src/HOL/Set.ML
author oheimb
Tue Nov 04 20:50:35 1997 +0100 (1997-11-04)
changeset 4135 4830f1f5f6ea
parent 4089 96fba19bcbe2
child 4159 4aff9b7e5597
permissions -rw-r--r--
removed redundant ball_empty and bex_empty (see equalities.ML)
clasohm@1465
     1
(*  Title:      HOL/set
clasohm@923
     2
    ID:         $Id$
clasohm@1465
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@923
     4
    Copyright   1991  University of Cambridge
clasohm@923
     5
paulson@1985
     6
Set theory for higher-order logic.  A set is simply a predicate.
clasohm@923
     7
*)
clasohm@923
     8
clasohm@923
     9
open Set;
clasohm@923
    10
nipkow@1548
    11
section "Relating predicates and sets";
nipkow@1548
    12
paulson@3469
    13
Addsimps [Collect_mem_eq];
paulson@3469
    14
AddIffs  [mem_Collect_eq];
paulson@2499
    15
wenzelm@3842
    16
goal Set.thy "!!a. P(a) ==> a : {x. P(x)}";
paulson@2499
    17
by (Asm_simp_tac 1);
clasohm@923
    18
qed "CollectI";
clasohm@923
    19
wenzelm@3842
    20
val prems = goal Set.thy "!!a. a : {x. P(x)} ==> P(a)";
paulson@2499
    21
by (Asm_full_simp_tac 1);
clasohm@923
    22
qed "CollectD";
clasohm@923
    23
clasohm@923
    24
val [prem] = goal Set.thy "[| !!x. (x:A) = (x:B) |] ==> A = B";
clasohm@923
    25
by (rtac (prem RS ext RS arg_cong RS box_equals) 1);
clasohm@923
    26
by (rtac Collect_mem_eq 1);
clasohm@923
    27
by (rtac Collect_mem_eq 1);
clasohm@923
    28
qed "set_ext";
clasohm@923
    29
clasohm@923
    30
val [prem] = goal Set.thy "[| !!x. P(x)=Q(x) |] ==> {x. P(x)} = {x. Q(x)}";
clasohm@923
    31
by (rtac (prem RS ext RS arg_cong) 1);
clasohm@923
    32
qed "Collect_cong";
clasohm@923
    33
clasohm@923
    34
val CollectE = make_elim CollectD;
clasohm@923
    35
paulson@2499
    36
AddSIs [CollectI];
paulson@2499
    37
AddSEs [CollectE];
paulson@2499
    38
paulson@2499
    39
nipkow@1548
    40
section "Bounded quantifiers";
clasohm@923
    41
clasohm@923
    42
val prems = goalw Set.thy [Ball_def]
clasohm@923
    43
    "[| !!x. x:A ==> P(x) |] ==> ! x:A. P(x)";
clasohm@923
    44
by (REPEAT (ares_tac (prems @ [allI,impI]) 1));
clasohm@923
    45
qed "ballI";
clasohm@923
    46
clasohm@923
    47
val [major,minor] = goalw Set.thy [Ball_def]
clasohm@923
    48
    "[| ! x:A. P(x);  x:A |] ==> P(x)";
clasohm@923
    49
by (rtac (minor RS (major RS spec RS mp)) 1);
clasohm@923
    50
qed "bspec";
clasohm@923
    51
clasohm@923
    52
val major::prems = goalw Set.thy [Ball_def]
clasohm@923
    53
    "[| ! x:A. P(x);  P(x) ==> Q;  x~:A ==> Q |] ==> Q";
clasohm@923
    54
by (rtac (major RS spec RS impCE) 1);
clasohm@923
    55
by (REPEAT (eresolve_tac prems 1));
clasohm@923
    56
qed "ballE";
clasohm@923
    57
clasohm@923
    58
(*Takes assumptions ! x:A.P(x) and a:A; creates assumption P(a)*)
clasohm@923
    59
fun ball_tac i = etac ballE i THEN contr_tac (i+1);
clasohm@923
    60
paulson@2499
    61
AddSIs [ballI];
paulson@2499
    62
AddEs  [ballE];
paulson@2499
    63
clasohm@923
    64
val prems = goalw Set.thy [Bex_def]
clasohm@923
    65
    "[| P(x);  x:A |] ==> ? x:A. P(x)";
clasohm@923
    66
by (REPEAT (ares_tac (prems @ [exI,conjI]) 1));
clasohm@923
    67
qed "bexI";
clasohm@923
    68
clasohm@923
    69
qed_goal "bexCI" Set.thy 
wenzelm@3842
    70
   "[| ! x:A. ~P(x) ==> P(a);  a:A |] ==> ? x:A. P(x)"
clasohm@923
    71
 (fn prems=>
clasohm@923
    72
  [ (rtac classical 1),
clasohm@923
    73
    (REPEAT (ares_tac (prems@[bexI,ballI,notI,notE]) 1))  ]);
clasohm@923
    74
clasohm@923
    75
val major::prems = goalw Set.thy [Bex_def]
clasohm@923
    76
    "[| ? x:A. P(x);  !!x. [| x:A; P(x) |] ==> Q  |] ==> Q";
clasohm@923
    77
by (rtac (major RS exE) 1);
clasohm@923
    78
by (REPEAT (eresolve_tac (prems @ [asm_rl,conjE]) 1));
clasohm@923
    79
qed "bexE";
clasohm@923
    80
paulson@2499
    81
AddIs  [bexI];
paulson@2499
    82
AddSEs [bexE];
paulson@2499
    83
paulson@3420
    84
(*Trival rewrite rule*)
wenzelm@3842
    85
goal Set.thy "(! x:A. P) = ((? x. x:A) --> P)";
wenzelm@4089
    86
by (simp_tac (simpset() addsimps [Ball_def]) 1);
paulson@3420
    87
qed "ball_triv";
paulson@1816
    88
paulson@1882
    89
(*Dual form for existentials*)
wenzelm@3842
    90
goal Set.thy "(? x:A. P) = ((? x. x:A) & P)";
wenzelm@4089
    91
by (simp_tac (simpset() addsimps [Bex_def]) 1);
paulson@3420
    92
qed "bex_triv";
paulson@1882
    93
paulson@3420
    94
Addsimps [ball_triv, bex_triv];
clasohm@923
    95
clasohm@923
    96
(** Congruence rules **)
clasohm@923
    97
clasohm@923
    98
val prems = goal Set.thy
clasohm@923
    99
    "[| A=B;  !!x. x:B ==> P(x) = Q(x) |] ==> \
clasohm@923
   100
\    (! x:A. P(x)) = (! x:B. Q(x))";
clasohm@923
   101
by (resolve_tac (prems RL [ssubst]) 1);
clasohm@923
   102
by (REPEAT (ares_tac [ballI,iffI] 1
clasohm@923
   103
     ORELSE eresolve_tac ([make_elim bspec, mp] @ (prems RL [iffE])) 1));
clasohm@923
   104
qed "ball_cong";
clasohm@923
   105
clasohm@923
   106
val prems = goal Set.thy
clasohm@923
   107
    "[| A=B;  !!x. x:B ==> P(x) = Q(x) |] ==> \
clasohm@923
   108
\    (? x:A. P(x)) = (? x:B. Q(x))";
clasohm@923
   109
by (resolve_tac (prems RL [ssubst]) 1);
clasohm@923
   110
by (REPEAT (etac bexE 1
clasohm@923
   111
     ORELSE ares_tac ([bexI,iffI] @ (prems RL [iffD1,iffD2])) 1));
clasohm@923
   112
qed "bex_cong";
clasohm@923
   113
nipkow@1548
   114
section "Subsets";
clasohm@923
   115
wenzelm@3842
   116
val prems = goalw Set.thy [subset_def] "(!!x. x:A ==> x:B) ==> A <= B";
clasohm@923
   117
by (REPEAT (ares_tac (prems @ [ballI]) 1));
clasohm@923
   118
qed "subsetI";
clasohm@923
   119
paulson@4059
   120
Blast.overload ("op <=", domain_type); (*The <= relation is overloaded*)
paulson@4059
   121
paulson@4059
   122
(*While (:) is not, its type must be kept
paulson@4059
   123
  for overloading of = to work.*)
paulson@4059
   124
Blast.overload ("op :", domain_type);
paulson@4059
   125
seq (fn a => Blast.overload (a, HOLogic.dest_setT o domain_type))
paulson@4059
   126
    ["Ball", "Bex"];
paulson@4059
   127
(*need UNION, INTER also?*)
paulson@4059
   128
paulson@2881
   129
clasohm@923
   130
(*Rule in Modus Ponens style*)
clasohm@923
   131
val major::prems = goalw Set.thy [subset_def] "[| A <= B;  c:A |] ==> c:B";
clasohm@923
   132
by (rtac (major RS bspec) 1);
clasohm@923
   133
by (resolve_tac prems 1);
clasohm@923
   134
qed "subsetD";
clasohm@923
   135
clasohm@923
   136
(*The same, with reversed premises for use with etac -- cf rev_mp*)
clasohm@923
   137
qed_goal "rev_subsetD" Set.thy "[| c:A;  A <= B |] ==> c:B"
clasohm@923
   138
 (fn prems=>  [ (REPEAT (resolve_tac (prems@[subsetD]) 1)) ]);
clasohm@923
   139
paulson@1920
   140
(*Converts A<=B to x:A ==> x:B*)
paulson@1920
   141
fun impOfSubs th = th RSN (2, rev_subsetD);
paulson@1920
   142
paulson@1841
   143
qed_goal "contra_subsetD" Set.thy "!!c. [| A <= B; c ~: B |] ==> c ~: A"
paulson@1841
   144
 (fn prems=>  [ (REPEAT (eresolve_tac [asm_rl, contrapos, subsetD] 1)) ]);
paulson@1841
   145
paulson@1841
   146
qed_goal "rev_contra_subsetD" Set.thy "!!c. [| c ~: B;  A <= B |] ==> c ~: A"
paulson@1841
   147
 (fn prems=>  [ (REPEAT (eresolve_tac [asm_rl, contrapos, subsetD] 1)) ]);
paulson@1841
   148
clasohm@923
   149
(*Classical elimination rule*)
clasohm@923
   150
val major::prems = goalw Set.thy [subset_def] 
clasohm@923
   151
    "[| A <= B;  c~:A ==> P;  c:B ==> P |] ==> P";
clasohm@923
   152
by (rtac (major RS ballE) 1);
clasohm@923
   153
by (REPEAT (eresolve_tac prems 1));
clasohm@923
   154
qed "subsetCE";
clasohm@923
   155
clasohm@923
   156
(*Takes assumptions A<=B; c:A and creates the assumption c:B *)
clasohm@923
   157
fun set_mp_tac i = etac subsetCE i  THEN  mp_tac i;
clasohm@923
   158
paulson@2499
   159
AddSIs [subsetI];
paulson@2499
   160
AddEs  [subsetD, subsetCE];
clasohm@923
   161
paulson@2499
   162
qed_goal "subset_refl" Set.thy "A <= (A::'a set)"
paulson@4059
   163
 (fn _=> [Fast_tac 1]);		(*Blast_tac would try order_refl and fail*)
paulson@2499
   164
paulson@2499
   165
val prems = goal Set.thy "!!B. [| A<=B;  B<=C |] ==> A<=(C::'a set)";
paulson@2891
   166
by (Blast_tac 1);
clasohm@923
   167
qed "subset_trans";
clasohm@923
   168
clasohm@923
   169
nipkow@1548
   170
section "Equality";
clasohm@923
   171
clasohm@923
   172
(*Anti-symmetry of the subset relation*)
clasohm@923
   173
val prems = goal Set.thy "[| A <= B;  B <= A |] ==> A = (B::'a set)";
clasohm@923
   174
by (rtac (iffI RS set_ext) 1);
clasohm@923
   175
by (REPEAT (ares_tac (prems RL [subsetD]) 1));
clasohm@923
   176
qed "subset_antisym";
clasohm@923
   177
val equalityI = subset_antisym;
clasohm@923
   178
berghofe@1762
   179
AddSIs [equalityI];
berghofe@1762
   180
clasohm@923
   181
(* Equality rules from ZF set theory -- are they appropriate here? *)
clasohm@923
   182
val prems = goal Set.thy "A = B ==> A<=(B::'a set)";
clasohm@923
   183
by (resolve_tac (prems RL [subst]) 1);
clasohm@923
   184
by (rtac subset_refl 1);
clasohm@923
   185
qed "equalityD1";
clasohm@923
   186
clasohm@923
   187
val prems = goal Set.thy "A = B ==> B<=(A::'a set)";
clasohm@923
   188
by (resolve_tac (prems RL [subst]) 1);
clasohm@923
   189
by (rtac subset_refl 1);
clasohm@923
   190
qed "equalityD2";
clasohm@923
   191
clasohm@923
   192
val prems = goal Set.thy
clasohm@923
   193
    "[| A = B;  [| A<=B; B<=(A::'a set) |] ==> P |]  ==>  P";
clasohm@923
   194
by (resolve_tac prems 1);
clasohm@923
   195
by (REPEAT (resolve_tac (prems RL [equalityD1,equalityD2]) 1));
clasohm@923
   196
qed "equalityE";
clasohm@923
   197
clasohm@923
   198
val major::prems = goal Set.thy
clasohm@923
   199
    "[| A = B;  [| c:A; c:B |] ==> P;  [| c~:A; c~:B |] ==> P |]  ==>  P";
clasohm@923
   200
by (rtac (major RS equalityE) 1);
clasohm@923
   201
by (REPEAT (contr_tac 1 ORELSE eresolve_tac ([asm_rl,subsetCE]@prems) 1));
clasohm@923
   202
qed "equalityCE";
clasohm@923
   203
clasohm@923
   204
(*Lemma for creating induction formulae -- for "pattern matching" on p
clasohm@923
   205
  To make the induction hypotheses usable, apply "spec" or "bspec" to
clasohm@923
   206
  put universal quantifiers over the free variables in p. *)
clasohm@923
   207
val prems = goal Set.thy 
clasohm@923
   208
    "[| p:A;  !!z. z:A ==> p=z --> R |] ==> R";
clasohm@923
   209
by (rtac mp 1);
clasohm@923
   210
by (REPEAT (resolve_tac (refl::prems) 1));
clasohm@923
   211
qed "setup_induction";
clasohm@923
   212
clasohm@923
   213
paulson@2858
   214
section "The empty set -- {}";
paulson@2858
   215
paulson@2858
   216
qed_goalw "empty_iff" Set.thy [empty_def] "(c : {}) = False"
paulson@2891
   217
 (fn _ => [ (Blast_tac 1) ]);
paulson@2858
   218
paulson@2858
   219
Addsimps [empty_iff];
paulson@2858
   220
paulson@2858
   221
qed_goal "emptyE" Set.thy "!!a. a:{} ==> P"
paulson@2858
   222
 (fn _ => [Full_simp_tac 1]);
paulson@2858
   223
paulson@2858
   224
AddSEs [emptyE];
paulson@2858
   225
paulson@2858
   226
qed_goal "empty_subsetI" Set.thy "{} <= A"
paulson@2891
   227
 (fn _ => [ (Blast_tac 1) ]);
paulson@2858
   228
paulson@2858
   229
qed_goal "equals0I" Set.thy "[| !!y. y:A ==> False |] ==> A={}"
paulson@2858
   230
 (fn [prem]=>
wenzelm@4089
   231
  [ (blast_tac (claset() addIs [prem RS FalseE]) 1) ]);
paulson@2858
   232
paulson@2858
   233
qed_goal "equals0D" Set.thy "!!a. [| A={};  a:A |] ==> P"
paulson@2891
   234
 (fn _ => [ (Blast_tac 1) ]);
paulson@2858
   235
paulson@2858
   236
paulson@2858
   237
section "The Powerset operator -- Pow";
paulson@2858
   238
paulson@2858
   239
qed_goalw "Pow_iff" Set.thy [Pow_def] "(A : Pow(B)) = (A <= B)"
paulson@2858
   240
 (fn _ => [ (Asm_simp_tac 1) ]);
paulson@2858
   241
paulson@2858
   242
AddIffs [Pow_iff]; 
paulson@2858
   243
paulson@2858
   244
qed_goalw "PowI" Set.thy [Pow_def] "!!A B. A <= B ==> A : Pow(B)"
paulson@2858
   245
 (fn _ => [ (etac CollectI 1) ]);
paulson@2858
   246
paulson@2858
   247
qed_goalw "PowD" Set.thy [Pow_def] "!!A B. A : Pow(B)  ==>  A<=B"
paulson@2858
   248
 (fn _=> [ (etac CollectD 1) ]);
paulson@2858
   249
paulson@2858
   250
val Pow_bottom = empty_subsetI RS PowI;        (* {}: Pow(B) *)
paulson@2858
   251
val Pow_top = subset_refl RS PowI;             (* A : Pow(A) *)
paulson@2858
   252
paulson@2858
   253
nipkow@1548
   254
section "Set complement -- Compl";
clasohm@923
   255
paulson@2499
   256
qed_goalw "Compl_iff" Set.thy [Compl_def] "(c : Compl(A)) = (c~:A)"
paulson@2891
   257
 (fn _ => [ (Blast_tac 1) ]);
paulson@2499
   258
paulson@2499
   259
Addsimps [Compl_iff];
paulson@2499
   260
clasohm@923
   261
val prems = goalw Set.thy [Compl_def]
clasohm@923
   262
    "[| c:A ==> False |] ==> c : Compl(A)";
clasohm@923
   263
by (REPEAT (ares_tac (prems @ [CollectI,notI]) 1));
clasohm@923
   264
qed "ComplI";
clasohm@923
   265
clasohm@923
   266
(*This form, with negated conclusion, works well with the Classical prover.
clasohm@923
   267
  Negated assumptions behave like formulae on the right side of the notional
clasohm@923
   268
  turnstile...*)
clasohm@923
   269
val major::prems = goalw Set.thy [Compl_def]
paulson@2499
   270
    "c : Compl(A) ==> c~:A";
clasohm@923
   271
by (rtac (major RS CollectD) 1);
clasohm@923
   272
qed "ComplD";
clasohm@923
   273
clasohm@923
   274
val ComplE = make_elim ComplD;
clasohm@923
   275
paulson@2499
   276
AddSIs [ComplI];
paulson@2499
   277
AddSEs [ComplE];
paulson@1640
   278
clasohm@923
   279
nipkow@1548
   280
section "Binary union -- Un";
clasohm@923
   281
paulson@2499
   282
qed_goalw "Un_iff" Set.thy [Un_def] "(c : A Un B) = (c:A | c:B)"
paulson@2891
   283
 (fn _ => [ Blast_tac 1 ]);
paulson@2499
   284
paulson@2499
   285
Addsimps [Un_iff];
paulson@2499
   286
paulson@2499
   287
goal Set.thy "!!c. c:A ==> c : A Un B";
paulson@2499
   288
by (Asm_simp_tac 1);
clasohm@923
   289
qed "UnI1";
clasohm@923
   290
paulson@2499
   291
goal Set.thy "!!c. c:B ==> c : A Un B";
paulson@2499
   292
by (Asm_simp_tac 1);
clasohm@923
   293
qed "UnI2";
clasohm@923
   294
clasohm@923
   295
(*Classical introduction rule: no commitment to A vs B*)
clasohm@923
   296
qed_goal "UnCI" Set.thy "(c~:B ==> c:A) ==> c : A Un B"
clasohm@923
   297
 (fn prems=>
paulson@2499
   298
  [ (Simp_tac 1),
paulson@2499
   299
    (REPEAT (ares_tac (prems@[disjCI]) 1)) ]);
clasohm@923
   300
clasohm@923
   301
val major::prems = goalw Set.thy [Un_def]
clasohm@923
   302
    "[| c : A Un B;  c:A ==> P;  c:B ==> P |] ==> P";
clasohm@923
   303
by (rtac (major RS CollectD RS disjE) 1);
clasohm@923
   304
by (REPEAT (eresolve_tac prems 1));
clasohm@923
   305
qed "UnE";
clasohm@923
   306
paulson@2499
   307
AddSIs [UnCI];
paulson@2499
   308
AddSEs [UnE];
paulson@1640
   309
clasohm@923
   310
nipkow@1548
   311
section "Binary intersection -- Int";
clasohm@923
   312
paulson@2499
   313
qed_goalw "Int_iff" Set.thy [Int_def] "(c : A Int B) = (c:A & c:B)"
paulson@2891
   314
 (fn _ => [ (Blast_tac 1) ]);
paulson@2499
   315
paulson@2499
   316
Addsimps [Int_iff];
paulson@2499
   317
paulson@2499
   318
goal Set.thy "!!c. [| c:A;  c:B |] ==> c : A Int B";
paulson@2499
   319
by (Asm_simp_tac 1);
clasohm@923
   320
qed "IntI";
clasohm@923
   321
paulson@2499
   322
goal Set.thy "!!c. c : A Int B ==> c:A";
paulson@2499
   323
by (Asm_full_simp_tac 1);
clasohm@923
   324
qed "IntD1";
clasohm@923
   325
paulson@2499
   326
goal Set.thy "!!c. c : A Int B ==> c:B";
paulson@2499
   327
by (Asm_full_simp_tac 1);
clasohm@923
   328
qed "IntD2";
clasohm@923
   329
clasohm@923
   330
val [major,minor] = goal Set.thy
clasohm@923
   331
    "[| c : A Int B;  [| c:A; c:B |] ==> P |] ==> P";
clasohm@923
   332
by (rtac minor 1);
clasohm@923
   333
by (rtac (major RS IntD1) 1);
clasohm@923
   334
by (rtac (major RS IntD2) 1);
clasohm@923
   335
qed "IntE";
clasohm@923
   336
paulson@2499
   337
AddSIs [IntI];
paulson@2499
   338
AddSEs [IntE];
clasohm@923
   339
nipkow@1548
   340
section "Set difference";
clasohm@923
   341
paulson@2499
   342
qed_goalw "Diff_iff" Set.thy [set_diff_def] "(c : A-B) = (c:A & c~:B)"
paulson@2891
   343
 (fn _ => [ (Blast_tac 1) ]);
clasohm@923
   344
paulson@2499
   345
Addsimps [Diff_iff];
paulson@2499
   346
paulson@2499
   347
qed_goal "DiffI" Set.thy "!!c. [| c : A;  c ~: B |] ==> c : A - B"
paulson@2499
   348
 (fn _=> [ Asm_simp_tac 1 ]);
clasohm@923
   349
paulson@2499
   350
qed_goal "DiffD1" Set.thy "!!c. c : A - B ==> c : A"
paulson@2499
   351
 (fn _=> [ (Asm_full_simp_tac 1) ]);
clasohm@923
   352
paulson@2499
   353
qed_goal "DiffD2" Set.thy "!!c. [| c : A - B;  c : B |] ==> P"
paulson@2499
   354
 (fn _=> [ (Asm_full_simp_tac 1) ]);
paulson@2499
   355
paulson@2499
   356
qed_goal "DiffE" Set.thy "[| c : A - B;  [| c:A; c~:B |] ==> P |] ==> P"
clasohm@923
   357
 (fn prems=>
clasohm@923
   358
  [ (resolve_tac prems 1),
clasohm@923
   359
    (REPEAT (ares_tac (prems RL [DiffD1, DiffD2 RS notI]) 1)) ]);
clasohm@923
   360
paulson@2499
   361
AddSIs [DiffI];
paulson@2499
   362
AddSEs [DiffE];
clasohm@923
   363
clasohm@923
   364
nipkow@1548
   365
section "Augmenting a set -- insert";
clasohm@923
   366
paulson@2499
   367
qed_goalw "insert_iff" Set.thy [insert_def] "a : insert b A = (a=b | a:A)"
paulson@2891
   368
 (fn _ => [Blast_tac 1]);
paulson@2499
   369
paulson@2499
   370
Addsimps [insert_iff];
clasohm@923
   371
paulson@2499
   372
qed_goal "insertI1" Set.thy "a : insert a B"
paulson@2499
   373
 (fn _ => [Simp_tac 1]);
paulson@2499
   374
paulson@2499
   375
qed_goal "insertI2" Set.thy "!!a. a : B ==> a : insert b B"
paulson@2499
   376
 (fn _=> [Asm_simp_tac 1]);
clasohm@923
   377
clasohm@923
   378
qed_goalw "insertE" Set.thy [insert_def]
clasohm@923
   379
    "[| a : insert b A;  a=b ==> P;  a:A ==> P |] ==> P"
clasohm@923
   380
 (fn major::prems=>
clasohm@923
   381
  [ (rtac (major RS UnE) 1),
clasohm@923
   382
    (REPEAT (eresolve_tac (prems @ [CollectE]) 1)) ]);
clasohm@923
   383
clasohm@923
   384
(*Classical introduction rule*)
clasohm@923
   385
qed_goal "insertCI" Set.thy "(a~:B ==> a=b) ==> a: insert b B"
paulson@2499
   386
 (fn prems=>
paulson@2499
   387
  [ (Simp_tac 1),
paulson@2499
   388
    (REPEAT (ares_tac (prems@[disjCI]) 1)) ]);
paulson@2499
   389
paulson@2499
   390
AddSIs [insertCI]; 
paulson@2499
   391
AddSEs [insertE];
clasohm@923
   392
nipkow@1548
   393
section "Singletons, using insert";
clasohm@923
   394
clasohm@923
   395
qed_goal "singletonI" Set.thy "a : {a}"
clasohm@923
   396
 (fn _=> [ (rtac insertI1 1) ]);
clasohm@923
   397
paulson@2499
   398
goal Set.thy "!!a. b : {a} ==> b=a";
paulson@2891
   399
by (Blast_tac 1);
clasohm@923
   400
qed "singletonD";
clasohm@923
   401
oheimb@1776
   402
bind_thm ("singletonE", make_elim singletonD);
oheimb@1776
   403
paulson@2499
   404
qed_goal "singleton_iff" thy "(b : {a}) = (b=a)" 
paulson@2891
   405
(fn _ => [Blast_tac 1]);
clasohm@923
   406
paulson@2499
   407
goal Set.thy "!!a b. {a}={b} ==> a=b";
wenzelm@4089
   408
by (blast_tac (claset() addEs [equalityE]) 1);
clasohm@923
   409
qed "singleton_inject";
clasohm@923
   410
paulson@2858
   411
(*Redundant? But unlike insertCI, it proves the subgoal immediately!*)
paulson@2858
   412
AddSIs [singletonI];   
paulson@2499
   413
AddSDs [singleton_inject];
paulson@3718
   414
AddSEs [singletonE];
paulson@2499
   415
wenzelm@3842
   416
goal Set.thy "{x. x=a} = {a}";
nipkow@3582
   417
by(Blast_tac 1);
nipkow@3582
   418
qed "singleton_conv";
nipkow@3582
   419
Addsimps [singleton_conv];
nipkow@1531
   420
nipkow@1548
   421
section "The universal set -- UNIV";
nipkow@1531
   422
paulson@1882
   423
qed_goal "UNIV_I" Set.thy "x : UNIV"
paulson@1882
   424
  (fn _ => [rtac ComplI 1, etac emptyE 1]);
paulson@1882
   425
nipkow@1531
   426
qed_goal "subset_UNIV" Set.thy "A <= UNIV"
paulson@1882
   427
  (fn _ => [rtac subsetI 1, rtac UNIV_I 1]);
nipkow@1531
   428
nipkow@1531
   429
nipkow@1548
   430
section "Unions of families -- UNION x:A. B(x) is Union(B``A)";
clasohm@923
   431
paulson@2499
   432
goalw Set.thy [UNION_def] "(b: (UN x:A. B(x))) = (EX x:A. b: B(x))";
paulson@2891
   433
by (Blast_tac 1);
paulson@2499
   434
qed "UN_iff";
paulson@2499
   435
paulson@2499
   436
Addsimps [UN_iff];
paulson@2499
   437
clasohm@923
   438
(*The order of the premises presupposes that A is rigid; b may be flexible*)
paulson@2499
   439
goal Set.thy "!!b. [| a:A;  b: B(a) |] ==> b: (UN x:A. B(x))";
paulson@2499
   440
by (Auto_tac());
clasohm@923
   441
qed "UN_I";
clasohm@923
   442
clasohm@923
   443
val major::prems = goalw Set.thy [UNION_def]
clasohm@923
   444
    "[| b : (UN x:A. B(x));  !!x.[| x:A;  b: B(x) |] ==> R |] ==> R";
clasohm@923
   445
by (rtac (major RS CollectD RS bexE) 1);
clasohm@923
   446
by (REPEAT (ares_tac prems 1));
clasohm@923
   447
qed "UN_E";
clasohm@923
   448
paulson@2499
   449
AddIs  [UN_I];
paulson@2499
   450
AddSEs [UN_E];
paulson@2499
   451
clasohm@923
   452
val prems = goal Set.thy
clasohm@923
   453
    "[| A=B;  !!x. x:B ==> C(x) = D(x) |] ==> \
clasohm@923
   454
\    (UN x:A. C(x)) = (UN x:B. D(x))";
clasohm@923
   455
by (REPEAT (etac UN_E 1
clasohm@923
   456
     ORELSE ares_tac ([UN_I,equalityI,subsetI] @ 
clasohm@1465
   457
                      (prems RL [equalityD1,equalityD2] RL [subsetD])) 1));
clasohm@923
   458
qed "UN_cong";
clasohm@923
   459
clasohm@923
   460
nipkow@1548
   461
section "Intersections of families -- INTER x:A. B(x) is Inter(B``A)";
clasohm@923
   462
paulson@2499
   463
goalw Set.thy [INTER_def] "(b: (INT x:A. B(x))) = (ALL x:A. b: B(x))";
paulson@2499
   464
by (Auto_tac());
paulson@2499
   465
qed "INT_iff";
paulson@2499
   466
paulson@2499
   467
Addsimps [INT_iff];
paulson@2499
   468
clasohm@923
   469
val prems = goalw Set.thy [INTER_def]
clasohm@923
   470
    "(!!x. x:A ==> b: B(x)) ==> b : (INT x:A. B(x))";
clasohm@923
   471
by (REPEAT (ares_tac ([CollectI,ballI] @ prems) 1));
clasohm@923
   472
qed "INT_I";
clasohm@923
   473
paulson@2499
   474
goal Set.thy "!!b. [| b : (INT x:A. B(x));  a:A |] ==> b: B(a)";
paulson@2499
   475
by (Auto_tac());
clasohm@923
   476
qed "INT_D";
clasohm@923
   477
clasohm@923
   478
(*"Classical" elimination -- by the Excluded Middle on a:A *)
clasohm@923
   479
val major::prems = goalw Set.thy [INTER_def]
clasohm@923
   480
    "[| b : (INT x:A. B(x));  b: B(a) ==> R;  a~:A ==> R |] ==> R";
clasohm@923
   481
by (rtac (major RS CollectD RS ballE) 1);
clasohm@923
   482
by (REPEAT (eresolve_tac prems 1));
clasohm@923
   483
qed "INT_E";
clasohm@923
   484
paulson@2499
   485
AddSIs [INT_I];
paulson@2499
   486
AddEs  [INT_D, INT_E];
paulson@2499
   487
clasohm@923
   488
val prems = goal Set.thy
clasohm@923
   489
    "[| A=B;  !!x. x:B ==> C(x) = D(x) |] ==> \
clasohm@923
   490
\    (INT x:A. C(x)) = (INT x:B. D(x))";
clasohm@923
   491
by (REPEAT_FIRST (resolve_tac [INT_I,equalityI,subsetI]));
clasohm@923
   492
by (REPEAT (dtac INT_D 1
clasohm@923
   493
     ORELSE ares_tac (prems RL [equalityD1,equalityD2] RL [subsetD]) 1));
clasohm@923
   494
qed "INT_cong";
clasohm@923
   495
clasohm@923
   496
nipkow@1548
   497
section "Unions over a type; UNION1(B) = Union(range(B))";
clasohm@923
   498
paulson@2499
   499
goalw Set.thy [UNION1_def] "(b: (UN x. B(x))) = (EX x. b: B(x))";
paulson@2499
   500
by (Simp_tac 1);
paulson@2891
   501
by (Blast_tac 1);
paulson@2499
   502
qed "UN1_iff";
paulson@2499
   503
paulson@2499
   504
Addsimps [UN1_iff];
paulson@2499
   505
clasohm@923
   506
(*The order of the premises presupposes that A is rigid; b may be flexible*)
paulson@2499
   507
goal Set.thy "!!b. b: B(x) ==> b: (UN x. B(x))";
paulson@2499
   508
by (Auto_tac());
clasohm@923
   509
qed "UN1_I";
clasohm@923
   510
clasohm@923
   511
val major::prems = goalw Set.thy [UNION1_def]
clasohm@923
   512
    "[| b : (UN x. B(x));  !!x. b: B(x) ==> R |] ==> R";
clasohm@923
   513
by (rtac (major RS UN_E) 1);
clasohm@923
   514
by (REPEAT (ares_tac prems 1));
clasohm@923
   515
qed "UN1_E";
clasohm@923
   516
paulson@2499
   517
AddIs  [UN1_I];
paulson@2499
   518
AddSEs [UN1_E];
paulson@2499
   519
clasohm@923
   520
nipkow@1548
   521
section "Intersections over a type; INTER1(B) = Inter(range(B))";
clasohm@923
   522
paulson@2499
   523
goalw Set.thy [INTER1_def] "(b: (INT x. B(x))) = (ALL x. b: B(x))";
paulson@2499
   524
by (Simp_tac 1);
paulson@2891
   525
by (Blast_tac 1);
paulson@2499
   526
qed "INT1_iff";
paulson@2499
   527
paulson@2499
   528
Addsimps [INT1_iff];
paulson@2499
   529
clasohm@923
   530
val prems = goalw Set.thy [INTER1_def]
clasohm@923
   531
    "(!!x. b: B(x)) ==> b : (INT x. B(x))";
clasohm@923
   532
by (REPEAT (ares_tac (INT_I::prems) 1));
clasohm@923
   533
qed "INT1_I";
clasohm@923
   534
paulson@2499
   535
goal Set.thy "!!b. b : (INT x. B(x)) ==> b: B(a)";
paulson@2499
   536
by (Asm_full_simp_tac 1);
clasohm@923
   537
qed "INT1_D";
clasohm@923
   538
paulson@2499
   539
AddSIs [INT1_I]; 
paulson@2499
   540
AddDs  [INT1_D];
paulson@2499
   541
paulson@2499
   542
nipkow@1548
   543
section "Union";
clasohm@923
   544
paulson@2499
   545
goalw Set.thy [Union_def] "(A : Union(C)) = (EX X:C. A:X)";
paulson@2891
   546
by (Blast_tac 1);
paulson@2499
   547
qed "Union_iff";
paulson@2499
   548
paulson@2499
   549
Addsimps [Union_iff];
paulson@2499
   550
clasohm@923
   551
(*The order of the premises presupposes that C is rigid; A may be flexible*)
paulson@2499
   552
goal Set.thy "!!X. [| X:C;  A:X |] ==> A : Union(C)";
paulson@2499
   553
by (Auto_tac());
clasohm@923
   554
qed "UnionI";
clasohm@923
   555
clasohm@923
   556
val major::prems = goalw Set.thy [Union_def]
clasohm@923
   557
    "[| A : Union(C);  !!X.[| A:X;  X:C |] ==> R |] ==> R";
clasohm@923
   558
by (rtac (major RS UN_E) 1);
clasohm@923
   559
by (REPEAT (ares_tac prems 1));
clasohm@923
   560
qed "UnionE";
clasohm@923
   561
paulson@2499
   562
AddIs  [UnionI];
paulson@2499
   563
AddSEs [UnionE];
paulson@2499
   564
paulson@2499
   565
nipkow@1548
   566
section "Inter";
clasohm@923
   567
paulson@2499
   568
goalw Set.thy [Inter_def] "(A : Inter(C)) = (ALL X:C. A:X)";
paulson@2891
   569
by (Blast_tac 1);
paulson@2499
   570
qed "Inter_iff";
paulson@2499
   571
paulson@2499
   572
Addsimps [Inter_iff];
paulson@2499
   573
clasohm@923
   574
val prems = goalw Set.thy [Inter_def]
clasohm@923
   575
    "[| !!X. X:C ==> A:X |] ==> A : Inter(C)";
clasohm@923
   576
by (REPEAT (ares_tac ([INT_I] @ prems) 1));
clasohm@923
   577
qed "InterI";
clasohm@923
   578
clasohm@923
   579
(*A "destruct" rule -- every X in C contains A as an element, but
clasohm@923
   580
  A:X can hold when X:C does not!  This rule is analogous to "spec". *)
paulson@2499
   581
goal Set.thy "!!X. [| A : Inter(C);  X:C |] ==> A:X";
paulson@2499
   582
by (Auto_tac());
clasohm@923
   583
qed "InterD";
clasohm@923
   584
clasohm@923
   585
(*"Classical" elimination rule -- does not require proving X:C *)
clasohm@923
   586
val major::prems = goalw Set.thy [Inter_def]
paulson@2721
   587
    "[| A : Inter(C);  X~:C ==> R;  A:X ==> R |] ==> R";
clasohm@923
   588
by (rtac (major RS INT_E) 1);
clasohm@923
   589
by (REPEAT (eresolve_tac prems 1));
clasohm@923
   590
qed "InterE";
clasohm@923
   591
paulson@2499
   592
AddSIs [InterI];
paulson@2499
   593
AddEs  [InterD, InterE];
paulson@2499
   594
paulson@2499
   595
nipkow@2912
   596
(*** Image of a set under a function ***)
nipkow@2912
   597
nipkow@2912
   598
(*Frequently b does not have the syntactic form of f(x).*)
nipkow@2912
   599
val prems = goalw thy [image_def] "[| b=f(x);  x:A |] ==> b : f``A";
nipkow@2912
   600
by (REPEAT (resolve_tac (prems @ [CollectI,bexI,prem]) 1));
nipkow@2912
   601
qed "image_eqI";
nipkow@3909
   602
Addsimps [image_eqI];
nipkow@2912
   603
nipkow@2912
   604
bind_thm ("imageI", refl RS image_eqI);
nipkow@2912
   605
nipkow@2912
   606
(*The eta-expansion gives variable-name preservation.*)
nipkow@2912
   607
val major::prems = goalw thy [image_def]
wenzelm@3842
   608
    "[| b : (%x. f(x))``A;  !!x.[| b=f(x);  x:A |] ==> P |] ==> P"; 
nipkow@2912
   609
by (rtac (major RS CollectD RS bexE) 1);
nipkow@2912
   610
by (REPEAT (ares_tac prems 1));
nipkow@2912
   611
qed "imageE";
nipkow@2912
   612
nipkow@2912
   613
AddIs  [image_eqI];
nipkow@2912
   614
AddSEs [imageE]; 
nipkow@2912
   615
nipkow@2912
   616
goalw thy [o_def] "(f o g)``r = f``(g``r)";
paulson@2935
   617
by (Blast_tac 1);
nipkow@2912
   618
qed "image_compose";
nipkow@2912
   619
nipkow@2912
   620
goal thy "f``(A Un B) = f``A Un f``B";
paulson@2935
   621
by (Blast_tac 1);
nipkow@2912
   622
qed "image_Un";
nipkow@2912
   623
paulson@3960
   624
goal Set.thy "(z : f``A) = (EX x:A. z = f x)";
paulson@3960
   625
by (Blast_tac 1);
paulson@3960
   626
qed "image_iff";
paulson@3960
   627
nipkow@2912
   628
nipkow@2912
   629
(*** Range of a function -- just a translation for image! ***)
nipkow@2912
   630
nipkow@2912
   631
goal thy "!!b. b=f(x) ==> b : range(f)";
nipkow@2912
   632
by (EVERY1 [etac image_eqI, rtac UNIV_I]);
nipkow@2912
   633
bind_thm ("range_eqI", UNIV_I RSN (2,image_eqI));
nipkow@2912
   634
nipkow@2912
   635
bind_thm ("rangeI", UNIV_I RS imageI);
nipkow@2912
   636
nipkow@2912
   637
val [major,minor] = goal thy 
wenzelm@3842
   638
    "[| b : range(%x. f(x));  !!x. b=f(x) ==> P |] ==> P"; 
nipkow@2912
   639
by (rtac (major RS imageE) 1);
nipkow@2912
   640
by (etac minor 1);
nipkow@2912
   641
qed "rangeE";
nipkow@2912
   642
oheimb@1776
   643
oheimb@1776
   644
(*** Set reasoning tools ***)
oheimb@1776
   645
oheimb@1776
   646
paulson@3912
   647
(** Rewrite rules for boolean case-splitting: faster than 
nipkow@3919
   648
	addsplits[expand_if]
paulson@3912
   649
**)
paulson@3912
   650
paulson@3912
   651
bind_thm ("expand_if_eq1", read_instantiate [("P", "%x. x = ?b")] expand_if);
paulson@3912
   652
bind_thm ("expand_if_eq2", read_instantiate [("P", "%x. ?a = x")] expand_if);
paulson@3912
   653
paulson@3912
   654
bind_thm ("expand_if_mem1", 
paulson@3912
   655
    read_instantiate_sg (sign_of Set.thy) [("P", "%x. x : ?b")] expand_if);
paulson@3912
   656
bind_thm ("expand_if_mem2", 
paulson@3912
   657
    read_instantiate_sg (sign_of Set.thy) [("P", "%x. ?a : x")] expand_if);
paulson@3912
   658
paulson@3912
   659
val expand_ifs = [if_bool_eq, expand_if_eq1, expand_if_eq2,
paulson@3912
   660
		  expand_if_mem1, expand_if_mem2];
paulson@3912
   661
paulson@3912
   662
wenzelm@4089
   663
(*Each of these has ALREADY been added to simpset() above.*)
paulson@2024
   664
val mem_simps = [insert_iff, empty_iff, Un_iff, Int_iff, Compl_iff, Diff_iff, 
paulson@2499
   665
                 mem_Collect_eq, 
paulson@2499
   666
		 UN_iff, UN1_iff, Union_iff, 
paulson@2499
   667
		 INT_iff, INT1_iff, Inter_iff];
oheimb@1776
   668
paulson@1937
   669
(*Not for Addsimps -- it can cause goals to blow up!*)
paulson@1937
   670
goal Set.thy "(a : (if Q then x else y)) = ((Q --> a:x) & (~Q --> a : y))";
wenzelm@4089
   671
by (simp_tac (simpset() addsplits [expand_if]) 1);
paulson@1937
   672
qed "mem_if";
paulson@1937
   673
oheimb@1776
   674
val mksimps_pairs = ("Ball",[bspec]) :: mksimps_pairs;
oheimb@1776
   675
wenzelm@4089
   676
simpset_ref() := simpset() addcongs [ball_cong,bex_cong]
oheimb@1776
   677
                    setmksimps (mksimps mksimps_pairs);
nipkow@3222
   678
nipkow@3222
   679
Addsimps[subset_UNIV, empty_subsetI, subset_refl];
nipkow@3222
   680
nipkow@3222
   681
nipkow@3222
   682
(*** < ***)
nipkow@3222
   683
nipkow@3222
   684
goalw Set.thy [psubset_def] "!!A::'a set. [| A <= B; A ~= B |] ==> A<B";
nipkow@3222
   685
by (Blast_tac 1);
nipkow@3222
   686
qed "psubsetI";
nipkow@3222
   687
nipkow@3222
   688
goalw Set.thy [psubset_def]
nipkow@3222
   689
    "!!x. A < insert x B ==> (x ~: A) & A<=B | x:A & A-{x}<B";
nipkow@3222
   690
by (Auto_tac());
nipkow@3222
   691
qed "psubset_insertD";
paulson@4059
   692
paulson@4059
   693
bind_thm ("psubset_eq", psubset_def RS meta_eq_to_obj_eq);