src/Pure/drule.ML
author wenzelm
Sat Oct 13 20:32:07 2001 +0200 (2001-10-13)
changeset 11741 470e608d7a74
parent 11512 da3a96ab5630
child 11815 ef7619398680
permissions -rw-r--r--
generic theorem kinds ("theorem", "lemma" etc.);
wenzelm@252
     1
(*  Title:      Pure/drule.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@252
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1993  University of Cambridge
clasohm@0
     5
wenzelm@3766
     6
Derived rules and other operations on theorems.
clasohm@0
     7
*)
clasohm@0
     8
wenzelm@9288
     9
infix 0 RS RSN RL RLN MRS MRL OF COMP;
clasohm@0
    10
wenzelm@5903
    11
signature BASIC_DRULE =
wenzelm@3766
    12
sig
paulson@9547
    13
  val mk_implies        : cterm * cterm -> cterm
paulson@9547
    14
  val list_implies      : cterm list * cterm -> cterm
wenzelm@4285
    15
  val dest_implies      : cterm -> cterm * cterm
berghofe@10414
    16
  val dest_equals       : cterm -> cterm * cterm
wenzelm@8328
    17
  val skip_flexpairs    : cterm -> cterm
wenzelm@8328
    18
  val strip_imp_prems   : cterm -> cterm list
berghofe@10414
    19
  val strip_imp_concl   : cterm -> cterm
wenzelm@8328
    20
  val cprems_of         : thm -> cterm list
wenzelm@8328
    21
  val read_insts        :
wenzelm@4285
    22
          Sign.sg -> (indexname -> typ option) * (indexname -> sort option)
wenzelm@4285
    23
                  -> (indexname -> typ option) * (indexname -> sort option)
wenzelm@4285
    24
                  -> string list -> (string*string)list
wenzelm@4285
    25
                  -> (indexname*ctyp)list * (cterm*cterm)list
wenzelm@4285
    26
  val types_sorts: thm -> (indexname-> typ option) * (indexname-> sort option)
wenzelm@7636
    27
  val strip_shyps_warning : thm -> thm
wenzelm@8328
    28
  val forall_intr_list  : cterm list -> thm -> thm
wenzelm@8328
    29
  val forall_intr_frees : thm -> thm
wenzelm@8328
    30
  val forall_intr_vars  : thm -> thm
wenzelm@8328
    31
  val forall_elim_list  : cterm list -> thm -> thm
wenzelm@8328
    32
  val forall_elim_var   : int -> thm -> thm
wenzelm@8328
    33
  val forall_elim_vars  : int -> thm -> thm
wenzelm@9554
    34
  val forall_elim_vars_safe  : thm -> thm
wenzelm@8328
    35
  val freeze_thaw       : thm -> thm * (thm -> thm)
wenzelm@8328
    36
  val implies_elim_list : thm -> thm list -> thm
wenzelm@8328
    37
  val implies_intr_list : cterm list -> thm -> thm
paulson@8129
    38
  val instantiate       :
paulson@8129
    39
    (indexname * ctyp) list * (cterm * cterm) list -> thm -> thm
wenzelm@8328
    40
  val zero_var_indexes  : thm -> thm
wenzelm@8328
    41
  val standard          : thm -> thm
berghofe@11512
    42
  val standard'         : thm -> thm
paulson@4610
    43
  val rotate_prems      : int -> thm -> thm
oheimb@11163
    44
  val rearrange_prems   : int list -> thm -> thm
wenzelm@8328
    45
  val assume_ax         : theory -> string -> thm
wenzelm@8328
    46
  val RSN               : thm * (int * thm) -> thm
wenzelm@8328
    47
  val RS                : thm * thm -> thm
wenzelm@8328
    48
  val RLN               : thm list * (int * thm list) -> thm list
wenzelm@8328
    49
  val RL                : thm list * thm list -> thm list
wenzelm@8328
    50
  val MRS               : thm list * thm -> thm
wenzelm@8328
    51
  val MRL               : thm list list * thm list -> thm list
wenzelm@9288
    52
  val OF                : thm * thm list -> thm
wenzelm@8328
    53
  val compose           : thm * int * thm -> thm list
wenzelm@8328
    54
  val COMP              : thm * thm -> thm
clasohm@0
    55
  val read_instantiate_sg: Sign.sg -> (string*string)list -> thm -> thm
wenzelm@8328
    56
  val read_instantiate  : (string*string)list -> thm -> thm
wenzelm@8328
    57
  val cterm_instantiate : (cterm*cterm)list -> thm -> thm
wenzelm@8328
    58
  val weak_eq_thm       : thm * thm -> bool
wenzelm@8328
    59
  val eq_thm_sg         : thm * thm -> bool
wenzelm@8328
    60
  val size_of_thm       : thm -> int
wenzelm@8328
    61
  val reflexive_thm     : thm
wenzelm@8328
    62
  val symmetric_thm     : thm
wenzelm@8328
    63
  val transitive_thm    : thm
paulson@2004
    64
  val refl_implies      : thm
nipkow@4679
    65
  val symmetric_fun     : thm -> thm
berghofe@11512
    66
  val extensional       : thm -> thm
berghofe@10414
    67
  val imp_cong          : thm
berghofe@10414
    68
  val swap_prems_eq     : thm
wenzelm@8328
    69
  val equal_abs_elim    : cterm  -> thm -> thm
wenzelm@4285
    70
  val equal_abs_elim_list: cterm list -> thm -> thm
wenzelm@4285
    71
  val flexpair_abs_elim_list: cterm list -> thm -> thm
wenzelm@8328
    72
  val asm_rl            : thm
wenzelm@8328
    73
  val cut_rl            : thm
wenzelm@8328
    74
  val revcut_rl         : thm
wenzelm@8328
    75
  val thin_rl           : thm
wenzelm@4285
    76
  val triv_forall_equality: thm
nipkow@1756
    77
  val swap_prems_rl     : thm
wenzelm@4285
    78
  val equal_intr_rule   : thm
paulson@8550
    79
  val inst              : string -> string -> thm -> thm
wenzelm@8328
    80
  val instantiate'      : ctyp option list -> cterm option list -> thm -> thm
wenzelm@8328
    81
  val incr_indexes_wrt  : int list -> ctyp list -> cterm list -> thm list -> thm -> thm
wenzelm@5903
    82
end;
wenzelm@5903
    83
wenzelm@5903
    84
signature DRULE =
wenzelm@5903
    85
sig
wenzelm@5903
    86
  include BASIC_DRULE
wenzelm@9455
    87
  val rule_attribute    : ('a -> thm -> thm) -> 'a attribute
wenzelm@9455
    88
  val tag_rule          : tag -> thm -> thm
wenzelm@9455
    89
  val untag_rule        : string -> thm -> thm
wenzelm@9455
    90
  val tag               : tag -> 'a attribute
wenzelm@9455
    91
  val untag             : string -> 'a attribute
wenzelm@11741
    92
  val get_kind          : thm -> string
wenzelm@11741
    93
  val kind              : string -> 'a attribute
wenzelm@11741
    94
  val theoremK          : string
wenzelm@11741
    95
  val lemmaK            : string
wenzelm@11741
    96
  val corollaryK        : string
wenzelm@11741
    97
  val internalK         : string
wenzelm@11741
    98
  val kind_internal     : 'a attribute
wenzelm@9455
    99
  val has_internal	: tag list -> bool
wenzelm@10515
   100
  val close_derivation  : thm -> thm
wenzelm@8328
   101
  val compose_single    : thm * int * thm -> thm
wenzelm@9829
   102
  val add_rules		: thm list -> thm list -> thm list
wenzelm@9829
   103
  val del_rules		: thm list -> thm list -> thm list
wenzelm@9418
   104
  val merge_rules	: thm list * thm list -> thm list
wenzelm@9554
   105
  val norm_hhf_eq	: thm
wenzelm@8328
   106
  val triv_goal         : thm
wenzelm@8328
   107
  val rev_triv_goal     : thm
wenzelm@8328
   108
  val freeze_all        : thm -> thm
paulson@5311
   109
  val mk_triv_goal      : cterm -> thm
wenzelm@8328
   110
  val mk_cgoal          : cterm -> cterm
wenzelm@8328
   111
  val assume_goal       : cterm -> thm
wenzelm@8328
   112
  val tvars_of_terms    : term list -> (indexname * sort) list
wenzelm@8328
   113
  val vars_of_terms     : term list -> (indexname * typ) list
wenzelm@8328
   114
  val tvars_of          : thm -> (indexname * sort) list
wenzelm@8328
   115
  val vars_of           : thm -> (indexname * typ) list
wenzelm@8328
   116
  val unvarifyT         : thm -> thm
wenzelm@8328
   117
  val unvarify          : thm -> thm
wenzelm@8605
   118
  val tvars_intr_list	: string list -> thm -> thm
wenzelm@3766
   119
end;
clasohm@0
   120
wenzelm@5903
   121
structure Drule: DRULE =
clasohm@0
   122
struct
clasohm@0
   123
wenzelm@3991
   124
lcp@708
   125
(** some cterm->cterm operations: much faster than calling cterm_of! **)
lcp@708
   126
paulson@2004
   127
(** SAME NAMES as in structure Logic: use compound identifiers! **)
paulson@2004
   128
clasohm@1703
   129
(*dest_implies for cterms. Note T=prop below*)
paulson@2004
   130
fun dest_implies ct =
wenzelm@8328
   131
    case term_of ct of
wenzelm@8328
   132
        (Const("==>", _) $ _ $ _) =>
wenzelm@10767
   133
            let val (ct1,ct2) = Thm.dest_comb ct
wenzelm@10767
   134
            in  (#2 (Thm.dest_comb ct1), ct2)  end
paulson@2004
   135
      | _ => raise TERM ("dest_implies", [term_of ct]) ;
clasohm@1703
   136
berghofe@10414
   137
fun dest_equals ct =
berghofe@10414
   138
    case term_of ct of
berghofe@10414
   139
        (Const("==", _) $ _ $ _) =>
wenzelm@10767
   140
            let val (ct1,ct2) = Thm.dest_comb ct
wenzelm@10767
   141
            in  (#2 (Thm.dest_comb ct1), ct2)  end
berghofe@10414
   142
      | _ => raise TERM ("dest_equals", [term_of ct]) ;
berghofe@10414
   143
clasohm@1703
   144
lcp@708
   145
(*Discard flexflex pairs; return a cterm*)
paulson@2004
   146
fun skip_flexpairs ct =
lcp@708
   147
    case term_of ct of
wenzelm@8328
   148
        (Const("==>", _) $ (Const("=?=",_)$_$_) $ _) =>
wenzelm@8328
   149
            skip_flexpairs (#2 (dest_implies ct))
lcp@708
   150
      | _ => ct;
lcp@708
   151
lcp@708
   152
(* A1==>...An==>B  goes to  [A1,...,An], where B is not an implication *)
paulson@2004
   153
fun strip_imp_prems ct =
paulson@2004
   154
    let val (cA,cB) = dest_implies ct
paulson@2004
   155
    in  cA :: strip_imp_prems cB  end
lcp@708
   156
    handle TERM _ => [];
lcp@708
   157
paulson@2004
   158
(* A1==>...An==>B  goes to B, where B is not an implication *)
paulson@2004
   159
fun strip_imp_concl ct =
wenzelm@8328
   160
    case term_of ct of (Const("==>", _) $ _ $ _) =>
wenzelm@10767
   161
        strip_imp_concl (#2 (Thm.dest_comb ct))
paulson@2004
   162
  | _ => ct;
paulson@2004
   163
lcp@708
   164
(*The premises of a theorem, as a cterm list*)
paulson@2004
   165
val cprems_of = strip_imp_prems o skip_flexpairs o cprop_of;
lcp@708
   166
paulson@9547
   167
val proto_sign = Theory.sign_of ProtoPure.thy;
paulson@9547
   168
paulson@9547
   169
val implies = cterm_of proto_sign Term.implies;
paulson@9547
   170
paulson@9547
   171
(*cterm version of mk_implies*)
wenzelm@10767
   172
fun mk_implies(A,B) = Thm.capply (Thm.capply implies A) B;
paulson@9547
   173
paulson@9547
   174
(*cterm version of list_implies: [A1,...,An], B  goes to [|A1;==>;An|]==>B *)
paulson@9547
   175
fun list_implies([], B) = B
paulson@9547
   176
  | list_implies(A::AS, B) = mk_implies (A, list_implies(AS,B));
paulson@9547
   177
lcp@708
   178
lcp@229
   179
(** reading of instantiations **)
lcp@229
   180
lcp@229
   181
fun absent ixn =
lcp@229
   182
  error("No such variable in term: " ^ Syntax.string_of_vname ixn);
lcp@229
   183
lcp@229
   184
fun inst_failure ixn =
lcp@229
   185
  error("Instantiation of " ^ Syntax.string_of_vname ixn ^ " fails");
lcp@229
   186
nipkow@4281
   187
fun read_insts sign (rtypes,rsorts) (types,sorts) used insts =
wenzelm@10403
   188
let
nipkow@4281
   189
    fun split([],tvs,vs) = (tvs,vs)
wenzelm@4691
   190
      | split((sv,st)::l,tvs,vs) = (case Symbol.explode sv of
wenzelm@4691
   191
                  "'"::cs => split(l,(Syntax.indexname cs,st)::tvs,vs)
wenzelm@4691
   192
                | cs => split(l,tvs,(Syntax.indexname cs,st)::vs));
nipkow@4281
   193
    val (tvs,vs) = split(insts,[],[]);
nipkow@4281
   194
    fun readT((a,i),st) =
nipkow@4281
   195
        let val ixn = ("'" ^ a,i);
nipkow@4281
   196
            val S = case rsorts ixn of Some S => S | None => absent ixn;
nipkow@4281
   197
            val T = Sign.read_typ (sign,sorts) st;
wenzelm@10403
   198
        in if Sign.typ_instance sign (T, TVar(ixn,S)) then (ixn,T)
nipkow@4281
   199
           else inst_failure ixn
nipkow@4281
   200
        end
nipkow@4281
   201
    val tye = map readT tvs;
nipkow@4281
   202
    fun mkty(ixn,st) = (case rtypes ixn of
nipkow@4281
   203
                          Some T => (ixn,(st,typ_subst_TVars tye T))
nipkow@4281
   204
                        | None => absent ixn);
nipkow@4281
   205
    val ixnsTs = map mkty vs;
nipkow@4281
   206
    val ixns = map fst ixnsTs
nipkow@4281
   207
    and sTs  = map snd ixnsTs
nipkow@4281
   208
    val (cts,tye2) = read_def_cterms(sign,types,sorts) used false sTs;
nipkow@4281
   209
    fun mkcVar(ixn,T) =
nipkow@4281
   210
        let val U = typ_subst_TVars tye2 T
nipkow@4281
   211
        in cterm_of sign (Var(ixn,U)) end
nipkow@4281
   212
    val ixnTs = ListPair.zip(ixns, map snd sTs)
nipkow@4281
   213
in (map (fn (ixn,T) => (ixn,ctyp_of sign T)) (tye2 @ tye),
nipkow@4281
   214
    ListPair.zip(map mkcVar ixnTs,cts))
nipkow@4281
   215
end;
lcp@229
   216
lcp@229
   217
wenzelm@252
   218
(*** Find the type (sort) associated with a (T)Var or (T)Free in a term
clasohm@0
   219
     Used for establishing default types (of variables) and sorts (of
clasohm@0
   220
     type variables) when reading another term.
clasohm@0
   221
     Index -1 indicates that a (T)Free rather than a (T)Var is wanted.
clasohm@0
   222
***)
clasohm@0
   223
clasohm@0
   224
fun types_sorts thm =
clasohm@0
   225
    let val {prop,hyps,...} = rep_thm thm;
wenzelm@252
   226
        val big = list_comb(prop,hyps); (* bogus term! *)
wenzelm@252
   227
        val vars = map dest_Var (term_vars big);
wenzelm@252
   228
        val frees = map dest_Free (term_frees big);
wenzelm@252
   229
        val tvars = term_tvars big;
wenzelm@252
   230
        val tfrees = term_tfrees big;
wenzelm@252
   231
        fun typ(a,i) = if i<0 then assoc(frees,a) else assoc(vars,(a,i));
wenzelm@252
   232
        fun sort(a,i) = if i<0 then assoc(tfrees,a) else assoc(tvars,(a,i));
clasohm@0
   233
    in (typ,sort) end;
clasohm@0
   234
wenzelm@7636
   235
wenzelm@9455
   236
wenzelm@9455
   237
(** basic attributes **)
wenzelm@9455
   238
wenzelm@9455
   239
(* dependent rules *)
wenzelm@9455
   240
wenzelm@9455
   241
fun rule_attribute f (x, thm) = (x, (f x thm));
wenzelm@9455
   242
wenzelm@9455
   243
wenzelm@9455
   244
(* add / delete tags *)
wenzelm@9455
   245
wenzelm@9455
   246
fun map_tags f thm =
wenzelm@9455
   247
  Thm.put_name_tags (Thm.name_of_thm thm, f (#2 (Thm.get_name_tags thm))) thm;
wenzelm@9455
   248
wenzelm@9455
   249
fun tag_rule tg = map_tags (fn tgs => if tg mem tgs then tgs else tgs @ [tg]);
wenzelm@9455
   250
fun untag_rule s = map_tags (filter_out (equal s o #1));
wenzelm@9455
   251
wenzelm@9455
   252
fun tag tg x = rule_attribute (K (tag_rule tg)) x;
wenzelm@9455
   253
fun untag s x = rule_attribute (K (untag_rule s)) x;
wenzelm@9455
   254
wenzelm@9455
   255
fun simple_tag name x = tag (name, []) x;
wenzelm@9455
   256
wenzelm@11741
   257
wenzelm@11741
   258
(* theorem kinds *)
wenzelm@11741
   259
wenzelm@11741
   260
val theoremK = "theorem";
wenzelm@11741
   261
val lemmaK = "lemma";
wenzelm@11741
   262
val corollaryK = "corollary";
wenzelm@11741
   263
val internalK = "internal";
wenzelm@9455
   264
wenzelm@11741
   265
fun get_kind thm =
wenzelm@11741
   266
  (case Library.assoc (#2 (Thm.get_name_tags thm), "kind") of
wenzelm@11741
   267
    Some (k :: _) => k
wenzelm@11741
   268
  | _ => "unknown");
wenzelm@11741
   269
wenzelm@11741
   270
fun kind_rule k = tag_rule ("kind", [k]) o untag_rule "kind";
wenzelm@11741
   271
fun kind k x = rule_attribute (K (kind_rule k)) x;
wenzelm@11741
   272
fun kind_internal x = kind internalK x;
wenzelm@11741
   273
fun has_internal tags = exists (equal internalK o fst) tags;
wenzelm@9455
   274
wenzelm@9455
   275
wenzelm@9455
   276
clasohm@0
   277
(** Standardization of rules **)
clasohm@0
   278
wenzelm@7636
   279
(*Strip extraneous shyps as far as possible*)
wenzelm@7636
   280
fun strip_shyps_warning thm =
wenzelm@7636
   281
  let
wenzelm@7636
   282
    val str_of_sort = Sign.str_of_sort (Thm.sign_of_thm thm);
wenzelm@7636
   283
    val thm' = Thm.strip_shyps thm;
wenzelm@7636
   284
    val xshyps = Thm.extra_shyps thm';
wenzelm@7636
   285
  in
wenzelm@7636
   286
    if null xshyps then ()
wenzelm@7636
   287
    else warning ("Pending sort hypotheses: " ^ commas (map str_of_sort xshyps));
wenzelm@7636
   288
    thm'
wenzelm@7636
   289
  end;
wenzelm@7636
   290
clasohm@0
   291
(*Generalization over a list of variables, IGNORING bad ones*)
clasohm@0
   292
fun forall_intr_list [] th = th
clasohm@0
   293
  | forall_intr_list (y::ys) th =
wenzelm@252
   294
        let val gth = forall_intr_list ys th
wenzelm@252
   295
        in  forall_intr y gth   handle THM _ =>  gth  end;
clasohm@0
   296
clasohm@0
   297
(*Generalization over all suitable Free variables*)
clasohm@0
   298
fun forall_intr_frees th =
clasohm@0
   299
    let val {prop,sign,...} = rep_thm th
clasohm@0
   300
    in  forall_intr_list
wenzelm@4440
   301
         (map (cterm_of sign) (sort (make_ord atless) (term_frees prop)))
clasohm@0
   302
         th
clasohm@0
   303
    end;
clasohm@0
   304
wenzelm@7898
   305
val forall_elim_var = PureThy.forall_elim_var;
wenzelm@7898
   306
val forall_elim_vars = PureThy.forall_elim_vars;
clasohm@0
   307
wenzelm@9554
   308
fun forall_elim_vars_safe th =
wenzelm@9554
   309
  forall_elim_vars_safe (forall_elim_var (#maxidx (Thm.rep_thm th) + 1) th)
wenzelm@9554
   310
    handle THM _ => th;
wenzelm@9554
   311
wenzelm@9554
   312
clasohm@0
   313
(*Specialization over a list of cterms*)
clasohm@0
   314
fun forall_elim_list cts th = foldr (uncurry forall_elim) (rev cts, th);
clasohm@0
   315
clasohm@0
   316
(* maps [A1,...,An], B   to   [| A1;...;An |] ==> B  *)
clasohm@0
   317
fun implies_intr_list cAs th = foldr (uncurry implies_intr) (cAs,th);
clasohm@0
   318
clasohm@0
   319
(* maps [| A1;...;An |] ==> B and [A1,...,An]   to   B *)
clasohm@0
   320
fun implies_elim_list impth ths = foldl (uncurry implies_elim) (impth,ths);
clasohm@0
   321
clasohm@0
   322
(*Reset Var indexes to zero, renaming to preserve distinctness*)
wenzelm@252
   323
fun zero_var_indexes th =
clasohm@0
   324
    let val {prop,sign,...} = rep_thm th;
clasohm@0
   325
        val vars = term_vars prop
clasohm@0
   326
        val bs = foldl add_new_id ([], map (fn Var((a,_),_)=>a) vars)
wenzelm@252
   327
        val inrs = add_term_tvars(prop,[]);
wenzelm@252
   328
        val nms' = rev(foldl add_new_id ([], map (#1 o #1) inrs));
paulson@2266
   329
        val tye = ListPair.map (fn ((v,rs),a) => (v, TVar((a,0),rs)))
wenzelm@8328
   330
                     (inrs, nms')
wenzelm@252
   331
        val ctye = map (fn (v,T) => (v,ctyp_of sign T)) tye;
wenzelm@252
   332
        fun varpairs([],[]) = []
wenzelm@252
   333
          | varpairs((var as Var(v,T)) :: vars, b::bs) =
wenzelm@252
   334
                let val T' = typ_subst_TVars tye T
wenzelm@252
   335
                in (cterm_of sign (Var(v,T')),
wenzelm@252
   336
                    cterm_of sign (Var((b,0),T'))) :: varpairs(vars,bs)
wenzelm@252
   337
                end
wenzelm@252
   338
          | varpairs _ = raise TERM("varpairs", []);
paulson@8129
   339
    in Thm.instantiate (ctye, varpairs(vars,rev bs)) th end;
clasohm@0
   340
clasohm@0
   341
clasohm@0
   342
(*Standard form of object-rule: no hypotheses, Frees, or outer quantifiers;
clasohm@0
   343
    all generality expressed by Vars having index 0.*)
wenzelm@10515
   344
wenzelm@10515
   345
fun close_derivation thm =
wenzelm@10515
   346
  if Thm.get_name_tags thm = ("", []) then Thm.name_thm ("", thm)
wenzelm@10515
   347
  else thm;
wenzelm@10515
   348
berghofe@11512
   349
fun standard' th =
wenzelm@10515
   350
  let val {maxidx,...} = rep_thm th in
wenzelm@10515
   351
    th
wenzelm@10515
   352
    |> implies_intr_hyps
wenzelm@10515
   353
    |> forall_intr_frees |> forall_elim_vars (maxidx + 1)
wenzelm@10515
   354
    |> strip_shyps_warning
berghofe@11512
   355
    |> zero_var_indexes |> Thm.varifyT |> Thm.compress
wenzelm@1218
   356
  end;
wenzelm@1218
   357
berghofe@11512
   358
val standard = close_derivation o standard';
berghofe@11512
   359
clasohm@0
   360
wenzelm@8328
   361
(*Convert all Vars in a theorem to Frees.  Also return a function for
paulson@4610
   362
  reversing that operation.  DOES NOT WORK FOR TYPE VARIABLES.
paulson@4610
   363
  Similar code in type/freeze_thaw*)
paulson@4610
   364
fun freeze_thaw th =
paulson@7248
   365
 let val fth = freezeT th
paulson@7248
   366
     val {prop,sign,...} = rep_thm fth
paulson@7248
   367
 in
paulson@7248
   368
   case term_vars prop of
paulson@7248
   369
       [] => (fth, fn x => x)
paulson@7248
   370
     | vars =>
wenzelm@8328
   371
         let fun newName (Var(ix,_), (pairs,used)) =
wenzelm@8328
   372
                   let val v = variant used (string_of_indexname ix)
wenzelm@8328
   373
                   in  ((ix,v)::pairs, v::used)  end;
wenzelm@8328
   374
             val (alist, _) = foldr newName
wenzelm@8328
   375
                                (vars, ([], add_term_names (prop, [])))
wenzelm@8328
   376
             fun mk_inst (Var(v,T)) =
wenzelm@8328
   377
                 (cterm_of sign (Var(v,T)),
wenzelm@8328
   378
                  cterm_of sign (Free(the (assoc(alist,v)), T)))
wenzelm@8328
   379
             val insts = map mk_inst vars
wenzelm@8328
   380
             fun thaw th' =
wenzelm@8328
   381
                 th' |> forall_intr_list (map #2 insts)
wenzelm@8328
   382
                     |> forall_elim_list (map #1 insts)
wenzelm@8328
   383
         in  (Thm.instantiate ([],insts) fth, thaw)  end
paulson@7248
   384
 end;
paulson@4610
   385
paulson@4610
   386
paulson@7248
   387
(*Rotates a rule's premises to the left by k*)
paulson@7248
   388
val rotate_prems = permute_prems 0;
paulson@4610
   389
oheimb@11163
   390
(* permute prems, where the i-th position in the argument list (counting from 0)
oheimb@11163
   391
   gives the position within the original thm to be transferred to position i.
oheimb@11163
   392
   Any remaining trailing positions are left unchanged. *)
oheimb@11163
   393
val rearrange_prems = let
oheimb@11163
   394
  fun rearr new []      thm = thm
oheimb@11163
   395
  |   rearr new (p::ps) thm = rearr (new+1) 
oheimb@11163
   396
     (map (fn q => if new<=q andalso q<p then q+1 else q) ps)
oheimb@11163
   397
     (permute_prems (new+1) (new-p) (permute_prems new (p-new) thm))
oheimb@11163
   398
  in rearr 0 end;
paulson@4610
   399
wenzelm@252
   400
(*Assume a new formula, read following the same conventions as axioms.
clasohm@0
   401
  Generalizes over Free variables,
clasohm@0
   402
  creates the assumption, and then strips quantifiers.
clasohm@0
   403
  Example is [| ALL x:?A. ?P(x) |] ==> [| ?P(?a) |]
wenzelm@252
   404
             [ !(A,P,a)[| ALL x:A. P(x) |] ==> [| P(a) |] ]    *)
clasohm@0
   405
fun assume_ax thy sP =
wenzelm@6390
   406
    let val sign = Theory.sign_of thy
paulson@4610
   407
        val prop = Logic.close_form (term_of (read_cterm sign (sP, propT)))
lcp@229
   408
    in forall_elim_vars 0 (assume (cterm_of sign prop))  end;
clasohm@0
   409
wenzelm@252
   410
(*Resolution: exactly one resolvent must be produced.*)
clasohm@0
   411
fun tha RSN (i,thb) =
wenzelm@4270
   412
  case Seq.chop (2, biresolution false [(false,tha)] i thb) of
clasohm@0
   413
      ([th],_) => th
clasohm@0
   414
    | ([],_)   => raise THM("RSN: no unifiers", i, [tha,thb])
clasohm@0
   415
    |      _   => raise THM("RSN: multiple unifiers", i, [tha,thb]);
clasohm@0
   416
clasohm@0
   417
(*resolution: P==>Q, Q==>R gives P==>R. *)
clasohm@0
   418
fun tha RS thb = tha RSN (1,thb);
clasohm@0
   419
clasohm@0
   420
(*For joining lists of rules*)
wenzelm@252
   421
fun thas RLN (i,thbs) =
clasohm@0
   422
  let val resolve = biresolution false (map (pair false) thas) i
wenzelm@4270
   423
      fun resb thb = Seq.list_of (resolve thb) handle THM _ => []
paulson@2672
   424
  in  List.concat (map resb thbs)  end;
clasohm@0
   425
clasohm@0
   426
fun thas RL thbs = thas RLN (1,thbs);
clasohm@0
   427
lcp@11
   428
(*Resolve a list of rules against bottom_rl from right to left;
lcp@11
   429
  makes proof trees*)
wenzelm@252
   430
fun rls MRS bottom_rl =
lcp@11
   431
  let fun rs_aux i [] = bottom_rl
wenzelm@252
   432
        | rs_aux i (rl::rls) = rl RSN (i, rs_aux (i+1) rls)
lcp@11
   433
  in  rs_aux 1 rls  end;
lcp@11
   434
lcp@11
   435
(*As above, but for rule lists*)
wenzelm@252
   436
fun rlss MRL bottom_rls =
lcp@11
   437
  let fun rs_aux i [] = bottom_rls
wenzelm@252
   438
        | rs_aux i (rls::rlss) = rls RLN (i, rs_aux (i+1) rlss)
lcp@11
   439
  in  rs_aux 1 rlss  end;
lcp@11
   440
wenzelm@9288
   441
(*A version of MRS with more appropriate argument order*)
wenzelm@9288
   442
fun bottom_rl OF rls = rls MRS bottom_rl;
wenzelm@9288
   443
wenzelm@252
   444
(*compose Q and [...,Qi,Q(i+1),...]==>R to [...,Q(i+1),...]==>R
clasohm@0
   445
  with no lifting or renaming!  Q may contain ==> or meta-quants
clasohm@0
   446
  ALWAYS deletes premise i *)
wenzelm@252
   447
fun compose(tha,i,thb) =
wenzelm@4270
   448
    Seq.list_of (bicompose false (false,tha,0) i thb);
clasohm@0
   449
wenzelm@6946
   450
fun compose_single (tha,i,thb) =
wenzelm@6946
   451
  (case compose (tha,i,thb) of
wenzelm@6946
   452
    [th] => th
wenzelm@6946
   453
  | _ => raise THM ("compose: unique result expected", i, [tha,thb]));
wenzelm@6946
   454
clasohm@0
   455
(*compose Q and [Q1,Q2,...,Qk]==>R to [Q2,...,Qk]==>R getting unique result*)
clasohm@0
   456
fun tha COMP thb =
clasohm@0
   457
    case compose(tha,1,thb) of
wenzelm@252
   458
        [th] => th
clasohm@0
   459
      | _ =>   raise THM("COMP", 1, [tha,thb]);
clasohm@0
   460
wenzelm@4016
   461
(** theorem equality **)
clasohm@0
   462
clasohm@0
   463
(*Do the two theorems have the same signature?*)
wenzelm@252
   464
fun eq_thm_sg (th1,th2) = Sign.eq_sg(#sign(rep_thm th1), #sign(rep_thm th2));
clasohm@0
   465
clasohm@0
   466
(*Useful "distance" function for BEST_FIRST*)
clasohm@0
   467
val size_of_thm = size_of_term o #prop o rep_thm;
clasohm@0
   468
wenzelm@9829
   469
(*maintain lists of theorems --- preserving canonical order*)
wenzelm@9829
   470
fun del_rules rs rules = Library.gen_rems Thm.eq_thm (rules, rs);
wenzelm@9862
   471
fun add_rules rs rules = rs @ del_rules rs rules;
wenzelm@9829
   472
fun merge_rules (rules1, rules2) = Library.generic_merge Thm.eq_thm I I rules1 rules2;
wenzelm@9829
   473
clasohm@0
   474
lcp@1194
   475
(** Mark Staples's weaker version of eq_thm: ignores variable renaming and
lcp@1194
   476
    (some) type variable renaming **)
lcp@1194
   477
lcp@1194
   478
 (* Can't use term_vars, because it sorts the resulting list of variable names.
lcp@1194
   479
    We instead need the unique list noramlised by the order of appearance
lcp@1194
   480
    in the term. *)
lcp@1194
   481
fun term_vars' (t as Var(v,T)) = [t]
lcp@1194
   482
  | term_vars' (Abs(_,_,b)) = term_vars' b
lcp@1194
   483
  | term_vars' (f$a) = (term_vars' f) @ (term_vars' a)
lcp@1194
   484
  | term_vars' _ = [];
lcp@1194
   485
lcp@1194
   486
fun forall_intr_vars th =
lcp@1194
   487
  let val {prop,sign,...} = rep_thm th;
lcp@1194
   488
      val vars = distinct (term_vars' prop);
lcp@1194
   489
  in forall_intr_list (map (cterm_of sign) vars) th end;
lcp@1194
   490
wenzelm@1237
   491
fun weak_eq_thm (tha,thb) =
lcp@1194
   492
    eq_thm(forall_intr_vars (freezeT tha), forall_intr_vars (freezeT thb));
lcp@1194
   493
lcp@1194
   494
lcp@1194
   495
clasohm@0
   496
(*** Meta-Rewriting Rules ***)
clasohm@0
   497
paulson@4610
   498
fun read_prop s = read_cterm proto_sign (s, propT);
paulson@4610
   499
wenzelm@9455
   500
fun store_thm name thm = hd (PureThy.smart_store_thms (name, [thm]));
wenzelm@9455
   501
fun store_standard_thm name thm = store_thm name (standard thm);
berghofe@11512
   502
fun open_store_thm name thm = hd (PureThy.open_smart_store_thms (name, [thm]));
berghofe@11512
   503
fun open_store_standard_thm name thm = open_store_thm name (standard' thm);
wenzelm@4016
   504
clasohm@0
   505
val reflexive_thm =
paulson@4610
   506
  let val cx = cterm_of proto_sign (Var(("x",0),TVar(("'a",0),logicS)))
wenzelm@9455
   507
  in store_standard_thm "reflexive" (Thm.reflexive cx) end;
clasohm@0
   508
clasohm@0
   509
val symmetric_thm =
paulson@4610
   510
  let val xy = read_prop "x::'a::logic == y"
wenzelm@9455
   511
  in store_standard_thm "symmetric" (Thm.implies_intr_hyps (Thm.symmetric (Thm.assume xy))) end;
clasohm@0
   512
clasohm@0
   513
val transitive_thm =
paulson@4610
   514
  let val xy = read_prop "x::'a::logic == y"
paulson@4610
   515
      val yz = read_prop "y::'a::logic == z"
clasohm@0
   516
      val xythm = Thm.assume xy and yzthm = Thm.assume yz
wenzelm@9455
   517
  in store_standard_thm "transitive" (Thm.implies_intr yz (Thm.transitive xythm yzthm)) end;
clasohm@0
   518
nipkow@4679
   519
fun symmetric_fun thm = thm RS symmetric_thm;
nipkow@4679
   520
berghofe@11512
   521
fun extensional eq =
berghofe@11512
   522
  let val eq' =
berghofe@11512
   523
    abstract_rule "x" (snd (Thm.dest_comb (fst (dest_equals (cprop_of eq))))) eq
berghofe@11512
   524
  in equal_elim (eta_conversion (cprop_of eq')) eq' end;
berghofe@11512
   525
berghofe@10414
   526
val imp_cong =
berghofe@10414
   527
  let
berghofe@10414
   528
    val ABC = read_prop "PROP A ==> PROP B == PROP C"
berghofe@10414
   529
    val AB = read_prop "PROP A ==> PROP B"
berghofe@10414
   530
    val AC = read_prop "PROP A ==> PROP C"
berghofe@10414
   531
    val A = read_prop "PROP A"
berghofe@10414
   532
  in
berghofe@11512
   533
    open_store_standard_thm "imp_cong" (implies_intr ABC (equal_intr
berghofe@10414
   534
      (implies_intr AB (implies_intr A
berghofe@10414
   535
        (equal_elim (implies_elim (assume ABC) (assume A))
berghofe@10414
   536
          (implies_elim (assume AB) (assume A)))))
berghofe@10414
   537
      (implies_intr AC (implies_intr A
berghofe@10414
   538
        (equal_elim (symmetric (implies_elim (assume ABC) (assume A)))
berghofe@10414
   539
          (implies_elim (assume AC) (assume A)))))))
berghofe@10414
   540
  end;
berghofe@10414
   541
berghofe@10414
   542
val swap_prems_eq =
berghofe@10414
   543
  let
berghofe@10414
   544
    val ABC = read_prop "PROP A ==> PROP B ==> PROP C"
berghofe@10414
   545
    val BAC = read_prop "PROP B ==> PROP A ==> PROP C"
berghofe@10414
   546
    val A = read_prop "PROP A"
berghofe@10414
   547
    val B = read_prop "PROP B"
berghofe@10414
   548
  in
berghofe@11512
   549
    open_store_standard_thm "swap_prems_eq" (equal_intr
berghofe@10414
   550
      (implies_intr ABC (implies_intr B (implies_intr A
berghofe@10414
   551
        (implies_elim (implies_elim (assume ABC) (assume A)) (assume B)))))
berghofe@10414
   552
      (implies_intr BAC (implies_intr A (implies_intr B
berghofe@10414
   553
        (implies_elim (implies_elim (assume BAC) (assume B)) (assume A))))))
berghofe@10414
   554
  end;
lcp@229
   555
paulson@9547
   556
val refl_implies = reflexive implies;
clasohm@0
   557
clasohm@0
   558
clasohm@0
   559
(*** Some useful meta-theorems ***)
clasohm@0
   560
clasohm@0
   561
(*The rule V/V, obtains assumption solving for eresolve_tac*)
berghofe@11512
   562
val asm_rl = open_store_standard_thm "asm_rl" (Thm.trivial (read_prop "PROP ?psi"));
wenzelm@7380
   563
val _ = store_thm "_" asm_rl;
clasohm@0
   564
clasohm@0
   565
(*Meta-level cut rule: [| V==>W; V |] ==> W *)
wenzelm@4016
   566
val cut_rl =
berghofe@11512
   567
  open_store_standard_thm "cut_rl"
wenzelm@9455
   568
    (Thm.trivial (read_prop "PROP ?psi ==> PROP ?theta"));
clasohm@0
   569
wenzelm@252
   570
(*Generalized elim rule for one conclusion; cut_rl with reversed premises:
clasohm@0
   571
     [| PROP V;  PROP V ==> PROP W |] ==> PROP W *)
clasohm@0
   572
val revcut_rl =
paulson@4610
   573
  let val V = read_prop "PROP V"
paulson@4610
   574
      and VW = read_prop "PROP V ==> PROP W";
wenzelm@4016
   575
  in
berghofe@11512
   576
    open_store_standard_thm "revcut_rl"
wenzelm@4016
   577
      (implies_intr V (implies_intr VW (implies_elim (assume VW) (assume V))))
clasohm@0
   578
  end;
clasohm@0
   579
lcp@668
   580
(*for deleting an unwanted assumption*)
lcp@668
   581
val thin_rl =
paulson@4610
   582
  let val V = read_prop "PROP V"
paulson@4610
   583
      and W = read_prop "PROP W";
berghofe@11512
   584
  in  open_store_standard_thm "thin_rl" (implies_intr V (implies_intr W (assume W)))
lcp@668
   585
  end;
lcp@668
   586
clasohm@0
   587
(* (!!x. PROP ?V) == PROP ?V       Allows removal of redundant parameters*)
clasohm@0
   588
val triv_forall_equality =
paulson@4610
   589
  let val V  = read_prop "PROP V"
paulson@4610
   590
      and QV = read_prop "!!x::'a. PROP V"
wenzelm@8086
   591
      and x  = read_cterm proto_sign ("x", TypeInfer.logicT);
wenzelm@4016
   592
  in
berghofe@11512
   593
    open_store_standard_thm "triv_forall_equality"
berghofe@11512
   594
      (equal_intr (implies_intr QV (forall_elim x (assume QV)))
berghofe@11512
   595
        (implies_intr V  (forall_intr x (assume V))))
clasohm@0
   596
  end;
clasohm@0
   597
nipkow@1756
   598
(* (PROP ?PhiA ==> PROP ?PhiB ==> PROP ?Psi) ==>
nipkow@1756
   599
   (PROP ?PhiB ==> PROP ?PhiA ==> PROP ?Psi)
nipkow@1756
   600
   `thm COMP swap_prems_rl' swaps the first two premises of `thm'
nipkow@1756
   601
*)
nipkow@1756
   602
val swap_prems_rl =
paulson@4610
   603
  let val cmajor = read_prop "PROP PhiA ==> PROP PhiB ==> PROP Psi";
nipkow@1756
   604
      val major = assume cmajor;
paulson@4610
   605
      val cminor1 = read_prop "PROP PhiA";
nipkow@1756
   606
      val minor1 = assume cminor1;
paulson@4610
   607
      val cminor2 = read_prop "PROP PhiB";
nipkow@1756
   608
      val minor2 = assume cminor2;
berghofe@11512
   609
  in open_store_standard_thm "swap_prems_rl"
nipkow@1756
   610
       (implies_intr cmajor (implies_intr cminor2 (implies_intr cminor1
nipkow@1756
   611
         (implies_elim (implies_elim major minor1) minor2))))
nipkow@1756
   612
  end;
nipkow@1756
   613
nipkow@3653
   614
(* [| PROP ?phi ==> PROP ?psi; PROP ?psi ==> PROP ?phi |]
nipkow@3653
   615
   ==> PROP ?phi == PROP ?psi
wenzelm@8328
   616
   Introduction rule for == as a meta-theorem.
nipkow@3653
   617
*)
nipkow@3653
   618
val equal_intr_rule =
paulson@4610
   619
  let val PQ = read_prop "PROP phi ==> PROP psi"
paulson@4610
   620
      and QP = read_prop "PROP psi ==> PROP phi"
wenzelm@4016
   621
  in
berghofe@11512
   622
    open_store_standard_thm "equal_intr_rule"
wenzelm@4016
   623
      (implies_intr PQ (implies_intr QP (equal_intr (assume PQ) (assume QP))))
nipkow@3653
   624
  end;
nipkow@3653
   625
wenzelm@4285
   626
wenzelm@9554
   627
(*(PROP ?phi ==> (!!x. PROP ?psi(x))) == (!!x. PROP ?phi ==> PROP ?psi(x))
wenzelm@9554
   628
  Rewrite rule for HHF normalization.
wenzelm@9554
   629
*)
wenzelm@9554
   630
wenzelm@9554
   631
val norm_hhf_eq =
wenzelm@9554
   632
  let
wenzelm@9554
   633
    val cert = Thm.cterm_of proto_sign;
wenzelm@9554
   634
    val aT = TFree ("'a", Term.logicS);
wenzelm@9554
   635
    val all = Term.all aT;
wenzelm@9554
   636
    val x = Free ("x", aT);
wenzelm@9554
   637
    val phi = Free ("phi", propT);
wenzelm@9554
   638
    val psi = Free ("psi", aT --> propT);
wenzelm@9554
   639
wenzelm@9554
   640
    val cx = cert x;
wenzelm@9554
   641
    val cphi = cert phi;
wenzelm@9554
   642
    val lhs = cert (Logic.mk_implies (phi, all $ Abs ("x", aT, psi $ Bound 0)));
wenzelm@9554
   643
    val rhs = cert (all $ Abs ("x", aT, Logic.mk_implies (phi, psi $ Bound 0)));
wenzelm@9554
   644
  in
wenzelm@9554
   645
    Thm.equal_intr
wenzelm@9554
   646
      (Thm.implies_elim (Thm.assume lhs) (Thm.assume cphi)
wenzelm@9554
   647
        |> Thm.forall_elim cx
wenzelm@9554
   648
        |> Thm.implies_intr cphi
wenzelm@9554
   649
        |> Thm.forall_intr cx
wenzelm@9554
   650
        |> Thm.implies_intr lhs)
wenzelm@9554
   651
      (Thm.implies_elim
wenzelm@9554
   652
          (Thm.assume rhs |> Thm.forall_elim cx) (Thm.assume cphi)
wenzelm@9554
   653
        |> Thm.forall_intr cx
wenzelm@9554
   654
        |> Thm.implies_intr cphi
wenzelm@9554
   655
        |> Thm.implies_intr rhs)
wenzelm@10441
   656
    |> store_standard_thm "norm_hhf_eq"
wenzelm@9554
   657
  end;
wenzelm@9554
   658
wenzelm@9554
   659
paulson@8129
   660
(*** Instantiate theorem th, reading instantiations under signature sg ****)
paulson@8129
   661
paulson@8129
   662
(*Version that normalizes the result: Thm.instantiate no longer does that*)
paulson@8129
   663
fun instantiate instpair th = Thm.instantiate instpair th  COMP   asm_rl;
paulson@8129
   664
paulson@8129
   665
fun read_instantiate_sg sg sinsts th =
paulson@8129
   666
    let val ts = types_sorts th;
paulson@8129
   667
        val used = add_term_tvarnames(#prop(rep_thm th),[]);
paulson@8129
   668
    in  instantiate (read_insts sg ts ts used sinsts) th  end;
paulson@8129
   669
paulson@8129
   670
(*Instantiate theorem th, reading instantiations under theory of th*)
paulson@8129
   671
fun read_instantiate sinsts th =
paulson@8129
   672
    read_instantiate_sg (#sign (rep_thm th)) sinsts th;
paulson@8129
   673
paulson@8129
   674
paulson@8129
   675
(*Left-to-right replacements: tpairs = [...,(vi,ti),...].
paulson@8129
   676
  Instantiates distinct Vars by terms, inferring type instantiations. *)
paulson@8129
   677
local
paulson@8129
   678
  fun add_types ((ct,cu), (sign,tye,maxidx)) =
paulson@8129
   679
    let val {sign=signt, t=t, T= T, maxidx=maxt,...} = rep_cterm ct
paulson@8129
   680
        and {sign=signu, t=u, T= U, maxidx=maxu,...} = rep_cterm cu;
paulson@8129
   681
        val maxi = Int.max(maxidx, Int.max(maxt, maxu));
paulson@8129
   682
        val sign' = Sign.merge(sign, Sign.merge(signt, signu))
paulson@8129
   683
        val (tye',maxi') = Type.unify (#tsig(Sign.rep_sg sign')) maxi tye (T,U)
wenzelm@10403
   684
          handle Type.TUNIFY => raise TYPE("Ill-typed instantiation", [T,U], [t,u])
paulson@8129
   685
    in  (sign', tye', maxi')  end;
paulson@8129
   686
in
paulson@8129
   687
fun cterm_instantiate ctpairs0 th =
berghofe@8406
   688
  let val (sign,tye,_) = foldr add_types (ctpairs0, (#sign(rep_thm th), Vartab.empty, 0))
berghofe@8406
   689
      fun instT(ct,cu) = let val inst = subst_TVars_Vartab tye
paulson@8129
   690
                         in (cterm_fun inst ct, cterm_fun inst cu) end
paulson@8129
   691
      fun ctyp2 (ix,T) = (ix, ctyp_of sign T)
berghofe@8406
   692
  in  instantiate (map ctyp2 (Vartab.dest tye), map instT ctpairs0) th  end
paulson@8129
   693
  handle TERM _ =>
paulson@8129
   694
           raise THM("cterm_instantiate: incompatible signatures",0,[th])
paulson@8129
   695
       | TYPE (msg, _, _) => raise THM(msg, 0, [th])
paulson@8129
   696
end;
paulson@8129
   697
paulson@8129
   698
paulson@8129
   699
(** Derived rules mainly for METAHYPS **)
paulson@8129
   700
paulson@8129
   701
(*Given the term "a", takes (%x.t)==(%x.u) to t[a/x]==u[a/x]*)
paulson@8129
   702
fun equal_abs_elim ca eqth =
paulson@8129
   703
  let val {sign=signa, t=a, ...} = rep_cterm ca
paulson@8129
   704
      and combth = combination eqth (reflexive ca)
paulson@8129
   705
      val {sign,prop,...} = rep_thm eqth
paulson@8129
   706
      val (abst,absu) = Logic.dest_equals prop
paulson@8129
   707
      val cterm = cterm_of (Sign.merge (sign,signa))
berghofe@10414
   708
  in  transitive (symmetric (beta_conversion false (cterm (abst$a))))
berghofe@10414
   709
           (transitive combth (beta_conversion false (cterm (absu$a))))
paulson@8129
   710
  end
paulson@8129
   711
  handle THM _ => raise THM("equal_abs_elim", 0, [eqth]);
paulson@8129
   712
paulson@8129
   713
(*Calling equal_abs_elim with multiple terms*)
paulson@8129
   714
fun equal_abs_elim_list cts th = foldr (uncurry equal_abs_elim) (rev cts, th);
paulson@8129
   715
paulson@8129
   716
local
paulson@8129
   717
  val alpha = TVar(("'a",0), [])     (*  type ?'a::{}  *)
paulson@8129
   718
  fun err th = raise THM("flexpair_inst: ", 0, [th])
paulson@8129
   719
  fun flexpair_inst def th =
paulson@8129
   720
    let val {prop = Const _ $ t $ u,  sign,...} = rep_thm th
paulson@8129
   721
        val cterm = cterm_of sign
paulson@8129
   722
        fun cvar a = cterm(Var((a,0),alpha))
paulson@8129
   723
        val def' = cterm_instantiate [(cvar"t", cterm t), (cvar"u", cterm u)]
paulson@8129
   724
                   def
paulson@8129
   725
    in  equal_elim def' th
paulson@8129
   726
    end
paulson@8129
   727
    handle THM _ => err th | Bind => err th
paulson@8129
   728
in
paulson@8129
   729
val flexpair_intr = flexpair_inst (symmetric ProtoPure.flexpair_def)
paulson@8129
   730
and flexpair_elim = flexpair_inst ProtoPure.flexpair_def
paulson@8129
   731
end;
paulson@8129
   732
paulson@8129
   733
(*Version for flexflex pairs -- this supports lifting.*)
paulson@8129
   734
fun flexpair_abs_elim_list cts =
paulson@8129
   735
    flexpair_intr o equal_abs_elim_list cts o flexpair_elim;
paulson@8129
   736
paulson@8129
   737
wenzelm@10667
   738
(*** Goal (PROP A) <==> PROP A ***)
wenzelm@4789
   739
wenzelm@4789
   740
local
wenzelm@10667
   741
  val cert = Thm.cterm_of proto_sign;
wenzelm@10667
   742
  val A = Free ("A", propT);
wenzelm@10667
   743
  val G = Logic.mk_goal A;
wenzelm@4789
   744
  val (G_def, _) = freeze_thaw ProtoPure.Goal_def;
wenzelm@4789
   745
in
wenzelm@11741
   746
  val triv_goal = store_thm "triv_goal" (kind_rule internalK (standard
wenzelm@10667
   747
      (Thm.equal_elim (Thm.symmetric G_def) (Thm.assume (cert A)))));
wenzelm@11741
   748
  val rev_triv_goal = store_thm "rev_triv_goal" (kind_rule internalK (standard
wenzelm@10667
   749
      (Thm.equal_elim G_def (Thm.assume (cert G)))));
wenzelm@4789
   750
end;
wenzelm@4789
   751
wenzelm@9460
   752
val mk_cgoal = Thm.capply (Thm.cterm_of proto_sign Logic.goal_const);
wenzelm@6995
   753
fun assume_goal ct = Thm.assume (mk_cgoal ct) RS rev_triv_goal;
wenzelm@6995
   754
wenzelm@4789
   755
wenzelm@4285
   756
wenzelm@5688
   757
(** variations on instantiate **)
wenzelm@4285
   758
paulson@8550
   759
(*shorthand for instantiating just one variable in the current theory*)
paulson@8550
   760
fun inst x t = read_instantiate_sg (sign_of (the_context())) [(x,t)];
paulson@8550
   761
paulson@8550
   762
wenzelm@4285
   763
(* collect vars *)
wenzelm@4285
   764
wenzelm@4285
   765
val add_tvarsT = foldl_atyps (fn (vs, TVar v) => v ins vs | (vs, _) => vs);
wenzelm@4285
   766
val add_tvars = foldl_types add_tvarsT;
wenzelm@4285
   767
val add_vars = foldl_aterms (fn (vs, Var v) => v ins vs | (vs, _) => vs);
wenzelm@4285
   768
wenzelm@5903
   769
fun tvars_of_terms ts = rev (foldl add_tvars ([], ts));
wenzelm@5903
   770
fun vars_of_terms ts = rev (foldl add_vars ([], ts));
wenzelm@5903
   771
wenzelm@5903
   772
fun tvars_of thm = tvars_of_terms [#prop (Thm.rep_thm thm)];
wenzelm@5903
   773
fun vars_of thm = vars_of_terms [#prop (Thm.rep_thm thm)];
wenzelm@4285
   774
wenzelm@4285
   775
wenzelm@4285
   776
(* instantiate by left-to-right occurrence of variables *)
wenzelm@4285
   777
wenzelm@4285
   778
fun instantiate' cTs cts thm =
wenzelm@4285
   779
  let
wenzelm@4285
   780
    fun err msg =
wenzelm@4285
   781
      raise TYPE ("instantiate': " ^ msg,
wenzelm@4285
   782
        mapfilter (apsome Thm.typ_of) cTs,
wenzelm@4285
   783
        mapfilter (apsome Thm.term_of) cts);
wenzelm@4285
   784
wenzelm@4285
   785
    fun inst_of (v, ct) =
wenzelm@4285
   786
      (Thm.cterm_of (#sign (Thm.rep_cterm ct)) (Var v), ct)
wenzelm@4285
   787
        handle TYPE (msg, _, _) => err msg;
wenzelm@4285
   788
wenzelm@4285
   789
    fun zip_vars _ [] = []
wenzelm@4285
   790
      | zip_vars (_ :: vs) (None :: opt_ts) = zip_vars vs opt_ts
wenzelm@4285
   791
      | zip_vars (v :: vs) (Some t :: opt_ts) = (v, t) :: zip_vars vs opt_ts
wenzelm@4285
   792
      | zip_vars [] _ = err "more instantiations than variables in thm";
wenzelm@4285
   793
wenzelm@4285
   794
    (*instantiate types first!*)
wenzelm@4285
   795
    val thm' =
wenzelm@4285
   796
      if forall is_none cTs then thm
wenzelm@4285
   797
      else Thm.instantiate (zip_vars (map fst (tvars_of thm)) cTs, []) thm;
wenzelm@4285
   798
    in
wenzelm@4285
   799
      if forall is_none cts then thm'
wenzelm@4285
   800
      else Thm.instantiate ([], map inst_of (zip_vars (vars_of thm') cts)) thm'
wenzelm@4285
   801
    end;
wenzelm@4285
   802
wenzelm@4285
   803
wenzelm@5688
   804
(* unvarify(T) *)
wenzelm@5688
   805
wenzelm@5688
   806
(*assume thm in standard form, i.e. no frees, 0 var indexes*)
wenzelm@5688
   807
wenzelm@5688
   808
fun unvarifyT thm =
wenzelm@5688
   809
  let
wenzelm@5688
   810
    val cT = Thm.ctyp_of (Thm.sign_of_thm thm);
wenzelm@5688
   811
    val tfrees = map (fn ((x, _), S) => Some (cT (TFree (x, S)))) (tvars_of thm);
wenzelm@5688
   812
  in instantiate' tfrees [] thm end;
wenzelm@5688
   813
wenzelm@5688
   814
fun unvarify raw_thm =
wenzelm@5688
   815
  let
wenzelm@5688
   816
    val thm = unvarifyT raw_thm;
wenzelm@5688
   817
    val ct = Thm.cterm_of (Thm.sign_of_thm thm);
wenzelm@5688
   818
    val frees = map (fn ((x, _), T) => Some (ct (Free (x, T)))) (vars_of thm);
wenzelm@5688
   819
  in instantiate' [] frees thm end;
wenzelm@5688
   820
wenzelm@5688
   821
wenzelm@8605
   822
(* tvars_intr_list *)
wenzelm@8605
   823
wenzelm@8605
   824
fun tfrees_of thm =
wenzelm@8605
   825
  let val {hyps, prop, ...} = Thm.rep_thm thm
wenzelm@8605
   826
  in foldr Term.add_term_tfree_names (prop :: hyps, []) end;
wenzelm@8605
   827
wenzelm@8605
   828
fun tvars_intr_list tfrees thm =
wenzelm@8605
   829
  Thm.varifyT' (tfrees_of thm \\ tfrees) thm;
wenzelm@8605
   830
wenzelm@8605
   831
wenzelm@6435
   832
(* increment var indexes *)
wenzelm@6435
   833
wenzelm@6435
   834
fun incr_indexes_wrt is cTs cts thms =
wenzelm@6435
   835
  let
wenzelm@6435
   836
    val maxidx =
wenzelm@6435
   837
      foldl Int.max (~1, is @
wenzelm@6435
   838
        map (maxidx_of_typ o #T o Thm.rep_ctyp) cTs @
wenzelm@6435
   839
        map (#maxidx o Thm.rep_cterm) cts @
wenzelm@6435
   840
        map (#maxidx o Thm.rep_thm) thms);
berghofe@10414
   841
  in Thm.incr_indexes (maxidx + 1) end;
wenzelm@6435
   842
wenzelm@6435
   843
wenzelm@8328
   844
(* freeze_all *)
wenzelm@8328
   845
wenzelm@8328
   846
(*freeze all (T)Vars; assumes thm in standard form*)
wenzelm@8328
   847
wenzelm@8328
   848
fun freeze_all_TVars thm =
wenzelm@8328
   849
  (case tvars_of thm of
wenzelm@8328
   850
    [] => thm
wenzelm@8328
   851
  | tvars =>
wenzelm@8328
   852
      let val cert = Thm.ctyp_of (Thm.sign_of_thm thm)
wenzelm@8328
   853
      in instantiate' (map (fn ((x, _), S) => Some (cert (TFree (x, S)))) tvars) [] thm end);
wenzelm@8328
   854
wenzelm@8328
   855
fun freeze_all_Vars thm =
wenzelm@8328
   856
  (case vars_of thm of
wenzelm@8328
   857
    [] => thm
wenzelm@8328
   858
  | vars =>
wenzelm@8328
   859
      let val cert = Thm.cterm_of (Thm.sign_of_thm thm)
wenzelm@8328
   860
      in instantiate' [] (map (fn ((x, _), T) => Some (cert (Free (x, T)))) vars) thm end);
wenzelm@8328
   861
wenzelm@8328
   862
val freeze_all = freeze_all_Vars o freeze_all_TVars;
wenzelm@8328
   863
wenzelm@8328
   864
wenzelm@5688
   865
(* mk_triv_goal *)
wenzelm@5688
   866
wenzelm@5688
   867
(*make an initial proof state, "PROP A ==> (PROP A)" *)
paulson@5311
   868
fun mk_triv_goal ct = instantiate' [] [Some ct] triv_goal;
paulson@5311
   869
clasohm@0
   870
end;
wenzelm@252
   871
wenzelm@5903
   872
wenzelm@5903
   873
structure BasicDrule: BASIC_DRULE = Drule;
wenzelm@5903
   874
open BasicDrule;