307 |
|
haftmann@32077
|
308 |
translations
|
haftmann@32077
|
309 |
"UN x y. B" == "UN x. UN y. B"
|
haftmann@32077
|
310 |
"UN x. B" == "CONST UNION CONST UNIV (%x. B)"
|
haftmann@32077
|
311 |
"UN x. B" == "UN x:CONST UNIV. B"
|
haftmann@32077
|
312 |
"UN x:A. B" == "CONST UNION A (%x. B)"
|
haftmann@32077
|
313 |
|
haftmann@32077
|
314 |
text {*
|
haftmann@32077
|
315 |
Note the difference between ordinary xsymbol syntax of indexed
|
haftmann@32077
|
316 |
unions and intersections (e.g.\ @{text"\<Union>a\<^isub>1\<in>A\<^isub>1. B"})
|
haftmann@32077
|
317 |
and their \LaTeX\ rendition: @{term"\<Union>a\<^isub>1\<in>A\<^isub>1. B"}. The
|
haftmann@32077
|
318 |
former does not make the index expression a subscript of the
|
haftmann@32077
|
319 |
union/intersection symbol because this leads to problems with nested
|
haftmann@32077
|
320 |
subscripts in Proof General.
|
haftmann@32077
|
321 |
*}
|
haftmann@32077
|
322 |
|
wenzelm@35115
|
323 |
print_translation {*
|
wenzelm@35115
|
324 |
[Syntax.preserve_binder_abs2_tr' @{const_syntax UNION} @{syntax_const "_UNION"}]
|
wenzelm@35115
|
325 |
*} -- {* to avoid eta-contraction of body *}
|
haftmann@32077
|
326 |
|
haftmann@32135
|
327 |
lemma UNION_eq_Union_image:
|
haftmann@32135
|
328 |
"(\<Union>x\<in>A. B x) = \<Union>(B`A)"
|
haftmann@32606
|
329 |
by (fact SUPR_def)
|
haftmann@32115
|
330 |
|
haftmann@32115
|
331 |
lemma Union_def:
|
haftmann@32117
|
332 |
"\<Union>S = (\<Union>x\<in>S. x)"
|
haftmann@32115
|
333 |
by (simp add: UNION_eq_Union_image image_def)
|
haftmann@32115
|
334 |
|
blanchet@35828
|
335 |
lemma UNION_def [no_atp]:
|
haftmann@32135
|
336 |
"(\<Union>x\<in>A. B x) = {y. \<exists>x\<in>A. y \<in> B x}"
|
haftmann@32117
|
337 |
by (auto simp add: UNION_eq_Union_image Union_eq)
|
haftmann@32115
|
338 |
|
haftmann@32115
|
339 |
lemma Union_image_eq [simp]:
|
haftmann@32115
|
340 |
"\<Union>(B`A) = (\<Union>x\<in>A. B x)"
|
haftmann@32115
|
341 |
by (rule sym) (fact UNION_eq_Union_image)
|
haftmann@32115
|
342 |
|
wenzelm@11979
|
343 |
lemma UN_iff [simp]: "(b: (UN x:A. B x)) = (EX x:A. b: B x)"
|
wenzelm@11979
|
344 |
by (unfold UNION_def) blast
|
wenzelm@11979
|
345 |
|
wenzelm@11979
|
346 |
lemma UN_I [intro]: "a:A ==> b: B a ==> b: (UN x:A. B x)"
|
wenzelm@11979
|
347 |
-- {* The order of the premises presupposes that @{term A} is rigid;
|
wenzelm@11979
|
348 |
@{term b} may be flexible. *}
|
wenzelm@11979
|
349 |
by auto
|
wenzelm@11979
|
350 |
|
wenzelm@11979
|
351 |
lemma UN_E [elim!]: "b : (UN x:A. B x) ==> (!!x. x:A ==> b: B x ==> R) ==> R"
|
wenzelm@11979
|
352 |
by (unfold UNION_def) blast
|
clasohm@923
|
353 |
|
wenzelm@11979
|
354 |
lemma UN_cong [cong]:
|
wenzelm@11979
|
355 |
"A = B ==> (!!x. x:B ==> C x = D x) ==> (UN x:A. C x) = (UN x:B. D x)"
|
wenzelm@11979
|
356 |
by (simp add: UNION_def)
|
wenzelm@11979
|
357 |
|
berghofe@29691
|
358 |
lemma strong_UN_cong:
|
berghofe@29691
|
359 |
"A = B ==> (!!x. x:B =simp=> C x = D x) ==> (UN x:A. C x) = (UN x:B. D x)"
|
berghofe@29691
|
360 |
by (simp add: UNION_def simp_implies_def)
|
berghofe@29691
|
361 |
|
haftmann@32077
|
362 |
lemma image_eq_UN: "f`A = (UN x:A. {f x})"
|
haftmann@32077
|
363 |
by blast
|
haftmann@32077
|
364 |
|
haftmann@32135
|
365 |
lemma UN_upper: "a \<in> A ==> B a \<subseteq> (\<Union>x\<in>A. B x)"
|
haftmann@32606
|
366 |
by (fact le_SUPI)
|
haftmann@32135
|
367 |
|
haftmann@32135
|
368 |
lemma UN_least: "(!!x. x \<in> A ==> B x \<subseteq> C) ==> (\<Union>x\<in>A. B x) \<subseteq> C"
|
haftmann@32135
|
369 |
by (iprover intro: subsetI elim: UN_E dest: subsetD)
|
haftmann@32135
|
370 |
|
blanchet@35828
|
371 |
lemma Collect_bex_eq [no_atp]: "{x. \<exists>y\<in>A. P x y} = (\<Union>y\<in>A. {x. P x y})"
|
haftmann@32135
|
372 |
by blast
|
haftmann@32135
|
373 |
|
haftmann@32135
|
374 |
lemma UN_insert_distrib: "u \<in> A ==> (\<Union>x\<in>A. insert a (B x)) = insert a (\<Union>x\<in>A. B x)"
|
haftmann@32135
|
375 |
by blast
|
haftmann@32135
|
376 |
|
blanchet@35828
|
377 |
lemma UN_empty [simp,no_atp]: "(\<Union>x\<in>{}. B x) = {}"
|
haftmann@32135
|
378 |
by blast
|
haftmann@32135
|
379 |
|
haftmann@32135
|
380 |
lemma UN_empty2 [simp]: "(\<Union>x\<in>A. {}) = {}"
|
haftmann@32135
|
381 |
by blast
|
haftmann@32135
|
382 |
|
haftmann@32135
|
383 |
lemma UN_singleton [simp]: "(\<Union>x\<in>A. {x}) = A"
|
haftmann@32135
|
384 |
by blast
|
haftmann@32135
|
385 |
|
haftmann@32135
|
386 |
lemma UN_absorb: "k \<in> I ==> A k \<union> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. A i)"
|
haftmann@32135
|
387 |
by auto
|
haftmann@32135
|
388 |
|
haftmann@32135
|
389 |
lemma UN_insert [simp]: "(\<Union>x\<in>insert a A. B x) = B a \<union> UNION A B"
|
haftmann@32135
|
390 |
by blast
|
haftmann@32135
|
391 |
|
haftmann@32135
|
392 |
lemma UN_Un[simp]: "(\<Union>i \<in> A \<union> B. M i) = (\<Union>i\<in>A. M i) \<union> (\<Union>i\<in>B. M i)"
|
haftmann@32135
|
393 |
by blast
|
haftmann@32135
|
394 |
|
haftmann@32135
|
395 |
lemma UN_UN_flatten: "(\<Union>x \<in> (\<Union>y\<in>A. B y). C x) = (\<Union>y\<in>A. \<Union>x\<in>B y. C x)"
|
haftmann@32135
|
396 |
by blast
|
haftmann@32135
|
397 |
|
haftmann@32135
|
398 |
lemma UN_subset_iff: "((\<Union>i\<in>I. A i) \<subseteq> B) = (\<forall>i\<in>I. A i \<subseteq> B)"
|
huffman@35629
|
399 |
by (fact SUP_le_iff)
|
haftmann@32135
|
400 |
|
haftmann@32135
|
401 |
lemma image_Union: "f ` \<Union>S = (\<Union>x\<in>S. f ` x)"
|
haftmann@32135
|
402 |
by blast
|
haftmann@32135
|
403 |
|
haftmann@32135
|
404 |
lemma UN_constant [simp]: "(\<Union>y\<in>A. c) = (if A = {} then {} else c)"
|
haftmann@32135
|
405 |
by auto
|
haftmann@32135
|
406 |
|
haftmann@32135
|
407 |
lemma UN_eq: "(\<Union>x\<in>A. B x) = \<Union>({Y. \<exists>x\<in>A. Y = B x})"
|
haftmann@32135
|
408 |
by blast
|
haftmann@32135
|
409 |
|
haftmann@32135
|
410 |
lemma UNION_empty_conv[simp]:
|
haftmann@32135
|
411 |
"({} = (UN x:A. B x)) = (\<forall>x\<in>A. B x = {})"
|
haftmann@32135
|
412 |
"((UN x:A. B x) = {}) = (\<forall>x\<in>A. B x = {})"
|
haftmann@32135
|
413 |
by blast+
|
haftmann@32135
|
414 |
|
blanchet@35828
|
415 |
lemma Collect_ex_eq [no_atp]: "{x. \<exists>y. P x y} = (\<Union>y. {x. P x y})"
|
haftmann@32135
|
416 |
by blast
|
haftmann@32135
|
417 |
|
haftmann@32135
|
418 |
lemma ball_UN: "(\<forall>z \<in> UNION A B. P z) = (\<forall>x\<in>A. \<forall>z \<in> B x. P z)"
|
haftmann@32135
|
419 |
by blast
|
haftmann@32135
|
420 |
|
haftmann@32135
|
421 |
lemma bex_UN: "(\<exists>z \<in> UNION A B. P z) = (\<exists>x\<in>A. \<exists>z\<in>B x. P z)"
|
haftmann@32135
|
422 |
by blast
|
haftmann@32135
|
423 |
|
haftmann@32135
|
424 |
lemma Un_eq_UN: "A \<union> B = (\<Union>b. if b then A else B)"
|
haftmann@32135
|
425 |
by (auto simp add: split_if_mem2)
|
haftmann@32135
|
426 |
|
haftmann@32135
|
427 |
lemma UN_bool_eq: "(\<Union>b::bool. A b) = (A True \<union> A False)"
|
haftmann@32135
|
428 |
by (auto intro: bool_contrapos)
|
haftmann@32135
|
429 |
|
haftmann@32135
|
430 |
lemma UN_Pow_subset: "(\<Union>x\<in>A. Pow (B x)) \<subseteq> Pow (\<Union>x\<in>A. B x)"
|
haftmann@32135
|
431 |
by blast
|
haftmann@32135
|
432 |
|
haftmann@32135
|
433 |
lemma UN_mono:
|
haftmann@32135
|
434 |
"A \<subseteq> B ==> (!!x. x \<in> A ==> f x \<subseteq> g x) ==>
|
haftmann@32135
|
435 |
(\<Union>x\<in>A. f x) \<subseteq> (\<Union>x\<in>B. g x)"
|
haftmann@32135
|
436 |
by (blast dest: subsetD)
|
haftmann@32135
|
437 |
|
haftmann@32135
|
438 |
lemma vimage_Union: "f -` (Union A) = (UN X:A. f -` X)"
|
haftmann@32135
|
439 |
by blast
|
haftmann@32135
|
440 |
|
haftmann@32135
|
441 |
lemma vimage_UN: "f-`(UN x:A. B x) = (UN x:A. f -` B x)"
|
haftmann@32135
|
442 |
by blast
|
haftmann@32135
|
443 |
|
haftmann@32135
|
444 |
lemma vimage_eq_UN: "f-`B = (UN y: B. f-`{y})"
|
haftmann@32135
|
445 |
-- {* NOT suitable for rewriting *}
|
haftmann@32135
|
446 |
by blast
|
haftmann@32135
|
447 |
|
haftmann@32135
|
448 |
lemma image_UN: "(f ` (UNION A B)) = (UN x:A.(f ` (B x)))"
|
haftmann@32135
|
449 |
by blast
|
haftmann@32135
|
450 |
|
wenzelm@11979
|
451 |
|
haftmann@32139
|
452 |
subsection {* Inter *}
|
haftmann@32115
|
453 |
|
haftmann@32587
|
454 |
abbreviation Inter :: "'a set set \<Rightarrow> 'a set" where
|
haftmann@32587
|
455 |
"Inter S \<equiv> \<Sqinter>S"
|
haftmann@32135
|
456 |
|
haftmann@32115
|
457 |
notation (xsymbols)
|
haftmann@32115
|
458 |
Inter ("\<Inter>_" [90] 90)
|
haftmann@32115
|
459 |
|
haftmann@32135
|
460 |
lemma Inter_eq [code del]:
|
haftmann@32135
|
461 |
"\<Inter>A = {x. \<forall>B \<in> A. x \<in> B}"
|
haftmann@32115
|
462 |
proof (rule set_ext)
|
haftmann@32115
|
463 |
fix x
|
haftmann@32135
|
464 |
have "(\<forall>Q\<in>{P. \<exists>B\<in>A. P \<longleftrightarrow> x \<in> B}. Q) \<longleftrightarrow> (\<forall>B\<in>A. x \<in> B)"
|
haftmann@32115
|
465 |
by auto
|
haftmann@32135
|
466 |
then show "x \<in> \<Inter>A \<longleftrightarrow> x \<in> {x. \<forall>B \<in> A. x \<in> B}"
|
haftmann@32587
|
467 |
by (simp add: Inf_fun_def Inf_bool_def) (simp add: mem_def)
|
haftmann@32115
|
468 |
qed
|
haftmann@32115
|
469 |
|
blanchet@35828
|
470 |
lemma Inter_iff [simp,no_atp]: "(A : Inter C) = (ALL X:C. A:X)"
|
haftmann@32115
|
471 |
by (unfold Inter_eq) blast
|
haftmann@32115
|
472 |
|
haftmann@32115
|
473 |
lemma InterI [intro!]: "(!!X. X:C ==> A:X) ==> A : Inter C"
|
haftmann@32115
|
474 |
by (simp add: Inter_eq)
|
haftmann@32115
|
475 |
|
haftmann@32115
|
476 |
text {*
|
haftmann@32115
|
477 |
\medskip A ``destruct'' rule -- every @{term X} in @{term C}
|
haftmann@32115
|
478 |
contains @{term A} as an element, but @{prop "A:X"} can hold when
|
haftmann@32115
|
479 |
@{prop "X:C"} does not! This rule is analogous to @{text spec}.
|
haftmann@32115
|
480 |
*}
|
haftmann@32115
|
481 |
|
haftmann@32115
|
482 |
lemma InterD [elim]: "A : Inter C ==> X:C ==> A:X"
|
haftmann@32115
|
483 |
by auto
|
haftmann@32115
|
484 |
|
haftmann@32115
|
485 |
lemma InterE [elim]: "A : Inter C ==> (X~:C ==> R) ==> (A:X ==> R) ==> R"
|
haftmann@32115
|
486 |
-- {* ``Classical'' elimination rule -- does not require proving
|
haftmann@32115
|
487 |
@{prop "X:C"}. *}
|
haftmann@32115
|
488 |
by (unfold Inter_eq) blast
|
haftmann@32115
|
489 |
|
haftmann@32135
|
490 |
lemma Inter_lower: "B \<in> A ==> Inter A \<subseteq> B"
|
haftmann@32135
|
491 |
by blast
|
haftmann@32135
|
492 |
|
haftmann@32135
|
493 |
lemma Inter_subset:
|
haftmann@32135
|
494 |
"[| !!X. X \<in> A ==> X \<subseteq> B; A ~= {} |] ==> \<Inter>A \<subseteq> B"
|
haftmann@32135
|
495 |
by blast
|
haftmann@32135
|
496 |
|
haftmann@32135
|
497 |
lemma Inter_greatest: "(!!X. X \<in> A ==> C \<subseteq> X) ==> C \<subseteq> Inter A"
|
haftmann@32135
|
498 |
by (iprover intro: InterI subsetI dest: subsetD)
|
haftmann@32135
|
499 |
|
haftmann@32135
|
500 |
lemma Int_eq_Inter: "A \<inter> B = \<Inter>{A, B}"
|
haftmann@32135
|
501 |
by blast
|
haftmann@32135
|
502 |
|
haftmann@32135
|
503 |
lemma Inter_empty [simp]: "\<Inter>{} = UNIV"
|
haftmann@32135
|
504 |
by blast
|
haftmann@32135
|
505 |
|
haftmann@32135
|
506 |
lemma Inter_UNIV [simp]: "\<Inter>UNIV = {}"
|
haftmann@32135
|
507 |
by blast
|
haftmann@32135
|
508 |
|
haftmann@32135
|
509 |
lemma Inter_insert [simp]: "\<Inter>(insert a B) = a \<inter> \<Inter>B"
|
haftmann@32135
|
510 |
by blast
|
haftmann@32135
|
511 |
|
haftmann@32135
|
512 |
lemma Inter_Un_subset: "\<Inter>A \<union> \<Inter>B \<subseteq> \<Inter>(A \<inter> B)"
|
haftmann@32135
|
513 |
by blast
|
haftmann@32135
|
514 |
|
haftmann@32135
|
515 |
lemma Inter_Un_distrib: "\<Inter>(A \<union> B) = \<Inter>A \<inter> \<Inter>B"
|
haftmann@32135
|
516 |
by blast
|
haftmann@32135
|
517 |
|
blanchet@35828
|
518 |
lemma Inter_UNIV_conv [simp,no_atp]:
|
haftmann@32135
|
519 |
"(\<Inter>A = UNIV) = (\<forall>x\<in>A. x = UNIV)"
|
haftmann@32135
|
520 |
"(UNIV = \<Inter>A) = (\<forall>x\<in>A. x = UNIV)"
|
haftmann@32135
|
521 |
by blast+
|
haftmann@32135
|
522 |
|
haftmann@32135
|
523 |
lemma Inter_anti_mono: "B \<subseteq> A ==> \<Inter>A \<subseteq> \<Inter>B"
|
haftmann@32135
|
524 |
by blast
|
haftmann@32135
|
525 |
|
haftmann@32115
|
526 |
|
haftmann@32139
|
527 |
subsection {* Intersections of families *}
|
wenzelm@11979
|
528 |
|
haftmann@32606
|
529 |
abbreviation INTER :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where
|
haftmann@32606
|
530 |
"INTER \<equiv> INFI"
|
haftmann@32081
|
531 |
|
haftmann@32081
|
532 |
syntax
|
wenzelm@35115
|
533 |
"_INTER1" :: "pttrns => 'b set => 'b set" ("(3INT _./ _)" [0, 10] 10)
|
wenzelm@35115
|
534 |
"_INTER" :: "pttrn => 'a set => 'b set => 'b set" ("(3INT _:_./ _)" [0, 10] 10)
|
haftmann@32081
|
535 |
|
haftmann@32081
|
536 |
syntax (xsymbols)
|
wenzelm@35115
|
537 |
"_INTER1" :: "pttrns => 'b set => 'b set" ("(3\<Inter>_./ _)" [0, 10] 10)
|
wenzelm@35115
|
538 |
"_INTER" :: "pttrn => 'a set => 'b set => 'b set" ("(3\<Inter>_\<in>_./ _)" [0, 10] 10)
|
haftmann@32081
|
539 |
|
haftmann@32081
|
540 |
syntax (latex output)
|
wenzelm@35115
|
541 |
"_INTER1" :: "pttrns => 'b set => 'b set" ("(3\<Inter>(00\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
|
wenzelm@35115
|
542 |
"_INTER" :: "pttrn => 'a set => 'b set => 'b set" ("(3\<Inter>(00\<^bsub>_\<in>_\<^esub>)/ _)" [0, 10] 10)
|
haftmann@32081
|
543 |
|
haftmann@32081
|
544 |
translations
|
haftmann@32081
|
545 |
"INT x y. B" == "INT x. INT y. B"
|
haftmann@32081
|
546 |
"INT x. B" == "CONST INTER CONST UNIV (%x. B)"
|
haftmann@32081
|
547 |
"INT x. B" == "INT x:CONST UNIV. B"
|
haftmann@32081
|
548 |
"INT x:A. B" == "CONST INTER A (%x. B)"
|
haftmann@32081
|
549 |
|
wenzelm@35115
|
550 |
print_translation {*
|
wenzelm@35115
|
551 |
[Syntax.preserve_binder_abs2_tr' @{const_syntax INTER} @{syntax_const "_INTER"}]
|
wenzelm@35115
|
552 |
*} -- {* to avoid eta-contraction of body *}
|
haftmann@32081
|
553 |
|
haftmann@32135
|
554 |
lemma INTER_eq_Inter_image:
|
haftmann@32135
|
555 |
"(\<Inter>x\<in>A. B x) = \<Inter>(B`A)"
|
haftmann@32606
|
556 |
by (fact INFI_def)
|
haftmann@32135
|
557 |
|
haftmann@32115
|
558 |
lemma Inter_def:
|
haftmann@32135
|
559 |
"\<Inter>S = (\<Inter>x\<in>S. x)"
|
haftmann@32115
|
560 |
by (simp add: INTER_eq_Inter_image image_def)
|
haftmann@32115
|
561 |
|
haftmann@32115
|
562 |
lemma INTER_def:
|
haftmann@32135
|
563 |
"(\<Inter>x\<in>A. B x) = {y. \<forall>x\<in>A. y \<in> B x}"
|
haftmann@32117
|
564 |
by (auto simp add: INTER_eq_Inter_image Inter_eq)
|
haftmann@32115
|
565 |
|
haftmann@32115
|
566 |
lemma Inter_image_eq [simp]:
|
haftmann@32115
|
567 |
"\<Inter>(B`A) = (\<Inter>x\<in>A. B x)"
|
haftmann@32115
|
568 |
by (rule sym) (fact INTER_eq_Inter_image)
|
haftmann@32115
|
569 |
|
wenzelm@11979
|
570 |
lemma INT_iff [simp]: "(b: (INT x:A. B x)) = (ALL x:A. b: B x)"
|
wenzelm@11979
|
571 |
by (unfold INTER_def) blast
|
clasohm@923
|
572 |
|
wenzelm@11979
|
573 |
lemma INT_I [intro!]: "(!!x. x:A ==> b: B x) ==> b : (INT x:A. B x)"
|
wenzelm@11979
|
574 |
by (unfold INTER_def) blast
|
wenzelm@11979
|
575 |
|
wenzelm@11979
|
576 |
lemma INT_D [elim]: "b : (INT x:A. B x) ==> a:A ==> b: B a"
|
wenzelm@11979
|
577 |
by auto
|
wenzelm@11979
|
578 |
|
wenzelm@11979
|
579 |
lemma INT_E [elim]: "b : (INT x:A. B x) ==> (b: B a ==> R) ==> (a~:A ==> R) ==> R"
|
wenzelm@11979
|
580 |
-- {* "Classical" elimination -- by the Excluded Middle on @{prop "a:A"}. *}
|
wenzelm@11979
|
581 |
by (unfold INTER_def) blast
|
wenzelm@11979
|
582 |
|
wenzelm@11979
|
583 |
lemma INT_cong [cong]:
|
wenzelm@11979
|
584 |
"A = B ==> (!!x. x:B ==> C x = D x) ==> (INT x:A. C x) = (INT x:B. D x)"
|
wenzelm@11979
|
585 |
by (simp add: INTER_def)
|
wenzelm@7238
|
586 |
|
haftmann@32135
|
587 |
lemma Collect_ball_eq: "{x. \<forall>y\<in>A. P x y} = (\<Inter>y\<in>A. {x. P x y})"
|
haftmann@30531
|
588 |
by blast
|
haftmann@30531
|
589 |
|
haftmann@32135
|
590 |
lemma Collect_all_eq: "{x. \<forall>y. P x y} = (\<Inter>y. {x. P x y})"
|
wenzelm@12897
|
591 |
by blast
|
wenzelm@12897
|
592 |
|
wenzelm@12897
|
593 |
lemma INT_lower: "a \<in> A ==> (\<Inter>x\<in>A. B x) \<subseteq> B a"
|
haftmann@32606
|
594 |
by (fact INF_leI)
|
wenzelm@12897
|
595 |
|
wenzelm@12897
|
596 |
lemma INT_greatest: "(!!x. x \<in> A ==> C \<subseteq> B x) ==> C \<subseteq> (\<Inter>x\<in>A. B x)"
|
haftmann@32606
|
597 |
by (fact le_INFI)
|
wenzelm@12897
|
598 |
|
wenzelm@12897
|
599 |
lemma INT_empty [simp]: "(\<Inter>x\<in>{}. B x) = UNIV"
|
wenzelm@12897
|
600 |
by blast
|
wenzelm@12897
|
601 |
|
wenzelm@12897
|
602 |
lemma INT_absorb: "k \<in> I ==> A k \<inter> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. A i)"
|
wenzelm@12897
|
603 |
by blast
|
wenzelm@12897
|
604 |
|
wenzelm@12897
|
605 |
lemma INT_subset_iff: "(B \<subseteq> (\<Inter>i\<in>I. A i)) = (\<forall>i\<in>I. B \<subseteq> A i)"
|
huffman@35629
|
606 |
by (fact le_INF_iff)
|
wenzelm@12897
|
607 |
|
wenzelm@12897
|
608 |
lemma INT_insert [simp]: "(\<Inter>x \<in> insert a A. B x) = B a \<inter> INTER A B"
|
wenzelm@12897
|
609 |
by blast
|
wenzelm@12897
|
610 |
|
wenzelm@12897
|
611 |
lemma INT_Un: "(\<Inter>i \<in> A \<union> B. M i) = (\<Inter>i \<in> A. M i) \<inter> (\<Inter>i\<in>B. M i)"
|
wenzelm@12897
|
612 |
by blast
|
wenzelm@12897
|
613 |
|
wenzelm@12897
|
614 |
lemma INT_insert_distrib:
|
wenzelm@12897
|
615 |
"u \<in> A ==> (\<Inter>x\<in>A. insert a (B x)) = insert a (\<Inter>x\<in>A. B x)"
|
wenzelm@12897
|
616 |
by blast
|
wenzelm@12897
|
617 |
|
wenzelm@12897
|
618 |
lemma INT_constant [simp]: "(\<Inter>y\<in>A. c) = (if A = {} then UNIV else c)"
|
wenzelm@12897
|
619 |
by auto
|
wenzelm@12897
|
620 |
|
wenzelm@12897
|
621 |
lemma INT_eq: "(\<Inter>x\<in>A. B x) = \<Inter>({Y. \<exists>x\<in>A. Y = B x})"
|
wenzelm@12897
|
622 |
-- {* Look: it has an \emph{existential} quantifier *}
|
wenzelm@12897
|
623 |
by blast
|
wenzelm@12897
|
624 |
|
paulson@18447
|
625 |
lemma INTER_UNIV_conv[simp]:
|
nipkow@13653
|
626 |
"(UNIV = (INT x:A. B x)) = (\<forall>x\<in>A. B x = UNIV)"
|
nipkow@13653
|
627 |
"((INT x:A. B x) = UNIV) = (\<forall>x\<in>A. B x = UNIV)"
|
nipkow@13653
|
628 |
by blast+
|
wenzelm@12897
|
629 |
|
haftmann@32135
|
630 |
lemma INT_bool_eq: "(\<Inter>b::bool. A b) = (A True \<inter> A False)"
|
haftmann@32135
|
631 |
by (auto intro: bool_induct)
|
haftmann@32135
|
632 |
|
haftmann@32135
|
633 |
lemma Pow_INT_eq: "Pow (\<Inter>x\<in>A. B x) = (\<Inter>x\<in>A. Pow (B x))"
|
haftmann@32135
|
634 |
by blast
|
haftmann@32135
|
635 |
|
haftmann@32135
|
636 |
lemma INT_anti_mono:
|
haftmann@32135
|
637 |
"B \<subseteq> A ==> (!!x. x \<in> A ==> f x \<subseteq> g x) ==>
|
haftmann@32135
|
638 |
(\<Inter>x\<in>A. f x) \<subseteq> (\<Inter>x\<in>A. g x)"
|
haftmann@32135
|
639 |
-- {* The last inclusion is POSITIVE! *}
|
haftmann@32135
|
640 |
by (blast dest: subsetD)
|
haftmann@32135
|
641 |
|
haftmann@32135
|
642 |
lemma vimage_INT: "f-`(INT x:A. B x) = (INT x:A. f -` B x)"
|
haftmann@32135
|
643 |
by blast
|
haftmann@32135
|
644 |
|
haftmann@32135
|
645 |
|
haftmann@32139
|
646 |
subsection {* Distributive laws *}
|
wenzelm@12897
|
647 |
|
wenzelm@12897
|
648 |
lemma Int_Union: "A \<inter> \<Union>B = (\<Union>C\<in>B. A \<inter> C)"
|
wenzelm@12897
|
649 |
by blast
|
wenzelm@12897
|
650 |
|
wenzelm@12897
|
651 |
lemma Int_Union2: "\<Union>B \<inter> A = (\<Union>C\<in>B. C \<inter> A)"
|
wenzelm@12897
|
652 |
by blast
|
wenzelm@12897
|
653 |
|
wenzelm@12897
|
654 |
lemma Un_Union_image: "(\<Union>x\<in>C. A x \<union> B x) = \<Union>(A`C) \<union> \<Union>(B`C)"
|
wenzelm@12897
|
655 |
-- {* Devlin, Fundamentals of Contemporary Set Theory, page 12, exercise 5: *}
|
wenzelm@12897
|
656 |
-- {* Union of a family of unions *}
|
wenzelm@12897
|
657 |
by blast
|
wenzelm@12897
|
658 |
|
wenzelm@12897
|
659 |
lemma UN_Un_distrib: "(\<Union>i\<in>I. A i \<union> B i) = (\<Union>i\<in>I. A i) \<union> (\<Union>i\<in>I. B i)"
|
wenzelm@12897
|
660 |
-- {* Equivalent version *}
|
wenzelm@12897
|
661 |
by blast
|
wenzelm@12897
|
662 |
|
wenzelm@12897
|
663 |
lemma Un_Inter: "A \<union> \<Inter>B = (\<Inter>C\<in>B. A \<union> C)"
|
wenzelm@12897
|
664 |
by blast
|
wenzelm@12897
|
665 |
|
wenzelm@12897
|
666 |
lemma Int_Inter_image: "(\<Inter>x\<in>C. A x \<inter> B x) = \<Inter>(A`C) \<inter> \<Inter>(B`C)"
|
wenzelm@12897
|
667 |
by blast
|
wenzelm@12897
|
668 |
|
wenzelm@12897
|
669 |
lemma INT_Int_distrib: "(\<Inter>i\<in>I. A i \<inter> B i) = (\<Inter>i\<in>I. A i) \<inter> (\<Inter>i\<in>I. B i)"
|
wenzelm@12897
|
670 |
-- {* Equivalent version *}
|
wenzelm@12897
|
671 |
by blast
|
wenzelm@12897
|
672 |
|
wenzelm@12897
|
673 |
lemma Int_UN_distrib: "B \<inter> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. B \<inter> A i)"
|
wenzelm@12897
|
674 |
-- {* Halmos, Naive Set Theory, page 35. *}
|
wenzelm@12897
|
675 |
by blast
|
wenzelm@12897
|
676 |
|
wenzelm@12897
|
677 |
lemma Un_INT_distrib: "B \<union> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. B \<union> A i)"
|
wenzelm@12897
|
678 |
by blast
|
wenzelm@12897
|
679 |
|
wenzelm@12897
|
680 |
lemma Int_UN_distrib2: "(\<Union>i\<in>I. A i) \<inter> (\<Union>j\<in>J. B j) = (\<Union>i\<in>I. \<Union>j\<in>J. A i \<inter> B j)"
|
wenzelm@12897
|
681 |
by blast
|
wenzelm@12897
|
682 |
|
wenzelm@12897
|
683 |
lemma Un_INT_distrib2: "(\<Inter>i\<in>I. A i) \<union> (\<Inter>j\<in>J. B j) = (\<Inter>i\<in>I. \<Inter>j\<in>J. A i \<union> B j)"
|
wenzelm@12897
|
684 |
by blast
|
wenzelm@12897
|
685 |
|
wenzelm@12897
|
686 |
|
haftmann@32139
|
687 |
subsection {* Complement *}
|
haftmann@32135
|
688 |
|
haftmann@32135
|
689 |
lemma Compl_UN [simp]: "-(\<Union>x\<in>A. B x) = (\<Inter>x\<in>A. -B x)"
|
wenzelm@12897
|
690 |
by blast
|
wenzelm@12897
|
691 |
|
haftmann@32135
|
692 |
lemma Compl_INT [simp]: "-(\<Inter>x\<in>A. B x) = (\<Union>x\<in>A. -B x)"
|
wenzelm@12897
|
693 |
by blast
|
wenzelm@12897
|
694 |
|
wenzelm@12897
|
695 |
|
haftmann@32139
|
696 |
subsection {* Miniscoping and maxiscoping *}
|
wenzelm@12897
|
697 |
|
paulson@13860
|
698 |
text {* \medskip Miniscoping: pushing in quantifiers and big Unions
|
paulson@13860
|
699 |
and Intersections. *}
|
wenzelm@12897
|
700 |
|
wenzelm@12897
|
701 |
lemma UN_simps [simp]:
|
wenzelm@12897
|
702 |
"!!a B C. (UN x:C. insert a (B x)) = (if C={} then {} else insert a (UN x:C. B x))"
|
wenzelm@12897
|
703 |
"!!A B C. (UN x:C. A x Un B) = ((if C={} then {} else (UN x:C. A x) Un B))"
|
wenzelm@12897
|
704 |
"!!A B C. (UN x:C. A Un B x) = ((if C={} then {} else A Un (UN x:C. B x)))"
|
wenzelm@12897
|
705 |
"!!A B C. (UN x:C. A x Int B) = ((UN x:C. A x) Int B)"
|
wenzelm@12897
|
706 |
"!!A B C. (UN x:C. A Int B x) = (A Int (UN x:C. B x))"
|
wenzelm@12897
|
707 |
"!!A B C. (UN x:C. A x - B) = ((UN x:C. A x) - B)"
|
wenzelm@12897
|
708 |
"!!A B C. (UN x:C. A - B x) = (A - (INT x:C. B x))"
|
wenzelm@12897
|
709 |
"!!A B. (UN x: Union A. B x) = (UN y:A. UN x:y. B x)"
|
wenzelm@12897
|
710 |
"!!A B C. (UN z: UNION A B. C z) = (UN x:A. UN z: B(x). C z)"
|
wenzelm@12897
|
711 |
"!!A B f. (UN x:f`A. B x) = (UN a:A. B (f a))"
|
wenzelm@12897
|
712 |
by auto
|
wenzelm@12897
|
713 |
|
wenzelm@12897
|
714 |
lemma INT_simps [simp]:
|
wenzelm@12897
|
715 |
"!!A B C. (INT x:C. A x Int B) = (if C={} then UNIV else (INT x:C. A x) Int B)"
|
wenzelm@12897
|
716 |
"!!A B C. (INT x:C. A Int B x) = (if C={} then UNIV else A Int (INT x:C. B x))"
|
wenzelm@12897
|
717 |
"!!A B C. (INT x:C. A x - B) = (if C={} then UNIV else (INT x:C. A x) - B)"
|
wenzelm@12897
|
718 |
"!!A B C. (INT x:C. A - B x) = (if C={} then UNIV else A - (UN x:C. B x))"
|
wenzelm@12897
|
719 |
"!!a B C. (INT x:C. insert a (B x)) = insert a (INT x:C. B x)"
|
wenzelm@12897
|
720 |
"!!A B C. (INT x:C. A x Un B) = ((INT x:C. A x) Un B)"
|
wenzelm@12897
|
721 |
"!!A B C. (INT x:C. A Un B x) = (A Un (INT x:C. B x))"
|
wenzelm@12897
|
722 |
"!!A B. (INT x: Union A. B x) = (INT y:A. INT x:y. B x)"
|
wenzelm@12897
|
723 |
"!!A B C. (INT z: UNION A B. C z) = (INT x:A. INT z: B(x). C z)"
|
wenzelm@12897
|
724 |
"!!A B f. (INT x:f`A. B x) = (INT a:A. B (f a))"
|
wenzelm@12897
|
725 |
by auto
|
wenzelm@12897
|
726 |
|
blanchet@35828
|
727 |
lemma ball_simps [simp,no_atp]:
|
wenzelm@12897
|
728 |
"!!A P Q. (ALL x:A. P x | Q) = ((ALL x:A. P x) | Q)"
|
wenzelm@12897
|
729 |
"!!A P Q. (ALL x:A. P | Q x) = (P | (ALL x:A. Q x))"
|
wenzelm@12897
|
730 |
"!!A P Q. (ALL x:A. P --> Q x) = (P --> (ALL x:A. Q x))"
|
wenzelm@12897
|
731 |
"!!A P Q. (ALL x:A. P x --> Q) = ((EX x:A. P x) --> Q)"
|
wenzelm@12897
|
732 |
"!!P. (ALL x:{}. P x) = True"
|
wenzelm@12897
|
733 |
"!!P. (ALL x:UNIV. P x) = (ALL x. P x)"
|
wenzelm@12897
|
734 |
"!!a B P. (ALL x:insert a B. P x) = (P a & (ALL x:B. P x))"
|
wenzelm@12897
|
735 |
"!!A P. (ALL x:Union A. P x) = (ALL y:A. ALL x:y. P x)"
|
wenzelm@12897
|
736 |
"!!A B P. (ALL x: UNION A B. P x) = (ALL a:A. ALL x: B a. P x)"
|
wenzelm@12897
|
737 |
"!!P Q. (ALL x:Collect Q. P x) = (ALL x. Q x --> P x)"
|
wenzelm@12897
|
738 |
"!!A P f. (ALL x:f`A. P x) = (ALL x:A. P (f x))"
|
wenzelm@12897
|
739 |
"!!A P. (~(ALL x:A. P x)) = (EX x:A. ~P x)"
|
wenzelm@12897
|
740 |
by auto
|
wenzelm@12897
|
741 |
|
blanchet@35828
|
742 |
lemma bex_simps [simp,no_atp]:
|
wenzelm@12897
|
743 |
"!!A P Q. (EX x:A. P x & Q) = ((EX x:A. P x) & Q)"
|
wenzelm@12897
|
744 |
"!!A P Q. (EX x:A. P & Q x) = (P & (EX x:A. Q x))"
|
wenzelm@12897
|
745 |
"!!P. (EX x:{}. P x) = False"
|
wenzelm@12897
|
746 |
"!!P. (EX x:UNIV. P x) = (EX x. P x)"
|
wenzelm@12897
|
747 |
"!!a B P. (EX x:insert a B. P x) = (P(a) | (EX x:B. P x))"
|
wenzelm@12897
|
748 |
"!!A P. (EX x:Union A. P x) = (EX y:A. EX x:y. P x)"
|
wenzelm@12897
|
749 |
"!!A B P. (EX x: UNION A B. P x) = (EX a:A. EX x:B a. P x)"
|
wenzelm@12897
|
750 |
"!!P Q. (EX x:Collect Q. P x) = (EX x. Q x & P x)"
|
wenzelm@12897
|
751 |
"!!A P f. (EX x:f`A. P x) = (EX x:A. P (f x))"
|
wenzelm@12897
|
752 |
"!!A P. (~(EX x:A. P x)) = (ALL x:A. ~P x)"
|
wenzelm@12897
|
753 |
by auto
|
wenzelm@12897
|
754 |
|
wenzelm@12897
|
755 |
lemma ball_conj_distrib:
|
wenzelm@12897
|
756 |
"(ALL x:A. P x & Q x) = ((ALL x:A. P x) & (ALL x:A. Q x))"
|
wenzelm@12897
|
757 |
by blast
|
wenzelm@12897
|
758 |
|
wenzelm@12897
|
759 |
lemma bex_disj_distrib:
|
wenzelm@12897
|
760 |
"(EX x:A. P x | Q x) = ((EX x:A. P x) | (EX x:A. Q x))"
|
wenzelm@12897
|
761 |
by blast
|
wenzelm@12897
|
762 |
|
wenzelm@12897
|
763 |
|
paulson@13860
|
764 |
text {* \medskip Maxiscoping: pulling out big Unions and Intersections. *}
|
paulson@13860
|
765 |
|
paulson@13860
|
766 |
lemma UN_extend_simps:
|
paulson@13860
|
767 |
"!!a B C. insert a (UN x:C. B x) = (if C={} then {a} else (UN x:C. insert a (B x)))"
|
paulson@13860
|
768 |
"!!A B C. (UN x:C. A x) Un B = (if C={} then B else (UN x:C. A x Un B))"
|
paulson@13860
|
769 |
"!!A B C. A Un (UN x:C. B x) = (if C={} then A else (UN x:C. A Un B x))"
|
paulson@13860
|
770 |
"!!A B C. ((UN x:C. A x) Int B) = (UN x:C. A x Int B)"
|
paulson@13860
|
771 |
"!!A B C. (A Int (UN x:C. B x)) = (UN x:C. A Int B x)"
|
paulson@13860
|
772 |
"!!A B C. ((UN x:C. A x) - B) = (UN x:C. A x - B)"
|
paulson@13860
|
773 |
"!!A B C. (A - (INT x:C. B x)) = (UN x:C. A - B x)"
|
paulson@13860
|
774 |
"!!A B. (UN y:A. UN x:y. B x) = (UN x: Union A. B x)"
|
paulson@13860
|
775 |
"!!A B C. (UN x:A. UN z: B(x). C z) = (UN z: UNION A B. C z)"
|
paulson@13860
|
776 |
"!!A B f. (UN a:A. B (f a)) = (UN x:f`A. B x)"
|
paulson@13860
|
777 |
by auto
|
paulson@13860
|
778 |
|
paulson@13860
|
779 |
lemma INT_extend_simps:
|
paulson@13860
|
780 |
"!!A B C. (INT x:C. A x) Int B = (if C={} then B else (INT x:C. A x Int B))"
|
paulson@13860
|
781 |
"!!A B C. A Int (INT x:C. B x) = (if C={} then A else (INT x:C. A Int B x))"
|
paulson@13860
|
782 |
"!!A B C. (INT x:C. A x) - B = (if C={} then UNIV-B else (INT x:C. A x - B))"
|
paulson@13860
|
783 |
"!!A B C. A - (UN x:C. B x) = (if C={} then A else (INT x:C. A - B x))"
|
paulson@13860
|
784 |
"!!a B C. insert a (INT x:C. B x) = (INT x:C. insert a (B x))"
|
paulson@13860
|
785 |
"!!A B C. ((INT x:C. A x) Un B) = (INT x:C. A x Un B)"
|
paulson@13860
|
786 |
"!!A B C. A Un (INT x:C. B x) = (INT x:C. A Un B x)"
|
paulson@13860
|
787 |
"!!A B. (INT y:A. INT x:y. B x) = (INT x: Union A. B x)"
|
paulson@13860
|
788 |
"!!A B C. (INT x:A. INT z: B(x). C z) = (INT z: UNION A B. C z)"
|
paulson@13860
|
789 |
"!!A B f. (INT a:A. B (f a)) = (INT x:f`A. B x)"
|
paulson@13860
|
790 |
by auto
|
paulson@13860
|
791 |
|
paulson@13860
|
792 |
|
haftmann@32135
|
793 |
no_notation
|
haftmann@32135
|
794 |
less_eq (infix "\<sqsubseteq>" 50) and
|
haftmann@32135
|
795 |
less (infix "\<sqsubset>" 50) and
|
haftmann@32135
|
796 |
inf (infixl "\<sqinter>" 70) and
|
haftmann@32135
|
797 |
sup (infixl "\<squnion>" 65) and
|
haftmann@32135
|
798 |
Inf ("\<Sqinter>_" [900] 900) and
|
haftmann@32678
|
799 |
Sup ("\<Squnion>_" [900] 900) and
|
haftmann@32678
|
800 |
top ("\<top>") and
|
haftmann@32678
|
801 |
bot ("\<bottom>")
|
haftmann@32135
|
802 |
|
haftmann@30596
|
803 |
lemmas mem_simps =
|
haftmann@30596
|
804 |
insert_iff empty_iff Un_iff Int_iff Compl_iff Diff_iff
|
haftmann@30596
|
805 |
mem_Collect_eq UN_iff Union_iff INT_iff Inter_iff
|
haftmann@30596
|
806 |
-- {* Each of these has ALREADY been added @{text "[simp]"} above. *}
|
wenzelm@21669
|
807 |
|
wenzelm@11979
|
808 |
end
|