src/FOLP/IFOLP.thy
author wenzelm
Sun Mar 01 23:36:12 2009 +0100 (2009-03-01)
changeset 30190 479806475f3c
parent 29305 76af2a3c9d28
child 32740 9dd0a2f83429
permissions -rw-r--r--
use long names for old-style fold combinators;
clasohm@1477
     1
(*  Title:      FOLP/IFOLP.thy
clasohm@1477
     2
    Author:     Martin D Coen, Cambridge University Computer Laboratory
lcp@1142
     3
    Copyright   1992  University of Cambridge
lcp@1142
     4
*)
lcp@1142
     5
wenzelm@17480
     6
header {* Intuitionistic First-Order Logic with Proofs *}
wenzelm@17480
     7
wenzelm@17480
     8
theory IFOLP
wenzelm@17480
     9
imports Pure
wenzelm@26322
    10
uses ("hypsubst.ML") ("intprover.ML")
wenzelm@17480
    11
begin
clasohm@0
    12
wenzelm@26956
    13
setup PureThy.old_appl_syntax_setup
wenzelm@26956
    14
wenzelm@3942
    15
global
wenzelm@3942
    16
wenzelm@17480
    17
classes "term"
wenzelm@17480
    18
defaultsort "term"
clasohm@0
    19
wenzelm@17480
    20
typedecl p
wenzelm@17480
    21
typedecl o
clasohm@0
    22
wenzelm@17480
    23
consts
clasohm@0
    24
      (*** Judgements ***)
clasohm@1477
    25
 "@Proof"       ::   "[p,o]=>prop"      ("(_ /: _)" [51,10] 5)
clasohm@1477
    26
 Proof          ::   "[o,p]=>prop"
clasohm@0
    27
 EqProof        ::   "[p,p,o]=>prop"    ("(3_ /= _ :/ _)" [10,10,10] 5)
wenzelm@17480
    28
clasohm@0
    29
      (*** Logical Connectives -- Type Formers ***)
clasohm@1477
    30
 "="            ::      "['a,'a] => o"  (infixl 50)
wenzelm@17480
    31
 True           ::      "o"
wenzelm@17480
    32
 False          ::      "o"
paulson@2714
    33
 Not            ::      "o => o"        ("~ _" [40] 40)
clasohm@1477
    34
 "&"            ::      "[o,o] => o"    (infixr 35)
clasohm@1477
    35
 "|"            ::      "[o,o] => o"    (infixr 30)
clasohm@1477
    36
 "-->"          ::      "[o,o] => o"    (infixr 25)
clasohm@1477
    37
 "<->"          ::      "[o,o] => o"    (infixr 25)
clasohm@0
    38
      (*Quantifiers*)
clasohm@1477
    39
 All            ::      "('a => o) => o"        (binder "ALL " 10)
clasohm@1477
    40
 Ex             ::      "('a => o) => o"        (binder "EX " 10)
clasohm@1477
    41
 Ex1            ::      "('a => o) => o"        (binder "EX! " 10)
clasohm@0
    42
      (*Rewriting gadgets*)
clasohm@1477
    43
 NORM           ::      "o => o"
clasohm@1477
    44
 norm           ::      "'a => 'a"
clasohm@0
    45
lcp@648
    46
      (*** Proof Term Formers: precedence must exceed 50 ***)
clasohm@1477
    47
 tt             :: "p"
clasohm@1477
    48
 contr          :: "p=>p"
wenzelm@17480
    49
 fst            :: "p=>p"
wenzelm@17480
    50
 snd            :: "p=>p"
clasohm@1477
    51
 pair           :: "[p,p]=>p"           ("(1<_,/_>)")
clasohm@1477
    52
 split          :: "[p, [p,p]=>p] =>p"
wenzelm@17480
    53
 inl            :: "p=>p"
wenzelm@17480
    54
 inr            :: "p=>p"
clasohm@1477
    55
 when           :: "[p, p=>p, p=>p]=>p"
clasohm@1477
    56
 lambda         :: "(p => p) => p"      (binder "lam " 55)
clasohm@1477
    57
 "`"            :: "[p,p]=>p"           (infixl 60)
lcp@648
    58
 alll           :: "['a=>p]=>p"         (binder "all " 55)
lcp@648
    59
 "^"            :: "[p,'a]=>p"          (infixl 55)
clasohm@1477
    60
 exists         :: "['a,p]=>p"          ("(1[_,/_])")
clasohm@0
    61
 xsplit         :: "[p,['a,p]=>p]=>p"
clasohm@0
    62
 ideq           :: "'a=>p"
clasohm@0
    63
 idpeel         :: "[p,'a=>p]=>p"
wenzelm@17480
    64
 nrm            :: p
wenzelm@17480
    65
 NRM            :: p
clasohm@0
    66
wenzelm@3942
    67
local
wenzelm@3942
    68
wenzelm@17480
    69
ML {*
wenzelm@17480
    70
wenzelm@17480
    71
(*show_proofs:=true displays the proof terms -- they are ENORMOUS*)
wenzelm@17480
    72
val show_proofs = ref false;
wenzelm@17480
    73
wenzelm@26322
    74
fun proof_tr [p,P] = Const (@{const_name Proof}, dummyT) $ P $ p;
wenzelm@17480
    75
wenzelm@17480
    76
fun proof_tr' [P,p] =
wenzelm@17480
    77
    if !show_proofs then Const("@Proof",dummyT) $ p $ P
wenzelm@17480
    78
    else P  (*this case discards the proof term*);
wenzelm@17480
    79
*}
wenzelm@17480
    80
wenzelm@17480
    81
parse_translation {* [("@Proof", proof_tr)] *}
wenzelm@17480
    82
print_translation {* [("Proof", proof_tr')] *}
wenzelm@17480
    83
wenzelm@17480
    84
axioms
clasohm@0
    85
clasohm@0
    86
(**** Propositional logic ****)
clasohm@0
    87
clasohm@0
    88
(*Equality*)
clasohm@0
    89
(* Like Intensional Equality in MLTT - but proofs distinct from terms *)
clasohm@0
    90
wenzelm@17480
    91
ieqI:      "ideq(a) : a=a"
wenzelm@17480
    92
ieqE:      "[| p : a=b;  !!x. f(x) : P(x,x) |] ==> idpeel(p,f) : P(a,b)"
clasohm@0
    93
clasohm@0
    94
(* Truth and Falsity *)
clasohm@0
    95
wenzelm@17480
    96
TrueI:     "tt : True"
wenzelm@17480
    97
FalseE:    "a:False ==> contr(a):P"
clasohm@0
    98
clasohm@0
    99
(* Conjunction *)
clasohm@0
   100
wenzelm@17480
   101
conjI:     "[| a:P;  b:Q |] ==> <a,b> : P&Q"
wenzelm@17480
   102
conjunct1: "p:P&Q ==> fst(p):P"
wenzelm@17480
   103
conjunct2: "p:P&Q ==> snd(p):Q"
clasohm@0
   104
clasohm@0
   105
(* Disjunction *)
clasohm@0
   106
wenzelm@17480
   107
disjI1:    "a:P ==> inl(a):P|Q"
wenzelm@17480
   108
disjI2:    "b:Q ==> inr(b):P|Q"
wenzelm@17480
   109
disjE:     "[| a:P|Q;  !!x. x:P ==> f(x):R;  !!x. x:Q ==> g(x):R
wenzelm@17480
   110
           |] ==> when(a,f,g):R"
clasohm@0
   111
clasohm@0
   112
(* Implication *)
clasohm@0
   113
wenzelm@17480
   114
impI:      "(!!x. x:P ==> f(x):Q) ==> lam x. f(x):P-->Q"
wenzelm@17480
   115
mp:        "[| f:P-->Q;  a:P |] ==> f`a:Q"
clasohm@0
   116
clasohm@0
   117
(*Quantifiers*)
clasohm@0
   118
wenzelm@17480
   119
allI:      "(!!x. f(x) : P(x)) ==> all x. f(x) : ALL x. P(x)"
wenzelm@17480
   120
spec:      "(f:ALL x. P(x)) ==> f^x : P(x)"
clasohm@0
   121
wenzelm@17480
   122
exI:       "p : P(x) ==> [x,p] : EX x. P(x)"
wenzelm@17480
   123
exE:       "[| p: EX x. P(x);  !!x u. u:P(x) ==> f(x,u) : R |] ==> xsplit(p,f):R"
clasohm@0
   124
clasohm@0
   125
(**** Equality between proofs ****)
clasohm@0
   126
wenzelm@17480
   127
prefl:     "a : P ==> a = a : P"
wenzelm@17480
   128
psym:      "a = b : P ==> b = a : P"
wenzelm@17480
   129
ptrans:    "[| a = b : P;  b = c : P |] ==> a = c : P"
clasohm@0
   130
wenzelm@17480
   131
idpeelB:   "[| !!x. f(x) : P(x,x) |] ==> idpeel(ideq(a),f) = f(a) : P(a,a)"
clasohm@0
   132
wenzelm@17480
   133
fstB:      "a:P ==> fst(<a,b>) = a : P"
wenzelm@17480
   134
sndB:      "b:Q ==> snd(<a,b>) = b : Q"
wenzelm@17480
   135
pairEC:    "p:P&Q ==> p = <fst(p),snd(p)> : P&Q"
clasohm@0
   136
wenzelm@17480
   137
whenBinl:  "[| a:P;  !!x. x:P ==> f(x) : Q |] ==> when(inl(a),f,g) = f(a) : Q"
wenzelm@17480
   138
whenBinr:  "[| b:P;  !!x. x:P ==> g(x) : Q |] ==> when(inr(b),f,g) = g(b) : Q"
wenzelm@17480
   139
plusEC:    "a:P|Q ==> when(a,%x. inl(x),%y. inr(y)) = a : P|Q"
clasohm@0
   140
wenzelm@17480
   141
applyB:     "[| a:P;  !!x. x:P ==> b(x) : Q |] ==> (lam x. b(x)) ` a = b(a) : Q"
wenzelm@17480
   142
funEC:      "f:P ==> f = lam x. f`x : P"
clasohm@0
   143
wenzelm@17480
   144
specB:      "[| !!x. f(x) : P(x) |] ==> (all x. f(x)) ^ a = f(a) : P(a)"
clasohm@0
   145
clasohm@0
   146
clasohm@0
   147
(**** Definitions ****)
clasohm@0
   148
wenzelm@17480
   149
not_def:              "~P == P-->False"
wenzelm@17480
   150
iff_def:         "P<->Q == (P-->Q) & (Q-->P)"
clasohm@0
   151
clasohm@0
   152
(*Unique existence*)
wenzelm@17480
   153
ex1_def:   "EX! x. P(x) == EX x. P(x) & (ALL y. P(y) --> y=x)"
clasohm@0
   154
clasohm@0
   155
(*Rewriting -- special constants to flag normalized terms and formulae*)
wenzelm@17480
   156
norm_eq: "nrm : norm(x) = x"
wenzelm@17480
   157
NORM_iff:        "NRM : NORM(P) <-> P"
wenzelm@17480
   158
wenzelm@26322
   159
(*** Sequent-style elimination rules for & --> and ALL ***)
wenzelm@26322
   160
wenzelm@26322
   161
lemma conjE:
wenzelm@26322
   162
  assumes "p:P&Q"
wenzelm@26322
   163
    and "!!x y.[| x:P; y:Q |] ==> f(x,y):R"
wenzelm@26322
   164
  shows "?a:R"
wenzelm@26322
   165
  apply (rule assms(2))
wenzelm@26322
   166
   apply (rule conjunct1 [OF assms(1)])
wenzelm@26322
   167
  apply (rule conjunct2 [OF assms(1)])
wenzelm@26322
   168
  done
wenzelm@26322
   169
wenzelm@26322
   170
lemma impE:
wenzelm@26322
   171
  assumes "p:P-->Q"
wenzelm@26322
   172
    and "q:P"
wenzelm@26322
   173
    and "!!x. x:Q ==> r(x):R"
wenzelm@26322
   174
  shows "?p:R"
wenzelm@26322
   175
  apply (rule assms mp)+
wenzelm@26322
   176
  done
wenzelm@26322
   177
wenzelm@26322
   178
lemma allE:
wenzelm@26322
   179
  assumes "p:ALL x. P(x)"
wenzelm@26322
   180
    and "!!y. y:P(x) ==> q(y):R"
wenzelm@26322
   181
  shows "?p:R"
wenzelm@26322
   182
  apply (rule assms spec)+
wenzelm@26322
   183
  done
wenzelm@26322
   184
wenzelm@26322
   185
(*Duplicates the quantifier; for use with eresolve_tac*)
wenzelm@26322
   186
lemma all_dupE:
wenzelm@26322
   187
  assumes "p:ALL x. P(x)"
wenzelm@26322
   188
    and "!!y z.[| y:P(x); z:ALL x. P(x) |] ==> q(y,z):R"
wenzelm@26322
   189
  shows "?p:R"
wenzelm@26322
   190
  apply (rule assms spec)+
wenzelm@26322
   191
  done
wenzelm@26322
   192
wenzelm@26322
   193
wenzelm@26322
   194
(*** Negation rules, which translate between ~P and P-->False ***)
wenzelm@26322
   195
wenzelm@26322
   196
lemma notI:
wenzelm@26322
   197
  assumes "!!x. x:P ==> q(x):False"
wenzelm@26322
   198
  shows "?p:~P"
wenzelm@26322
   199
  unfolding not_def
wenzelm@26322
   200
  apply (assumption | rule assms impI)+
wenzelm@26322
   201
  done
wenzelm@26322
   202
wenzelm@26322
   203
lemma notE: "p:~P \<Longrightarrow> q:P \<Longrightarrow> ?p:R"
wenzelm@26322
   204
  unfolding not_def
wenzelm@26322
   205
  apply (drule (1) mp)
wenzelm@26322
   206
  apply (erule FalseE)
wenzelm@26322
   207
  done
wenzelm@26322
   208
wenzelm@26322
   209
(*This is useful with the special implication rules for each kind of P. *)
wenzelm@26322
   210
lemma not_to_imp:
wenzelm@26322
   211
  assumes "p:~P"
wenzelm@26322
   212
    and "!!x. x:(P-->False) ==> q(x):Q"
wenzelm@26322
   213
  shows "?p:Q"
wenzelm@26322
   214
  apply (assumption | rule assms impI notE)+
wenzelm@26322
   215
  done
wenzelm@26322
   216
wenzelm@26322
   217
(* For substitution int an assumption P, reduce Q to P-->Q, substitute into
wenzelm@27150
   218
   this implication, then apply impI to move P back into the assumptions.*)
wenzelm@26322
   219
lemma rev_mp: "[| p:P;  q:P --> Q |] ==> ?p:Q"
wenzelm@26322
   220
  apply (assumption | rule mp)+
wenzelm@26322
   221
  done
wenzelm@26322
   222
wenzelm@26322
   223
wenzelm@26322
   224
(*Contrapositive of an inference rule*)
wenzelm@26322
   225
lemma contrapos:
wenzelm@26322
   226
  assumes major: "p:~Q"
wenzelm@26322
   227
    and minor: "!!y. y:P==>q(y):Q"
wenzelm@26322
   228
  shows "?a:~P"
wenzelm@26322
   229
  apply (rule major [THEN notE, THEN notI])
wenzelm@26322
   230
  apply (erule minor)
wenzelm@26322
   231
  done
wenzelm@26322
   232
wenzelm@26322
   233
(** Unique assumption tactic.
wenzelm@26322
   234
    Ignores proof objects.
wenzelm@26322
   235
    Fails unless one assumption is equal and exactly one is unifiable
wenzelm@26322
   236
**)
wenzelm@26322
   237
wenzelm@26322
   238
ML {*
wenzelm@26322
   239
local
wenzelm@26322
   240
  fun discard_proof (Const (@{const_name Proof}, _) $ P $ _) = P;
wenzelm@26322
   241
in
wenzelm@26322
   242
val uniq_assume_tac =
wenzelm@26322
   243
  SUBGOAL
wenzelm@26322
   244
    (fn (prem,i) =>
wenzelm@26322
   245
      let val hyps = map discard_proof (Logic.strip_assums_hyp prem)
wenzelm@26322
   246
          and concl = discard_proof (Logic.strip_assums_concl prem)
wenzelm@26322
   247
      in
wenzelm@26322
   248
          if exists (fn hyp => hyp aconv concl) hyps
wenzelm@29269
   249
          then case distinct (op =) (filter (fn hyp => Term.could_unify (hyp, concl)) hyps) of
wenzelm@26322
   250
                   [_] => assume_tac i
wenzelm@26322
   251
                 |  _  => no_tac
wenzelm@26322
   252
          else no_tac
wenzelm@26322
   253
      end);
wenzelm@26322
   254
end;
wenzelm@26322
   255
*}
wenzelm@26322
   256
wenzelm@26322
   257
wenzelm@26322
   258
(*** Modus Ponens Tactics ***)
wenzelm@26322
   259
wenzelm@26322
   260
(*Finds P-->Q and P in the assumptions, replaces implication by Q *)
wenzelm@26322
   261
ML {*
wenzelm@26322
   262
  fun mp_tac i = eresolve_tac [@{thm notE}, make_elim @{thm mp}] i  THEN  assume_tac i
wenzelm@26322
   263
*}
wenzelm@26322
   264
wenzelm@26322
   265
(*Like mp_tac but instantiates no variables*)
wenzelm@26322
   266
ML {*
wenzelm@26322
   267
  fun int_uniq_mp_tac i = eresolve_tac [@{thm notE}, @{thm impE}] i  THEN  uniq_assume_tac i
wenzelm@26322
   268
*}
wenzelm@26322
   269
wenzelm@26322
   270
wenzelm@26322
   271
(*** If-and-only-if ***)
wenzelm@26322
   272
wenzelm@26322
   273
lemma iffI:
wenzelm@26322
   274
  assumes "!!x. x:P ==> q(x):Q"
wenzelm@26322
   275
    and "!!x. x:Q ==> r(x):P"
wenzelm@26322
   276
  shows "?p:P<->Q"
wenzelm@26322
   277
  unfolding iff_def
wenzelm@26322
   278
  apply (assumption | rule assms conjI impI)+
wenzelm@26322
   279
  done
wenzelm@26322
   280
wenzelm@26322
   281
wenzelm@26322
   282
(*Observe use of rewrite_rule to unfold "<->" in meta-assumptions (prems) *)
wenzelm@26322
   283
  
wenzelm@26322
   284
lemma iffE:
wenzelm@26322
   285
  assumes "p:P <-> Q"
wenzelm@26322
   286
    and "!!x y.[| x:P-->Q; y:Q-->P |] ==> q(x,y):R"
wenzelm@26322
   287
  shows "?p:R"
wenzelm@26322
   288
  apply (rule conjE)
wenzelm@26322
   289
   apply (rule assms(1) [unfolded iff_def])
wenzelm@26322
   290
  apply (rule assms(2))
wenzelm@26322
   291
   apply assumption+
wenzelm@26322
   292
  done
wenzelm@26322
   293
wenzelm@26322
   294
(* Destruct rules for <-> similar to Modus Ponens *)
wenzelm@26322
   295
wenzelm@26322
   296
lemma iffD1: "[| p:P <-> Q; q:P |] ==> ?p:Q"
wenzelm@26322
   297
  unfolding iff_def
wenzelm@26322
   298
  apply (rule conjunct1 [THEN mp], assumption+)
wenzelm@26322
   299
  done
wenzelm@26322
   300
wenzelm@26322
   301
lemma iffD2: "[| p:P <-> Q; q:Q |] ==> ?p:P"
wenzelm@26322
   302
  unfolding iff_def
wenzelm@26322
   303
  apply (rule conjunct2 [THEN mp], assumption+)
wenzelm@26322
   304
  done
wenzelm@26322
   305
wenzelm@26322
   306
lemma iff_refl: "?p:P <-> P"
wenzelm@26322
   307
  apply (rule iffI)
wenzelm@26322
   308
   apply assumption+
wenzelm@26322
   309
  done
wenzelm@26322
   310
wenzelm@26322
   311
lemma iff_sym: "p:Q <-> P ==> ?p:P <-> Q"
wenzelm@26322
   312
  apply (erule iffE)
wenzelm@26322
   313
  apply (rule iffI)
wenzelm@26322
   314
   apply (erule (1) mp)+
wenzelm@26322
   315
  done
wenzelm@26322
   316
wenzelm@26322
   317
lemma iff_trans: "[| p:P <-> Q; q:Q<-> R |] ==> ?p:P <-> R"
wenzelm@26322
   318
  apply (rule iffI)
wenzelm@26322
   319
   apply (assumption | erule iffE | erule (1) impE)+
wenzelm@26322
   320
  done
wenzelm@26322
   321
wenzelm@26322
   322
(*** Unique existence.  NOTE THAT the following 2 quantifications
wenzelm@26322
   323
   EX!x such that [EX!y such that P(x,y)]     (sequential)
wenzelm@26322
   324
   EX!x,y such that P(x,y)                    (simultaneous)
wenzelm@26322
   325
 do NOT mean the same thing.  The parser treats EX!x y.P(x,y) as sequential.
wenzelm@26322
   326
***)
wenzelm@26322
   327
wenzelm@26322
   328
lemma ex1I:
wenzelm@26322
   329
  assumes "p:P(a)"
wenzelm@26322
   330
    and "!!x u. u:P(x) ==> f(u) : x=a"
wenzelm@26322
   331
  shows "?p:EX! x. P(x)"
wenzelm@26322
   332
  unfolding ex1_def
wenzelm@26322
   333
  apply (assumption | rule assms exI conjI allI impI)+
wenzelm@26322
   334
  done
wenzelm@26322
   335
wenzelm@26322
   336
lemma ex1E:
wenzelm@26322
   337
  assumes "p:EX! x. P(x)"
wenzelm@26322
   338
    and "!!x u v. [| u:P(x);  v:ALL y. P(y) --> y=x |] ==> f(x,u,v):R"
wenzelm@26322
   339
  shows "?a : R"
wenzelm@26322
   340
  apply (insert assms(1) [unfolded ex1_def])
wenzelm@26322
   341
  apply (erule exE conjE | assumption | rule assms(1))+
wenzelm@29305
   342
  apply (erule assms(2), assumption)
wenzelm@26322
   343
  done
wenzelm@26322
   344
wenzelm@26322
   345
wenzelm@26322
   346
(*** <-> congruence rules for simplification ***)
wenzelm@26322
   347
wenzelm@26322
   348
(*Use iffE on a premise.  For conj_cong, imp_cong, all_cong, ex_cong*)
wenzelm@26322
   349
ML {*
wenzelm@26322
   350
fun iff_tac prems i =
wenzelm@26322
   351
    resolve_tac (prems RL [@{thm iffE}]) i THEN
wenzelm@26322
   352
    REPEAT1 (eresolve_tac [asm_rl, @{thm mp}] i)
wenzelm@26322
   353
*}
wenzelm@26322
   354
wenzelm@26322
   355
lemma conj_cong:
wenzelm@26322
   356
  assumes "p:P <-> P'"
wenzelm@26322
   357
    and "!!x. x:P' ==> q(x):Q <-> Q'"
wenzelm@26322
   358
  shows "?p:(P&Q) <-> (P'&Q')"
wenzelm@26322
   359
  apply (insert assms(1))
wenzelm@26322
   360
  apply (assumption | rule iffI conjI |
wenzelm@26322
   361
    erule iffE conjE mp | tactic {* iff_tac @{thms assms} 1 *})+
wenzelm@26322
   362
  done
wenzelm@26322
   363
wenzelm@26322
   364
lemma disj_cong:
wenzelm@26322
   365
  "[| p:P <-> P'; q:Q <-> Q' |] ==> ?p:(P|Q) <-> (P'|Q')"
wenzelm@26322
   366
  apply (erule iffE disjE disjI1 disjI2 | assumption | rule iffI | tactic {* mp_tac 1 *})+
wenzelm@26322
   367
  done
wenzelm@26322
   368
wenzelm@26322
   369
lemma imp_cong:
wenzelm@26322
   370
  assumes "p:P <-> P'"
wenzelm@26322
   371
    and "!!x. x:P' ==> q(x):Q <-> Q'"
wenzelm@26322
   372
  shows "?p:(P-->Q) <-> (P'-->Q')"
wenzelm@26322
   373
  apply (insert assms(1))
wenzelm@26322
   374
  apply (assumption | rule iffI impI | erule iffE | tactic {* mp_tac 1 *} |
wenzelm@26322
   375
    tactic {* iff_tac @{thms assms} 1 *})+
wenzelm@26322
   376
  done
wenzelm@26322
   377
wenzelm@26322
   378
lemma iff_cong:
wenzelm@26322
   379
  "[| p:P <-> P'; q:Q <-> Q' |] ==> ?p:(P<->Q) <-> (P'<->Q')"
wenzelm@26322
   380
  apply (erule iffE | assumption | rule iffI | tactic {* mp_tac 1 *})+
wenzelm@26322
   381
  done
wenzelm@26322
   382
wenzelm@26322
   383
lemma not_cong:
wenzelm@26322
   384
  "p:P <-> P' ==> ?p:~P <-> ~P'"
wenzelm@26322
   385
  apply (assumption | rule iffI notI | tactic {* mp_tac 1 *} | erule iffE notE)+
wenzelm@26322
   386
  done
wenzelm@26322
   387
wenzelm@26322
   388
lemma all_cong:
wenzelm@26322
   389
  assumes "!!x. f(x):P(x) <-> Q(x)"
wenzelm@26322
   390
  shows "?p:(ALL x. P(x)) <-> (ALL x. Q(x))"
wenzelm@26322
   391
  apply (assumption | rule iffI allI | tactic {* mp_tac 1 *} | erule allE |
wenzelm@26322
   392
    tactic {* iff_tac @{thms assms} 1 *})+
wenzelm@26322
   393
  done
wenzelm@26322
   394
wenzelm@26322
   395
lemma ex_cong:
wenzelm@26322
   396
  assumes "!!x. f(x):P(x) <-> Q(x)"
wenzelm@26322
   397
  shows "?p:(EX x. P(x)) <-> (EX x. Q(x))"
wenzelm@26322
   398
  apply (erule exE | assumption | rule iffI exI | tactic {* mp_tac 1 *} |
wenzelm@26322
   399
    tactic {* iff_tac @{thms assms} 1 *})+
wenzelm@26322
   400
  done
wenzelm@26322
   401
wenzelm@26322
   402
(*NOT PROVED
wenzelm@26322
   403
bind_thm ("ex1_cong", prove_goal (the_context ())
wenzelm@26322
   404
    "(!!x.f(x):P(x) <-> Q(x)) ==> ?p:(EX! x.P(x)) <-> (EX! x.Q(x))"
wenzelm@26322
   405
 (fn prems =>
wenzelm@26322
   406
  [ (REPEAT   (eresolve_tac [ex1E, spec RS mp] 1 ORELSE ares_tac [iffI,ex1I] 1
wenzelm@26322
   407
      ORELSE   mp_tac 1
wenzelm@26322
   408
      ORELSE   iff_tac prems 1)) ]))
wenzelm@26322
   409
*)
wenzelm@26322
   410
wenzelm@26322
   411
(*** Equality rules ***)
wenzelm@26322
   412
wenzelm@26322
   413
lemmas refl = ieqI
wenzelm@26322
   414
wenzelm@26322
   415
lemma subst:
wenzelm@26322
   416
  assumes prem1: "p:a=b"
wenzelm@26322
   417
    and prem2: "q:P(a)"
wenzelm@26322
   418
  shows "?p : P(b)"
wenzelm@26322
   419
  apply (rule prem2 [THEN rev_mp])
wenzelm@26322
   420
  apply (rule prem1 [THEN ieqE])
wenzelm@26322
   421
  apply (rule impI)
wenzelm@26322
   422
  apply assumption
wenzelm@26322
   423
  done
wenzelm@26322
   424
wenzelm@26322
   425
lemma sym: "q:a=b ==> ?c:b=a"
wenzelm@26322
   426
  apply (erule subst)
wenzelm@26322
   427
  apply (rule refl)
wenzelm@26322
   428
  done
wenzelm@26322
   429
wenzelm@26322
   430
lemma trans: "[| p:a=b;  q:b=c |] ==> ?d:a=c"
wenzelm@26322
   431
  apply (erule (1) subst)
wenzelm@26322
   432
  done
wenzelm@26322
   433
wenzelm@26322
   434
(** ~ b=a ==> ~ a=b **)
wenzelm@26322
   435
lemma not_sym: "p:~ b=a ==> ?q:~ a=b"
wenzelm@26322
   436
  apply (erule contrapos)
wenzelm@26322
   437
  apply (erule sym)
wenzelm@26322
   438
  done
wenzelm@26322
   439
wenzelm@26322
   440
(*calling "standard" reduces maxidx to 0*)
wenzelm@26322
   441
lemmas ssubst = sym [THEN subst, standard]
wenzelm@26322
   442
wenzelm@26322
   443
(*A special case of ex1E that would otherwise need quantifier expansion*)
wenzelm@26322
   444
lemma ex1_equalsE: "[| p:EX! x. P(x);  q:P(a);  r:P(b) |] ==> ?d:a=b"
wenzelm@26322
   445
  apply (erule ex1E)
wenzelm@26322
   446
  apply (rule trans)
wenzelm@26322
   447
   apply (rule_tac [2] sym)
wenzelm@26322
   448
   apply (assumption | erule spec [THEN mp])+
wenzelm@26322
   449
  done
wenzelm@26322
   450
wenzelm@26322
   451
(** Polymorphic congruence rules **)
wenzelm@26322
   452
wenzelm@26322
   453
lemma subst_context: "[| p:a=b |]  ==>  ?d:t(a)=t(b)"
wenzelm@26322
   454
  apply (erule ssubst)
wenzelm@26322
   455
  apply (rule refl)
wenzelm@26322
   456
  done
wenzelm@26322
   457
wenzelm@26322
   458
lemma subst_context2: "[| p:a=b;  q:c=d |]  ==>  ?p:t(a,c)=t(b,d)"
wenzelm@26322
   459
  apply (erule ssubst)+
wenzelm@26322
   460
  apply (rule refl)
wenzelm@26322
   461
  done
wenzelm@26322
   462
wenzelm@26322
   463
lemma subst_context3: "[| p:a=b;  q:c=d;  r:e=f |]  ==>  ?p:t(a,c,e)=t(b,d,f)"
wenzelm@26322
   464
  apply (erule ssubst)+
wenzelm@26322
   465
  apply (rule refl)
wenzelm@26322
   466
  done
wenzelm@26322
   467
wenzelm@26322
   468
(*Useful with eresolve_tac for proving equalties from known equalities.
wenzelm@26322
   469
        a = b
wenzelm@26322
   470
        |   |
wenzelm@26322
   471
        c = d   *)
wenzelm@26322
   472
lemma box_equals: "[| p:a=b;  q:a=c;  r:b=d |] ==> ?p:c=d"
wenzelm@26322
   473
  apply (rule trans)
wenzelm@26322
   474
   apply (rule trans)
wenzelm@26322
   475
    apply (rule sym)
wenzelm@26322
   476
    apply assumption+
wenzelm@26322
   477
  done
wenzelm@26322
   478
wenzelm@26322
   479
(*Dual of box_equals: for proving equalities backwards*)
wenzelm@26322
   480
lemma simp_equals: "[| p:a=c;  q:b=d;  r:c=d |] ==> ?p:a=b"
wenzelm@26322
   481
  apply (rule trans)
wenzelm@26322
   482
   apply (rule trans)
wenzelm@26322
   483
    apply (assumption | rule sym)+
wenzelm@26322
   484
  done
wenzelm@26322
   485
wenzelm@26322
   486
(** Congruence rules for predicate letters **)
wenzelm@26322
   487
wenzelm@26322
   488
lemma pred1_cong: "p:a=a' ==> ?p:P(a) <-> P(a')"
wenzelm@26322
   489
  apply (rule iffI)
wenzelm@26322
   490
   apply (tactic {* DEPTH_SOLVE (atac 1 ORELSE eresolve_tac [@{thm subst}, @{thm ssubst}] 1) *})
wenzelm@26322
   491
  done
wenzelm@26322
   492
wenzelm@26322
   493
lemma pred2_cong: "[| p:a=a';  q:b=b' |] ==> ?p:P(a,b) <-> P(a',b')"
wenzelm@26322
   494
  apply (rule iffI)
wenzelm@26322
   495
   apply (tactic {* DEPTH_SOLVE (atac 1 ORELSE eresolve_tac [@{thm subst}, @{thm ssubst}] 1) *})
wenzelm@26322
   496
  done
wenzelm@26322
   497
wenzelm@26322
   498
lemma pred3_cong: "[| p:a=a';  q:b=b';  r:c=c' |] ==> ?p:P(a,b,c) <-> P(a',b',c')"
wenzelm@26322
   499
  apply (rule iffI)
wenzelm@26322
   500
   apply (tactic {* DEPTH_SOLVE (atac 1 ORELSE eresolve_tac [@{thm subst}, @{thm ssubst}] 1) *})
wenzelm@26322
   501
  done
wenzelm@26322
   502
wenzelm@27152
   503
lemmas pred_congs = pred1_cong pred2_cong pred3_cong
wenzelm@26322
   504
wenzelm@26322
   505
(*special case for the equality predicate!*)
wenzelm@26322
   506
lemmas eq_cong = pred2_cong [where P = "op =", standard]
wenzelm@26322
   507
wenzelm@26322
   508
wenzelm@26322
   509
(*** Simplifications of assumed implications.
wenzelm@26322
   510
     Roy Dyckhoff has proved that conj_impE, disj_impE, and imp_impE
wenzelm@26322
   511
     used with mp_tac (restricted to atomic formulae) is COMPLETE for
wenzelm@26322
   512
     intuitionistic propositional logic.  See
wenzelm@26322
   513
   R. Dyckhoff, Contraction-free sequent calculi for intuitionistic logic
wenzelm@26322
   514
    (preprint, University of St Andrews, 1991)  ***)
wenzelm@26322
   515
wenzelm@26322
   516
lemma conj_impE:
wenzelm@26322
   517
  assumes major: "p:(P&Q)-->S"
wenzelm@26322
   518
    and minor: "!!x. x:P-->(Q-->S) ==> q(x):R"
wenzelm@26322
   519
  shows "?p:R"
wenzelm@26322
   520
  apply (assumption | rule conjI impI major [THEN mp] minor)+
wenzelm@26322
   521
  done
wenzelm@26322
   522
wenzelm@26322
   523
lemma disj_impE:
wenzelm@26322
   524
  assumes major: "p:(P|Q)-->S"
wenzelm@26322
   525
    and minor: "!!x y.[| x:P-->S; y:Q-->S |] ==> q(x,y):R"
wenzelm@26322
   526
  shows "?p:R"
wenzelm@26322
   527
  apply (tactic {* DEPTH_SOLVE (atac 1 ORELSE
wenzelm@26322
   528
      resolve_tac [@{thm disjI1}, @{thm disjI2}, @{thm impI},
wenzelm@26322
   529
        @{thm major} RS @{thm mp}, @{thm minor}] 1) *})
wenzelm@26322
   530
  done
wenzelm@26322
   531
wenzelm@26322
   532
(*Simplifies the implication.  Classical version is stronger.
wenzelm@26322
   533
  Still UNSAFE since Q must be provable -- backtracking needed.  *)
wenzelm@26322
   534
lemma imp_impE:
wenzelm@26322
   535
  assumes major: "p:(P-->Q)-->S"
wenzelm@26322
   536
    and r1: "!!x y.[| x:P; y:Q-->S |] ==> q(x,y):Q"
wenzelm@26322
   537
    and r2: "!!x. x:S ==> r(x):R"
wenzelm@26322
   538
  shows "?p:R"
wenzelm@26322
   539
  apply (assumption | rule impI major [THEN mp] r1 r2)+
wenzelm@26322
   540
  done
wenzelm@26322
   541
wenzelm@26322
   542
(*Simplifies the implication.  Classical version is stronger.
wenzelm@26322
   543
  Still UNSAFE since ~P must be provable -- backtracking needed.  *)
wenzelm@26322
   544
lemma not_impE:
wenzelm@26322
   545
  assumes major: "p:~P --> S"
wenzelm@26322
   546
    and r1: "!!y. y:P ==> q(y):False"
wenzelm@26322
   547
    and r2: "!!y. y:S ==> r(y):R"
wenzelm@26322
   548
  shows "?p:R"
wenzelm@26322
   549
  apply (assumption | rule notI impI major [THEN mp] r1 r2)+
wenzelm@26322
   550
  done
wenzelm@26322
   551
wenzelm@26322
   552
(*Simplifies the implication.   UNSAFE.  *)
wenzelm@26322
   553
lemma iff_impE:
wenzelm@26322
   554
  assumes major: "p:(P<->Q)-->S"
wenzelm@26322
   555
    and r1: "!!x y.[| x:P; y:Q-->S |] ==> q(x,y):Q"
wenzelm@26322
   556
    and r2: "!!x y.[| x:Q; y:P-->S |] ==> r(x,y):P"
wenzelm@26322
   557
    and r3: "!!x. x:S ==> s(x):R"
wenzelm@26322
   558
  shows "?p:R"
wenzelm@26322
   559
  apply (assumption | rule iffI impI major [THEN mp] r1 r2 r3)+
wenzelm@26322
   560
  done
wenzelm@26322
   561
wenzelm@26322
   562
(*What if (ALL x.~~P(x)) --> ~~(ALL x.P(x)) is an assumption? UNSAFE*)
wenzelm@26322
   563
lemma all_impE:
wenzelm@26322
   564
  assumes major: "p:(ALL x. P(x))-->S"
wenzelm@26322
   565
    and r1: "!!x. q:P(x)"
wenzelm@26322
   566
    and r2: "!!y. y:S ==> r(y):R"
wenzelm@26322
   567
  shows "?p:R"
wenzelm@26322
   568
  apply (assumption | rule allI impI major [THEN mp] r1 r2)+
wenzelm@26322
   569
  done
wenzelm@26322
   570
wenzelm@26322
   571
(*Unsafe: (EX x.P(x))-->S  is equivalent to  ALL x.P(x)-->S.  *)
wenzelm@26322
   572
lemma ex_impE:
wenzelm@26322
   573
  assumes major: "p:(EX x. P(x))-->S"
wenzelm@26322
   574
    and r: "!!y. y:P(a)-->S ==> q(y):R"
wenzelm@26322
   575
  shows "?p:R"
wenzelm@26322
   576
  apply (assumption | rule exI impI major [THEN mp] r)+
wenzelm@26322
   577
  done
wenzelm@26322
   578
wenzelm@26322
   579
wenzelm@26322
   580
lemma rev_cut_eq:
wenzelm@26322
   581
  assumes "p:a=b"
wenzelm@26322
   582
    and "!!x. x:a=b ==> f(x):R"
wenzelm@26322
   583
  shows "?p:R"
wenzelm@26322
   584
  apply (rule assms)+
wenzelm@26322
   585
  done
wenzelm@26322
   586
wenzelm@26322
   587
lemma thin_refl: "!!X. [|p:x=x; PROP W|] ==> PROP W" .
wenzelm@26322
   588
wenzelm@26322
   589
use "hypsubst.ML"
wenzelm@26322
   590
wenzelm@26322
   591
ML {*
wenzelm@26322
   592
wenzelm@26322
   593
(*** Applying HypsubstFun to generate hyp_subst_tac ***)
wenzelm@26322
   594
wenzelm@26322
   595
structure Hypsubst_Data =
wenzelm@26322
   596
struct
wenzelm@26322
   597
  (*Take apart an equality judgement; otherwise raise Match!*)
wenzelm@26322
   598
  fun dest_eq (Const (@{const_name Proof}, _) $
wenzelm@26322
   599
    (Const (@{const_name "op ="}, _)  $ t $ u) $ _) = (t, u);
wenzelm@26322
   600
wenzelm@26322
   601
  val imp_intr = @{thm impI}
wenzelm@26322
   602
wenzelm@26322
   603
  (*etac rev_cut_eq moves an equality to be the last premise. *)
wenzelm@26322
   604
  val rev_cut_eq = @{thm rev_cut_eq}
wenzelm@26322
   605
wenzelm@26322
   606
  val rev_mp = @{thm rev_mp}
wenzelm@26322
   607
  val subst = @{thm subst}
wenzelm@26322
   608
  val sym = @{thm sym}
wenzelm@26322
   609
  val thin_refl = @{thm thin_refl}
wenzelm@26322
   610
end;
wenzelm@26322
   611
wenzelm@26322
   612
structure Hypsubst = HypsubstFun(Hypsubst_Data);
wenzelm@26322
   613
open Hypsubst;
wenzelm@26322
   614
*}
wenzelm@26322
   615
wenzelm@26322
   616
use "intprover.ML"
wenzelm@26322
   617
wenzelm@26322
   618
wenzelm@26322
   619
(*** Rewrite rules ***)
wenzelm@26322
   620
wenzelm@26322
   621
lemma conj_rews:
wenzelm@26322
   622
  "?p1 : P & True <-> P"
wenzelm@26322
   623
  "?p2 : True & P <-> P"
wenzelm@26322
   624
  "?p3 : P & False <-> False"
wenzelm@26322
   625
  "?p4 : False & P <-> False"
wenzelm@26322
   626
  "?p5 : P & P <-> P"
wenzelm@26322
   627
  "?p6 : P & ~P <-> False"
wenzelm@26322
   628
  "?p7 : ~P & P <-> False"
wenzelm@26322
   629
  "?p8 : (P & Q) & R <-> P & (Q & R)"
wenzelm@26322
   630
  apply (tactic {* fn st => IntPr.fast_tac 1 st *})+
wenzelm@26322
   631
  done
wenzelm@26322
   632
wenzelm@26322
   633
lemma disj_rews:
wenzelm@26322
   634
  "?p1 : P | True <-> True"
wenzelm@26322
   635
  "?p2 : True | P <-> True"
wenzelm@26322
   636
  "?p3 : P | False <-> P"
wenzelm@26322
   637
  "?p4 : False | P <-> P"
wenzelm@26322
   638
  "?p5 : P | P <-> P"
wenzelm@26322
   639
  "?p6 : (P | Q) | R <-> P | (Q | R)"
wenzelm@26322
   640
  apply (tactic {* IntPr.fast_tac 1 *})+
wenzelm@26322
   641
  done
wenzelm@26322
   642
wenzelm@26322
   643
lemma not_rews:
wenzelm@26322
   644
  "?p1 : ~ False <-> True"
wenzelm@26322
   645
  "?p2 : ~ True <-> False"
wenzelm@26322
   646
  apply (tactic {* IntPr.fast_tac 1 *})+
wenzelm@26322
   647
  done
wenzelm@26322
   648
wenzelm@26322
   649
lemma imp_rews:
wenzelm@26322
   650
  "?p1 : (P --> False) <-> ~P"
wenzelm@26322
   651
  "?p2 : (P --> True) <-> True"
wenzelm@26322
   652
  "?p3 : (False --> P) <-> True"
wenzelm@26322
   653
  "?p4 : (True --> P) <-> P"
wenzelm@26322
   654
  "?p5 : (P --> P) <-> True"
wenzelm@26322
   655
  "?p6 : (P --> ~P) <-> ~P"
wenzelm@26322
   656
  apply (tactic {* IntPr.fast_tac 1 *})+
wenzelm@26322
   657
  done
wenzelm@26322
   658
wenzelm@26322
   659
lemma iff_rews:
wenzelm@26322
   660
  "?p1 : (True <-> P) <-> P"
wenzelm@26322
   661
  "?p2 : (P <-> True) <-> P"
wenzelm@26322
   662
  "?p3 : (P <-> P) <-> True"
wenzelm@26322
   663
  "?p4 : (False <-> P) <-> ~P"
wenzelm@26322
   664
  "?p5 : (P <-> False) <-> ~P"
wenzelm@26322
   665
  apply (tactic {* IntPr.fast_tac 1 *})+
wenzelm@26322
   666
  done
wenzelm@26322
   667
wenzelm@26322
   668
lemma quant_rews:
wenzelm@26322
   669
  "?p1 : (ALL x. P) <-> P"
wenzelm@26322
   670
  "?p2 : (EX x. P) <-> P"
wenzelm@26322
   671
  apply (tactic {* IntPr.fast_tac 1 *})+
wenzelm@26322
   672
  done
wenzelm@26322
   673
wenzelm@26322
   674
(*These are NOT supplied by default!*)
wenzelm@26322
   675
lemma distrib_rews1:
wenzelm@26322
   676
  "?p1 : ~(P|Q) <-> ~P & ~Q"
wenzelm@26322
   677
  "?p2 : P & (Q | R) <-> P&Q | P&R"
wenzelm@26322
   678
  "?p3 : (Q | R) & P <-> Q&P | R&P"
wenzelm@26322
   679
  "?p4 : (P | Q --> R) <-> (P --> R) & (Q --> R)"
wenzelm@26322
   680
  apply (tactic {* IntPr.fast_tac 1 *})+
wenzelm@26322
   681
  done
wenzelm@26322
   682
wenzelm@26322
   683
lemma distrib_rews2:
wenzelm@26322
   684
  "?p1 : ~(EX x. NORM(P(x))) <-> (ALL x. ~NORM(P(x)))"
wenzelm@26322
   685
  "?p2 : ((EX x. NORM(P(x))) --> Q) <-> (ALL x. NORM(P(x)) --> Q)"
wenzelm@26322
   686
  "?p3 : (EX x. NORM(P(x))) & NORM(Q) <-> (EX x. NORM(P(x)) & NORM(Q))"
wenzelm@26322
   687
  "?p4 : NORM(Q) & (EX x. NORM(P(x))) <-> (EX x. NORM(Q) & NORM(P(x)))"
wenzelm@26322
   688
  apply (tactic {* IntPr.fast_tac 1 *})+
wenzelm@26322
   689
  done
wenzelm@26322
   690
wenzelm@26322
   691
lemmas distrib_rews = distrib_rews1 distrib_rews2
wenzelm@26322
   692
wenzelm@26322
   693
lemma P_Imp_P_iff_T: "p:P ==> ?p:(P <-> True)"
wenzelm@26322
   694
  apply (tactic {* IntPr.fast_tac 1 *})
wenzelm@26322
   695
  done
wenzelm@26322
   696
wenzelm@26322
   697
lemma not_P_imp_P_iff_F: "p:~P ==> ?p:(P <-> False)"
wenzelm@26322
   698
  apply (tactic {* IntPr.fast_tac 1 *})
wenzelm@26322
   699
  done
clasohm@0
   700
clasohm@0
   701
end