NEWS
author wenzelm
Sun Aug 12 19:00:58 2007 +0200 (2007-08-12)
changeset 24234 4714e04fb8e9
parent 24213 71c57c5099d6
child 24238 ae70f95e31de
permissions -rw-r--r--
* Syntax: scope for resolving ambiguities via type-inference is now limited to individual terms;
wenzelm@5363
     1
Isabelle NEWS -- history user-relevant changes
wenzelm@5363
     2
==============================================
wenzelm@2553
     3
wenzelm@20807
     4
New in this Isabelle version
wenzelm@17754
     5
----------------------------
wenzelm@17754
     6
wenzelm@17754
     7
*** General ***
wenzelm@17754
     8
wenzelm@22826
     9
* More uniform information about legacy features, notably a
wenzelm@22826
    10
warning/error of "Legacy feature: ...", depending on the state of the
wenzelm@23367
    11
tolerate_legacy_features flag (default true). FUTURE INCOMPATIBILITY:
wenzelm@23367
    12
legacy features will disappear eventually.
wenzelm@22826
    13
wenzelm@17918
    14
* Theory syntax: the header format ``theory A = B + C:'' has been
wenzelm@17918
    15
discontinued in favour of ``theory A imports B C begin''.  Use isatool
wenzelm@17918
    16
fixheaders to convert existing theory files.  INCOMPATIBILITY.
wenzelm@17918
    17
wenzelm@17918
    18
* Theory syntax: the old non-Isar theory file format has been
wenzelm@17918
    19
discontinued altogether.  Note that ML proof scripts may still be used
wenzelm@17918
    20
with Isar theories; migration is usually quite simple with the ML
wenzelm@17918
    21
function use_legacy_bindings.  INCOMPATIBILITY.
wenzelm@17918
    22
wenzelm@22871
    23
* Theory syntax: some popular names (e.g. 'class', 'declaration',
wenzelm@22871
    24
'fun', 'help', 'if') are now keywords.  INCOMPATIBILITY, use double
wenzelm@22871
    25
quotes.
wenzelm@19814
    26
wenzelm@23888
    27
* Theory loader: be more serious about observing the static theory
wenzelm@23888
    28
header specifications (including optional directories), but not the
wenzelm@24172
    29
accidental file locations of previously successful loads.  The strict
wenzelm@24172
    30
update policy of former update_thy is now already performed by
wenzelm@24172
    31
use_thy, so the former has been removed; use_thys updates several
wenzelm@24172
    32
theories simultaneously, just as 'imports' within a theory header
wenzelm@24172
    33
specification, but without merging the results.  Potential
wenzelm@24172
    34
INCOMPATIBILITY: may need to refine theory headers and commands
wenzelm@24172
    35
ROOT.ML which depend on load order.
wenzelm@23888
    36
wenzelm@23888
    37
* Theory loader: optional support for content-based file
wenzelm@23888
    38
identification, instead of the traditional scheme of full physical
wenzelm@23889
    39
path plus date stamp; configured by the ISABELLE_FILE_IDENT setting
wenzelm@23888
    40
(cf. the system manual).  The new scheme allows to work with
wenzelm@23888
    41
non-finished theories in persistent session images, such that source
wenzelm@23888
    42
files may be moved later on without requiring reloads.
wenzelm@23888
    43
wenzelm@24187
    44
* Theory loader: old-style ML proof scripts being *attached* to a thy
wenzelm@24187
    45
file (with the same base name as the theory) are considered a legacy
wenzelm@24187
    46
feature, which will disappear eventually. Even now, the theory loader no
wenzelm@24187
    47
longer maintains dependencies on such files.
wenzelm@24187
    48
wenzelm@24234
    49
* Syntax: the scope for resolving ambiguities via type-inference is now
wenzelm@24234
    50
limited to individual terms, instead of whole simultaneous
wenzelm@24234
    51
specifications as before. This greatly reduces the complexity of the
wenzelm@24234
    52
syntax module and improves flexibility by separating parsing and
wenzelm@24234
    53
type-checking. INCOMPATIBILITY: additional type-constraints (explicit
wenzelm@24234
    54
'fixes' etc.) are required in rare situations.
wenzelm@24234
    55
wenzelm@17981
    56
* Legacy goal package: reduced interface to the bare minimum required
wenzelm@17981
    57
to keep existing proof scripts running.  Most other user-level
wenzelm@17981
    58
functions are now part of the OldGoals structure, which is *not* open
wenzelm@17981
    59
by default (consider isatool expandshort before open OldGoals).
wenzelm@17981
    60
Removed top_sg, prin, printyp, pprint_term/typ altogether, because
wenzelm@17981
    61
these tend to cause confusion about the actual goal (!) context being
wenzelm@17981
    62
used here, which is not necessarily the same as the_context().
wenzelm@17918
    63
wenzelm@23379
    64
* Command 'find_theorems': supports "*" wild-card in "name:"
wenzelm@23379
    65
criterion; "with_dups" option.  Certain ProofGeneral versions might
wenzelm@23379
    66
support a specific search form (see ProofGeneral/CHANGES).
webertj@22965
    67
wenzelm@20370
    68
* The ``prems limit'' option (cf. ProofContext.prems_limit) is now -1
wenzelm@20370
    69
by default, which means that "prems" (and also "fixed variables") are
wenzelm@20370
    70
suppressed from proof state output.  Note that the ProofGeneral
wenzelm@20370
    71
settings mechanism allows to change and save options persistently, but
wenzelm@20370
    72
older versions of Isabelle will fail to start up if a negative prems
wenzelm@20370
    73
limit is imposed.
wenzelm@20370
    74
wenzelm@21308
    75
* Local theory targets may be specified by non-nested blocks of
wenzelm@21308
    76
``context/locale/class ... begin'' followed by ``end''.  The body may
wenzelm@21308
    77
contain definitions, theorems etc., including any derived mechanism
wenzelm@21308
    78
that has been implemented on top of these primitives.  This concept
wenzelm@21308
    79
generalizes the existing ``theorem (in ...)'' towards more versatility
wenzelm@21308
    80
and scalability.
wenzelm@21308
    81
wenzelm@21960
    82
* Proof General interface: proper undo of final 'end' command;
wenzelm@21960
    83
discontinued Isabelle/classic mode (ML proof scripts).
wenzelm@21960
    84
wenzelm@17754
    85
wenzelm@17865
    86
*** Document preparation ***
wenzelm@17865
    87
wenzelm@21717
    88
* Added antiquotation @{theory name} which prints the given name,
wenzelm@21717
    89
after checking that it refers to a valid ancestor theory in the
wenzelm@21717
    90
current context.
haftmann@21339
    91
wenzelm@17869
    92
* Added antiquotations @{ML_type text} and @{ML_struct text} which
wenzelm@17869
    93
check the given source text as ML type/structure, printing verbatim.
wenzelm@17865
    94
wenzelm@21717
    95
* Added antiquotation @{abbrev "c args"} which prints the abbreviation
wenzelm@21717
    96
"c args == rhs" given in the current context.  (Any number of
wenzelm@21735
    97
arguments may be given on the LHS.)
wenzelm@21717
    98
wenzelm@21717
    99
wenzelm@17865
   100
wenzelm@17779
   101
*** Pure ***
wenzelm@17779
   102
haftmann@22921
   103
* code generator: consts in 'consts_code' Isar commands are now referred
haftmann@22921
   104
  to by usual term syntax (including optional type annotations).
haftmann@22921
   105
haftmann@22735
   106
* code generator: 
haftmann@22921
   107
  - Isar 'definition's, 'constdef's and primitive instance definitions are added
haftmann@22921
   108
    explicitly to the table of defining equations
haftmann@22754
   109
  - primitive definitions are not used as defining equations by default any longer
haftmann@22735
   110
  - defining equations are now definitly restricted to meta "==" and object
haftmann@22735
   111
        equality "="
haftmann@22735
   112
  - HOL theories have been adopted accordingly
haftmann@22735
   113
wenzelm@20807
   114
* class_package.ML offers a combination of axclasses and locales to
haftmann@22921
   115
achieve Haskell-like type classes in Isabelle.  See
wenzelm@20807
   116
HOL/ex/Classpackage.thy for examples.
wenzelm@20807
   117
wenzelm@20807
   118
* Yet another code generator framework allows to generate executable
haftmann@22921
   119
code for ML and Haskell (including "class"es).  A short usage sketch:
haftmann@20188
   120
haftmann@20188
   121
    internal compilation:
haftmann@23850
   122
        code_gen <list of constants (term syntax)> in SML
haftmann@20453
   123
    writing SML code to a file:
haftmann@23850
   124
        code_gen <list of constants (term syntax)> in SML <filename>
haftmann@22735
   125
    writing OCaml code to a file:
haftmann@23850
   126
        code_gen <list of constants (term syntax)> in OCaml <filename>
haftmann@20188
   127
    writing Haskell code to a bunch of files:
haftmann@23850
   128
        code_gen <list of constants (term syntax)> in Haskell <filename>
haftmann@20453
   129
haftmann@20453
   130
Reasonable default setup of framework in HOL/Main.
haftmann@20453
   131
haftmann@20453
   132
Theorem attributs for selecting and transforming function equations theorems:
haftmann@20453
   133
haftmann@22845
   134
    [code fun]:        select a theorem as function equation for a specific constant
haftmann@22845
   135
    [code fun del]:    deselect a theorem as function equation for a specific constant
haftmann@22845
   136
    [code inline]:     select an equation theorem for unfolding (inlining) in place
haftmann@22845
   137
    [code inline del]: deselect an equation theorem for unfolding (inlining) in place
haftmann@20453
   138
haftmann@22735
   139
User-defined serializations (target in {SML, OCaml, Haskell}):
haftmann@20453
   140
haftmann@20453
   141
    code_const <and-list of constants (term syntax)>
haftmann@20453
   142
      {(target) <and-list of const target syntax>}+
haftmann@20453
   143
haftmann@20453
   144
    code_type <and-list of type constructors>
haftmann@20453
   145
      {(target) <and-list of type target syntax>}+
haftmann@20453
   146
haftmann@20453
   147
    code_instance <and-list of instances>
haftmann@20453
   148
      {(target)}+
haftmann@20453
   149
        where instance ::= <type constructor> :: <class>
haftmann@20453
   150
haftmann@20453
   151
    code_class <and_list of classes>
haftmann@20453
   152
      {(target) <and-list of class target syntax>}+
haftmann@20453
   153
        where class target syntax ::= <class name> {where {<classop> == <target syntax>}+}?
haftmann@20453
   154
haftmann@22735
   155
code_instance and code_class only apply to target Haskell.
haftmann@22735
   156
haftmann@22735
   157
See HOL theories and HOL/ex/Codegenerator*.thy for usage examples.
haftmann@22735
   158
Doc/Isar/Advanced/Codegen/ provides a tutorial.
haftmann@20188
   159
wenzelm@19254
   160
* Command 'no_translations' removes translation rules from theory
wenzelm@19254
   161
syntax.
wenzelm@19254
   162
wenzelm@19625
   163
* Overloaded definitions are now actually checked for acyclic
wenzelm@19714
   164
dependencies.  The overloading scheme is slightly more general than
wenzelm@19714
   165
that of Haskell98, although Isabelle does not demand an exact
wenzelm@19714
   166
correspondence to type class and instance declarations.
wenzelm@19714
   167
INCOMPATIBILITY, use ``defs (unchecked overloaded)'' to admit more
wenzelm@19714
   168
exotic versions of overloading -- at the discretion of the user!
wenzelm@19711
   169
wenzelm@19711
   170
Polymorphic constants are represented via type arguments, i.e. the
wenzelm@19711
   171
instantiation that matches an instance against the most general
wenzelm@19711
   172
declaration given in the signature.  For example, with the declaration
wenzelm@19711
   173
c :: 'a => 'a => 'a, an instance c :: nat => nat => nat is represented
wenzelm@19711
   174
as c(nat).  Overloading is essentially simultaneous structural
wenzelm@19711
   175
recursion over such type arguments.  Incomplete specification patterns
wenzelm@19714
   176
impose global constraints on all occurrences, e.g. c('a * 'a) on the
wenzelm@19715
   177
LHS means that more general c('a * 'b) will be disallowed on any RHS.
wenzelm@19714
   178
Command 'print_theory' outputs the normalized system of recursive
wenzelm@19714
   179
equations, see section "definitions".
wenzelm@19625
   180
wenzelm@24086
   181
* Configuration options are maintained within the theory or proof
wenzelm@24086
   182
context (with name and type bool/int/string), providing a very simple
wenzelm@24086
   183
interface to a poor-man's version of general context data.  Tools may
wenzelm@24110
   184
declare options in ML (e.g. using Attrib.config_int) and then refer to
wenzelm@24110
   185
these values using Config.get etc.  Users may change options via an
wenzelm@24110
   186
associated attribute of the same name.  This form of context
wenzelm@24110
   187
declaration works particularly well with commands 'declare' or
wenzelm@24110
   188
'using', for example ``declare [[foo = 42]]''.  Thus it has become
wenzelm@24110
   189
very easy to avoid global references, which would not observe Isar
wenzelm@24110
   190
toplevel undo/redo and fail to work with multithreading.
wenzelm@24086
   191
wenzelm@24172
   192
Various global ML references of Pure and HOL have been turned into
wenzelm@24172
   193
configuration options:
wenzelm@24172
   194
wenzelm@24172
   195
  Unify.search_bound		unify_search_bound
wenzelm@24172
   196
  Unify.trace_bound		unify_trace_bound
wenzelm@24172
   197
  Unify.trace_simp		unify_trace_simp
wenzelm@24172
   198
  Unify.trace_types		unify_trace_types
wenzelm@24172
   199
  Simplifier.simp_depth_limit	simp_depth_limit
wenzelm@24172
   200
  Blast.depth_limit		blast_depth_limit
wenzelm@24172
   201
  DatatypeProp.dtK		datatype_distinctness_limit
wenzelm@24172
   202
  fast_arith_neq_limit  	fast_arith_neq_limit
wenzelm@24172
   203
  fast_arith_split_limit	fast_arith_split_limit
wenzelm@24172
   204
wenzelm@24086
   205
* Named collections of theorems may be easily installed as context
wenzelm@24086
   206
data using the functor NamedThmsFun (see
wenzelm@24086
   207
src/Pure/Tools/named_thms.ML).  The user may add or delete facts via
wenzelm@24110
   208
attributes; there is also a toplevel print command.  This facility is
wenzelm@24110
   209
just a common case of general context data, which is the preferred way
wenzelm@24110
   210
for anything more complex than just a list of facts in canonical
wenzelm@24110
   211
order.
wenzelm@24086
   212
wenzelm@24032
   213
* Isar: command 'declaration' augments a local theory by generic
wenzelm@24032
   214
declaration functions written in ML.  This enables arbitrary content
wenzelm@24032
   215
being added to the context, depending on a morphism that tells the
wenzelm@24032
   216
difference of the original declaration context wrt. the application
wenzelm@24032
   217
context encountered later on.
wenzelm@24032
   218
wenzelm@24032
   219
* Isar: proper interfaces for simplification procedures.  Command
wenzelm@24032
   220
'simproc_setup' declares named simprocs (with match patterns, and body
wenzelm@24032
   221
text in ML).  Attribute "simproc" adds/deletes simprocs in the current
wenzelm@24032
   222
context.  ML antiquotation @{simproc name} retrieves named simprocs.
wenzelm@24032
   223
wenzelm@24032
   224
* Isar: an extra pair of brackets around attribute declarations
wenzelm@24032
   225
abbreviates a theorem reference involving an internal dummy fact,
wenzelm@24032
   226
which will be ignored later --- only the effect of the attribute on
wenzelm@24032
   227
the background context will persist.  This form of in-place
wenzelm@24032
   228
declarations is particularly useful with commands like 'declare' and
wenzelm@24032
   229
'using', for example ``have A using [[simproc a]] by simp''.
wenzelm@24032
   230
wenzelm@23369
   231
* Isar: method "assumption" (and implicit closing of subproofs) now
wenzelm@23369
   232
takes simple non-atomic goal assumptions into account: after applying
wenzelm@23369
   233
an assumption as a rule the resulting subgoals are solved by atomic
wenzelm@23369
   234
assumption steps.  This is particularly useful to finish 'obtain'
wenzelm@23369
   235
goals, such as "!!x. (!!x. P x ==> thesis) ==> P x ==> thesis",
wenzelm@23369
   236
without referring to the original premise "!!x. P x ==> thesis" in the
wenzelm@23369
   237
Isar proof context.  POTENTIAL INCOMPATIBILITY: method "assumption" is
wenzelm@23369
   238
more permissive.
wenzelm@23369
   239
wenzelm@23369
   240
* Isar: implicit use of prems from the Isar proof context is
wenzelm@23369
   241
considered a legacy feature.  Common applications like ``have A .''
wenzelm@23369
   242
may be replaced by ``have A by fact'' or ``note `A`''.  In general,
wenzelm@23369
   243
referencing facts explicitly here improves readability and
wenzelm@23369
   244
maintainability of proof texts.
wenzelm@23369
   245
wenzelm@17865
   246
* Isar: improper proof element 'guess' is like 'obtain', but derives
wenzelm@17865
   247
the obtained context from the course of reasoning!  For example:
wenzelm@17865
   248
wenzelm@17865
   249
  assume "EX x y. A x & B y"   -- "any previous fact"
wenzelm@17865
   250
  then guess x and y by clarify
wenzelm@17865
   251
wenzelm@17865
   252
This technique is potentially adventurous, depending on the facts and
wenzelm@17865
   253
proof tools being involved here.
wenzelm@17865
   254
wenzelm@18020
   255
* Isar: known facts from the proof context may be specified as literal
wenzelm@18020
   256
propositions, using ASCII back-quote syntax.  This works wherever
wenzelm@18020
   257
named facts used to be allowed so far, in proof commands, proof
wenzelm@18020
   258
methods, attributes etc.  Literal facts are retrieved from the context
wenzelm@18020
   259
according to unification of type and term parameters.  For example,
wenzelm@18020
   260
provided that "A" and "A ==> B" and "!!x. P x ==> Q x" are known
wenzelm@18020
   261
theorems in the current context, then these are valid literal facts:
wenzelm@18020
   262
`A` and `A ==> B` and `!!x. P x ==> Q x" as well as `P a ==> Q a` etc.
wenzelm@18020
   263
wenzelm@18020
   264
There is also a proof method "fact" which does the same composition
wenzelm@18044
   265
for explicit goal states, e.g. the following proof texts coincide with
wenzelm@18044
   266
certain special cases of literal facts:
wenzelm@18020
   267
wenzelm@18020
   268
  have "A" by fact                 ==  note `A`
wenzelm@18020
   269
  have "A ==> B" by fact           ==  note `A ==> B`
wenzelm@18020
   270
  have "!!x. P x ==> Q x" by fact  ==  note `!!x. P x ==> Q x`
wenzelm@18020
   271
  have "P a ==> Q a" by fact       ==  note `P a ==> Q a`
wenzelm@18020
   272
wenzelm@20118
   273
* Isar: ":" (colon) is no longer a symbolic identifier character in
wenzelm@20118
   274
outer syntax.  Thus symbolic identifiers may be used without
wenzelm@20118
   275
additional white space in declarations like this: ``assume *: A''.
wenzelm@20118
   276
wenzelm@20013
   277
* Isar: 'print_facts' prints all local facts of the current context,
wenzelm@20013
   278
both named and unnamed ones.
wenzelm@20013
   279
wenzelm@18308
   280
* Isar: 'def' now admits simultaneous definitions, e.g.:
wenzelm@18308
   281
wenzelm@18308
   282
  def x == "t" and y == "u"
wenzelm@18308
   283
wenzelm@18540
   284
* Isar: added command 'unfolding', which is structurally similar to
wenzelm@18540
   285
'using', but affects both the goal state and facts by unfolding given
wenzelm@18815
   286
rewrite rules.  Thus many occurrences of the 'unfold' method or
wenzelm@18540
   287
'unfolded' attribute may be replaced by first-class proof text.
wenzelm@18540
   288
wenzelm@18815
   289
* Isar: methods 'unfold' / 'fold', attributes 'unfolded' / 'folded',
wenzelm@18815
   290
and command 'unfolding' now all support object-level equalities
wenzelm@18815
   291
(potentially conditional).  The underlying notion of rewrite rule is
wenzelm@18815
   292
analogous to the 'rule_format' attribute, but *not* that of the
wenzelm@18815
   293
Simplifier (which is usually more generous).
wenzelm@18815
   294
wenzelm@19220
   295
* Isar: the goal restriction operator [N] (default N = 1) evaluates a
wenzelm@19220
   296
method expression within a sandbox consisting of the first N
wenzelm@19240
   297
sub-goals, which need to exist.  For example, ``simp_all [3]''
wenzelm@19240
   298
simplifies the first three sub-goals, while (rule foo, simp_all)[]
wenzelm@19240
   299
simplifies all new goals that emerge from applying rule foo to the
wenzelm@19240
   300
originally first one.
wenzelm@19220
   301
wenzelm@19814
   302
* Isar: schematic goals are no longer restricted to higher-order
wenzelm@19814
   303
patterns; e.g. ``lemma "?P(?x)" by (rule TrueI)'' now works as
wenzelm@19814
   304
expected.
wenzelm@19814
   305
wenzelm@18901
   306
* Isar: the conclusion of a long theorem statement is now either
wenzelm@18901
   307
'shows' (a simultaneous conjunction, as before), or 'obtains'
wenzelm@18901
   308
(essentially a disjunction of cases with local parameters and
wenzelm@18901
   309
assumptions).  The latter allows to express general elimination rules
wenzelm@18910
   310
adequately; in this notation common elimination rules look like this:
wenzelm@18901
   311
wenzelm@18901
   312
  lemma exE:    -- "EX x. P x ==> (!!x. P x ==> thesis) ==> thesis"
wenzelm@18901
   313
    assumes "EX x. P x"
wenzelm@18901
   314
    obtains x where "P x"
wenzelm@18901
   315
wenzelm@18901
   316
  lemma conjE:  -- "A & B ==> (A ==> B ==> thesis) ==> thesis"
wenzelm@18901
   317
    assumes "A & B"
wenzelm@18901
   318
    obtains A and B
wenzelm@18901
   319
wenzelm@18901
   320
  lemma disjE:  -- "A | B ==> (A ==> thesis) ==> (B ==> thesis) ==> thesis"
wenzelm@18901
   321
    assumes "A | B"
wenzelm@18901
   322
    obtains
wenzelm@18901
   323
      A
wenzelm@18901
   324
    | B
wenzelm@18901
   325
wenzelm@18910
   326
The subsequent classical rules even refer to the formal "thesis"
wenzelm@18901
   327
explicitly:
wenzelm@18901
   328
wenzelm@18901
   329
  lemma classical:     -- "(~ thesis ==> thesis) ==> thesis"
wenzelm@18901
   330
    obtains "~ thesis"
wenzelm@18901
   331
wenzelm@18910
   332
  lemma Peirce's_Law:  -- "((thesis ==> something) ==> thesis) ==> thesis"
wenzelm@18910
   333
    obtains "thesis ==> something"
wenzelm@18901
   334
wenzelm@18901
   335
The actual proof of an 'obtains' statement is analogous to that of the
wenzelm@18910
   336
Isar proof element 'obtain', only that there may be several cases.
wenzelm@18910
   337
Optional case names may be specified in parentheses; these will be
wenzelm@18910
   338
available both in the present proof and as annotations in the
wenzelm@18910
   339
resulting rule, for later use with the 'cases' method (cf. attribute
wenzelm@18910
   340
case_names).
wenzelm@18901
   341
wenzelm@21447
   342
* Isar: the assumptions of a long theorem statement are available as
wenzelm@21447
   343
"assms" fact in the proof context.  This is more appropriate than the
wenzelm@21447
   344
(historical) "prems", which refers to all assumptions of the current
wenzelm@21447
   345
context, including those from the target locale, proof body etc.
wenzelm@21447
   346
wenzelm@19263
   347
* Isar: 'print_statement' prints theorems from the current theory or
wenzelm@19263
   348
proof context in long statement form, according to the syntax of a
wenzelm@19263
   349
top-level lemma.
wenzelm@19263
   350
wenzelm@18901
   351
* Isar: 'obtain' takes an optional case name for the local context
wenzelm@18901
   352
introduction rule (default "that").
wenzelm@18901
   353
wenzelm@19587
   354
* Isar: removed obsolete 'concl is' patterns.  INCOMPATIBILITY, use
wenzelm@19587
   355
explicit (is "_ ==> ?foo") in the rare cases where this still happens
wenzelm@19587
   356
to occur.
wenzelm@19587
   357
wenzelm@19682
   358
* Pure: syntax "CONST name" produces a fully internalized constant
wenzelm@19682
   359
according to the current context.  This is particularly useful for
wenzelm@19682
   360
syntax translations that should refer to internal constant
wenzelm@19682
   361
representations independently of name spaces.
wenzelm@19682
   362
wenzelm@21537
   363
* Pure: syntax constant for foo (binder "FOO ") is called "foo_binder"
wenzelm@21537
   364
instead of "FOO ". This allows multiple binder declarations to coexist
wenzelm@21537
   365
in the same context.  INCOMPATIBILITY.
wenzelm@21537
   366
wenzelm@21209
   367
* Isar/locales: 'notation' provides a robust interface to the 'syntax'
wenzelm@21209
   368
primitive that also works in a locale context (both for constants and
wenzelm@21209
   369
fixed variables).  Type declaration and internal syntactic
wenzelm@21209
   370
representation of given constants retrieved from the context.
wenzelm@19682
   371
wenzelm@19665
   372
* Isar/locales: new derived specification elements 'axiomatization',
wenzelm@19665
   373
'definition', 'abbreviation', which support type-inference, admit
wenzelm@19083
   374
object-level specifications (equality, equivalence).  See also the
wenzelm@19083
   375
isar-ref manual.  Examples:
wenzelm@19081
   376
wenzelm@19665
   377
  axiomatization
wenzelm@21595
   378
    eq  (infix "===" 50) where
wenzelm@21595
   379
    eq_refl: "x === x" and eq_subst: "x === y ==> P x ==> P y"
wenzelm@21595
   380
wenzelm@21595
   381
  definition "f x y = x + y + 1"
wenzelm@21595
   382
  definition g where "g x = f x x"
wenzelm@19081
   383
wenzelm@19363
   384
  abbreviation
wenzelm@21595
   385
    neq  (infix "=!=" 50) where
wenzelm@19363
   386
    "x =!= y == ~ (x === y)"
wenzelm@19081
   387
wenzelm@19083
   388
These specifications may be also used in a locale context.  Then the
wenzelm@19083
   389
constants being introduced depend on certain fixed parameters, and the
wenzelm@19083
   390
constant name is qualified by the locale base name.  An internal
wenzelm@19083
   391
abbreviation takes care for convenient input and output, making the
wenzelm@19088
   392
parameters implicit and using the original short name.  See also
wenzelm@19083
   393
HOL/ex/Abstract_NAT.thy for an example of deriving polymorphic
wenzelm@19083
   394
entities from a monomorphic theory.
wenzelm@19083
   395
wenzelm@19083
   396
Presently, abbreviations are only available 'in' a target locale, but
wenzelm@19363
   397
not inherited by general import expressions.  Also note that
wenzelm@19363
   398
'abbreviation' may be used as a type-safe replacement for 'syntax' +
wenzelm@19363
   399
'translations' in common applications.
wenzelm@19084
   400
wenzelm@19682
   401
Concrete syntax is attached to specified constants in internal form,
wenzelm@19682
   402
independently of name spaces.  The parse tree representation is
wenzelm@21209
   403
slightly different -- use 'notation' instead of raw 'syntax', and
wenzelm@19682
   404
'translations' with explicit "CONST" markup to accommodate this.
wenzelm@19665
   405
wenzelm@21735
   406
* Pure: command 'print_abbrevs' prints all constant abbreviations of
wenzelm@21735
   407
the current context.  Print mode "no_abbrevs" prevents inversion of
wenzelm@21735
   408
abbreviations on output.
wenzelm@21735
   409
ballarin@19783
   410
* Isar/locales: improved parameter handling:
ballarin@19783
   411
- use of locales "var" and "struct" no longer necessary;
ballarin@19783
   412
- parameter renamings are no longer required to be injective.
ballarin@19783
   413
  This enables, for example, to define a locale for endomorphisms thus:
ballarin@19783
   414
  locale endom = homom mult mult h.
ballarin@19783
   415
ballarin@19931
   416
* Isar/locales: changed the way locales with predicates are defined.
ballarin@19931
   417
Instead of accumulating the specification, the imported expression is
wenzelm@22126
   418
now an interpretation.  INCOMPATIBILITY: different normal form of
wenzelm@22126
   419
locale expressions.  In particular, in interpretations of locales with
wenzelm@22126
   420
predicates, goals repesenting already interpreted fragments are not
wenzelm@22126
   421
removed automatically.  Use methods `intro_locales' and
wenzelm@22126
   422
`unfold_locales'; see below.
wenzelm@22126
   423
wenzelm@22126
   424
* Isar/locales: new methods `intro_locales' and `unfold_locales'
wenzelm@22126
   425
provide backward reasoning on locales predicates.  The methods are
wenzelm@22126
   426
aware of interpretations and discharge corresponding goals.
wenzelm@22126
   427
`intro_locales' is less aggressive then `unfold_locales' and does not
wenzelm@22126
   428
unfold predicates to assumptions.
ballarin@19931
   429
ballarin@19931
   430
* Isar/locales: the order in which locale fragments are accumulated
wenzelm@22126
   431
has changed.  This enables to override declarations from fragments due
wenzelm@22126
   432
to interpretations -- for example, unwanted simp rules.
ballarin@19931
   433
ballarin@23920
   434
* Isar/locales: interpretation in theories and proof contexts has been
ballarin@23920
   435
extended.  One may now specify (and prove) equations, which are
ballarin@23920
   436
unfolded in interpreted theorems.  This is useful for replacing
ballarin@23920
   437
defined concepts (constants depending on locale parameters) by
ballarin@23920
   438
concepts already existing in the target context.  Example:
ballarin@23920
   439
ballarin@23920
   440
  interpretation partial_order ["op <= :: [int, int] => bool"]
ballarin@23920
   441
    where "partial_order.less (op <=) (x::int) y = (x < y)"
ballarin@23920
   442
ballarin@23977
   443
Typically, the constant `partial_order.less' is created by a definition
ballarin@23977
   444
specification element in the context of locale partial_order.
ballarin@23920
   445
wenzelm@18233
   446
* Provers/induct: improved internal context management to support
wenzelm@18233
   447
local fixes and defines on-the-fly.  Thus explicit meta-level
wenzelm@18233
   448
connectives !! and ==> are rarely required anymore in inductive goals
wenzelm@18233
   449
(using object-logic connectives for this purpose has been long
wenzelm@18233
   450
obsolete anyway).  The subsequent proof patterns illustrate advanced
wenzelm@18233
   451
techniques of natural induction; general datatypes and inductive sets
wenzelm@18267
   452
work analogously (see also src/HOL/Lambda for realistic examples).
wenzelm@18267
   453
wenzelm@18267
   454
(1) This is how to ``strengthen'' an inductive goal wrt. certain
wenzelm@18239
   455
parameters:
wenzelm@18233
   456
wenzelm@18233
   457
  lemma
wenzelm@18233
   458
    fixes n :: nat and x :: 'a
wenzelm@18233
   459
    assumes a: "A n x"
wenzelm@18233
   460
    shows "P n x"
wenzelm@18233
   461
    using a                     -- {* make induct insert fact a *}
wenzelm@20503
   462
  proof (induct n arbitrary: x) -- {* generalize goal to "!!x. A n x ==> P n x" *}
wenzelm@18248
   463
    case 0
wenzelm@18233
   464
    show ?case sorry
wenzelm@18233
   465
  next
wenzelm@18248
   466
    case (Suc n)
wenzelm@18239
   467
    note `!!x. A n x ==> P n x` -- {* induction hypothesis, according to induction rule *}
wenzelm@18239
   468
    note `A (Suc n) x`          -- {* induction premise, stemming from fact a *}
wenzelm@18233
   469
    show ?case sorry
wenzelm@18233
   470
  qed
wenzelm@18233
   471
wenzelm@18267
   472
(2) This is how to perform induction over ``expressions of a certain
wenzelm@18233
   473
form'', using a locally defined inductive parameter n == "a x"
wenzelm@18239
   474
together with strengthening (the latter is usually required to get
wenzelm@18267
   475
sufficiently flexible induction hypotheses):
wenzelm@18233
   476
wenzelm@18233
   477
  lemma
wenzelm@18233
   478
    fixes a :: "'a => nat"
wenzelm@18233
   479
    assumes a: "A (a x)"
wenzelm@18233
   480
    shows "P (a x)"
wenzelm@18233
   481
    using a
wenzelm@20503
   482
  proof (induct n == "a x" arbitrary: x)
wenzelm@18233
   483
    ...
wenzelm@18233
   484
wenzelm@18267
   485
See also HOL/Isar_examples/Puzzle.thy for an application of the this
wenzelm@18267
   486
particular technique.
wenzelm@18267
   487
wenzelm@18901
   488
(3) This is how to perform existential reasoning ('obtains' or
wenzelm@18901
   489
'obtain') by induction, while avoiding explicit object-logic
wenzelm@18901
   490
encodings:
wenzelm@18901
   491
wenzelm@18901
   492
  lemma
wenzelm@18901
   493
    fixes n :: nat
wenzelm@18901
   494
    obtains x :: 'a where "P n x" and "Q n x"
wenzelm@20503
   495
  proof (induct n arbitrary: thesis)
wenzelm@18267
   496
    case 0
wenzelm@18267
   497
    obtain x where "P 0 x" and "Q 0 x" sorry
wenzelm@18399
   498
    then show thesis by (rule 0)
wenzelm@18267
   499
  next
wenzelm@18267
   500
    case (Suc n)
wenzelm@18267
   501
    obtain x where "P n x" and "Q n x" by (rule Suc.hyps)
wenzelm@18267
   502
    obtain x where "P (Suc n) x" and "Q (Suc n) x" sorry
wenzelm@18267
   503
    then show thesis by (rule Suc.prems)
wenzelm@18267
   504
  qed
wenzelm@18267
   505
wenzelm@20503
   506
Here the 'arbitrary: thesis' specification essentially modifies the
wenzelm@20503
   507
scope of the formal thesis parameter, in order to the get the whole
wenzelm@18267
   508
existence statement through the induction as expected.
wenzelm@18233
   509
wenzelm@18506
   510
* Provers/induct: mutual induction rules are now specified as a list
wenzelm@18506
   511
of rule sharing the same induction cases.  HOL packages usually
wenzelm@18506
   512
provide foo_bar.inducts for mutually defined items foo and bar
wenzelm@18506
   513
(e.g. inductive sets or datatypes).  INCOMPATIBILITY, users need to
wenzelm@18506
   514
specify mutual induction rules differently, i.e. like this:
wenzelm@18506
   515
wenzelm@18506
   516
  (induct rule: foo_bar.inducts)
wenzelm@18506
   517
  (induct set: foo bar)
wenzelm@18506
   518
  (induct type: foo bar)
wenzelm@18506
   519
wenzelm@18506
   520
The ML function ProjectRule.projections turns old-style rules into the
wenzelm@18506
   521
new format.
wenzelm@18506
   522
wenzelm@18506
   523
* Provers/induct: improved handling of simultaneous goals.  Instead of
wenzelm@18506
   524
introducing object-level conjunction, the statement is now split into
wenzelm@18506
   525
several conclusions, while the corresponding symbolic cases are
wenzelm@18601
   526
nested accordingly.  INCOMPATIBILITY, proofs need to be structured
wenzelm@18601
   527
explicitly.  For example:
wenzelm@18480
   528
wenzelm@18480
   529
  lemma
wenzelm@18480
   530
    fixes n :: nat
wenzelm@18480
   531
    shows "P n" and "Q n"
wenzelm@18480
   532
  proof (induct n)
wenzelm@18601
   533
    case 0 case 1
wenzelm@18480
   534
    show "P 0" sorry
wenzelm@18480
   535
  next
wenzelm@18601
   536
    case 0 case 2
wenzelm@18480
   537
    show "Q 0" sorry
wenzelm@18480
   538
  next
wenzelm@18601
   539
    case (Suc n) case 1
wenzelm@18480
   540
    note `P n` and `Q n`
wenzelm@18480
   541
    show "P (Suc n)" sorry
wenzelm@18480
   542
  next
wenzelm@18601
   543
    case (Suc n) case 2
wenzelm@18480
   544
    note `P n` and `Q n`
wenzelm@18480
   545
    show "Q (Suc n)" sorry
wenzelm@18480
   546
  qed
wenzelm@18480
   547
wenzelm@18601
   548
The split into subcases may be deferred as follows -- this is
wenzelm@18601
   549
particularly relevant for goal statements with local premises.
wenzelm@18601
   550
wenzelm@18601
   551
  lemma
wenzelm@18601
   552
    fixes n :: nat
wenzelm@18601
   553
    shows "A n ==> P n" and "B n ==> Q n"
wenzelm@18601
   554
  proof (induct n)
wenzelm@18601
   555
    case 0
wenzelm@18601
   556
    {
wenzelm@18601
   557
      case 1
wenzelm@18601
   558
      note `A 0`
wenzelm@18601
   559
      show "P 0" sorry
wenzelm@18601
   560
    next
wenzelm@18601
   561
      case 2
wenzelm@18601
   562
      note `B 0`
wenzelm@18601
   563
      show "Q 0" sorry
wenzelm@18601
   564
    }
wenzelm@18601
   565
  next
wenzelm@18601
   566
    case (Suc n)
wenzelm@18601
   567
    note `A n ==> P n` and `B n ==> Q n`
wenzelm@18601
   568
    {
wenzelm@18601
   569
      case 1
wenzelm@18601
   570
      note `A (Suc n)`
wenzelm@18601
   571
      show "P (Suc n)" sorry
wenzelm@18601
   572
    next
wenzelm@18601
   573
      case 2
wenzelm@18601
   574
      note `B (Suc n)`
wenzelm@18601
   575
      show "Q (Suc n)" sorry
wenzelm@18601
   576
    }
wenzelm@18601
   577
  qed
wenzelm@18601
   578
wenzelm@18506
   579
If simultaneous goals are to be used with mutual rules, the statement
wenzelm@18506
   580
needs to be structured carefully as a two-level conjunction, using
wenzelm@18506
   581
lists of propositions separated by 'and':
wenzelm@18506
   582
wenzelm@18507
   583
  lemma
wenzelm@18507
   584
    shows "a : A ==> P1 a"
wenzelm@18507
   585
          "a : A ==> P2 a"
wenzelm@18507
   586
      and "b : B ==> Q1 b"
wenzelm@18507
   587
          "b : B ==> Q2 b"
wenzelm@18507
   588
          "b : B ==> Q3 b"
wenzelm@18507
   589
  proof (induct set: A B)
wenzelm@18480
   590
wenzelm@18399
   591
* Provers/induct: support coinduction as well.  See
wenzelm@18399
   592
src/HOL/Library/Coinductive_List.thy for various examples.
wenzelm@18399
   593
wenzelm@20919
   594
* Attribute "symmetric" produces result with standardized schematic
wenzelm@20919
   595
variables (index 0).  Potential INCOMPATIBILITY.
wenzelm@20919
   596
wenzelm@22126
   597
* Simplifier: by default the simplifier trace only shows top level
wenzelm@22126
   598
rewrites now. That is, trace_simp_depth_limit is set to 1 by
wenzelm@22126
   599
default. Thus there is less danger of being flooded by the trace. The
wenzelm@22126
   600
trace indicates where parts have been suppressed.
nipkow@18674
   601
  
wenzelm@18536
   602
* Provers/classical: removed obsolete classical version of elim_format
wenzelm@18536
   603
attribute; classical elim/dest rules are now treated uniformly when
wenzelm@18536
   604
manipulating the claset.
wenzelm@18536
   605
wenzelm@18694
   606
* Provers/classical: stricter checks to ensure that supplied intro,
wenzelm@18694
   607
dest and elim rules are well-formed; dest and elim rules must have at
wenzelm@18694
   608
least one premise.
wenzelm@18694
   609
wenzelm@18694
   610
* Provers/classical: attributes dest/elim/intro take an optional
wenzelm@18695
   611
weight argument for the rule (just as the Pure versions).  Weights are
wenzelm@18696
   612
ignored by automated tools, but determine the search order of single
wenzelm@18694
   613
rule steps.
paulson@18557
   614
wenzelm@18536
   615
* Syntax: input syntax now supports dummy variable binding "%_. b",
wenzelm@18536
   616
where the body does not mention the bound variable.  Note that dummy
wenzelm@18536
   617
patterns implicitly depend on their context of bounds, which makes
wenzelm@18536
   618
"{_. _}" match any set comprehension as expected.  Potential
wenzelm@18536
   619
INCOMPATIBILITY -- parse translations need to cope with syntactic
wenzelm@18536
   620
constant "_idtdummy" in the binding position.
wenzelm@18536
   621
wenzelm@18536
   622
* Syntax: removed obsolete syntactic constant "_K" and its associated
wenzelm@18536
   623
parse translation.  INCOMPATIBILITY -- use dummy abstraction instead,
wenzelm@18536
   624
for example "A -> B" => "Pi A (%_. B)".
wenzelm@17779
   625
wenzelm@20582
   626
* Pure: 'class_deps' command visualizes the subclass relation, using
wenzelm@20582
   627
the graph browser tool.
wenzelm@20582
   628
wenzelm@20620
   629
* Pure: 'print_theory' now suppresses entities with internal name
wenzelm@20620
   630
(trailing "_") by default; use '!' option for full details.
wenzelm@20620
   631
wenzelm@17865
   632
nipkow@17806
   633
*** HOL ***
nipkow@17806
   634
haftmann@23850
   635
* Code generator library theories:
haftmann@23850
   636
  * Pretty_Int represents HOL integers by big integer literals in target
haftmann@23850
   637
    languages.
haftmann@23850
   638
  * Pretty_Char represents HOL characters by character literals in target
haftmann@23850
   639
    languages.
haftmann@23850
   640
  * Pretty_Char_chr like Pretty_Char, but also offers treatment of character
haftmann@23850
   641
    codes; includes Pretty_Int.
haftmann@23850
   642
  * Executable_Set allows to generate code for finite sets using lists.
haftmann@23850
   643
  * Executable_Rat implements rational numbers as triples (sign, enumerator,
haftmann@23850
   644
    denominator).
haftmann@23850
   645
  * Executable_Real implements a subset of real numbers, namly those
haftmann@23850
   646
    representable by rational numbers.
haftmann@23850
   647
  * Efficient_Nat implements natural numbers by integers, which in general will
haftmann@23850
   648
    result in higher efficency; pattern matching with 0/Suc is eliminated;
haftmann@23850
   649
    includes Pretty_Int.
haftmann@23850
   650
  * ML_String provides an additional datatype ml_string; in the HOL default
haftmann@23850
   651
    setup, strings in HOL are mapped to lists of HOL characters in SML; values
haftmann@23850
   652
    of type ml_string are mapped to strings in SML.
haftmann@23850
   653
  * ML_Int provides an additional datatype ml_int which is mapped to to SML
haftmann@23850
   654
    built-in integers.
haftmann@23850
   655
berghofe@23783
   656
* New package for inductive predicates
berghofe@23783
   657
berghofe@23783
   658
  An n-ary predicate p with m parameters z_1, ..., z_m can now be defined via
berghofe@23783
   659
berghofe@23783
   660
    inductive
berghofe@23783
   661
      p :: "U_1 => ... => U_m => T_1 => ... => T_n => bool"
berghofe@23783
   662
      for z_1 :: U_1 and ... and z_n :: U_m
berghofe@23783
   663
    where
berghofe@23783
   664
      rule_1: "... ==> p z_1 ... z_m t_1_1 ... t_1_n"
berghofe@23783
   665
    | ...
berghofe@23783
   666
berghofe@23783
   667
  rather than
berghofe@23783
   668
berghofe@23783
   669
    consts s :: "U_1 => ... => U_m => (T_1 * ... * T_n) set"
berghofe@23783
   670
berghofe@23783
   671
    abbreviation p :: "U_1 => ... => U_m => T_1 => ... => T_n => bool"
berghofe@23783
   672
    where "p z_1 ... z_m x_1 ... x_n == (x_1, ..., x_n) : s z_1 ... z_m"
berghofe@23783
   673
berghofe@23783
   674
    inductive "s z_1 ... z_m"
berghofe@23783
   675
    intros
berghofe@23783
   676
      rule_1: "... ==> (t_1_1, ..., t_1_n) : s z_1 ... z_m"
berghofe@23783
   677
      ...
berghofe@23783
   678
berghofe@23783
   679
  For backward compatibility, there is a wrapper allowing inductive
berghofe@23783
   680
  sets to be defined with the new package via
berghofe@23783
   681
berghofe@23783
   682
    inductive_set
berghofe@23783
   683
      s :: "U_1 => ... => U_m => (T_1 * ... * T_n) set"
berghofe@23783
   684
      for z_1 :: U_1 and ... and z_n :: U_m
berghofe@23783
   685
    where
berghofe@23783
   686
      rule_1: "... ==> (t_1_1, ..., t_1_n) : s z_1 ... z_m"
berghofe@23783
   687
    | ...
berghofe@23783
   688
berghofe@23783
   689
  or
berghofe@23783
   690
berghofe@23783
   691
    inductive_set
berghofe@23783
   692
      s :: "U_1 => ... => U_m => (T_1 * ... * T_n) set"
berghofe@23783
   693
      and p :: "U_1 => ... => U_m => T_1 => ... => T_n => bool"
berghofe@23783
   694
      for z_1 :: U_1 and ... and z_n :: U_m
berghofe@23783
   695
    where
berghofe@23783
   696
      "p z_1 ... z_m x_1 ... x_n == (x_1, ..., x_n) : s z_1 ... z_m"
berghofe@23783
   697
    | rule_1: "... ==> p z_1 ... z_m t_1_1 ... t_1_n"
berghofe@23783
   698
    | ...
berghofe@23783
   699
berghofe@23783
   700
  if the additional syntax "p ..." is required.
berghofe@23783
   701
berghofe@23783
   702
  Many examples can be found in the subdirectories Auth, Bali, Induct,
berghofe@23783
   703
  or MicroJava.
berghofe@23783
   704
berghofe@23783
   705
  INCOMPATIBILITIES:
berghofe@23783
   706
berghofe@23783
   707
  - Since declaration and definition of inductive sets or predicates
berghofe@23783
   708
    is no longer separated, abbreviations involving the newly introduced
berghofe@23783
   709
    sets or predicates must be specified together with the introduction
berghofe@23783
   710
    rules after the "where" keyword (see example above), rather than before
berghofe@23783
   711
    the actual inductive definition.
berghofe@23783
   712
berghofe@23783
   713
  - The variables in induction and elimination rules are now quantified
berghofe@23783
   714
    in the order of their occurrence in the introduction rules, rather than
berghofe@23783
   715
    in alphabetical order. Since this may break some proofs, these proofs
berghofe@23783
   716
    either have to be repaired, e.g. by reordering the variables
berghofe@23783
   717
    a_i_1 ... a_i_{k_i} in Isar "case" statements of the form
berghofe@23783
   718
berghofe@23783
   719
      case (rule_i a_i_1 ... a_i_{k_i})
berghofe@23783
   720
berghofe@23783
   721
    or the old order of quantification has to be restored by explicitly adding
berghofe@23783
   722
    meta-level quantifiers in the introduction rules, i.e.
berghofe@23783
   723
berghofe@23783
   724
      | rule_i: "!!a_i_1 ... a_i_{k_i}. ... ==> p z_1 ... z_m t_i_1 ... t_i_n"
berghofe@23783
   725
berghofe@23783
   726
  - The format of the elimination rules is now
berghofe@23783
   727
berghofe@23783
   728
      p z_1 ... z_m x_1 ... x_n ==>
berghofe@23783
   729
        (!!a_1_1 ... a_1_{k_1}. x_1 = t_1_1 ==> ... ==> x_n = t_1_n ==> ... ==> P)
berghofe@23783
   730
        ==> ... ==> P
berghofe@23783
   731
berghofe@23783
   732
    for predicates and
berghofe@23783
   733
berghofe@23783
   734
      (x_1, ..., x_n) : s z_1 ... z_m ==>
berghofe@23783
   735
        (!!a_1_1 ... a_1_{k_1}. x_1 = t_1_1 ==> ... ==> x_n = t_1_n ==> ... ==> P)
berghofe@23783
   736
        ==> ... ==> P
berghofe@23783
   737
berghofe@23783
   738
    for sets rather than
berghofe@23783
   739
berghofe@23783
   740
      x : s z_1 ... z_m ==>
berghofe@23783
   741
        (!!a_1_1 ... a_1_{k_1}. x = (t_1_1, ..., t_1_n) ==> ... ==> P)
berghofe@23783
   742
        ==> ... ==> P
berghofe@23783
   743
berghofe@23783
   744
    This may require terms in goals to be expanded to n-tuples (e.g. using case_tac
berghofe@23783
   745
    or simplification with the split_paired_all rule) before the above elimination
berghofe@23783
   746
    rule is applicable.
berghofe@23783
   747
berghofe@23783
   748
  - The elimination or case analysis rules for (mutually) inductive sets or
berghofe@23783
   749
    predicates are now called "p_1.cases" ... "p_k.cases". The list of rules
berghofe@23783
   750
    "p_1_..._p_k.elims" is no longer available.
berghofe@23783
   751
wenzelm@23562
   752
* Method "metis" proves goals by applying the Metis general-purpose
wenzelm@23562
   753
resolution prover.  Examples are in the directory MetisExamples.  See
wenzelm@23562
   754
also http://gilith.com/software/metis/
paulson@23449
   755
  
wenzelm@23562
   756
* Command 'sledgehammer' invokes external automatic theorem provers as
wenzelm@23562
   757
background processes.  It generates calls to the "metis" method if
wenzelm@23562
   758
successful. These can be pasted into the proof.  Users do not have to
wenzelm@23562
   759
wait for the automatic provers to return.
paulson@23449
   760
nipkow@23564
   761
* Case-expressions allow arbitrary constructor-patterns (including "_") and
nipkow@23565
   762
  take their order into account, like in functional programming.
nipkow@23564
   763
  Internally, this is translated into nested case-expressions; missing cases
nipkow@23564
   764
  are added and mapped to the predefined constant "undefined". In complicated
nipkow@23564
   765
  cases printing may no longer show the original input but the internal
nipkow@23565
   766
  form. Lambda-abstractions allow the same form of pattern matching:
nipkow@23564
   767
  "% pat1 => e1 | ..." is an abbreviation for
nipkow@23564
   768
  "%x. case x of pat1 => e1 | ..." where x is a new variable.
nipkow@23564
   769
huffman@23468
   770
* IntDef: The constant "int :: nat => int" has been removed; now "int"
huffman@23468
   771
  is an abbreviation for "of_nat :: nat => int". The simplification rules
huffman@23468
   772
  for "of_nat" have been changed to work like "int" did previously.
huffman@23468
   773
  (potential INCOMPATIBILITY)
huffman@23468
   774
  - "of_nat (Suc m)" simplifies to "1 + of_nat m" instead of "of_nat m + 1"
huffman@23468
   775
  - of_nat_diff and of_nat_mult are no longer default simp rules
huffman@23377
   776
chaieb@23295
   777
* Method "algebra" solves polynomial equations over (semi)rings using
chaieb@23295
   778
  Groebner bases. The (semi)ring structure is defined by locales and
chaieb@23295
   779
  the tool setup depends on that generic context. Installing the
chaieb@23295
   780
  method for a specific type involves instantiating the locale and
chaieb@23295
   781
  possibly adding declarations for computation on the coefficients.
chaieb@23295
   782
  The method is already instantiated for natural numbers and for the
chaieb@23295
   783
  axiomatic class of idoms with numerals.  See also the paper by
chaieb@23295
   784
  Chaieb and Wenzel at CALCULEMUS 2007 for the general principles
chaieb@23295
   785
  underlying this architecture of context-aware proof-tools.
chaieb@23295
   786
haftmann@23029
   787
* constant "List.op @" now named "List.append".  Use ML antiquotations
haftmann@23029
   788
@{const_name List.append} or @{term " ... @ ... "} to circumvent
haftmann@23029
   789
possible incompatibilities when working on ML level.
haftmann@23029
   790
haftmann@22997
   791
* Constant renames due to introduction of canonical name prefixing for
haftmann@22997
   792
  class package:
haftmann@22997
   793
haftmann@22997
   794
    HOL.abs ~> HOL.minus_class.abs
haftmann@22997
   795
    HOL.divide ~> HOL.divide_class.divide
haftmann@22997
   796
    Nat.power ~> Nat.power_class.power
haftmann@22997
   797
    Nat.size ~> Nat.size_class.size
haftmann@22997
   798
    Numeral.number_of ~> Numeral.number_class.number_of
haftmann@23129
   799
    FixedPoint.Inf ~> FixedPoint.complete_lattice_class.Inf
haftmann@23129
   800
haftmann@23180
   801
* Rudimentary class target mechanism involves constant renames:
haftmann@23129
   802
haftmann@23129
   803
    Orderings.min ~> Orderings.ord_class.min
haftmann@23129
   804
    Orderings.max ~> Orderings.ord_class.max
haftmann@23129
   805
    FixedPoint.Sup ~> FixedPoint.complete_lattice_class.Sup
haftmann@22997
   806
nipkow@23564
   807
* primrec: missing cases mapped to "undefined" instead of "arbitrary"
haftmann@22845
   808
haftmann@22845
   809
* new constant "undefined" with axiom "undefined x = undefined"
haftmann@22845
   810
haftmann@22845
   811
* new class "default" with associated constant "default"
haftmann@22845
   812
nipkow@23104
   813
* new function listsum :: 'a list => 'a for arbitrary monoids.
nipkow@23104
   814
  Special syntax: "SUM x <- xs. f x" (and latex variants)
nipkow@23104
   815
nipkow@23210
   816
* new (input only) syntax for Haskell-like list comprehension, eg
nipkow@23210
   817
  [(x,y). x <- xs, y <- ys, x ~= y]
nipkow@23210
   818
  For details see List.thy.
nipkow@23102
   819
nipkow@23300
   820
* The special syntax for function "filter" has changed from [x : xs. P] to
nipkow@23300
   821
  [x <- xs. P] to avoid an ambiguity caused by list comprehension syntax,
nipkow@23300
   822
  and for uniformity. INCOMPATIBILITY
nipkow@23300
   823
krauss@23971
   824
* Lemma "set_take_whileD" renamed to "set_takeWhileD"
krauss@23971
   825
nipkow@23480
   826
* New lemma collection field_simps (an extension of ring_simps)
nipkow@23480
   827
  for manipulating (in)equations involving division. Multiplies
nipkow@23481
   828
  with all denominators that can be proved to be non-zero (in equations)
nipkow@23480
   829
  or positive/negative (in inequations).
nipkow@23480
   830
nipkow@23480
   831
* Lemma collections ring_eq_simps, group_eq_simps and ring_distrib
nipkow@23478
   832
  have been improved and renamed to ring_simps, group_simps and ring_distribs.
nipkow@23509
   833
  Removed lemmas field_xyz in Ring_and_Field
nipkow@23509
   834
  because they were subsumed by lemmas xyz.
nipkow@23509
   835
INCOMPATIBILITY.
nipkow@23478
   836
haftmann@22799
   837
* Library/Pretty_Int.thy: maps HOL numerals on target language integer literals
nipkow@23480
   838
  when generating code.
haftmann@22799
   839
haftmann@22799
   840
* Library/Pretty_Char.thy: maps HOL characters on target language character literals
nipkow@23480
   841
  when generating code.
haftmann@22799
   842
haftmann@22735
   843
* Library/Commutative_Ring.thy: switched from recdef to function package;
nipkow@23480
   844
  constants add, mul, pow now curried.  Infix syntax for algebraic operations.
haftmann@22735
   845
haftmann@22450
   846
* Some steps towards more uniform lattice theory development in HOL.
haftmann@22422
   847
haftmann@22422
   848
    constants "meet" and "join" now named "inf" and "sup"
haftmann@22422
   849
    constant "Meet" now named "Inf"
haftmann@22422
   850
haftmann@22450
   851
    classes "meet_semilorder" and "join_semilorder" now named
haftmann@22450
   852
      "lower_semilattice" and "upper_semilattice"
haftmann@22450
   853
    class "lorder" now named "lattice"
haftmann@22450
   854
    class "comp_lat" now named "complete_lattice"
haftmann@22450
   855
haftmann@22450
   856
    Instantiation of lattice classes allows explicit definitions
haftmann@22450
   857
    for "inf" and "sup" operations.
haftmann@22450
   858
haftmann@23129
   859
  INCOMPATIBILITY.  Theorem renames:
haftmann@22450
   860
haftmann@22422
   861
    meet_left_le            ~> inf_le1
haftmann@22422
   862
    meet_right_le           ~> inf_le2
haftmann@22422
   863
    join_left_le            ~> sup_ge1
haftmann@22422
   864
    join_right_le           ~> sup_ge2
haftmann@22422
   865
    meet_join_le            ~> inf_sup_ord
haftmann@22422
   866
    le_meetI                ~> le_infI
haftmann@22422
   867
    join_leI                ~> le_supI
haftmann@22422
   868
    le_meet                 ~> le_inf_iff
haftmann@22422
   869
    le_join                 ~> ge_sup_conv
haftmann@22422
   870
    meet_idempotent         ~> inf_idem
haftmann@22422
   871
    join_idempotent         ~> sup_idem
haftmann@22422
   872
    meet_comm               ~> inf_commute
haftmann@22422
   873
    join_comm               ~> sup_commute
haftmann@22422
   874
    meet_leI1               ~> le_infI1
haftmann@22422
   875
    meet_leI2               ~> le_infI2
haftmann@22422
   876
    le_joinI1               ~> le_supI1
haftmann@22422
   877
    le_joinI2               ~> le_supI2
haftmann@22422
   878
    meet_assoc              ~> inf_assoc
haftmann@22422
   879
    join_assoc              ~> sup_assoc
haftmann@22422
   880
    meet_left_comm          ~> inf_left_commute
haftmann@22422
   881
    meet_left_idempotent    ~> inf_left_idem
haftmann@22422
   882
    join_left_comm          ~> sup_left_commute
haftmann@22422
   883
    join_left_idempotent    ~> sup_left_idem
haftmann@22422
   884
    meet_aci                ~> inf_aci
haftmann@22422
   885
    join_aci                ~> sup_aci
haftmann@22422
   886
    le_def_meet             ~> le_iff_inf
haftmann@22422
   887
    le_def_join             ~> le_iff_sup
haftmann@22422
   888
    join_absorp2            ~> sup_absorb2
haftmann@22422
   889
    join_absorp1            ~> sup_absorb1
haftmann@22422
   890
    meet_absorp1            ~> inf_absorb1
haftmann@22422
   891
    meet_absorp2            ~> inf_absorb2
haftmann@22422
   892
    meet_join_absorp        ~> inf_sup_absorb
haftmann@22422
   893
    join_meet_absorp        ~> sup_inf_absorb
haftmann@22422
   894
    distrib_join_le         ~> distrib_sup_le
haftmann@22422
   895
    distrib_meet_le         ~> distrib_inf_le
haftmann@22422
   896
haftmann@22422
   897
    add_meet_distrib_left   ~> add_inf_distrib_left
haftmann@22422
   898
    add_join_distrib_left   ~> add_sup_distrib_left
haftmann@22422
   899
    is_join_neg_meet        ~> is_join_neg_inf
haftmann@22422
   900
    is_meet_neg_join        ~> is_meet_neg_sup
haftmann@22422
   901
    add_meet_distrib_right  ~> add_inf_distrib_right
haftmann@22422
   902
    add_join_distrib_right  ~> add_sup_distrib_right
haftmann@22422
   903
    add_meet_join_distribs  ~> add_sup_inf_distribs
haftmann@22422
   904
    join_eq_neg_meet        ~> sup_eq_neg_inf
haftmann@22422
   905
    meet_eq_neg_join        ~> inf_eq_neg_sup
haftmann@22422
   906
    add_eq_meet_join        ~> add_eq_inf_sup
haftmann@22422
   907
    meet_0_imp_0            ~> inf_0_imp_0
haftmann@22422
   908
    join_0_imp_0            ~> sup_0_imp_0
haftmann@22422
   909
    meet_0_eq_0             ~> inf_0_eq_0
haftmann@22422
   910
    join_0_eq_0             ~> sup_0_eq_0
haftmann@22422
   911
    neg_meet_eq_join        ~> neg_inf_eq_sup
haftmann@22422
   912
    neg_join_eq_meet        ~> neg_sup_eq_inf
haftmann@22422
   913
    join_eq_if              ~> sup_eq_if
haftmann@22422
   914
haftmann@22422
   915
    mono_meet               ~> mono_inf
haftmann@22422
   916
    mono_join               ~> mono_sup
haftmann@22422
   917
    meet_bool_eq            ~> inf_bool_eq
haftmann@22422
   918
    join_bool_eq            ~> sup_bool_eq
haftmann@22422
   919
    meet_fun_eq             ~> inf_fun_eq
haftmann@22422
   920
    join_fun_eq             ~> sup_fun_eq
haftmann@22422
   921
    meet_set_eq             ~> inf_set_eq
haftmann@22422
   922
    join_set_eq             ~> sup_set_eq
haftmann@22422
   923
    meet1_iff               ~> inf1_iff
haftmann@22422
   924
    meet2_iff               ~> inf2_iff
haftmann@22422
   925
    meet1I                  ~> inf1I
haftmann@22422
   926
    meet2I                  ~> inf2I
haftmann@22422
   927
    meet1D1                 ~> inf1D1
haftmann@22422
   928
    meet2D1                 ~> inf2D1
haftmann@22422
   929
    meet1D2                 ~> inf1D2
haftmann@22422
   930
    meet2D2                 ~> inf2D2
haftmann@22422
   931
    meet1E                  ~> inf1E
haftmann@22422
   932
    meet2E                  ~> inf2E
haftmann@22422
   933
    join1_iff               ~> sup1_iff
haftmann@22422
   934
    join2_iff               ~> sup2_iff
haftmann@22422
   935
    join1I1                 ~> sup1I1
haftmann@22422
   936
    join2I1                 ~> sup2I1
haftmann@22422
   937
    join1I1                 ~> sup1I1
haftmann@22422
   938
    join2I2                 ~> sup1I2
haftmann@22422
   939
    join1CI                 ~> sup1CI
haftmann@22422
   940
    join2CI                 ~> sup2CI
haftmann@22422
   941
    join1E                  ~> sup1E
haftmann@22422
   942
    join2E                  ~> sup2E
haftmann@22422
   943
haftmann@22422
   944
    is_meet_Meet            ~> is_meet_Inf
haftmann@22422
   945
    Meet_bool_def           ~> Inf_bool_def
haftmann@22422
   946
    Meet_fun_def            ~> Inf_fun_def
haftmann@22422
   947
    Meet_greatest           ~> Inf_greatest
haftmann@22422
   948
    Meet_lower              ~> Inf_lower
haftmann@22422
   949
    Meet_set_def            ~> Inf_set_def
haftmann@22422
   950
haftmann@22422
   951
    listsp_meetI            ~> listsp_infI
haftmann@22422
   952
    listsp_meet_eq          ~> listsp_inf_eq
haftmann@22422
   953
haftmann@22450
   954
    meet_min                ~> inf_min
haftmann@22450
   955
    join_max                ~> sup_max
haftmann@22450
   956
haftmann@22845
   957
* Classes "order" and "linorder": facts "refl", "trans" and
haftmann@22384
   958
"cases" renamed ro "order_refl", "order_trans" and "linorder_cases", to
haftmann@22384
   959
avoid clashes with HOL "refl" and "trans". INCOMPATIBILITY.
haftmann@22384
   960
haftmann@22845
   961
* Classes "order" and "linorder": 
haftmann@22316
   962
potential INCOMPATIBILITY: order of proof goals in order/linorder instance
haftmann@22316
   963
proofs changed.
haftmann@22316
   964
haftmann@22218
   965
* Dropped lemma duplicate def_imp_eq in favor of meta_eq_to_obj_eq.
haftmann@22218
   966
INCOMPATIBILITY.
haftmann@22218
   967
haftmann@22218
   968
* Dropped lemma duplicate if_def2 in favor of if_bool_eq_conj.
haftmann@22218
   969
INCOMPATIBILITY.
haftmann@22218
   970
wenzelm@22126
   971
* Added syntactic class "size"; overloaded constant "size" now has
wenzelm@22126
   972
type "'a::size ==> bool"
wenzelm@22126
   973
wenzelm@22126
   974
* Renamed constants "Divides.op div", "Divides.op mod" and "Divides.op
haftmann@22997
   975
dvd" to "Divides.div_class.div", "Divides.div_class.mod" and "Divides.dvd". INCOMPATIBILITY.
wenzelm@22126
   976
wenzelm@22126
   977
* Added method "lexicographic_order" automatically synthesizes
wenzelm@22126
   978
termination relations as lexicographic combinations of size measures
wenzelm@22126
   979
-- 'function' package.
wenzelm@22126
   980
wenzelm@22126
   981
* HOL/records: generalised field-update to take a function on the
wenzelm@22126
   982
field rather than the new value: r(|A := x|) is translated to A_update
wenzelm@22126
   983
(K x) r The K-combinator that is internally used is called K_record.
schirmer@21226
   984
INCOMPATIBILITY: Usage of the plain update functions has to be
schirmer@21226
   985
adapted.
schirmer@21226
   986
 
wenzelm@22126
   987
* axclass "semiring_0" now contains annihilation axioms x * 0 = 0 and
wenzelm@22126
   988
0 * x = 0, which are required for a semiring.  Richer structures do
wenzelm@22126
   989
not inherit from semiring_0 anymore, because this property is a
wenzelm@22126
   990
theorem there, not an axiom.  INCOMPATIBILITY: In instances of
wenzelm@22126
   991
semiring_0, there is more to prove, but this is mostly trivial.
wenzelm@22126
   992
wenzelm@22126
   993
* axclass "recpower" was generalized to arbitrary monoids, not just
wenzelm@22126
   994
commutative semirings.  INCOMPATIBILITY: If you use recpower and need
wenzelm@22126
   995
commutativity or a semiring property, add the corresponding classes.
wenzelm@22126
   996
wenzelm@22126
   997
* Unified locale partial_order with class definition (cf. theory
wenzelm@22126
   998
Orderings), added parameter ``less''.  INCOMPATIBILITY.
haftmann@21215
   999
haftmann@21099
  1000
* Constant "List.list_all2" in List.thy now uses authentic syntax.
wenzelm@22126
  1001
INCOMPATIBILITY: translations containing list_all2 may go wrong.  On
wenzelm@22126
  1002
Isar level, use abbreviations instead.
wenzelm@22126
  1003
wenzelm@22126
  1004
* Renamed constant "List.op mem" to "List.memberl" INCOMPATIBILITY:
wenzelm@22126
  1005
rarely occuring name references (e.g. ``List.op mem.simps'') require
wenzelm@22126
  1006
renaming (e.g. ``List.memberl.simps'').
wenzelm@22126
  1007
haftmann@22997
  1008
* Renamed constants "0" to "HOL.zero_class.zero" and "1" to "HOL.one_class.one".
wenzelm@22126
  1009
INCOMPATIBILITY.
wenzelm@22126
  1010
haftmann@23251
  1011
* Added class "HOL.eq", allowing for code generation with polymorphic equality.
wenzelm@22126
  1012
wenzelm@22126
  1013
* Numeral syntax: type 'bin' which was a mere type copy of 'int' has
wenzelm@22126
  1014
been abandoned in favour of plain 'int'. INCOMPATIBILITY --
wenzelm@22126
  1015
significant changes for setting up numeral syntax for types:
haftmann@20485
  1016
haftmann@20485
  1017
  - new constants Numeral.pred and Numeral.succ instead
haftmann@20485
  1018
      of former Numeral.bin_pred and Numeral.bin_succ.
haftmann@20485
  1019
  - Use integer operations instead of bin_add, bin_mult and so on.
haftmann@20485
  1020
  - Numeral simplification theorems named Numeral.numeral_simps instead of Bin_simps.
haftmann@20485
  1021
  - ML structure Bin_Simprocs now named Int_Numeral_Base_Simprocs.
haftmann@20485
  1022
haftmann@20485
  1023
See HOL/Integ/IntArith.thy for an example setup.
haftmann@20485
  1024
wenzelm@22126
  1025
* New top level command 'normal_form' computes the normal form of a
wenzelm@22126
  1026
term that may contain free variables. For example ``normal_form
wenzelm@22126
  1027
"rev[a,b,c]"'' produces ``[b,c,a]'' (without proof).  This command is
wenzelm@22126
  1028
suitable for heavy-duty computations because the functions are
wenzelm@22126
  1029
compiled to ML first.
nipkow@19895
  1030
wenzelm@17996
  1031
* Alternative iff syntax "A <-> B" for equality on bool (with priority
wenzelm@17996
  1032
25 like -->); output depends on the "iff" print_mode, the default is
wenzelm@17996
  1033
"A = B" (with priority 50).
wenzelm@17996
  1034
ballarin@19279
  1035
* Renamed constants in HOL.thy and Orderings.thy:
haftmann@22997
  1036
    op +   ~> HOL.plus_class.plus
haftmann@22997
  1037
    op -   ~> HOL.minus_class.minus
haftmann@22997
  1038
    uminus ~> HOL.minus_class.uminus
haftmann@23881
  1039
    abs    ~> HOL.abs_class.abs
haftmann@22997
  1040
    op *   ~> HOL.times_class.times
haftmann@23881
  1041
    op <   ~> HOL.ord_class.less
haftmann@23881
  1042
    op <=  ~> HOL.ord_class.less_eq
haftmann@19233
  1043
haftmann@19233
  1044
Adaptions may be required in the following cases:
haftmann@19233
  1045
nipkow@19377
  1046
a) User-defined constants using any of the names "plus", "minus", "times",
nipkow@19377
  1047
"less" or "less_eq". The standard syntax translations for "+", "-" and "*"
nipkow@19377
  1048
may go wrong.
haftmann@19233
  1049
INCOMPATIBILITY: use more specific names.
haftmann@19233
  1050
haftmann@19277
  1051
b) Variables named "plus", "minus", "times", "less", "less_eq"
haftmann@19233
  1052
INCOMPATIBILITY: use more specific names.
haftmann@19233
  1053
nipkow@19377
  1054
c) Permutative equations (e.g. "a + b = b + a")
nipkow@19377
  1055
Since the change of names also changes the order of terms, permutative
nipkow@19377
  1056
rewrite rules may get applied in a different order. Experience shows that
nipkow@19377
  1057
this is rarely the case (only two adaptions in the whole Isabelle
nipkow@19377
  1058
distribution).
nipkow@19377
  1059
INCOMPATIBILITY: rewrite proofs
haftmann@19233
  1060
haftmann@19233
  1061
d) ML code directly refering to constant names
haftmann@19233
  1062
This in general only affects hand-written proof tactics, simprocs and so on.
haftmann@22997
  1063
INCOMPATIBILITY: grep your sourcecode and replace names.  Consider use
haftmann@22997
  1064
of const_name ML antiquotations.
haftmann@19233
  1065
wenzelm@21265
  1066
* Relations less (<) and less_eq (<=) are also available on type bool.
wenzelm@21265
  1067
Modified syntax to disallow nesting without explicit parentheses,
wenzelm@21265
  1068
e.g. "(x < y) < z" or "x < (y < z)", but NOT "x < y < z".
wenzelm@21265
  1069
nipkow@18674
  1070
* "LEAST x:A. P" expands to "LEAST x. x:A & P" (input only).
nipkow@18674
  1071
krauss@20716
  1072
* Relation composition operator "op O" now has precedence 75 and binds
krauss@20716
  1073
stronger than union and intersection. INCOMPATIBILITY.
krauss@20716
  1074
wenzelm@22126
  1075
* The old set interval syntax "{m..n(}" (and relatives) has been
wenzelm@22126
  1076
removed.  Use "{m..<n}" (and relatives) instead.
nipkow@19377
  1077
wenzelm@17865
  1078
* In the context of the assumption "~(s = t)" the Simplifier rewrites
wenzelm@17865
  1079
"t = s" to False (by simproc "neq_simproc").  For backward
wenzelm@17865
  1080
compatibility this can be disabled by ML "reset use_neq_simproc".
wenzelm@17779
  1081
wenzelm@22126
  1082
* "m dvd n" where m and n are numbers is evaluated to True/False by
wenzelm@22126
  1083
simp.
wenzelm@22126
  1084
wenzelm@22126
  1085
* Theorem Cons_eq_map_conv no longer declared as ``simp''.
nipkow@19211
  1086
ballarin@19279
  1087
* Theorem setsum_mult renamed to setsum_right_distrib.
ballarin@19279
  1088
nipkow@19211
  1089
* Prefer ex1I over ex_ex1I in single-step reasoning, e.g. by the
wenzelm@22126
  1090
``rule'' method.
wenzelm@22126
  1091
wenzelm@22126
  1092
* Reimplemented methods ``sat'' and ``satx'', with several
wenzelm@22126
  1093
improvements: goals no longer need to be stated as "<prems> ==>
wenzelm@22126
  1094
False", equivalences (i.e. "=" on type bool) are handled, variable
wenzelm@22126
  1095
names of the form "lit_<n>" are no longer reserved, significant
wenzelm@22126
  1096
speedup.
wenzelm@22126
  1097
wenzelm@22126
  1098
* Methods ``sat'' and ``satx'' can now replay MiniSat proof traces.
wenzelm@22126
  1099
zChaff is still supported as well.
wenzelm@22126
  1100
wenzelm@22126
  1101
* 'inductive' and 'datatype': provide projections of mutual rules,
wenzelm@22126
  1102
bundled as foo_bar.inducts;
wenzelm@22126
  1103
wenzelm@22126
  1104
* Library: moved theories Parity, GCD, Binomial, Infinite_Set to
wenzelm@22126
  1105
Library.
wenzelm@21256
  1106
wenzelm@21256
  1107
* Library: moved theory Accessible_Part to main HOL.
wenzelm@19572
  1108
wenzelm@18446
  1109
* Library: added theory Coinductive_List of potentially infinite lists
wenzelm@18446
  1110
as greatest fixed-point.
wenzelm@18399
  1111
wenzelm@19254
  1112
* Library: added theory AssocList which implements (finite) maps as
schirmer@19252
  1113
association lists.
webertj@17809
  1114
wenzelm@22126
  1115
* Added proof method ``evaluation'' for efficiently solving a goal
wenzelm@22126
  1116
(i.e. a boolean expression) by compiling it to ML. The goal is
wenzelm@22126
  1117
"proved" (via an oracle) if it evaluates to True.
wenzelm@20807
  1118
wenzelm@20807
  1119
* Linear arithmetic now splits certain operators (e.g. min, max, abs)
wenzelm@20807
  1120
also when invoked by the simplifier.  This results in the simplifier
haftmann@21056
  1121
being more powerful on arithmetic goals.  INCOMPATIBILITY.  Set
wenzelm@20807
  1122
fast_arith_split_limit to 0 to obtain the old behavior.
webertj@20217
  1123
wenzelm@22126
  1124
* Support for hex (0x20) and binary (0b1001) numerals.
wenzelm@19254
  1125
wenzelm@20807
  1126
* New method: reify eqs (t), where eqs are equations for an
wenzelm@20807
  1127
interpretation I :: 'a list => 'b => 'c and t::'c is an optional
wenzelm@20807
  1128
parameter, computes a term s::'b and a list xs::'a list and proves the
wenzelm@20807
  1129
theorem I xs s = t. This is also known as reification or quoting. The
wenzelm@20807
  1130
resulting theorem is applied to the subgoal to substitute t with I xs
wenzelm@20807
  1131
s.  If t is omitted, the subgoal itself is reified.
wenzelm@20807
  1132
wenzelm@20807
  1133
* New method: reflection corr_thm eqs (t). The parameters eqs and (t)
wenzelm@20807
  1134
are as explained above. corr_thm is a theorem for I vs (f t) = I vs t,
wenzelm@20807
  1135
where f is supposed to be a computable function (in the sense of code
wenzelm@20807
  1136
generattion). The method uses reify to compute s and xs as above then
wenzelm@20807
  1137
applies corr_thm and uses normalization by evaluation to "prove" f s =
wenzelm@20807
  1138
r and finally gets the theorem t = r, which is again applied to the
wenzelm@20807
  1139
subgoal. An Example is available in HOL/ex/ReflectionEx.thy.
wenzelm@20807
  1140
haftmann@23881
  1141
* Reflection: Automatic reification now handels binding, an example
wenzelm@20807
  1142
is available in HOL/ex/ReflectionEx.thy
wenzelm@20807
  1143
wenzelm@20807
  1144
ballarin@20169
  1145
*** HOL-Algebra ***
ballarin@20169
  1146
wenzelm@21170
  1147
* Formalisation of ideals and the quotient construction over rings.
wenzelm@21170
  1148
wenzelm@21170
  1149
* Order and lattice theory no longer based on records.
wenzelm@21170
  1150
INCOMPATIBILITY.
wenzelm@21170
  1151
wenzelm@22126
  1152
* Renamed lemmas least_carrier -> least_closed and greatest_carrier ->
wenzelm@22126
  1153
greatest_closed.  INCOMPATIBILITY.
ballarin@21896
  1154
wenzelm@21170
  1155
* Method algebra is now set up via an attribute.  For examples see
ballarin@21896
  1156
Ring.thy.  INCOMPATIBILITY: the method is now weaker on combinations
wenzelm@21170
  1157
of algebraic structures.
ballarin@20318
  1158
wenzelm@22126
  1159
* Renamed theory CRing to Ring.
ballarin@20169
  1160
wenzelm@20807
  1161
wenzelm@19653
  1162
*** HOL-Complex ***
wenzelm@19653
  1163
wenzelm@19653
  1164
* Theory Real: new method ferrack implements quantifier elimination
wenzelm@19653
  1165
for linear arithmetic over the reals. The quantifier elimination
wenzelm@19653
  1166
feature is used only for decision, for compatibility with arith. This
wenzelm@19653
  1167
means a goal is either solved or left unchanged, no simplification.
wenzelm@19653
  1168
huffman@22971
  1169
* Hyperreal: Functions root and sqrt are now defined on negative real
huffman@22971
  1170
inputs so that root n (- x) = - root n x and sqrt (- x) = - sqrt x.
huffman@22971
  1171
Nonnegativity side conditions have been removed from many lemmas, so
huffman@22971
  1172
that more subgoals may now be solved by simplification; potential
huffman@22971
  1173
INCOMPATIBILITY.
huffman@22971
  1174
huffman@21791
  1175
* Real: New axiomatic classes formalize real normed vector spaces and
huffman@21791
  1176
algebras, using new overloaded constants scaleR :: real => 'a => 'a
huffman@21791
  1177
and norm :: 'a => real.
huffman@21791
  1178
wenzelm@22126
  1179
* Real: New constant of_real :: real => 'a::real_algebra_1 injects
wenzelm@22126
  1180
from reals into other types. The overloaded constant Reals :: 'a set
wenzelm@22126
  1181
is now defined as range of_real; potential INCOMPATIBILITY.
wenzelm@22126
  1182
nipkow@23013
  1183
* Real: ML code generation is supported now and hence also quickcheck.
nipkow@23013
  1184
Reals are implemented as arbitrary precision rationals.
nipkow@23013
  1185
wenzelm@22126
  1186
* Hyperreal: Several constants that previously worked only for the
wenzelm@22126
  1187
reals have been generalized, so they now work over arbitrary vector
wenzelm@22126
  1188
spaces. Type annotations may need to be added in some cases; potential
wenzelm@22126
  1189
INCOMPATIBILITY.
huffman@21791
  1190
huffman@22972
  1191
  Infinitesimal  :: ('a::real_normed_vector) star set
huffman@22972
  1192
  HFinite        :: ('a::real_normed_vector) star set
huffman@22972
  1193
  HInfinite      :: ('a::real_normed_vector) star set
huffman@21791
  1194
  approx         :: ('a::real_normed_vector) star => 'a star => bool
huffman@21791
  1195
  monad          :: ('a::real_normed_vector) star => 'a star set
huffman@21791
  1196
  galaxy         :: ('a::real_normed_vector) star => 'a star set
huffman@22972
  1197
  (NS)LIMSEQ     :: [nat => 'a::real_normed_vector, 'a] => bool
huffman@21791
  1198
  (NS)convergent :: (nat => 'a::real_normed_vector) => bool
huffman@21791
  1199
  (NS)Bseq       :: (nat => 'a::real_normed_vector) => bool
huffman@21791
  1200
  (NS)Cauchy     :: (nat => 'a::real_normed_vector) => bool
huffman@21791
  1201
  (NS)LIM        :: ['a::real_normed_vector => 'b::real_normed_vector, 'a, 'b] => bool
huffman@21791
  1202
  is(NS)Cont     :: ['a::real_normed_vector => 'b::real_normed_vector, 'a] => bool
huffman@21791
  1203
  deriv          :: ['a::real_normed_field => 'a, 'a, 'a] => bool
huffman@22972
  1204
  sgn            :: 'a::real_normed_vector => 'a
huffman@23116
  1205
  exp            :: 'a::{recpower,real_normed_field,banach} => 'a
huffman@21791
  1206
huffman@21791
  1207
* Complex: Some complex-specific constants are now abbreviations for
wenzelm@22126
  1208
overloaded ones: complex_of_real = of_real, cmod = norm, hcmod =
wenzelm@22126
  1209
hnorm.  Other constants have been entirely removed in favor of the
wenzelm@22126
  1210
polymorphic versions (INCOMPATIBILITY):
huffman@21791
  1211
huffman@21791
  1212
  approx        <-- capprox
huffman@21791
  1213
  HFinite       <-- CFinite
huffman@21791
  1214
  HInfinite     <-- CInfinite
huffman@21791
  1215
  Infinitesimal <-- CInfinitesimal
huffman@21791
  1216
  monad         <-- cmonad
huffman@21791
  1217
  galaxy        <-- cgalaxy
huffman@21791
  1218
  (NS)LIM       <-- (NS)CLIM, (NS)CRLIM
huffman@21791
  1219
  is(NS)Cont    <-- is(NS)Contc, is(NS)contCR
huffman@21791
  1220
  (ns)deriv     <-- (ns)cderiv
huffman@21791
  1221
wenzelm@19653
  1222
wenzelm@17878
  1223
*** ML ***
wenzelm@17878
  1224
haftmann@23251
  1225
* Generic arithmetic modules: Tools/integer.ML, Tools/rat.ML, Tools/float.ML
haftmann@23251
  1226
wenzelm@22848
  1227
* Context data interfaces (Theory/Proof/GenericDataFun): removed
wenzelm@22863
  1228
name/print, uninitialized data defaults to ad-hoc copy of empty value,
wenzelm@22863
  1229
init only required for impure data.  INCOMPATIBILITY: empty really
wenzelm@22863
  1230
need to be empty (no dependencies on theory content!)
wenzelm@22848
  1231
wenzelm@22138
  1232
* ML within Isar: antiquotations allow to embed statically-checked
wenzelm@22138
  1233
formal entities in the source, referring to the context available at
wenzelm@22138
  1234
compile-time.  For example:
wenzelm@22138
  1235
wenzelm@22138
  1236
ML {* @{typ "'a => 'b"} *}
wenzelm@22138
  1237
ML {* @{term "%x. x"} *}
wenzelm@22138
  1238
ML {* @{prop "x == y"} *}
wenzelm@22138
  1239
ML {* @{ctyp "'a => 'b"} *}
wenzelm@22138
  1240
ML {* @{cterm "%x. x"} *}
wenzelm@22138
  1241
ML {* @{cprop "x == y"} *}
wenzelm@22138
  1242
ML {* @{thm asm_rl} *}
wenzelm@22138
  1243
ML {* @{thms asm_rl} *}
wenzelm@22376
  1244
ML {* @{const_name c} *}
wenzelm@22376
  1245
ML {* @{const_syntax c} *}
wenzelm@22138
  1246
ML {* @{context} *}
wenzelm@22138
  1247
ML {* @{theory} *}
wenzelm@22138
  1248
ML {* @{theory Pure} *}
wenzelm@22138
  1249
ML {* @{simpset} *}
wenzelm@22138
  1250
ML {* @{claset} *}
wenzelm@22138
  1251
ML {* @{clasimpset} *}
wenzelm@22138
  1252
wenzelm@22151
  1253
The same works for sources being ``used'' within an Isar context.
wenzelm@22151
  1254
wenzelm@22152
  1255
* ML in Isar: improved error reporting; extra verbosity with
wenzelm@22152
  1256
Toplevel.debug enabled.
wenzelm@22152
  1257
haftmann@20348
  1258
* Pure/library:
haftmann@20348
  1259
haftmann@18450
  1260
  val burrow: ('a list -> 'b list) -> 'a list list -> 'b list list
haftmann@18549
  1261
  val fold_burrow: ('a list -> 'c -> 'b list * 'd) -> 'a list list -> 'c -> 'b list list * 'd
haftmann@18450
  1262
wenzelm@18540
  1263
The semantics of "burrow" is: "take a function with *simulatanously*
wenzelm@18540
  1264
transforms a list of value, and apply it *simulatanously* to a list of
wenzelm@22126
  1265
list of values of the appropriate type". Compare this with "map" which
wenzelm@18540
  1266
would *not* apply its argument function simulatanously but in
wenzelm@22126
  1267
sequence; "fold_burrow" has an additional context.
haftmann@18450
  1268
wenzelm@18446
  1269
* Pure/library: functions map2 and fold2 with curried syntax for
wenzelm@18446
  1270
simultanous mapping and folding:
wenzelm@18446
  1271
haftmann@18422
  1272
    val map2: ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list
haftmann@18422
  1273
    val fold2: ('a -> 'b -> 'c -> 'c) -> 'a list -> 'b list -> 'c -> 'c
haftmann@18422
  1274
wenzelm@18446
  1275
* Pure/library: indexed lists - some functions in the Isabelle library
wenzelm@18446
  1276
treating lists over 'a as finite mappings from [0...n] to 'a have been
wenzelm@18446
  1277
given more convenient names and signatures reminiscent of similar
wenzelm@18446
  1278
functions for alists, tables, etc:
haftmann@18051
  1279
haftmann@18051
  1280
  val nth: 'a list -> int -> 'a 
haftmann@18051
  1281
  val nth_map: int -> ('a -> 'a) -> 'a list -> 'a list
haftmann@18051
  1282
  val fold_index: (int * 'a -> 'b -> 'b) -> 'a list -> 'b -> 'b
haftmann@18051
  1283
wenzelm@18446
  1284
Note that fold_index starts counting at index 0, not 1 like foldln
wenzelm@18446
  1285
used to.
wenzelm@18446
  1286
wenzelm@22126
  1287
* Pure/library: added general ``divide_and_conquer'' combinator on
wenzelm@22126
  1288
lists.
wenzelm@19032
  1289
wenzelm@19032
  1290
* Pure/General/table.ML: the join operations now works via exceptions
wenzelm@19081
  1291
DUP/SAME instead of type option.  This is simpler in simple cases, and
wenzelm@19081
  1292
admits slightly more efficient complex applications.
wenzelm@18446
  1293
wenzelm@18642
  1294
* Pure: datatype Context.generic joins theory/Proof.context and
wenzelm@18644
  1295
provides some facilities for code that works in either kind of
wenzelm@18642
  1296
context, notably GenericDataFun for uniform theory and proof data.
wenzelm@18642
  1297
wenzelm@18862
  1298
* Pure: 'advanced' translation functions (parse_translation etc.) now
wenzelm@18862
  1299
use Context.generic instead of just theory.
wenzelm@18862
  1300
wenzelm@18737
  1301
* Pure: simplified internal attribute type, which is now always
wenzelm@18737
  1302
Context.generic * thm -> Context.generic * thm.  Global (theory)
wenzelm@18737
  1303
vs. local (Proof.context) attributes have been discontinued, while
wenzelm@18738
  1304
minimizing code duplication.  Thm.rule_attribute and
wenzelm@18738
  1305
Thm.declaration_attribute build canonical attributes; see also
wenzelm@19006
  1306
structure Context for further operations on Context.generic, notably
wenzelm@19006
  1307
GenericDataFun.  INCOMPATIBILITY, need to adapt attribute type
wenzelm@19006
  1308
declarations and definitions.
wenzelm@19006
  1309
wenzelm@19508
  1310
* Pure/kernel: consts certification ignores sort constraints given in
wenzelm@19508
  1311
signature declarations.  (This information is not relevant to the
wenzelm@22126
  1312
logic, but only for type inference.)  IMPORTANT INTERNAL CHANGE,
wenzelm@22126
  1313
potential INCOMPATIBILITY.
wenzelm@19508
  1314
wenzelm@19508
  1315
* Pure: axiomatic type classes are now purely definitional, with
wenzelm@19508
  1316
explicit proofs of class axioms and super class relations performed
wenzelm@19508
  1317
internally.  See Pure/axclass.ML for the main internal interfaces --
wenzelm@19508
  1318
notably AxClass.define_class supercedes AxClass.add_axclass, and
wenzelm@19508
  1319
AxClass.axiomatize_class/classrel/arity supercede
wenzelm@19508
  1320
Sign.add_classes/classrel/arities.
wenzelm@19508
  1321
wenzelm@19006
  1322
* Pure/Isar: Args/Attrib parsers operate on Context.generic --
wenzelm@19006
  1323
global/local versions on theory vs. Proof.context have been
wenzelm@19006
  1324
discontinued; Attrib.syntax and Method.syntax have been adapted
wenzelm@19006
  1325
accordingly.  INCOMPATIBILITY, need to adapt parser expressions for
wenzelm@19006
  1326
attributes, methods, etc.
wenzelm@18642
  1327
wenzelm@18446
  1328
* Pure: several functions of signature "... -> theory -> theory * ..."
wenzelm@18446
  1329
have been reoriented to "... -> theory -> ... * theory" in order to
wenzelm@18446
  1330
allow natural usage in combination with the ||>, ||>>, |-> and
wenzelm@18446
  1331
fold_map combinators.
haftmann@18051
  1332
wenzelm@21647
  1333
* Pure: official theorem names (closed derivations) and additional
wenzelm@21647
  1334
comments (tags) are now strictly separate.  Name hints -- which are
wenzelm@21647
  1335
maintained as tags -- may be attached any time without affecting the
wenzelm@21647
  1336
derivation.
wenzelm@21647
  1337
wenzelm@18020
  1338
* Pure: primitive rule lift_rule now takes goal cterm instead of an
wenzelm@18145
  1339
actual goal state (thm).  Use Thm.lift_rule (Thm.cprem_of st i) to
wenzelm@18020
  1340
achieve the old behaviour.
wenzelm@18020
  1341
wenzelm@18020
  1342
* Pure: the "Goal" constant is now called "prop", supporting a
wenzelm@18020
  1343
slightly more general idea of ``protecting'' meta-level rule
wenzelm@18020
  1344
statements.
wenzelm@18020
  1345
wenzelm@20040
  1346
* Pure: Logic.(un)varify only works in a global context, which is now
wenzelm@20040
  1347
enforced instead of silently assumed.  INCOMPATIBILITY, may use
wenzelm@20040
  1348
Logic.legacy_(un)varify as temporary workaround.
wenzelm@20040
  1349
wenzelm@20090
  1350
* Pure: structure Name provides scalable operations for generating
wenzelm@20090
  1351
internal variable names, notably Name.variants etc.  This replaces
wenzelm@20090
  1352
some popular functions from term.ML:
wenzelm@20090
  1353
wenzelm@20090
  1354
  Term.variant		->  Name.variant
wenzelm@20090
  1355
  Term.variantlist	->  Name.variant_list  (*canonical argument order*)
wenzelm@20090
  1356
  Term.invent_names	->  Name.invent_list
wenzelm@20090
  1357
wenzelm@20090
  1358
Note that low-level renaming rarely occurs in new code -- operations
wenzelm@20090
  1359
from structure Variable are used instead (see below).
wenzelm@20090
  1360
wenzelm@20040
  1361
* Pure: structure Variable provides fundamental operations for proper
wenzelm@20040
  1362
treatment of fixed/schematic variables in a context.  For example,
wenzelm@20040
  1363
Variable.import introduces fixes for schematics of given facts and
wenzelm@20040
  1364
Variable.export reverses the effect (up to renaming) -- this replaces
wenzelm@20040
  1365
various freeze_thaw operations.
wenzelm@20040
  1366
wenzelm@18567
  1367
* Pure: structure Goal provides simple interfaces for
wenzelm@17981
  1368
init/conclude/finish and tactical prove operations (replacing former
wenzelm@20040
  1369
Tactic.prove).  Goal.prove is the canonical way to prove results
wenzelm@20040
  1370
within a given context; Goal.prove_global is a degraded version for
wenzelm@20040
  1371
theory level goals, including a global Drule.standard.  Note that
wenzelm@20040
  1372
OldGoals.prove_goalw_cterm has long been obsolete, since it is
wenzelm@20040
  1373
ill-behaved in a local proof context (e.g. with local fixes/assumes or
wenzelm@20040
  1374
in a locale context).
wenzelm@17981
  1375
wenzelm@18815
  1376
* Isar: simplified treatment of user-level errors, using exception
wenzelm@18687
  1377
ERROR of string uniformly.  Function error now merely raises ERROR,
wenzelm@18686
  1378
without any side effect on output channels.  The Isar toplevel takes
wenzelm@18686
  1379
care of proper display of ERROR exceptions.  ML code may use plain
wenzelm@18686
  1380
handle/can/try; cat_error may be used to concatenate errors like this:
wenzelm@18686
  1381
wenzelm@18686
  1382
  ... handle ERROR msg => cat_error msg "..."
wenzelm@18686
  1383
wenzelm@18686
  1384
Toplevel ML code (run directly or through the Isar toplevel) may be
wenzelm@18687
  1385
embedded into the Isar toplevel with exception display/debug like
wenzelm@18687
  1386
this:
wenzelm@18686
  1387
wenzelm@18686
  1388
  Isar.toplevel (fn () => ...)
wenzelm@18686
  1389
wenzelm@18686
  1390
INCOMPATIBILITY, removed special transform_error facilities, removed
wenzelm@18686
  1391
obsolete variants of user-level exceptions (ERROR_MESSAGE,
wenzelm@18686
  1392
Context.PROOF, ProofContext.CONTEXT, Proof.STATE, ProofHistory.FAIL)
wenzelm@18686
  1393
-- use plain ERROR instead.
wenzelm@18686
  1394
wenzelm@18815
  1395
* Isar: theory setup now has type (theory -> theory), instead of a
wenzelm@18722
  1396
list.  INCOMPATIBILITY, may use #> to compose setup functions.
wenzelm@18722
  1397
wenzelm@18815
  1398
* Isar: installed ML toplevel pretty printer for type Proof.context,
wenzelm@18815
  1399
subject to ProofContext.debug/verbose flags.
wenzelm@18815
  1400
wenzelm@18815
  1401
* Isar: Toplevel.theory_to_proof admits transactions that modify the
wenzelm@18815
  1402
theory before entering a proof state.  Transactions now always see a
wenzelm@18815
  1403
quasi-functional intermediate checkpoint, both in interactive and
wenzelm@18590
  1404
batch mode.
wenzelm@18567
  1405
wenzelm@17878
  1406
* Simplifier: the simpset of a running simplification process now
wenzelm@17878
  1407
contains a proof context (cf. Simplifier.the_context), which is the
wenzelm@17878
  1408
very context that the initial simpset has been retrieved from (by
wenzelm@17890
  1409
simpset_of/local_simpset_of).  Consequently, all plug-in components
wenzelm@17878
  1410
(solver, looper etc.) may depend on arbitrary proof data.
wenzelm@17878
  1411
wenzelm@17878
  1412
* Simplifier.inherit_context inherits the proof context (plus the
wenzelm@17878
  1413
local bounds) of the current simplification process; any simproc
wenzelm@17878
  1414
etc. that calls the Simplifier recursively should do this!  Removed
wenzelm@17878
  1415
former Simplifier.inherit_bounds, which is already included here --
wenzelm@17890
  1416
INCOMPATIBILITY.  Tools based on low-level rewriting may even have to
wenzelm@17890
  1417
specify an explicit context using Simplifier.context/theory_context.
wenzelm@17878
  1418
wenzelm@17878
  1419
* Simplifier/Classical Reasoner: more abstract interfaces
wenzelm@17878
  1420
change_simpset/claset for modifying the simpset/claset reference of a
wenzelm@17878
  1421
theory; raw versions simpset/claset_ref etc. have been discontinued --
wenzelm@17878
  1422
INCOMPATIBILITY.
wenzelm@17878
  1423
wenzelm@18540
  1424
* Provers: more generic wrt. syntax of object-logics, avoid hardwired
wenzelm@18540
  1425
"Trueprop" etc.
wenzelm@18540
  1426
wenzelm@17878
  1427
wenzelm@20988
  1428
*** System ***
wenzelm@20988
  1429
wenzelm@21471
  1430
* settings: ML_IDENTIFIER -- which is appended to user specific heap
wenzelm@21471
  1431
locations -- now includes the Isabelle version identifier as well.
wenzelm@21471
  1432
This simplifies use of multiple Isabelle installations.
wenzelm@21471
  1433
wenzelm@20988
  1434
* isabelle-process: option -S (secure mode) disables some critical
wenzelm@20988
  1435
operations, notably runtime compilation and evaluation of ML source
wenzelm@20988
  1436
code.
wenzelm@20988
  1437
wenzelm@24210
  1438
* Experimental support for multithreading, using Poly/ML 5.1 (internal
wenzelm@24213
  1439
version from CVS). The theory loader exploits parallelism when
wenzelm@24213
  1440
processing independent theories, following the header specifications.
wenzelm@24213
  1441
The maximum number of worker threads is specified via usedir option -M
wenzelm@24213
  1442
or the "max-threads" setting in Proof General.  User-code needs to
wenzelm@24213
  1443
observe certain guidelines for thread-safe programming, see appendix A
wenzelm@24213
  1444
in the Isar Implementation manual.
wenzelm@24210
  1445
wenzelm@17754
  1446
wenzelm@17720
  1447
New in Isabelle2005 (October 2005)
wenzelm@17720
  1448
----------------------------------
wenzelm@14655
  1449
wenzelm@14655
  1450
*** General ***
wenzelm@14655
  1451
nipkow@15130
  1452
* Theory headers: the new header syntax for Isar theories is
nipkow@15130
  1453
nipkow@15130
  1454
  theory <name>
wenzelm@16234
  1455
  imports <theory1> ... <theoryN>
wenzelm@16234
  1456
  uses <file1> ... <fileM>
nipkow@15130
  1457
  begin
nipkow@15130
  1458
wenzelm@16234
  1459
where the 'uses' part is optional.  The previous syntax
wenzelm@16234
  1460
wenzelm@16234
  1461
  theory <name> = <theory1> + ... + <theoryN>:
wenzelm@16234
  1462
wenzelm@16717
  1463
will disappear in the next release.  Use isatool fixheaders to convert
wenzelm@16717
  1464
existing theory files.  Note that there is no change in ancient
wenzelm@17371
  1465
non-Isar theories now, but these will disappear soon.
nipkow@15130
  1466
berghofe@15475
  1467
* Theory loader: parent theories can now also be referred to via
wenzelm@16234
  1468
relative and absolute paths.
wenzelm@16234
  1469
wenzelm@17408
  1470
* Command 'find_theorems' searches for a list of criteria instead of a
wenzelm@17408
  1471
list of constants. Known criteria are: intro, elim, dest, name:string,
wenzelm@17408
  1472
simp:term, and any term. Criteria can be preceded by '-' to select
wenzelm@17408
  1473
theorems that do not match. Intro, elim, dest select theorems that
wenzelm@17408
  1474
match the current goal, name:s selects theorems whose fully qualified
wenzelm@17408
  1475
name contain s, and simp:term selects all simplification rules whose
wenzelm@17408
  1476
lhs match term.  Any other term is interpreted as pattern and selects
wenzelm@17408
  1477
all theorems matching the pattern. Available in ProofGeneral under
wenzelm@17408
  1478
'ProofGeneral -> Find Theorems' or C-c C-f.  Example:
wenzelm@16234
  1479
wenzelm@17275
  1480
  C-c C-f (100) "(_::nat) + _ + _" intro -name: "HOL."
wenzelm@16234
  1481
wenzelm@16234
  1482
prints the last 100 theorems matching the pattern "(_::nat) + _ + _",
wenzelm@16234
  1483
matching the current goal as introduction rule and not having "HOL."
wenzelm@16234
  1484
in their name (i.e. not being defined in theory HOL).
wenzelm@16013
  1485
wenzelm@17408
  1486
* Command 'thms_containing' has been discontinued in favour of
wenzelm@17408
  1487
'find_theorems'; INCOMPATIBILITY.
wenzelm@17408
  1488
wenzelm@17385
  1489
* Communication with Proof General is now 8bit clean, which means that
wenzelm@17385
  1490
Unicode text in UTF-8 encoding may be used within theory texts (both
wenzelm@17408
  1491
formal and informal parts).  Cf. option -U of the Isabelle Proof
wenzelm@17538
  1492
General interface.  Here are some simple examples (cf. src/HOL/ex):
wenzelm@17538
  1493
wenzelm@17538
  1494
  http://isabelle.in.tum.de/library/HOL/ex/Hebrew.html
wenzelm@17538
  1495
  http://isabelle.in.tum.de/library/HOL/ex/Chinese.html
wenzelm@17385
  1496
wenzelm@17425
  1497
* Improved efficiency of the Simplifier and, to a lesser degree, the
wenzelm@17425
  1498
Classical Reasoner.  Typical big applications run around 2 times
wenzelm@17425
  1499
faster.
wenzelm@17425
  1500
wenzelm@15703
  1501
wenzelm@15703
  1502
*** Document preparation ***
wenzelm@15703
  1503
wenzelm@16234
  1504
* Commands 'display_drafts' and 'print_drafts' perform simple output
wenzelm@16234
  1505
of raw sources.  Only those symbols that do not require additional
wenzelm@16234
  1506
LaTeX packages (depending on comments in isabellesym.sty) are
wenzelm@16234
  1507
displayed properly, everything else is left verbatim.  isatool display
wenzelm@16234
  1508
and isatool print are used as front ends (these are subject to the
wenzelm@16234
  1509
DVI/PDF_VIEWER and PRINT_COMMAND settings, respectively).
wenzelm@16234
  1510
wenzelm@17047
  1511
* Command tags control specific markup of certain regions of text,
wenzelm@17047
  1512
notably folding and hiding.  Predefined tags include "theory" (for
wenzelm@17047
  1513
theory begin and end), "proof" for proof commands, and "ML" for
wenzelm@17047
  1514
commands involving ML code; the additional tags "visible" and
wenzelm@17047
  1515
"invisible" are unused by default.  Users may give explicit tag
wenzelm@17047
  1516
specifications in the text, e.g. ''by %invisible (auto)''.  The
wenzelm@17047
  1517
interpretation of tags is determined by the LaTeX job during document
wenzelm@17047
  1518
preparation: see option -V of isatool usedir, or options -n and -t of
wenzelm@17047
  1519
isatool document, or even the LaTeX macros \isakeeptag, \isafoldtag,
wenzelm@17047
  1520
\isadroptag.
wenzelm@17047
  1521
wenzelm@17047
  1522
Several document versions may be produced at the same time via isatool
wenzelm@17047
  1523
usedir (the generated index.html will link all of them).  Typical
wenzelm@17047
  1524
specifications include ''-V document=theory,proof,ML'' to present
wenzelm@17047
  1525
theory/proof/ML parts faithfully, ''-V outline=/proof,/ML'' to fold
wenzelm@17047
  1526
proof and ML commands, and ''-V mutilated=-theory,-proof,-ML'' to omit
wenzelm@17047
  1527
these parts without any formal replacement text.  The Isabelle site
wenzelm@17047
  1528
default settings produce ''document'' and ''outline'' versions as
wenzelm@17047
  1529
specified above.
wenzelm@16234
  1530
haftmann@17402
  1531
* Several new antiquotations:
wenzelm@15979
  1532
wenzelm@15979
  1533
  @{term_type term} prints a term with its type annotated;
wenzelm@15979
  1534
wenzelm@15979
  1535
  @{typeof term} prints the type of a term;
wenzelm@15979
  1536
wenzelm@16234
  1537
  @{const const} is the same as @{term const}, but checks that the
wenzelm@16234
  1538
  argument is a known logical constant;
wenzelm@15979
  1539
wenzelm@15979
  1540
  @{term_style style term} and @{thm_style style thm} print a term or
wenzelm@16234
  1541
  theorem applying a "style" to it
wenzelm@16234
  1542
wenzelm@17117
  1543
  @{ML text}
wenzelm@17117
  1544
wenzelm@16234
  1545
Predefined styles are 'lhs' and 'rhs' printing the lhs/rhs of
wenzelm@16234
  1546
definitions, equations, inequations etc., 'concl' printing only the
schirmer@17393
  1547
conclusion of a meta-logical statement theorem, and 'prem1' .. 'prem19'
wenzelm@16234
  1548
to print the specified premise.  TermStyle.add_style provides an ML
wenzelm@16234
  1549
interface for introducing further styles.  See also the "LaTeX Sugar"
wenzelm@17117
  1550
document practical applications.  The ML antiquotation prints
wenzelm@17117
  1551
type-checked ML expressions verbatim.
wenzelm@16234
  1552
wenzelm@17259
  1553
* Markup commands 'chapter', 'section', 'subsection', 'subsubsection',
wenzelm@17259
  1554
and 'text' support optional locale specification '(in loc)', which
wenzelm@17269
  1555
specifies the default context for interpreting antiquotations.  For
wenzelm@17269
  1556
example: 'text (in lattice) {* @{thm inf_assoc}*}'.
wenzelm@17259
  1557
wenzelm@17259
  1558
* Option 'locale=NAME' of antiquotations specifies an alternative
wenzelm@17259
  1559
context interpreting the subsequent argument.  For example: @{thm
wenzelm@17269
  1560
[locale=lattice] inf_assoc}.
wenzelm@17259
  1561
wenzelm@17097
  1562
* Proper output of proof terms (@{prf ...} and @{full_prf ...}) within
wenzelm@17097
  1563
a proof context.
wenzelm@17097
  1564
wenzelm@17097
  1565
* Proper output of antiquotations for theory commands involving a
wenzelm@17097
  1566
proof context (such as 'locale' or 'theorem (in loc) ...').
wenzelm@17097
  1567
wenzelm@17193
  1568
* Delimiters of outer tokens (string etc.) now produce separate LaTeX
wenzelm@17193
  1569
macros (\isachardoublequoteopen, isachardoublequoteclose etc.).
wenzelm@17193
  1570
wenzelm@17193
  1571
* isatool usedir: new option -C (default true) controls whether option
wenzelm@17193
  1572
-D should include a copy of the original document directory; -C false
wenzelm@17193
  1573
prevents unwanted effects such as copying of administrative CVS data.
wenzelm@17193
  1574
wenzelm@16234
  1575
wenzelm@16234
  1576
*** Pure ***
wenzelm@16234
  1577
wenzelm@16234
  1578
* Considerably improved version of 'constdefs' command.  Now performs
wenzelm@16234
  1579
automatic type-inference of declared constants; additional support for
wenzelm@16234
  1580
local structure declarations (cf. locales and HOL records), see also
wenzelm@16234
  1581
isar-ref manual.  Potential INCOMPATIBILITY: need to observe strictly
wenzelm@16234
  1582
sequential dependencies of definitions within a single 'constdefs'
wenzelm@16234
  1583
section; moreover, the declared name needs to be an identifier.  If
wenzelm@16234
  1584
all fails, consider to fall back on 'consts' and 'defs' separately.
wenzelm@16234
  1585
wenzelm@16234
  1586
* Improved indexed syntax and implicit structures.  First of all,
wenzelm@16234
  1587
indexed syntax provides a notational device for subscripted
wenzelm@16234
  1588
application, using the new syntax \<^bsub>term\<^esub> for arbitrary
wenzelm@16234
  1589
expressions.  Secondly, in a local context with structure
wenzelm@16234
  1590
declarations, number indexes \<^sub>n or the empty index (default
wenzelm@16234
  1591
number 1) refer to a certain fixed variable implicitly; option
wenzelm@16234
  1592
show_structs controls printing of implicit structures.  Typical
wenzelm@16234
  1593
applications of these concepts involve record types and locales.
wenzelm@16234
  1594
wenzelm@16234
  1595
* New command 'no_syntax' removes grammar declarations (and
wenzelm@16234
  1596
translations) resulting from the given syntax specification, which is
wenzelm@16234
  1597
interpreted in the same manner as for the 'syntax' command.
wenzelm@16234
  1598
wenzelm@16234
  1599
* 'Advanced' translation functions (parse_translation etc.) may depend
wenzelm@16234
  1600
on the signature of the theory context being presently used for
wenzelm@16234
  1601
parsing/printing, see also isar-ref manual.
wenzelm@16234
  1602
wenzelm@16856
  1603
* Improved 'oracle' command provides a type-safe interface to turn an
wenzelm@16856
  1604
ML expression of type theory -> T -> term into a primitive rule of
wenzelm@16856
  1605
type theory -> T -> thm (i.e. the functionality of Thm.invoke_oracle
wenzelm@16856
  1606
is already included here); see also FOL/ex/IffExample.thy;
wenzelm@16856
  1607
INCOMPATIBILITY.
wenzelm@16856
  1608
wenzelm@17275
  1609
* axclass: name space prefix for class "c" is now "c_class" (was "c"
wenzelm@17275
  1610
before); "cI" is no longer bound, use "c.intro" instead.
wenzelm@17275
  1611
INCOMPATIBILITY.  This change avoids clashes of fact bindings for
wenzelm@17275
  1612
axclasses vs. locales.
wenzelm@17275
  1613
wenzelm@16234
  1614
* Improved internal renaming of symbolic identifiers -- attach primes
wenzelm@16234
  1615
instead of base 26 numbers.
wenzelm@16234
  1616
wenzelm@16234
  1617
* New flag show_question_marks controls printing of leading question
wenzelm@16234
  1618
marks in schematic variable names.
wenzelm@16234
  1619
wenzelm@16234
  1620
* In schematic variable names, *any* symbol following \<^isub> or
wenzelm@16234
  1621
\<^isup> is now treated as part of the base name.  For example, the
wenzelm@16234
  1622
following works without printing of awkward ".0" indexes:
wenzelm@16234
  1623
wenzelm@16234
  1624
  lemma "x\<^isub>1 = x\<^isub>2 ==> x\<^isub>2 = x\<^isub>1"
wenzelm@16234
  1625
    by simp
wenzelm@16234
  1626
wenzelm@16234
  1627
* Inner syntax includes (*(*nested*) comments*).
wenzelm@16234
  1628
wenzelm@17548
  1629
* Pretty printer now supports unbreakable blocks, specified in mixfix
wenzelm@16234
  1630
annotations as "(00...)".
wenzelm@16234
  1631
wenzelm@16234
  1632
* Clear separation of logical types and nonterminals, where the latter
wenzelm@16234
  1633
may only occur in 'syntax' specifications or type abbreviations.
wenzelm@16234
  1634
Before that distinction was only partially implemented via type class
wenzelm@16234
  1635
"logic" vs. "{}".  Potential INCOMPATIBILITY in rare cases of improper
wenzelm@16234
  1636
use of 'types'/'consts' instead of 'nonterminals'/'syntax'.  Some very
wenzelm@16234
  1637
exotic syntax specifications may require further adaption
wenzelm@17691
  1638
(e.g. Cube/Cube.thy).
wenzelm@16234
  1639
wenzelm@16234
  1640
* Removed obsolete type class "logic", use the top sort {} instead.
wenzelm@16234
  1641
Note that non-logical types should be declared as 'nonterminals'
wenzelm@16234
  1642
rather than 'types'.  INCOMPATIBILITY for new object-logic
wenzelm@16234
  1643
specifications.
wenzelm@16234
  1644
ballarin@17095
  1645
* Attributes 'induct' and 'cases': type or set names may now be
ballarin@17095
  1646
locally fixed variables as well.
ballarin@17095
  1647
wenzelm@16234
  1648
* Simplifier: can now control the depth to which conditional rewriting
wenzelm@16234
  1649
is traced via the PG menu Isabelle -> Settings -> Trace Simp Depth
wenzelm@16234
  1650
Limit.
wenzelm@16234
  1651
wenzelm@16234
  1652
* Simplifier: simplification procedures may now take the current
wenzelm@16234
  1653
simpset into account (cf. Simplifier.simproc(_i) / mk_simproc
wenzelm@16234
  1654
interface), which is very useful for calling the Simplifier
wenzelm@16234
  1655
recursively.  Minor INCOMPATIBILITY: the 'prems' argument of simprocs
wenzelm@16234
  1656
is gone -- use prems_of_ss on the simpset instead.  Moreover, the
wenzelm@16234
  1657
low-level mk_simproc no longer applies Logic.varify internally, to
wenzelm@16234
  1658
allow for use in a context of fixed variables.
wenzelm@16234
  1659
wenzelm@16234
  1660
* thin_tac now works even if the assumption being deleted contains !!
wenzelm@16234
  1661
or ==>.  More generally, erule now works even if the major premise of
wenzelm@16234
  1662
the elimination rule contains !! or ==>.
wenzelm@16234
  1663
wenzelm@17597
  1664
* Method 'rules' has been renamed to 'iprover'. INCOMPATIBILITY.
nipkow@17590
  1665
wenzelm@16234
  1666
* Reorganized bootstrapping of the Pure theories; CPure is now derived
wenzelm@16234
  1667
from Pure, which contains all common declarations already.  Both
wenzelm@16234
  1668
theories are defined via plain Isabelle/Isar .thy files.
wenzelm@16234
  1669
INCOMPATIBILITY: elements of CPure (such as the CPure.intro /
wenzelm@16234
  1670
CPure.elim / CPure.dest attributes) now appear in the Pure name space;
wenzelm@16234
  1671
use isatool fixcpure to adapt your theory and ML sources.
wenzelm@16234
  1672
wenzelm@16234
  1673
* New syntax 'name(i-j, i-, i, ...)' for referring to specific
wenzelm@16234
  1674
selections of theorems in named facts via index ranges.
wenzelm@16234
  1675
wenzelm@17097
  1676
* 'print_theorems': in theory mode, really print the difference
wenzelm@17097
  1677
wrt. the last state (works for interactive theory development only),
wenzelm@17097
  1678
in proof mode print all local facts (cf. 'print_facts');
wenzelm@17097
  1679
wenzelm@17397
  1680
* 'hide': option '(open)' hides only base names.
wenzelm@17397
  1681
wenzelm@17275
  1682
* More efficient treatment of intermediate checkpoints in interactive
wenzelm@17275
  1683
theory development.
wenzelm@17275
  1684
berghofe@17663
  1685
* Code generator is now invoked via code_module (incremental code
wenzelm@17664
  1686
generation) and code_library (modular code generation, ML structures
wenzelm@17664
  1687
for each theory).  INCOMPATIBILITY: new keywords 'file' and 'contains'
wenzelm@17664
  1688
must be quoted when used as identifiers.
wenzelm@17664
  1689
wenzelm@17664
  1690
* New 'value' command for reading, evaluating and printing terms using
wenzelm@17664
  1691
the code generator.  INCOMPATIBILITY: command keyword 'value' must be
wenzelm@17664
  1692
quoted when used as identifier.
berghofe@17663
  1693
wenzelm@16234
  1694
wenzelm@16234
  1695
*** Locales ***
ballarin@17095
  1696
wenzelm@17385
  1697
* New commands for the interpretation of locale expressions in
wenzelm@17385
  1698
theories (1), locales (2) and proof contexts (3).  These generate
wenzelm@17385
  1699
proof obligations from the expression specification.  After the
wenzelm@17385
  1700
obligations have been discharged, theorems of the expression are added
wenzelm@17385
  1701
to the theory, target locale or proof context.  The synopsis of the
wenzelm@17385
  1702
commands is a follows:
wenzelm@17385
  1703
ballarin@17095
  1704
  (1) interpretation expr inst
ballarin@17095
  1705
  (2) interpretation target < expr
ballarin@17095
  1706
  (3) interpret expr inst
wenzelm@17385
  1707
ballarin@17095
  1708
Interpretation in theories and proof contexts require a parameter
ballarin@17095
  1709
instantiation of terms from the current context.  This is applied to
wenzelm@17385
  1710
specifications and theorems of the interpreted expression.
wenzelm@17385
  1711
Interpretation in locales only permits parameter renaming through the
wenzelm@17385
  1712
locale expression.  Interpretation is smart in that interpretations
wenzelm@17385
  1713
that are active already do not occur in proof obligations, neither are
wenzelm@17385
  1714
instantiated theorems stored in duplicate.  Use 'print_interps' to
wenzelm@17385
  1715
inspect active interpretations of a particular locale.  For details,
ballarin@17436
  1716
see the Isar Reference manual.  Examples can be found in
ballarin@17436
  1717
HOL/Finite_Set.thy and HOL/Algebra/UnivPoly.thy.
wenzelm@16234
  1718
wenzelm@16234
  1719
INCOMPATIBILITY: former 'instantiate' has been withdrawn, use
wenzelm@16234
  1720
'interpret' instead.
wenzelm@16234
  1721
wenzelm@17385
  1722
* New context element 'constrains' for adding type constraints to
wenzelm@17385
  1723
parameters.
wenzelm@17385
  1724
wenzelm@17385
  1725
* Context expressions: renaming of parameters with syntax
wenzelm@17385
  1726
redeclaration.
ballarin@17095
  1727
ballarin@17095
  1728
* Locale declaration: 'includes' disallowed.
ballarin@17095
  1729
wenzelm@16234
  1730
* Proper static binding of attribute syntax -- i.e. types / terms /
wenzelm@16234
  1731
facts mentioned as arguments are always those of the locale definition
wenzelm@16234
  1732
context, independently of the context of later invocations.  Moreover,
wenzelm@16234
  1733
locale operations (renaming and type / term instantiation) are applied
wenzelm@16234
  1734
to attribute arguments as expected.
wenzelm@16234
  1735
wenzelm@16234
  1736
INCOMPATIBILITY of the ML interface: always pass Attrib.src instead of
wenzelm@16234
  1737
actual attributes; rare situations may require Attrib.attribute to
wenzelm@16234
  1738
embed those attributes into Attrib.src that lack concrete syntax.
wenzelm@16234
  1739
Attribute implementations need to cooperate properly with the static
wenzelm@16234
  1740
binding mechanism.  Basic parsers Args.XXX_typ/term/prop and
wenzelm@16234
  1741
Attrib.XXX_thm etc. already do the right thing without further
wenzelm@16234
  1742
intervention.  Only unusual applications -- such as "where" or "of"
wenzelm@16234
  1743
(cf. src/Pure/Isar/attrib.ML), which process arguments depending both
wenzelm@16234
  1744
on the context and the facts involved -- may have to assign parsed
wenzelm@16234
  1745
values to argument tokens explicitly.
wenzelm@16234
  1746
wenzelm@16234
  1747
* Changed parameter management in theorem generation for long goal
wenzelm@16234
  1748
statements with 'includes'.  INCOMPATIBILITY: produces a different
wenzelm@16234
  1749
theorem statement in rare situations.
wenzelm@16234
  1750
ballarin@17228
  1751
* Locale inspection command 'print_locale' omits notes elements.  Use
ballarin@17228
  1752
'print_locale!' to have them included in the output.
ballarin@17228
  1753
wenzelm@16234
  1754
wenzelm@16234
  1755
*** Provers ***
wenzelm@16234
  1756
wenzelm@16234
  1757
* Provers/hypsubst.ML: improved version of the subst method, for
wenzelm@16234
  1758
single-step rewriting: it now works in bound variable contexts. New is
wenzelm@16234
  1759
'subst (asm)', for rewriting an assumption.  INCOMPATIBILITY: may
wenzelm@16234
  1760
rewrite a different subterm than the original subst method, which is
wenzelm@16234
  1761
still available as 'simplesubst'.
wenzelm@16234
  1762
wenzelm@16234
  1763
* Provers/quasi.ML: new transitivity reasoners for transitivity only
wenzelm@16234
  1764
and quasi orders.
wenzelm@16234
  1765
wenzelm@16234
  1766
* Provers/trancl.ML: new transitivity reasoner for transitive and
wenzelm@16234
  1767
reflexive-transitive closure of relations.
wenzelm@16234
  1768
wenzelm@16234
  1769
* Provers/blast.ML: new reference depth_limit to make blast's depth
wenzelm@16234
  1770
limit (previously hard-coded with a value of 20) user-definable.
wenzelm@16234
  1771
wenzelm@16234
  1772
* Provers/simplifier.ML has been moved to Pure, where Simplifier.setup
wenzelm@16234
  1773
is peformed already.  Object-logics merely need to finish their
wenzelm@16234
  1774
initial simpset configuration as before.  INCOMPATIBILITY.
wenzelm@15703
  1775
berghofe@15475
  1776
schirmer@14700
  1777
*** HOL ***
schirmer@14700
  1778
wenzelm@16234
  1779
* Symbolic syntax of Hilbert Choice Operator is now as follows:
wenzelm@14878
  1780
wenzelm@14878
  1781
  syntax (epsilon)
wenzelm@14878
  1782
    "_Eps" :: "[pttrn, bool] => 'a"    ("(3\<some>_./ _)" [0, 10] 10)
wenzelm@14878
  1783
wenzelm@16234
  1784
The symbol \<some> is displayed as the alternative epsilon of LaTeX
wenzelm@16234
  1785
and x-symbol; use option '-m epsilon' to get it actually printed.
wenzelm@16234
  1786
Moreover, the mathematically important symbolic identifier \<epsilon>
wenzelm@16234
  1787
becomes available as variable, constant etc.  INCOMPATIBILITY,
wenzelm@16234
  1788
wenzelm@16234
  1789
* "x > y" abbreviates "y < x" and "x >= y" abbreviates "y <= x".
wenzelm@16234
  1790
Similarly for all quantifiers: "ALL x > y" etc.  The x-symbol for >=
wenzelm@17371
  1791
is \<ge>. New transitivity rules have been added to HOL/Orderings.thy to
avigad@17016
  1792
support corresponding Isar calculations.
wenzelm@16234
  1793
wenzelm@16234
  1794
* "{x:A. P}" abbreviates "{x. x:A & P}", and similarly for "\<in>"
wenzelm@16234
  1795
instead of ":".
wenzelm@16234
  1796
wenzelm@16234
  1797
* theory SetInterval: changed the syntax for open intervals:
wenzelm@16234
  1798
wenzelm@16234
  1799
  Old       New
wenzelm@16234
  1800
  {..n(}    {..<n}
wenzelm@16234
  1801
  {)n..}    {n<..}
wenzelm@16234
  1802
  {m..n(}   {m..<n}
wenzelm@16234
  1803
  {)m..n}   {m<..n}
wenzelm@16234
  1804
  {)m..n(}  {m<..<n}
wenzelm@16234
  1805
wenzelm@16234
  1806
The old syntax is still supported but will disappear in the next
wenzelm@16234
  1807
release.  For conversion use the following Emacs search and replace
wenzelm@16234
  1808
patterns (these are not perfect but work quite well):
nipkow@15046
  1809
nipkow@15046
  1810
  {)\([^\.]*\)\.\.  ->  {\1<\.\.}
nipkow@15046
  1811
  \.\.\([^(}]*\)(}  ->  \.\.<\1}
nipkow@15046
  1812
wenzelm@17533
  1813
* Theory Commutative_Ring (in Library): method comm_ring for proving
wenzelm@17533
  1814
equalities in commutative rings; method 'algebra' provides a generic
wenzelm@17533
  1815
interface.
wenzelm@17389
  1816
wenzelm@17389
  1817
* Theory Finite_Set: changed the syntax for 'setsum', summation over
wenzelm@16234
  1818
finite sets: "setsum (%x. e) A", which used to be "\<Sum>x:A. e", is
wenzelm@17371
  1819
now either "SUM x:A. e" or "\<Sum>x \<in> A. e". The bound variable can
paulson@17189
  1820
be a tuple pattern.
wenzelm@16234
  1821
wenzelm@16234
  1822
Some new syntax forms are available:
wenzelm@16234
  1823
wenzelm@16234
  1824
  "\<Sum>x | P. e"      for     "setsum (%x. e) {x. P}"
wenzelm@16234
  1825
  "\<Sum>x = a..b. e"   for     "setsum (%x. e) {a..b}"
wenzelm@16234
  1826
  "\<Sum>x = a..<b. e"  for     "setsum (%x. e) {a..<b}"
wenzelm@16234
  1827
  "\<Sum>x < k. e"      for     "setsum (%x. e) {..<k}"
wenzelm@16234
  1828
wenzelm@16234
  1829
The latter form "\<Sum>x < k. e" used to be based on a separate
wenzelm@16234
  1830
function "Summation", which has been discontinued.
wenzelm@16234
  1831
wenzelm@16234
  1832
* theory Finite_Set: in structured induction proofs, the insert case
wenzelm@16234
  1833
is now 'case (insert x F)' instead of the old counterintuitive 'case
wenzelm@16234
  1834
(insert F x)'.
wenzelm@16234
  1835
wenzelm@16234
  1836
* The 'refute' command has been extended to support a much larger
wenzelm@16234
  1837
fragment of HOL, including axiomatic type classes, constdefs and
wenzelm@16234
  1838
typedefs, inductive datatypes and recursion.
wenzelm@16234
  1839
webertj@17700
  1840
* New tactics 'sat' and 'satx' to prove propositional tautologies.
webertj@17700
  1841
Requires zChaff with proof generation to be installed.  See
webertj@17700
  1842
HOL/ex/SAT_Examples.thy for examples.
webertj@17619
  1843
wenzelm@16234
  1844
* Datatype induction via method 'induct' now preserves the name of the
wenzelm@16234
  1845
induction variable. For example, when proving P(xs::'a list) by
wenzelm@16234
  1846
induction on xs, the induction step is now P(xs) ==> P(a#xs) rather
wenzelm@16234
  1847
than P(list) ==> P(a#list) as previously.  Potential INCOMPATIBILITY
wenzelm@16234
  1848
in unstructured proof scripts.
wenzelm@16234
  1849
wenzelm@16234
  1850
* Reworked implementation of records.  Improved scalability for
wenzelm@16234
  1851
records with many fields, avoiding performance problems for type
wenzelm@16234
  1852
inference. Records are no longer composed of nested field types, but
wenzelm@16234
  1853
of nested extension types. Therefore the record type only grows linear
wenzelm@16234
  1854
in the number of extensions and not in the number of fields.  The
wenzelm@16234
  1855
top-level (users) view on records is preserved.  Potential
wenzelm@16234
  1856
INCOMPATIBILITY only in strange cases, where the theory depends on the
wenzelm@16234
  1857
old record representation. The type generated for a record is called
wenzelm@16234
  1858
<record_name>_ext_type.
wenzelm@16234
  1859
wenzelm@16234
  1860
Flag record_quick_and_dirty_sensitive can be enabled to skip the
wenzelm@16234
  1861
proofs triggered by a record definition or a simproc (if
wenzelm@16234
  1862
quick_and_dirty is enabled).  Definitions of large records can take
wenzelm@16234
  1863
quite long.
wenzelm@16234
  1864
wenzelm@16234
  1865
New simproc record_upd_simproc for simplification of multiple record
wenzelm@16234
  1866
updates enabled by default.  Moreover, trivial updates are also
wenzelm@16234
  1867
removed: r(|x := x r|) = r.  INCOMPATIBILITY: old proofs break
wenzelm@16234
  1868
occasionally, since simplification is more powerful by default.
wenzelm@16234
  1869
wenzelm@17275
  1870
* typedef: proper support for polymorphic sets, which contain extra
wenzelm@17275
  1871
type-variables in the term.
wenzelm@17275
  1872
wenzelm@16234
  1873
* Simplifier: automatically reasons about transitivity chains
wenzelm@16234
  1874
involving "trancl" (r^+) and "rtrancl" (r^*) by setting up tactics
wenzelm@16234
  1875
provided by Provers/trancl.ML as additional solvers.  INCOMPATIBILITY:
wenzelm@16234
  1876
old proofs break occasionally as simplification may now solve more
wenzelm@16234
  1877
goals than previously.
wenzelm@16234
  1878
wenzelm@16234
  1879
* Simplifier: converts x <= y into x = y if assumption y <= x is
wenzelm@16234
  1880
present.  Works for all partial orders (class "order"), in particular
wenzelm@16234
  1881
numbers and sets.  For linear orders (e.g. numbers) it treats ~ x < y
wenzelm@16234
  1882
just like y <= x.
wenzelm@16234
  1883
wenzelm@16234
  1884
* Simplifier: new simproc for "let x = a in f x".  If a is a free or
wenzelm@16234
  1885
bound variable or a constant then the let is unfolded.  Otherwise
wenzelm@16234
  1886
first a is simplified to b, and then f b is simplified to g. If
wenzelm@16234
  1887
possible we abstract b from g arriving at "let x = b in h x",
wenzelm@16234
  1888
otherwise we unfold the let and arrive at g.  The simproc can be
wenzelm@16234
  1889
enabled/disabled by the reference use_let_simproc.  Potential
wenzelm@16234
  1890
INCOMPATIBILITY since simplification is more powerful by default.
webertj@15776
  1891
paulson@16563
  1892
* Classical reasoning: the meson method now accepts theorems as arguments.
paulson@16563
  1893
paulson@17595
  1894
* Prover support: pre-release of the Isabelle-ATP linkup, which runs background
paulson@17595
  1895
jobs to provide advice on the provability of subgoals.
paulson@17595
  1896
wenzelm@16891
  1897
* Theory OrderedGroup and Ring_and_Field: various additions and
wenzelm@16891
  1898
improvements to faciliate calculations involving equalities and
wenzelm@16891
  1899
inequalities.
wenzelm@16891
  1900
wenzelm@16891
  1901
The following theorems have been eliminated or modified
wenzelm@16891
  1902
(INCOMPATIBILITY):
avigad@16888
  1903
avigad@16888
  1904
  abs_eq             now named abs_of_nonneg
wenzelm@17371
  1905
  abs_of_ge_0        now named abs_of_nonneg
wenzelm@17371
  1906
  abs_minus_eq       now named abs_of_nonpos
avigad@16888
  1907
  imp_abs_id         now named abs_of_nonneg
avigad@16888
  1908
  imp_abs_neg_id     now named abs_of_nonpos
avigad@16888
  1909
  mult_pos           now named mult_pos_pos
avigad@16888
  1910
  mult_pos_le        now named mult_nonneg_nonneg
avigad@16888
  1911
  mult_pos_neg_le    now named mult_nonneg_nonpos
avigad@16888
  1912
  mult_pos_neg2_le   now named mult_nonneg_nonpos2
avigad@16888
  1913
  mult_neg           now named mult_neg_neg
avigad@16888
  1914
  mult_neg_le        now named mult_nonpos_nonpos
avigad@16888
  1915
obua@23495
  1916
* The following lemmas in Ring_and_Field have been added to the simplifier:
obua@23495
  1917
     
obua@23495
  1918
     zero_le_square
obua@23495
  1919
     not_square_less_zero 
obua@23495
  1920
obua@23495
  1921
  The following lemmas have been deleted from Real/RealPow:
obua@23495
  1922
  
obua@23495
  1923
     realpow_zero_zero
obua@23495
  1924
     realpow_two
obua@23495
  1925
     realpow_less
obua@23495
  1926
     zero_le_power
obua@23495
  1927
     realpow_two_le
obua@23495
  1928
     abs_realpow_two
obua@23495
  1929
     realpow_two_abs     
obua@23495
  1930
wenzelm@16891
  1931
* Theory Parity: added rules for simplifying exponents.
wenzelm@16891
  1932
nipkow@17092
  1933
* Theory List:
nipkow@17092
  1934
nipkow@17092
  1935
The following theorems have been eliminated or modified
nipkow@17092
  1936
(INCOMPATIBILITY):
nipkow@17092
  1937
nipkow@17092
  1938
  list_all_Nil       now named list_all.simps(1)
nipkow@17092
  1939
  list_all_Cons      now named list_all.simps(2)
nipkow@17092
  1940
  list_all_conv      now named list_all_iff
nipkow@17092
  1941
  set_mem_eq         now named mem_iff
nipkow@17092
  1942
wenzelm@16929
  1943
* Theories SetsAndFunctions and BigO (see HOL/Library) support
wenzelm@16929
  1944
asymptotic "big O" calculations.  See the notes in BigO.thy.
wenzelm@16929
  1945
avigad@16888
  1946
avigad@16888
  1947
*** HOL-Complex ***
avigad@16888
  1948
wenzelm@16891
  1949
* Theory RealDef: better support for embedding natural numbers and
wenzelm@16891
  1950
integers in the reals.
wenzelm@16891
  1951
wenzelm@16891
  1952
The following theorems have been eliminated or modified
wenzelm@16891
  1953
(INCOMPATIBILITY):
wenzelm@16891
  1954
avigad@17016
  1955
  exp_ge_add_one_self  now requires no hypotheses
avigad@17016
  1956
  real_of_int_add      reversed direction of equality (use [symmetric])
avigad@17016
  1957
  real_of_int_minus    reversed direction of equality (use [symmetric])
avigad@17016
  1958
  real_of_int_diff     reversed direction of equality (use [symmetric])
avigad@17016
  1959
  real_of_int_mult     reversed direction of equality (use [symmetric])
wenzelm@16891
  1960
wenzelm@16891
  1961
* Theory RComplete: expanded support for floor and ceiling functions.
avigad@16888
  1962
avigad@16962
  1963
* Theory Ln is new, with properties of the natural logarithm
avigad@16962
  1964
wenzelm@17423
  1965
* Hyperreal: There is a new type constructor "star" for making
wenzelm@17423
  1966
nonstandard types.  The old type names are now type synonyms:
wenzelm@17423
  1967
wenzelm@17423
  1968
  hypreal = real star
wenzelm@17423
  1969
  hypnat = nat star
wenzelm@17423
  1970
  hcomplex = complex star
wenzelm@17423
  1971
wenzelm@17423
  1972
* Hyperreal: Many groups of similarly-defined constants have been
huffman@17442
  1973
replaced by polymorphic versions (INCOMPATIBILITY):
wenzelm@17423
  1974
wenzelm@17423
  1975
  star_of <-- hypreal_of_real, hypnat_of_nat, hcomplex_of_complex
wenzelm@17423
  1976
wenzelm@17423
  1977
  starset      <-- starsetNat, starsetC
wenzelm@17423
  1978
  *s*          <-- *sNat*, *sc*
wenzelm@17423
  1979
  starset_n    <-- starsetNat_n, starsetC_n
wenzelm@17423
  1980
  *sn*         <-- *sNatn*, *scn*
wenzelm@17423
  1981
  InternalSets <-- InternalNatSets, InternalCSets
wenzelm@17423
  1982
huffman@17442
  1983
  starfun      <-- starfun{Nat,Nat2,C,RC,CR}
wenzelm@17423
  1984
  *f*          <-- *fNat*, *fNat2*, *fc*, *fRc*, *fcR*
huffman@17442
  1985
  starfun_n    <-- starfun{Nat,Nat2,C,RC,CR}_n
wenzelm@17423
  1986
  *fn*         <-- *fNatn*, *fNat2n*, *fcn*, *fRcn*, *fcRn*
huffman@17442
  1987
  InternalFuns <-- InternalNatFuns, InternalNatFuns2, Internal{C,RC,CR}Funs
wenzelm@17423
  1988
wenzelm@17423
  1989
* Hyperreal: Many type-specific theorems have been removed in favor of
huffman@17442
  1990
theorems specific to various axiomatic type classes (INCOMPATIBILITY):
huffman@17442
  1991
huffman@17442
  1992
  add_commute <-- {hypreal,hypnat,hcomplex}_add_commute
huffman@17442
  1993
  add_assoc   <-- {hypreal,hypnat,hcomplex}_add_assocs
huffman@17442
  1994
  OrderedGroup.add_0 <-- {hypreal,hypnat,hcomplex}_add_zero_left
huffman@17442
  1995
  OrderedGroup.add_0_right <-- {hypreal,hcomplex}_add_zero_right
wenzelm@17423
  1996
  right_minus <-- hypreal_add_minus
huffman@17442
  1997
  left_minus <-- {hypreal,hcomplex}_add_minus_left
huffman@17442
  1998
  mult_commute <-- {hypreal,hypnat,hcomplex}_mult_commute
huffman@17442
  1999
  mult_assoc <-- {hypreal,hypnat,hcomplex}_mult_assoc
huffman@17442
  2000
  mult_1_left <-- {hypreal,hypnat}_mult_1, hcomplex_mult_one_left
wenzelm@17423
  2001
  mult_1_right <-- hcomplex_mult_one_right
wenzelm@17423
  2002
  mult_zero_left <-- hcomplex_mult_zero_left
huffman@17442
  2003
  left_distrib <-- {hypreal,hypnat,hcomplex}_add_mult_distrib
wenzelm@17423
  2004
  right_distrib <-- hypnat_add_mult_distrib2
huffman@17442
  2005
  zero_neq_one <-- {hypreal,hypnat,hcomplex}_zero_not_eq_one
wenzelm@17423
  2006
  right_inverse <-- hypreal_mult_inverse
wenzelm@17423
  2007
  left_inverse <-- hypreal_mult_inverse_left, hcomplex_mult_inv_left
huffman@17442
  2008
  order_refl <-- {hypreal,hypnat}_le_refl
huffman@17442
  2009
  order_trans <-- {hypreal,hypnat}_le_trans
huffman@17442
  2010
  order_antisym <-- {hypreal,hypnat}_le_anti_sym
huffman@17442
  2011
  order_less_le <-- {hypreal,hypnat}_less_le
huffman@17442
  2012
  linorder_linear <-- {hypreal,hypnat}_le_linear
huffman@17442
  2013
  add_left_mono <-- {hypreal,hypnat}_add_left_mono
huffman@17442
  2014
  mult_strict_left_mono <-- {hypreal,hypnat}_mult_less_mono2
wenzelm@17423
  2015
  add_nonneg_nonneg <-- hypreal_le_add_order
wenzelm@17423
  2016
wenzelm@17423
  2017
* Hyperreal: Separate theorems having to do with type-specific
wenzelm@17423
  2018
versions of constants have been merged into theorems that apply to the
huffman@17442
  2019
new polymorphic constants (INCOMPATIBILITY):
huffman@17442
  2020
huffman@17442
  2021
  STAR_UNIV_set <-- {STAR_real,NatStar_real,STARC_complex}_set
huffman@17442
  2022
  STAR_empty_set <-- {STAR,NatStar,STARC}_empty_set
huffman@17442
  2023
  STAR_Un <-- {STAR,NatStar,STARC}_Un
huffman@17442
  2024
  STAR_Int <-- {STAR,NatStar,STARC}_Int
huffman@17442
  2025
  STAR_Compl <-- {STAR,NatStar,STARC}_Compl
huffman@17442
  2026
  STAR_subset <-- {STAR,NatStar,STARC}_subset
huffman@17442
  2027
  STAR_mem <-- {STAR,NatStar,STARC}_mem
huffman@17442
  2028
  STAR_mem_Compl <-- {STAR,STARC}_mem_Compl
huffman@17442
  2029
  STAR_diff <-- {STAR,STARC}_diff
huffman@17442
  2030
  STAR_star_of_image_subset <-- {STAR_hypreal_of_real, NatStar_hypreal_of_real,
huffman@17442
  2031
    STARC_hcomplex_of_complex}_image_subset
huffman@17442
  2032
  starset_n_Un <-- starset{Nat,C}_n_Un
huffman@17442
  2033
  starset_n_Int <-- starset{Nat,C}_n_Int
huffman@17442
  2034
  starset_n_Compl <-- starset{Nat,C}_n_Compl
huffman@17442
  2035
  starset_n_diff <-- starset{Nat,C}_n_diff
huffman@17442
  2036
  InternalSets_Un <-- Internal{Nat,C}Sets_Un
huffman@17442
  2037
  InternalSets_Int <-- Internal{Nat,C}Sets_Int
huffman@17442
  2038
  InternalSets_Compl <-- Internal{Nat,C}Sets_Compl
huffman@17442
  2039
  InternalSets_diff <-- Internal{Nat,C}Sets_diff
huffman@17442
  2040
  InternalSets_UNIV_diff <-- Internal{Nat,C}Sets_UNIV_diff
huffman@17442
  2041
  InternalSets_starset_n <-- Internal{Nat,C}Sets_starset{Nat,C}_n
huffman@17442
  2042
  starset_starset_n_eq <-- starset{Nat,C}_starset{Nat,C}_n_eq
huffman@17442
  2043
  starset_n_starset <-- starset{Nat,C}_n_starset{Nat,C}
huffman@17442
  2044
  starfun_n_starfun <-- starfun{Nat,Nat2,C,RC,CR}_n_starfun{Nat,Nat2,C,RC,CR}
huffman@17442
  2045
  starfun <-- starfun{Nat,Nat2,C,RC,CR}
huffman@17442
  2046
  starfun_mult <-- starfun{Nat,Nat2,C,RC,CR}_mult
huffman@17442
  2047
  starfun_add <-- starfun{Nat,Nat2,C,RC,CR}_add
huffman@17442
  2048
  starfun_minus <-- starfun{Nat,Nat2,C,RC,CR}_minus
huffman@17442
  2049
  starfun_diff <-- starfun{C,RC,CR}_diff
huffman@17442
  2050
  starfun_o <-- starfun{NatNat2,Nat2,_stafunNat,C,C_starfunRC,_starfunCR}_o
huffman@17442
  2051
  starfun_o2 <-- starfun{NatNat2,_stafunNat,C,C_starfunRC,_starfunCR}_o2
huffman@17442
  2052
  starfun_const_fun <-- starfun{Nat,Nat2,C,RC,CR}_const_fun
huffman@17442
  2053
  starfun_inverse <-- starfun{Nat,C,RC,CR}_inverse
huffman@17442
  2054
  starfun_eq <-- starfun{Nat,Nat2,C,RC,CR}_eq
huffman@17442
  2055
  starfun_eq_iff <-- starfun{C,RC,CR}_eq_iff
wenzelm@17423
  2056
  starfun_Id <-- starfunC_Id
huffman@17442
  2057
  starfun_approx <-- starfun{Nat,CR}_approx
huffman@17442
  2058
  starfun_capprox <-- starfun{C,RC}_capprox
wenzelm@17423
  2059
  starfun_abs <-- starfunNat_rabs
huffman@17442
  2060
  starfun_lambda_cancel <-- starfun{C,CR,RC}_lambda_cancel
huffman@17442
  2061
  starfun_lambda_cancel2 <-- starfun{C,CR,RC}_lambda_cancel2
wenzelm@17423
  2062
  starfun_mult_HFinite_approx <-- starfunCR_mult_HFinite_capprox
huffman@17442
  2063
  starfun_mult_CFinite_capprox <-- starfun{C,RC}_mult_CFinite_capprox
huffman@17442
  2064
  starfun_add_capprox <-- starfun{C,RC}_add_capprox
wenzelm@17423
  2065
  starfun_add_approx <-- starfunCR_add_approx
wenzelm@17423
  2066
  starfun_inverse_inverse <-- starfunC_inverse_inverse
huffman@17442
  2067
  starfun_divide <-- starfun{C,CR,RC}_divide
huffman@17442
  2068
  starfun_n <-- starfun{Nat,C}_n
huffman@17442
  2069
  starfun_n_mult <-- starfun{Nat,C}_n_mult
huffman@17442
  2070
  starfun_n_add <-- starfun{Nat,C}_n_add
wenzelm@17423
  2071
  starfun_n_add_minus <-- starfunNat_n_add_minus
huffman@17442
  2072
  starfun_n_const_fun <-- starfun{Nat,C}_n_const_fun
huffman@17442
  2073
  starfun_n_minus <-- starfun{Nat,C}_n_minus
huffman@17442
  2074
  starfun_n_eq <-- starfun{Nat,C}_n_eq
huffman@17442
  2075
huffman@17442
  2076
  star_n_add <-- {hypreal,hypnat,hcomplex}_add
huffman@17442
  2077
  star_n_minus <-- {hypreal,hcomplex}_minus
huffman@17442
  2078
  star_n_diff <-- {hypreal,hcomplex}_diff
huffman@17442
  2079
  star_n_mult <-- {hypreal,hcomplex}_mult
huffman@17442
  2080
  star_n_inverse <-- {hypreal,hcomplex}_inverse
huffman@17442
  2081
  star_n_le <-- {hypreal,hypnat}_le
huffman@17442
  2082
  star_n_less <-- {hypreal,hypnat}_less
huffman@17442
  2083
  star_n_zero_num <-- {hypreal,hypnat,hcomplex}_zero_num
huffman@17442
  2084
  star_n_one_num <-- {hypreal,hypnat,hcomplex}_one_num
wenzelm@17423
  2085
  star_n_abs <-- hypreal_hrabs
wenzelm@17423
  2086
  star_n_divide <-- hcomplex_divide
wenzelm@17423
  2087
huffman@17442
  2088
  star_of_add <-- {hypreal_of_real,hypnat_of_nat,hcomplex_of_complex}_add
huffman@17442
  2089
  star_of_minus <-- {hypreal_of_real,hcomplex_of_complex}_minus
wenzelm@17423
  2090
  star_of_diff <-- hypreal_of_real_diff
huffman@17442
  2091
  star_of_mult <-- {hypreal_of_real,hypnat_of_nat,hcomplex_of_complex}_mult
huffman@17442
  2092
  star_of_one <-- {hypreal_of_real,hcomplex_of_complex}_one
huffman@17442
  2093
  star_of_zero <-- {hypreal_of_real,hypnat_of_nat,hcomplex_of_complex}_zero
huffman@17442
  2094
  star_of_le <-- {hypreal_of_real,hypnat_of_nat}_le_iff
huffman@17442
  2095
  star_of_less <-- {hypreal_of_real,hypnat_of_nat}_less_iff
huffman@17442
  2096
  star_of_eq <-- {hypreal_of_real,hypnat_of_nat,hcomplex_of_complex}_eq_iff
huffman@17442
  2097
  star_of_inverse <-- {hypreal_of_real,hcomplex_of_complex}_inverse
huffman@17442
  2098
  star_of_divide <-- {hypreal_of_real,hcomplex_of_complex}_divide
huffman@17442
  2099
  star_of_of_nat <-- {hypreal_of_real,hcomplex_of_complex}_of_nat
huffman@17442
  2100
  star_of_of_int <-- {hypreal_of_real,hcomplex_of_complex}_of_int
huffman@17442
  2101
  star_of_number_of <-- {hypreal,hcomplex}_number_of
wenzelm@17423
  2102
  star_of_number_less <-- number_of_less_hypreal_of_real_iff
wenzelm@17423
  2103
  star_of_number_le <-- number_of_le_hypreal_of_real_iff
wenzelm@17423
  2104
  star_of_eq_number <-- hypreal_of_real_eq_number_of_iff
wenzelm@17423
  2105
  star_of_less_number <-- hypreal_of_real_less_number_of_iff
wenzelm@17423
  2106
  star_of_le_number <-- hypreal_of_real_le_number_of_iff
wenzelm@17423
  2107
  star_of_power <-- hypreal_of_real_power
wenzelm@17423
  2108
  star_of_eq_0 <-- hcomplex_of_complex_zero_iff
wenzelm@17423
  2109
huffman@17442
  2110
* Hyperreal: new method "transfer" that implements the transfer
huffman@17442
  2111
principle of nonstandard analysis. With a subgoal that mentions
huffman@17442
  2112
nonstandard types like "'a star", the command "apply transfer"
huffman@17442
  2113
replaces it with an equivalent one that mentions only standard types.
huffman@17442
  2114
To be successful, all free variables must have standard types; non-
huffman@17442
  2115
standard variables must have explicit universal quantifiers.
huffman@17442
  2116
wenzelm@17641
  2117
* Hyperreal: A theory of Taylor series.
wenzelm@17641
  2118
wenzelm@14655
  2119
wenzelm@14682
  2120
*** HOLCF ***
wenzelm@14682
  2121
wenzelm@17533
  2122
* Discontinued special version of 'constdefs' (which used to support
wenzelm@17533
  2123
continuous functions) in favor of the general Pure one with full
wenzelm@17533
  2124
type-inference.
wenzelm@17533
  2125
wenzelm@17533
  2126
* New simplification procedure for solving continuity conditions; it
wenzelm@17533
  2127
is much faster on terms with many nested lambda abstractions (cubic
huffman@17442
  2128
instead of exponential time).
huffman@17442
  2129
wenzelm@17533
  2130
* New syntax for domain package: selector names are now optional.
huffman@17442
  2131
Parentheses should be omitted unless argument is lazy, for example:
huffman@17442
  2132
huffman@17442
  2133
  domain 'a stream = cons "'a" (lazy "'a stream")
huffman@17442
  2134
wenzelm@17533
  2135
* New command 'fixrec' for defining recursive functions with pattern
wenzelm@17533
  2136
matching; defining multiple functions with mutual recursion is also
wenzelm@17533
  2137
supported.  Patterns may include the constants cpair, spair, up, sinl,
wenzelm@17533
  2138
sinr, or any data constructor defined by the domain package. The given
wenzelm@17533
  2139
equations are proven as rewrite rules. See HOLCF/ex/Fixrec_ex.thy for
wenzelm@17533
  2140
syntax and examples.
wenzelm@17533
  2141
wenzelm@17533
  2142
* New commands 'cpodef' and 'pcpodef' for defining predicate subtypes
wenzelm@17533
  2143
of cpo and pcpo types. Syntax is exactly like the 'typedef' command,
wenzelm@17533
  2144
but the proof obligation additionally includes an admissibility
wenzelm@17533
  2145
requirement. The packages generate instances of class cpo or pcpo,
wenzelm@17533
  2146
with continuity and strictness theorems for Rep and Abs.
huffman@17442
  2147
huffman@17584
  2148
* HOLCF: Many theorems have been renamed according to a more standard naming
huffman@17584
  2149
scheme (INCOMPATIBILITY):
huffman@17584
  2150
huffman@17584
  2151
  foo_inject:  "foo$x = foo$y ==> x = y"
huffman@17584
  2152
  foo_eq:      "(foo$x = foo$y) = (x = y)"
huffman@17584
  2153
  foo_less:    "(foo$x << foo$y) = (x << y)"
huffman@17584
  2154
  foo_strict:  "foo$UU = UU"
huffman@17584
  2155
  foo_defined: "... ==> foo$x ~= UU"
huffman@17584
  2156
  foo_defined_iff: "(foo$x = UU) = (x = UU)"
huffman@17584
  2157
wenzelm@14682
  2158
paulson@14885
  2159
*** ZF ***
paulson@14885
  2160
wenzelm@16234
  2161
* ZF/ex: theories Group and Ring provide examples in abstract algebra,
wenzelm@16234
  2162
including the First Isomorphism Theorem (on quotienting by the kernel
wenzelm@16234
  2163
of a homomorphism).
wenzelm@15089
  2164
wenzelm@15089
  2165
* ZF/Simplifier: install second copy of type solver that actually
wenzelm@16234
  2166
makes use of TC rules declared to Isar proof contexts (or locales);
wenzelm@16234
  2167
the old version is still required for ML proof scripts.
wenzelm@15703
  2168
wenzelm@15703
  2169
wenzelm@17445
  2170
*** Cube ***
wenzelm@17445
  2171
wenzelm@17445
  2172
* Converted to Isar theory format; use locales instead of axiomatic
wenzelm@17445
  2173
theories.
wenzelm@17445
  2174
wenzelm@17445
  2175
wenzelm@15703
  2176
*** ML ***
wenzelm@15703
  2177
haftmann@21339
  2178
* Pure/library.ML: added ##>, ##>>, #>> -- higher-order counterparts
haftmann@21339
  2179
for ||>, ||>>, |>>,
haftmann@21339
  2180
wenzelm@15973
  2181
* Pure/library.ML no longer defines its own option datatype, but uses
wenzelm@16234
  2182
that of the SML basis, which has constructors NONE and SOME instead of
wenzelm@16234
  2183
None and Some, as well as exception Option.Option instead of OPTION.
wenzelm@16234
  2184
The functions the, if_none, is_some, is_none have been adapted
wenzelm@16234
  2185
accordingly, while Option.map replaces apsome.
wenzelm@15973
  2186
wenzelm@16860
  2187
* Pure/library.ML: the exception LIST has been given up in favour of
wenzelm@16860
  2188
the standard exceptions Empty and Subscript, as well as
wenzelm@16860
  2189
Library.UnequalLengths.  Function like Library.hd and Library.tl are
wenzelm@16860
  2190
superceded by the standard hd and tl functions etc.
wenzelm@16860
  2191
wenzelm@16860
  2192
A number of basic list functions are no longer exported to the ML
wenzelm@16860
  2193
toplevel, as they are variants of predefined functions.  The following
wenzelm@16234
  2194
suggests how one can translate existing code:
wenzelm@15973
  2195
wenzelm@15973
  2196
    rev_append xs ys = List.revAppend (xs, ys)
wenzelm@15973
  2197
    nth_elem (i, xs) = List.nth (xs, i)
wenzelm@15973
  2198
    last_elem xs = List.last xs
wenzelm@15973
  2199
    flat xss = List.concat xss
wenzelm@16234
  2200
    seq fs = List.app fs
wenzelm@15973
  2201
    partition P xs = List.partition P xs
wenzelm@15973
  2202
    mapfilter f xs = List.mapPartial f xs
wenzelm@15973
  2203
wenzelm@16860
  2204
* Pure/library.ML: several combinators for linear functional
wenzelm@16860
  2205
transformations, notably reverse application and composition:
wenzelm@16860
  2206
wenzelm@17371
  2207
  x |> f                f #> g
wenzelm@17371
  2208
  (x, y) |-> f          f #-> g
wenzelm@16860
  2209
haftmann@17495
  2210
* Pure/library.ML: introduced/changed precedence of infix operators:
haftmann@17495
  2211
haftmann@17495
  2212
  infix 1 |> |-> ||> ||>> |>> |>>> #> #->;
haftmann@17495
  2213
  infix 2 ?;
haftmann@17495
  2214
  infix 3 o oo ooo oooo;
haftmann@17495
  2215
  infix 4 ~~ upto downto;
haftmann@17495
  2216
haftmann@17495
  2217
Maybe INCOMPATIBILITY when any of those is used in conjunction with other
haftmann@17495
  2218
infix operators.
haftmann@17495
  2219
wenzelm@17408
  2220
* Pure/library.ML: natural list combinators fold, fold_rev, and
haftmann@16869
  2221
fold_map support linear functional transformations and nesting.  For
wenzelm@16860
  2222
example:
wenzelm@16860
  2223
wenzelm@16860
  2224
  fold f [x1, ..., xN] y =
wenzelm@16860
  2225
    y |> f x1 |> ... |> f xN
wenzelm@16860
  2226
wenzelm@16860
  2227
  (fold o fold) f [xs1, ..., xsN] y =
wenzelm@16860
  2228
    y |> fold f xs1 |> ... |> fold f xsN
wenzelm@16860
  2229
wenzelm@16860
  2230
  fold f [x1, ..., xN] =
wenzelm@16860
  2231
    f x1 #> ... #> f xN
wenzelm@16860
  2232
wenzelm@16860
  2233
  (fold o fold) f [xs1, ..., xsN] =
wenzelm@16860
  2234
    fold f xs1 #> ... #> fold f xsN
wenzelm@16860
  2235
wenzelm@17408
  2236
* Pure/library.ML: the following selectors on type 'a option are
wenzelm@17408
  2237
available:
wenzelm@17408
  2238
wenzelm@17408
  2239
  the:               'a option -> 'a  (*partial*)
wenzelm@17408
  2240
  these:             'a option -> 'a  where 'a = 'b list
haftmann@17402
  2241
  the_default: 'a -> 'a option -> 'a
haftmann@17402
  2242
  the_list:          'a option -> 'a list
haftmann@17402
  2243
wenzelm@17408
  2244
* Pure/General: structure AList (cf. Pure/General/alist.ML) provides
wenzelm@17408
  2245
basic operations for association lists, following natural argument
haftmann@17564
  2246
order; moreover the explicit equality predicate passed here avoids
haftmann@17495
  2247
potentially expensive polymorphic runtime equality checks.
haftmann@17495
  2248
The old functions may be expressed as follows:
wenzelm@17408
  2249
wenzelm@17408
  2250
  assoc = uncurry (AList.lookup (op =))
wenzelm@17408
  2251
  assocs = these oo AList.lookup (op =)
wenzelm@17408
  2252
  overwrite = uncurry (AList.update (op =)) o swap
wenzelm@17408
  2253
haftmann@17564
  2254
* Pure/General: structure AList (cf. Pure/General/alist.ML) provides
haftmann@17564
  2255
haftmann@17564
  2256
  val make: ('a -> 'b) -> 'a list -> ('a * 'b) list
haftmann@17564
  2257
  val find: ('a * 'b -> bool) -> ('c * 'b) list -> 'a -> 'c list
haftmann@17564
  2258
haftmann@17564
  2259
replacing make_keylist and keyfilter (occassionally used)
haftmann@17564
  2260
Naive rewrites:
haftmann@17564
  2261
haftmann@17564
  2262
  make_keylist = AList.make
haftmann@17564
  2263
  keyfilter = AList.find (op =)
haftmann@17564
  2264
haftmann@17564
  2265
* eq_fst and eq_snd now take explicit equality parameter, thus
haftmann@17564
  2266
  avoiding eqtypes. Naive rewrites:
haftmann@17564
  2267
haftmann@17564
  2268
    eq_fst = eq_fst (op =)
haftmann@17564
  2269
    eq_snd = eq_snd (op =)
haftmann@17564
  2270
haftmann@17564
  2271
* Removed deprecated apl and apr (rarely used).
haftmann@17564
  2272
  Naive rewrites:
haftmann@17564
  2273
haftmann@17564
  2274
    apl (n, op) =>>= curry op n
haftmann@17564
  2275
    apr (op, m) =>>= fn n => op (n, m)
haftmann@17564
  2276
wenzelm@17408
  2277
* Pure/General: structure OrdList (cf. Pure/General/ord_list.ML)
wenzelm@17408
  2278
provides a reasonably efficient light-weight implementation of sets as
wenzelm@17408
  2279
lists.
wenzelm@17408
  2280
wenzelm@17408
  2281
* Pure/General: generic tables (cf. Pure/General/table.ML) provide a
wenzelm@17408
  2282
few new operations; existing lookup and update are now curried to
wenzelm@17408
  2283
follow natural argument order (for use with fold etc.);
wenzelm@17408
  2284
INCOMPATIBILITY, use (uncurry Symtab.lookup) etc. as last resort.
wenzelm@17408
  2285
wenzelm@17408
  2286
* Pure/General: output via the Isabelle channels of
wenzelm@17408
  2287
writeln/warning/error etc. is now passed through Output.output, with a
wenzelm@17408
  2288
hook for arbitrary transformations depending on the print_mode
wenzelm@17408
  2289
(cf. Output.add_mode -- the first active mode that provides a output
wenzelm@17408
  2290
function wins).  Already formatted output may be embedded into further
wenzelm@17408
  2291
text via Output.raw; the result of Pretty.string_of/str_of and derived
wenzelm@17408
  2292
functions (string_of_term/cterm/thm etc.) is already marked raw to
wenzelm@17408
  2293
accommodate easy composition of diagnostic messages etc.  Programmers
wenzelm@17408
  2294
rarely need to care about Output.output or Output.raw at all, with
wenzelm@17408
  2295
some notable exceptions: Output.output is required when bypassing the
wenzelm@17408
  2296
standard channels (writeln etc.), or in token translations to produce
wenzelm@17408
  2297
properly formatted results; Output.raw is required when capturing
wenzelm@17408
  2298
already output material that will eventually be presented to the user
wenzelm@17408
  2299
a second time.  For the default print mode, both Output.output and
wenzelm@17408
  2300
Output.raw have no effect.
wenzelm@17408
  2301
wenzelm@17408
  2302
* Pure/General: Output.time_accumulator NAME creates an operator ('a
wenzelm@17408
  2303
-> 'b) -> 'a -> 'b to measure runtime and count invocations; the
wenzelm@17408
  2304
cumulative results are displayed at the end of a batch session.
wenzelm@17408
  2305
wenzelm@17408
  2306
* Pure/General: File.sysify_path and File.quote_sysify path have been
wenzelm@17408
  2307
replaced by File.platform_path and File.shell_path (with appropriate
wenzelm@17408
  2308
hooks).  This provides a clean interface for unusual systems where the
wenzelm@17408
  2309
internal and external process view of file names are different.
wenzelm@17408
  2310
wenzelm@16689
  2311
* Pure: more efficient orders for basic syntactic entities: added
wenzelm@16689
  2312
fast_string_ord, fast_indexname_ord, fast_term_ord; changed sort_ord
wenzelm@16689
  2313
and typ_ord to use fast_string_ord and fast_indexname_ord (term_ord is
wenzelm@16689
  2314
NOT affected); structures Symtab, Vartab, Typtab, Termtab use the fast
wenzelm@16689
  2315
orders now -- potential INCOMPATIBILITY for code that depends on a
wenzelm@16689
  2316
particular order for Symtab.keys, Symtab.dest, etc. (consider using
wenzelm@16689
  2317
Library.sort_strings on result).
wenzelm@16689
  2318
wenzelm@17408
  2319
* Pure/term.ML: combinators fold_atyps, fold_aterms, fold_term_types,
wenzelm@17408
  2320
fold_types traverse types/terms from left to right, observing natural
wenzelm@17408
  2321
argument order.  Supercedes previous foldl_XXX versions, add_frees,
wenzelm@17408
  2322
add_vars etc. have been adapted as well: INCOMPATIBILITY.
wenzelm@17408
  2323
wenzelm@16151
  2324
* Pure: name spaces have been refined, with significant changes of the
wenzelm@16234
  2325
internal interfaces -- INCOMPATIBILITY.  Renamed cond_extern(_table)
wenzelm@16234
  2326
to extern(_table).  The plain name entry path is superceded by a
wenzelm@16234
  2327
general 'naming' context, which also includes the 'policy' to produce
wenzelm@16234
  2328
a fully qualified name and external accesses of a fully qualified
wenzelm@16234
  2329
name; NameSpace.extend is superceded by context dependent
wenzelm@16234
  2330
Sign.declare_name.  Several theory and proof context operations modify
wenzelm@16234
  2331
the naming context.  Especially note Theory.restore_naming and
wenzelm@16234
  2332
ProofContext.restore_naming to get back to a sane state; note that
wenzelm@16234
  2333
Theory.add_path is no longer sufficient to recover from
wenzelm@16234
  2334
Theory.absolute_path in particular.
wenzelm@16234
  2335
wenzelm@16234
  2336
* Pure: new flags short_names (default false) and unique_names
wenzelm@16234
  2337
(default true) for controlling output of qualified names.  If
wenzelm@16234
  2338
short_names is set, names are printed unqualified.  If unique_names is
wenzelm@16234
  2339
reset, the name prefix is reduced to the minimum required to achieve
wenzelm@16234
  2340
the original result when interning again, even if there is an overlap
wenzelm@16234
  2341
with earlier declarations.
wenzelm@16151
  2342
wenzelm@16456
  2343
* Pure/TheoryDataFun: change of the argument structure; 'prep_ext' is
wenzelm@16456
  2344
now 'extend', and 'merge' gets an additional Pretty.pp argument
wenzelm@16456
  2345
(useful for printing error messages).  INCOMPATIBILITY.
wenzelm@16456
  2346
wenzelm@16456
  2347
* Pure: major reorganization of the theory context.  Type Sign.sg and
wenzelm@16456
  2348
Theory.theory are now identified, referring to the universal
wenzelm@16456
  2349
Context.theory (see Pure/context.ML).  Actual signature and theory
wenzelm@16456
  2350
content is managed as theory data.  The old code and interfaces were
wenzelm@16456
  2351
spread over many files and structures; the new arrangement introduces
wenzelm@16456
  2352
considerable INCOMPATIBILITY to gain more clarity:
wenzelm@16456
  2353
wenzelm@16456
  2354
  Context -- theory management operations (name, identity, inclusion,
wenzelm@16456
  2355
    parents, ancestors, merge, etc.), plus generic theory data;
wenzelm@16456
  2356
wenzelm@16456
  2357
  Sign -- logical signature and syntax operations (declaring consts,
wenzelm@16456
  2358
    types, etc.), plus certify/read for common entities;
wenzelm@16456
  2359
wenzelm@16456
  2360
  Theory -- logical theory operations (stating axioms, definitions,
wenzelm@16456
  2361
    oracles), plus a copy of logical signature operations (consts,
wenzelm@16456
  2362
    types, etc.); also a few basic management operations (Theory.copy,
wenzelm@16456
  2363
    Theory.merge, etc.)
wenzelm@16456
  2364
wenzelm@16456
  2365
The most basic sign_of operations (Theory.sign_of, Thm.sign_of_thm
wenzelm@16456
  2366
etc.) as well as the sign field in Thm.rep_thm etc. have been retained
wenzelm@16456
  2367
for convenience -- they merely return the theory.
wenzelm@16456
  2368
wenzelm@17193
  2369
* Pure: type Type.tsig is superceded by theory in most interfaces.
wenzelm@17193
  2370
wenzelm@16547
  2371
* Pure: the Isar proof context type is already defined early in Pure
wenzelm@16547
  2372
as Context.proof (note that ProofContext.context and Proof.context are
wenzelm@16547
  2373
aliases, where the latter is the preferred name).  This enables other
wenzelm@16547
  2374
Isabelle components to refer to that type even before Isar is present.
wenzelm@16547
  2375
wenzelm@16373
  2376
* Pure/sign/theory: discontinued named name spaces (i.e. classK,
wenzelm@16373
  2377
typeK, constK, axiomK, oracleK), but provide explicit operations for
wenzelm@16373
  2378
any of these kinds.  For example, Sign.intern typeK is now
wenzelm@16373
  2379
Sign.intern_type, Theory.hide_space Sign.typeK is now
wenzelm@16373
  2380
Theory.hide_types.  Also note that former
wenzelm@16373
  2381
Theory.hide_classes/types/consts are now
wenzelm@16373
  2382
Theory.hide_classes_i/types_i/consts_i, while the non '_i' versions
wenzelm@16373
  2383
internalize their arguments!  INCOMPATIBILITY.
wenzelm@16373
  2384
wenzelm@16506
  2385
* Pure: get_thm interface (of PureThy and ProofContext) expects
wenzelm@16506
  2386
datatype thmref (with constructors Name and NameSelection) instead of
wenzelm@16506
  2387
plain string -- INCOMPATIBILITY;
wenzelm@16506
  2388
wenzelm@16151
  2389
* Pure: cases produced by proof methods specify options, where NONE
wenzelm@16234
  2390
means to remove case bindings -- INCOMPATIBILITY in
wenzelm@16234
  2391
(RAW_)METHOD_CASES.
wenzelm@16151
  2392
wenzelm@16373
  2393
* Pure: the following operations retrieve axioms or theorems from a
wenzelm@16373
  2394
theory node or theory hierarchy, respectively:
wenzelm@16373
  2395
wenzelm@16373
  2396
  Theory.axioms_of: theory -> (string * term) list
wenzelm@16373
  2397
  Theory.all_axioms_of: theory -> (string * term) list
wenzelm@16373
  2398
  PureThy.thms_of: theory -> (string * thm) list
wenzelm@16373
  2399
  PureThy.all_thms_of: theory -> (string * thm) list
wenzelm@16373
  2400
wenzelm@16718
  2401
* Pure: print_tac now outputs the goal through the trace channel.
wenzelm@16718
  2402
wenzelm@17408
  2403
* Isar toplevel: improved diagnostics, mostly for Poly/ML only.
wenzelm@17408
  2404
Reference Toplevel.debug (default false) controls detailed printing
wenzelm@17408
  2405
and tracing of low-level exceptions; Toplevel.profiling (default 0)
wenzelm@17408
  2406
controls execution profiling -- set to 1 for time and 2 for space
wenzelm@17408
  2407
(both increase the runtime).
wenzelm@17408
  2408
wenzelm@17408
  2409
* Isar session: The initial use of ROOT.ML is now always timed,
wenzelm@17408
  2410
i.e. the log will show the actual process times, in contrast to the
wenzelm@17408
  2411
elapsed wall-clock time that the outer shell wrapper produces.
wenzelm@17408
  2412
wenzelm@17408
  2413
* Simplifier: improved handling of bound variables (nameless
wenzelm@16997
  2414
representation, avoid allocating new strings).  Simprocs that invoke
wenzelm@16997
  2415
the Simplifier recursively should use Simplifier.inherit_bounds to
wenzelm@17720
  2416
avoid local name clashes.  Failure to do so produces warnings
wenzelm@17720
  2417
"Simplifier: renamed bound variable ..."; set Simplifier.debug_bounds
wenzelm@17720
  2418
for further details.
wenzelm@16234
  2419
wenzelm@17166
  2420
* ML functions legacy_bindings and use_legacy_bindings produce ML fact
wenzelm@17166
  2421
bindings for all theorems stored within a given theory; this may help
wenzelm@17166
  2422
in porting non-Isar theories to Isar ones, while keeping ML proof
wenzelm@17166
  2423
scripts for the time being.
wenzelm@17166
  2424
wenzelm@17457
  2425
* ML operator HTML.with_charset specifies the charset begin used for
wenzelm@17457
  2426
generated HTML files.  For example:
wenzelm@17457
  2427
wenzelm@17457
  2428
  HTML.with_charset "utf-8" use_thy "Hebrew";
wenzelm@17538
  2429
  HTML.with_charset "utf-8" use_thy "Chinese";
wenzelm@17457
  2430
wenzelm@16234
  2431
wenzelm@16234
  2432
*** System ***
wenzelm@16234
  2433
wenzelm@16234
  2434
* Allow symlinks to all proper Isabelle executables (Isabelle,
wenzelm@16234
  2435
isabelle, isatool etc.).
wenzelm@16234
  2436
wenzelm@16234
  2437
* ISABELLE_DOC_FORMAT setting specifies preferred document format (for
wenzelm@16234
  2438
isatool doc, isatool mkdir, display_drafts etc.).
wenzelm@16234
  2439
wenzelm@16234
  2440
* isatool usedir: option -f allows specification of the ML file to be
wenzelm@16234
  2441
used by Isabelle; default is ROOT.ML.
wenzelm@16234
  2442
wenzelm@16251
  2443
* New isatool version outputs the version identifier of the Isabelle
wenzelm@16251
  2444
distribution being used.
wenzelm@16251
  2445
wenzelm@16251
  2446
* HOL: new isatool dimacs2hol converts files in DIMACS CNF format
wenzelm@16234
  2447
(containing Boolean satisfiability problems) into Isabelle/HOL
wenzelm@16234
  2448
theories.
wenzelm@15703
  2449
wenzelm@15703
  2450
wenzelm@14655
  2451
wenzelm@14606
  2452
New in Isabelle2004 (April 2004)
wenzelm@14606
  2453
--------------------------------
wenzelm@13280
  2454
skalberg@14171
  2455
*** General ***
skalberg@14171
  2456
ballarin@14398
  2457
* Provers/order.ML:  new efficient reasoner for partial and linear orders.
ballarin@14398
  2458
  Replaces linorder.ML.
ballarin@14398
  2459
wenzelm@14606
  2460
* Pure: Greek letters (except small lambda, \<lambda>), as well as Gothic
wenzelm@14606
  2461
  (\<aa>...\<zz>\<AA>...\<ZZ>), calligraphic (\<A>...\<Z>), and Euler
skalberg@14173
  2462
  (\<a>...\<z>), are now considered normal letters, and can therefore
skalberg@14173
  2463
  be used anywhere where an ASCII letter (a...zA...Z) has until
skalberg@14173
  2464
  now. COMPATIBILITY: This obviously changes the parsing of some
skalberg@14173
  2465
  terms, especially where a symbol has been used as a binder, say
skalberg@14173
  2466
  '\<Pi>x. ...', which is now a type error since \<Pi>x will be parsed
skalberg@14173
  2467
  as an identifier.  Fix it by inserting a space around former
skalberg@14173
  2468
  symbols.  Call 'isatool fixgreek' to try to fix parsing errors in
skalberg@14173
  2469
  existing theory and ML files.
skalberg@14171
  2470
paulson@14237
  2471
* Pure: Macintosh and Windows line-breaks are now allowed in theory files.
paulson@14237
  2472
wenzelm@14731
  2473
* Pure: single letter sub/superscripts (\<^isub> and \<^isup>) are now
wenzelm@14731
  2474
  allowed in identifiers. Similar to Greek letters \<^isub> is now considered
wenzelm@14731
  2475
  a normal (but invisible) letter. For multiple letter subscripts repeat
wenzelm@14731
  2476
  \<^isub> like this: x\<^isub>1\<^isub>2.
kleing@14233
  2477
kleing@14333
  2478
* Pure: There are now sub-/superscripts that can span more than one
kleing@14333
  2479
  character. Text between \<^bsub> and \<^esub> is set in subscript in
wenzelm@14606
  2480
  ProofGeneral and LaTeX, text between \<^bsup> and \<^esup> in
wenzelm@14606
  2481
  superscript. The new control characters are not identifier parts.
kleing@14333
  2482
schirmer@14561
  2483
* Pure: Control-symbols of the form \<^raw:...> will literally print the
wenzelm@14606
  2484
  content of "..." to the latex file instead of \isacntrl... . The "..."
wenzelm@14606
  2485
  may consist of any printable characters excluding the end bracket >.
schirmer@14361
  2486
paulson@14237
  2487
* Pure: Using new Isar command "finalconsts" (or the ML functions
paulson@14237
  2488
  Theory.add_finals or Theory.add_finals_i) it is now possible to
paulson@14237
  2489
  declare constants "final", which prevents their being given a definition
paulson@14237
  2490
  later.  It is useful for constants whose behaviour is fixed axiomatically
skalberg@14224
  2491
  rather than definitionally, such as the meta-logic connectives.
skalberg@14224
  2492
wenzelm@14606
  2493
* Pure: 'instance' now handles general arities with general sorts
wenzelm@14606
  2494
  (i.e. intersections of classes),
skalberg@14503
  2495
kleing@14547
  2496
* Presentation: generated HTML now uses a CSS style sheet to make layout
wenzelm@14731
  2497
  (somewhat) independent of content. It is copied from lib/html/isabelle.css.
kleing@14547
  2498
  It can be changed to alter the colors/layout of generated pages.
kleing@14547
  2499
wenzelm@14556
  2500
ballarin@14175
  2501
*** Isar ***
ballarin@14175
  2502
ballarin@14508
  2503
* Tactic emulation methods rule_tac, erule_tac, drule_tac, frule_tac,
ballarin@14508
  2504
  cut_tac, subgoal_tac and thin_tac:
ballarin@14175
  2505
  - Now understand static (Isar) contexts.  As a consequence, users of Isar
ballarin@14175
  2506
    locales are no longer forced to write Isar proof scripts.
ballarin@14175
  2507
    For details see Isar Reference Manual, paragraph 4.3.2: Further tactic
ballarin@14175
  2508
    emulations.
ballarin@14175
  2509
  - INCOMPATIBILITY: names of variables to be instantiated may no
ballarin@14211
  2510
    longer be enclosed in quotes.  Instead, precede variable name with `?'.
ballarin@14211
  2511
    This is consistent with the instantiation attribute "where".
ballarin@14211
  2512
ballarin@14257
  2513
* Attributes "where" and "of":
ballarin@14285
  2514
  - Now take type variables of instantiated theorem into account when reading
ballarin@14285
  2515
    the instantiation string.  This fixes a bug that caused instantiated
ballarin@14285
  2516
    theorems to have too special types in some circumstances.
ballarin@14285
  2517
  - "where" permits explicit instantiations of type variables.
ballarin@14257
  2518
wenzelm@14556
  2519
* Calculation commands "moreover" and "also" no longer interfere with
wenzelm@14556
  2520
  current facts ("this"), admitting arbitrary combinations with "then"
wenzelm@14556
  2521
  and derived forms.
kleing@14283
  2522
ballarin@14211
  2523
* Locales:
ballarin@14211
  2524
  - Goal statements involving the context element "includes" no longer
ballarin@14211
  2525
    generate theorems with internal delta predicates (those ending on
ballarin@14211
  2526
    "_axioms") in the premise.
ballarin@14211
  2527
    Resolve particular premise with <locale>.intro to obtain old form.
ballarin@14211
  2528
  - Fixed bug in type inference ("unify_frozen") that prevented mix of target
ballarin@14211
  2529
    specification and "includes" elements in goal statement.
ballarin@14254
  2530
  - Rule sets <locale>.intro and <locale>.axioms no longer declared as
ballarin@14254
  2531
    [intro?] and [elim?] (respectively) by default.
ballarin@14508
  2532
  - Experimental command for instantiation of locales in proof contexts:
ballarin@14551
  2533
        instantiate <label>[<attrs>]: <loc>
ballarin@14508
  2534
    Instantiates locale <loc> and adds all its theorems to the current context
ballarin@14551
  2535
    taking into account their attributes.  Label and attrs are optional
ballarin@14551
  2536
    modifiers, like in theorem declarations.  If present, names of
ballarin@14551
  2537
    instantiated theorems are qualified with <label>, and the attributes
ballarin@14551
  2538
    <attrs> are applied after any attributes these theorems might have already.
ballarin@14551
  2539
      If the locale has assumptions, a chained fact of the form
ballarin@14508
  2540
    "<loc> t1 ... tn" is expected from which instantiations of the parameters
ballarin@14551
  2541
    are derived.  The command does not support old-style locales declared
ballarin@14551
  2542
    with "locale (open)".
ballarin@14551
  2543
      A few (very simple) examples can be found in FOL/ex/LocaleInst.thy.
ballarin@14175
  2544
ballarin@14175
  2545
* HOL: Tactic emulation methods induct_tac and case_tac understand static
ballarin@14175
  2546
  (Isar) contexts.
ballarin@14175
  2547
wenzelm@14556
  2548
kleing@14136
  2549
*** HOL ***
kleing@14136
  2550
kleing@14624
  2551
* Proof import: new image HOL4 contains the imported library from
kleing@14624
  2552
  the HOL4 system with about 2500 theorems. It is imported by
kleing@14624
  2553
  replaying proof terms produced by HOL4 in Isabelle. The HOL4 image
kleing@14624
  2554
  can be used like any other Isabelle image.  See
kleing@14624
  2555
  HOL/Import/HOL/README for more information.
kleing@14624
  2556
ballarin@14398
  2557
* Simplifier:
ballarin@14398
  2558
  - Much improved handling of linear and partial orders.
ballarin@14398
  2559
    Reasoners for linear and partial orders are set up for type classes
ballarin@14398
  2560
    "linorder" and "order" respectively, and are added to the default simpset
ballarin@14398
  2561
    as solvers.  This means that the simplifier can build transitivity chains
ballarin@14398
  2562
    to solve goals from the assumptions.
ballarin@14398
  2563
  - INCOMPATIBILITY: old proofs break occasionally.  Typically, applications
ballarin@14398
  2564
    of blast or auto after simplification become unnecessary because the goal
ballarin@14398
  2565
    is solved by simplification already.
ballarin@14398
  2566
wenzelm@14731
  2567
* Numerics: new theory Ring_and_Field contains over 250 basic numerical laws,
paulson@14389
  2568
    all proved in axiomatic type classes for semirings, rings and fields.
paulson@14389
  2569
paulson@14389
  2570
* Numerics:
paulson@14389
  2571
  - Numeric types (nat, int, and in HOL-Complex rat, real, complex, etc.) are
wenzelm@14731
  2572
    now formalized using the Ring_and_Field theory mentioned above.
paulson@14389
  2573
  - INCOMPATIBILITY: simplification and arithmetic behaves somewhat differently
paulson@14389
  2574
    than before, because now they are set up once in a generic manner.
wenzelm@14731
  2575
  - INCOMPATIBILITY: many type-specific arithmetic laws have gone.
paulson@14480
  2576
    Look for the general versions in Ring_and_Field (and Power if they concern