src/Pure/drule.ML
author wenzelm
Wed Nov 29 23:28:08 2006 +0100 (2006-11-29)
changeset 21596 486cae91868f
parent 21578 a89f786b301a
child 21600 222810ce6b05
permissions -rw-r--r--
added INCR_COMP, COMP_INCR;
wenzelm@252
     1
(*  Title:      Pure/drule.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@252
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1993  University of Cambridge
clasohm@0
     5
wenzelm@3766
     6
Derived rules and other operations on theorems.
clasohm@0
     7
*)
clasohm@0
     8
wenzelm@21578
     9
infix 0 RS RSN RL RLN MRS MRL OF COMP INCR_COMP COMP_INCR;
clasohm@0
    10
wenzelm@5903
    11
signature BASIC_DRULE =
wenzelm@3766
    12
sig
wenzelm@18179
    13
  val mk_implies: cterm * cterm -> cterm
wenzelm@18179
    14
  val list_implies: cterm list * cterm -> cterm
wenzelm@18179
    15
  val dest_implies: cterm -> cterm * cterm
wenzelm@18179
    16
  val dest_equals: cterm -> cterm * cterm
wenzelm@20904
    17
  val dest_equals_lhs: cterm -> cterm
wenzelm@20669
    18
  val dest_equals_rhs: cterm -> cterm
wenzelm@18179
    19
  val strip_imp_prems: cterm -> cterm list
wenzelm@18179
    20
  val strip_imp_concl: cterm -> cterm
wenzelm@18179
    21
  val cprems_of: thm -> cterm list
wenzelm@18179
    22
  val cterm_fun: (term -> term) -> (cterm -> cterm)
wenzelm@18179
    23
  val ctyp_fun: (typ -> typ) -> (ctyp -> ctyp)
wenzelm@18206
    24
  val read_insts: theory -> (indexname -> typ option) * (indexname -> sort option) ->
wenzelm@18206
    25
    (indexname -> typ option) * (indexname -> sort option) -> string list ->
wenzelm@18206
    26
    (indexname * string) list -> (ctyp * ctyp) list * (cterm * cterm) list
wenzelm@4285
    27
  val types_sorts: thm -> (indexname-> typ option) * (indexname-> sort option)
wenzelm@18179
    28
  val forall_intr_list: cterm list -> thm -> thm
wenzelm@18179
    29
  val forall_intr_frees: thm -> thm
wenzelm@18179
    30
  val forall_intr_vars: thm -> thm
wenzelm@18179
    31
  val forall_elim_list: cterm list -> thm -> thm
wenzelm@18179
    32
  val forall_elim_var: int -> thm -> thm
wenzelm@18179
    33
  val forall_elim_vars: int -> thm -> thm
wenzelm@18179
    34
  val gen_all: thm -> thm
wenzelm@18179
    35
  val lift_all: cterm -> thm -> thm
wenzelm@18179
    36
  val freeze_thaw: thm -> thm * (thm -> thm)
paulson@15495
    37
  val freeze_thaw_robust: thm -> thm * (int -> thm -> thm)
wenzelm@18179
    38
  val implies_elim_list: thm -> thm list -> thm
wenzelm@18179
    39
  val implies_intr_list: cterm list -> thm -> thm
wenzelm@18206
    40
  val instantiate: (ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm
wenzelm@21596
    41
  val zero_var_indexes_list: thm list -> thm list
wenzelm@18179
    42
  val zero_var_indexes: thm -> thm
wenzelm@18179
    43
  val implies_intr_hyps: thm -> thm
wenzelm@18179
    44
  val standard: thm -> thm
wenzelm@18179
    45
  val standard': thm -> thm
wenzelm@18179
    46
  val rotate_prems: int -> thm -> thm
wenzelm@18179
    47
  val rearrange_prems: int list -> thm -> thm
wenzelm@18179
    48
  val RSN: thm * (int * thm) -> thm
wenzelm@18179
    49
  val RS: thm * thm -> thm
wenzelm@18179
    50
  val RLN: thm list * (int * thm list) -> thm list
wenzelm@18179
    51
  val RL: thm list * thm list -> thm list
wenzelm@18179
    52
  val MRS: thm list * thm -> thm
wenzelm@18179
    53
  val MRL: thm list list * thm list -> thm list
wenzelm@18179
    54
  val OF: thm * thm list -> thm
wenzelm@18179
    55
  val compose: thm * int * thm -> thm list
wenzelm@18179
    56
  val COMP: thm * thm -> thm
wenzelm@21578
    57
  val INCR_COMP: thm * thm -> thm
wenzelm@21578
    58
  val COMP_INCR: thm * thm -> thm
wenzelm@16425
    59
  val read_instantiate_sg: theory -> (string*string)list -> thm -> thm
wenzelm@18179
    60
  val read_instantiate: (string*string)list -> thm -> thm
wenzelm@18179
    61
  val cterm_instantiate: (cterm*cterm)list -> thm -> thm
wenzelm@18179
    62
  val eq_thm_thy: thm * thm -> bool
wenzelm@18179
    63
  val eq_thm_prop: thm * thm -> bool
wenzelm@19878
    64
  val equiv_thm: thm * thm -> bool
wenzelm@18179
    65
  val size_of_thm: thm -> int
wenzelm@18179
    66
  val reflexive_thm: thm
wenzelm@18179
    67
  val symmetric_thm: thm
wenzelm@18179
    68
  val transitive_thm: thm
wenzelm@18179
    69
  val symmetric_fun: thm -> thm
wenzelm@18179
    70
  val extensional: thm -> thm
wenzelm@18820
    71
  val equals_cong: thm
wenzelm@18179
    72
  val imp_cong: thm
wenzelm@18179
    73
  val swap_prems_eq: thm
wenzelm@18179
    74
  val asm_rl: thm
wenzelm@18179
    75
  val cut_rl: thm
wenzelm@18179
    76
  val revcut_rl: thm
wenzelm@18179
    77
  val thin_rl: thm
wenzelm@4285
    78
  val triv_forall_equality: thm
wenzelm@19051
    79
  val distinct_prems_rl: thm
wenzelm@18179
    80
  val swap_prems_rl: thm
wenzelm@18179
    81
  val equal_intr_rule: thm
wenzelm@18179
    82
  val equal_elim_rule1: thm
wenzelm@19421
    83
  val equal_elim_rule2: thm
wenzelm@18179
    84
  val inst: string -> string -> thm -> thm
wenzelm@18179
    85
  val instantiate': ctyp option list -> cterm option list -> thm -> thm
wenzelm@5903
    86
end;
wenzelm@5903
    87
wenzelm@5903
    88
signature DRULE =
wenzelm@5903
    89
sig
wenzelm@5903
    90
  include BASIC_DRULE
wenzelm@19999
    91
  val generalize: string list * string list -> thm -> thm
paulson@15949
    92
  val list_comb: cterm * cterm list -> cterm
berghofe@12908
    93
  val strip_comb: cterm -> cterm * cterm list
berghofe@15262
    94
  val strip_type: ctyp -> ctyp list * ctyp
wenzelm@20904
    95
  val lhs_of: thm -> cterm
wenzelm@20904
    96
  val rhs_of: thm -> cterm
paulson@15949
    97
  val beta_conv: cterm -> cterm -> cterm
wenzelm@15875
    98
  val plain_prop_of: thm -> term
wenzelm@20298
    99
  val fold_terms: (term -> 'a -> 'a) -> thm -> 'a -> 'a
wenzelm@15669
   100
  val add_used: thm -> string list -> string list
berghofe@17713
   101
  val flexflex_unique: thm -> thm
wenzelm@11975
   102
  val close_derivation: thm -> thm
wenzelm@21596
   103
  val local_standard': thm -> thm
wenzelm@12005
   104
  val local_standard: thm -> thm
wenzelm@19421
   105
  val store_thm: bstring -> thm -> thm
wenzelm@19421
   106
  val store_standard_thm: bstring -> thm -> thm
wenzelm@19421
   107
  val store_thm_open: bstring -> thm -> thm
wenzelm@19421
   108
  val store_standard_thm_open: bstring -> thm -> thm
wenzelm@11975
   109
  val compose_single: thm * int * thm -> thm
wenzelm@12373
   110
  val add_rule: thm -> thm list -> thm list
wenzelm@12373
   111
  val del_rule: thm -> thm list -> thm list
wenzelm@11975
   112
  val merge_rules: thm list * thm list -> thm list
wenzelm@18468
   113
  val imp_cong_rule: thm -> thm -> thm
skalberg@15001
   114
  val beta_eta_conversion: cterm -> thm
berghofe@15925
   115
  val eta_long_conversion: cterm -> thm
paulson@20861
   116
  val eta_contraction_rule: thm -> thm
wenzelm@18468
   117
  val forall_conv: int -> (cterm -> thm) -> cterm -> thm
wenzelm@18468
   118
  val concl_conv: int -> (cterm -> thm) -> cterm -> thm
wenzelm@18468
   119
  val prems_conv: int -> (int -> cterm -> thm) -> cterm -> thm
wenzelm@18179
   120
  val goals_conv: (int -> bool) -> (cterm -> thm) -> cterm -> thm
wenzelm@18179
   121
  val fconv_rule: (cterm -> thm) -> thm -> thm
wenzelm@11975
   122
  val norm_hhf_eq: thm
wenzelm@12800
   123
  val is_norm_hhf: term -> bool
wenzelm@16425
   124
  val norm_hhf: theory -> term -> term
wenzelm@20298
   125
  val norm_hhf_cterm: cterm -> cterm
wenzelm@19878
   126
  val unvarify: thm -> thm
wenzelm@18025
   127
  val protect: cterm -> cterm
wenzelm@18025
   128
  val protectI: thm
wenzelm@18025
   129
  val protectD: thm
wenzelm@18179
   130
  val protect_cong: thm
wenzelm@18025
   131
  val implies_intr_protected: cterm list -> thm -> thm
wenzelm@19775
   132
  val termI: thm
wenzelm@19775
   133
  val mk_term: cterm -> thm
wenzelm@19775
   134
  val dest_term: thm -> cterm
wenzelm@21519
   135
  val cterm_rule: (thm -> thm) -> cterm -> cterm
wenzelm@20881
   136
  val term_rule: theory -> (thm -> thm) -> term -> term
wenzelm@19523
   137
  val sort_triv: theory -> typ * sort -> thm list
wenzelm@19504
   138
  val unconstrainTs: thm -> thm
berghofe@14081
   139
  val rename_bvars: (string * string) list -> thm -> thm
berghofe@14081
   140
  val rename_bvars': string option list -> thm -> thm
wenzelm@19124
   141
  val incr_indexes: thm -> thm -> thm
wenzelm@19124
   142
  val incr_indexes2: thm -> thm -> thm -> thm
wenzelm@12297
   143
  val remdups_rl: thm
wenzelm@18225
   144
  val multi_resolve: thm list -> thm -> thm Seq.seq
wenzelm@18225
   145
  val multi_resolves: thm list -> thm list -> thm Seq.seq
berghofe@13325
   146
  val abs_def: thm -> thm
wenzelm@16425
   147
  val read_instantiate_sg': theory -> (indexname * string) list -> thm -> thm
berghofe@15797
   148
  val read_instantiate': (indexname * string) list -> thm -> thm
wenzelm@3766
   149
end;
clasohm@0
   150
wenzelm@5903
   151
structure Drule: DRULE =
clasohm@0
   152
struct
clasohm@0
   153
wenzelm@3991
   154
wenzelm@16682
   155
(** some cterm->cterm operations: faster than calling cterm_of! **)
lcp@708
   156
paulson@2004
   157
fun dest_implies ct =
wenzelm@16682
   158
  (case Thm.term_of ct of
wenzelm@20669
   159
    Const ("==>", _) $ _ $ _ => Thm.dest_binop ct
wenzelm@20669
   160
  | _ => raise TERM ("dest_implies", [Thm.term_of ct]));
clasohm@1703
   161
berghofe@10414
   162
fun dest_equals ct =
wenzelm@16682
   163
  (case Thm.term_of ct of
wenzelm@20669
   164
    Const ("==", _) $ _ $ _ => Thm.dest_binop ct
wenzelm@20669
   165
  | _ => raise TERM ("dest_equals", [Thm.term_of ct]));
wenzelm@20669
   166
wenzelm@20904
   167
fun dest_equals_lhs ct =
wenzelm@20904
   168
  (case Thm.term_of ct of
wenzelm@20904
   169
    Const ("==", _) $ _ $ _ => #1 (Thm.dest_binop ct)
wenzelm@20904
   170
  | _ => raise TERM ("dest_equals_lhs", [Thm.term_of ct]));
wenzelm@20904
   171
wenzelm@20669
   172
fun dest_equals_rhs ct =
wenzelm@20669
   173
  (case Thm.term_of ct of
wenzelm@20669
   174
    Const ("==", _) $ _ $ _ => Thm.dest_arg ct
wenzelm@20669
   175
  | _ => raise TERM ("dest_equals_rhs", [Thm.term_of ct]));
berghofe@10414
   176
wenzelm@20904
   177
val lhs_of = dest_equals_lhs o Thm.cprop_of;
wenzelm@20904
   178
val rhs_of = dest_equals_rhs o Thm.cprop_of;
wenzelm@20904
   179
lcp@708
   180
(* A1==>...An==>B  goes to  [A1,...,An], where B is not an implication *)
paulson@2004
   181
fun strip_imp_prems ct =
wenzelm@20579
   182
  let val (cA, cB) = dest_implies ct
wenzelm@20579
   183
  in cA :: strip_imp_prems cB end
wenzelm@20579
   184
  handle TERM _ => [];
lcp@708
   185
paulson@2004
   186
(* A1==>...An==>B  goes to B, where B is not an implication *)
paulson@2004
   187
fun strip_imp_concl ct =
wenzelm@20579
   188
  (case Thm.term_of ct of
wenzelm@20579
   189
    Const ("==>", _) $ _ $ _ => strip_imp_concl (Thm.dest_arg ct)
wenzelm@20579
   190
  | _ => ct);
paulson@2004
   191
lcp@708
   192
(*The premises of a theorem, as a cterm list*)
berghofe@13659
   193
val cprems_of = strip_imp_prems o cprop_of;
lcp@708
   194
berghofe@15797
   195
fun cterm_fun f ct =
wenzelm@16425
   196
  let val {t, thy, ...} = Thm.rep_cterm ct
wenzelm@16425
   197
  in Thm.cterm_of thy (f t) end;
berghofe@15797
   198
berghofe@15797
   199
fun ctyp_fun f cT =
wenzelm@16425
   200
  let val {T, thy, ...} = Thm.rep_ctyp cT
wenzelm@16425
   201
  in Thm.ctyp_of thy (f T) end;
berghofe@15797
   202
wenzelm@19421
   203
val cert = cterm_of ProtoPure.thy;
paulson@9547
   204
wenzelm@19421
   205
val implies = cert Term.implies;
wenzelm@19183
   206
fun mk_implies (A, B) = Thm.capply (Thm.capply implies A) B;
paulson@9547
   207
paulson@9547
   208
(*cterm version of list_implies: [A1,...,An], B  goes to [|A1;==>;An|]==>B *)
paulson@9547
   209
fun list_implies([], B) = B
paulson@9547
   210
  | list_implies(A::AS, B) = mk_implies (A, list_implies(AS,B));
paulson@9547
   211
paulson@15949
   212
(*cterm version of list_comb: maps  (f, [t1,...,tn])  to  f(t1,...,tn) *)
paulson@15949
   213
fun list_comb (f, []) = f
paulson@15949
   214
  | list_comb (f, t::ts) = list_comb (Thm.capply f t, ts);
paulson@15949
   215
berghofe@12908
   216
(*cterm version of strip_comb: maps  f(t1,...,tn)  to  (f, [t1,...,tn]) *)
wenzelm@18179
   217
fun strip_comb ct =
berghofe@12908
   218
  let
berghofe@12908
   219
    fun stripc (p as (ct, cts)) =
berghofe@12908
   220
      let val (ct1, ct2) = Thm.dest_comb ct
berghofe@12908
   221
      in stripc (ct1, ct2 :: cts) end handle CTERM _ => p
berghofe@12908
   222
  in stripc (ct, []) end;
berghofe@12908
   223
berghofe@15262
   224
(* cterm version of strip_type: maps  [T1,...,Tn]--->T  to   ([T1,T2,...,Tn], T) *)
berghofe@15262
   225
fun strip_type cT = (case Thm.typ_of cT of
berghofe@15262
   226
    Type ("fun", _) =>
berghofe@15262
   227
      let
berghofe@15262
   228
        val [cT1, cT2] = Thm.dest_ctyp cT;
berghofe@15262
   229
        val (cTs, cT') = strip_type cT2
berghofe@15262
   230
      in (cT1 :: cTs, cT') end
berghofe@15262
   231
  | _ => ([], cT));
berghofe@15262
   232
paulson@15949
   233
(*Beta-conversion for cterms, where x is an abstraction. Simply returns the rhs
paulson@15949
   234
  of the meta-equality returned by the beta_conversion rule.*)
wenzelm@18179
   235
fun beta_conv x y =
wenzelm@20579
   236
  Thm.dest_arg (cprop_of (Thm.beta_conversion false (Thm.capply x y)));
paulson@15949
   237
wenzelm@15875
   238
fun plain_prop_of raw_thm =
wenzelm@15875
   239
  let
wenzelm@15875
   240
    val thm = Thm.strip_shyps raw_thm;
wenzelm@15875
   241
    fun err msg = raise THM ("plain_prop_of: " ^ msg, 0, [thm]);
wenzelm@15875
   242
    val {hyps, prop, tpairs, ...} = Thm.rep_thm thm;
wenzelm@15875
   243
  in
wenzelm@15875
   244
    if not (null hyps) then
wenzelm@15875
   245
      err "theorem may not contain hypotheses"
wenzelm@15875
   246
    else if not (null (Thm.extra_shyps thm)) then
wenzelm@15875
   247
      err "theorem may not contain sort hypotheses"
wenzelm@15875
   248
    else if not (null tpairs) then
wenzelm@15875
   249
      err "theorem may not contain flex-flex pairs"
wenzelm@15875
   250
    else prop
wenzelm@15875
   251
  end;
wenzelm@15875
   252
wenzelm@20298
   253
fun fold_terms f th =
wenzelm@20298
   254
  let val {tpairs, prop, hyps, ...} = Thm.rep_thm th
wenzelm@20298
   255
  in fold (fn (t, u) => f t #> f u) tpairs #> f prop #> fold f hyps end;
wenzelm@20298
   256
wenzelm@15875
   257
lcp@708
   258
lcp@229
   259
(** reading of instantiations **)
lcp@229
   260
lcp@229
   261
fun absent ixn =
lcp@229
   262
  error("No such variable in term: " ^ Syntax.string_of_vname ixn);
lcp@229
   263
lcp@229
   264
fun inst_failure ixn =
lcp@229
   265
  error("Instantiation of " ^ Syntax.string_of_vname ixn ^ " fails");
lcp@229
   266
wenzelm@16425
   267
fun read_insts thy (rtypes,rsorts) (types,sorts) used insts =
wenzelm@10403
   268
let
berghofe@15442
   269
    fun is_tv ((a, _), _) =
berghofe@15442
   270
      (case Symbol.explode a of "'" :: _ => true | _ => false);
skalberg@15570
   271
    val (tvs, vs) = List.partition is_tv insts;
berghofe@15797
   272
    fun sort_of ixn = case rsorts ixn of SOME S => S | NONE => absent ixn;
berghofe@15442
   273
    fun readT (ixn, st) =
berghofe@15797
   274
        let val S = sort_of ixn;
wenzelm@16425
   275
            val T = Sign.read_typ (thy,sorts) st;
wenzelm@16425
   276
        in if Sign.typ_instance thy (T, TVar(ixn,S)) then (ixn,T)
nipkow@4281
   277
           else inst_failure ixn
nipkow@4281
   278
        end
nipkow@4281
   279
    val tye = map readT tvs;
nipkow@4281
   280
    fun mkty(ixn,st) = (case rtypes ixn of
skalberg@15531
   281
                          SOME T => (ixn,(st,typ_subst_TVars tye T))
skalberg@15531
   282
                        | NONE => absent ixn);
nipkow@4281
   283
    val ixnsTs = map mkty vs;
nipkow@4281
   284
    val ixns = map fst ixnsTs
nipkow@4281
   285
    and sTs  = map snd ixnsTs
wenzelm@16425
   286
    val (cts,tye2) = read_def_cterms(thy,types,sorts) used false sTs;
nipkow@4281
   287
    fun mkcVar(ixn,T) =
nipkow@4281
   288
        let val U = typ_subst_TVars tye2 T
wenzelm@16425
   289
        in cterm_of thy (Var(ixn,U)) end
nipkow@4281
   290
    val ixnTs = ListPair.zip(ixns, map snd sTs)
wenzelm@16425
   291
in (map (fn (ixn, T) => (ctyp_of thy (TVar (ixn, sort_of ixn)),
wenzelm@16425
   292
      ctyp_of thy T)) (tye2 @ tye),
nipkow@4281
   293
    ListPair.zip(map mkcVar ixnTs,cts))
nipkow@4281
   294
end;
lcp@229
   295
lcp@229
   296
wenzelm@252
   297
(*** Find the type (sort) associated with a (T)Var or (T)Free in a term
clasohm@0
   298
     Used for establishing default types (of variables) and sorts (of
clasohm@0
   299
     type variables) when reading another term.
clasohm@0
   300
     Index -1 indicates that a (T)Free rather than a (T)Var is wanted.
clasohm@0
   301
***)
clasohm@0
   302
clasohm@0
   303
fun types_sorts thm =
wenzelm@20329
   304
  let
wenzelm@20329
   305
    val vars = fold_terms Term.add_vars thm [];
wenzelm@20329
   306
    val frees = fold_terms Term.add_frees thm [];
wenzelm@20329
   307
    val tvars = fold_terms Term.add_tvars thm [];
wenzelm@20329
   308
    val tfrees = fold_terms Term.add_tfrees thm [];
wenzelm@20329
   309
    fun types (a, i) =
wenzelm@20329
   310
      if i < 0 then AList.lookup (op =) frees a else AList.lookup (op =) vars (a, i);
wenzelm@20329
   311
    fun sorts (a, i) =
wenzelm@20329
   312
      if i < 0 then AList.lookup (op =) tfrees a else AList.lookup (op =) tvars (a, i);
wenzelm@20329
   313
  in (types, sorts) end;
clasohm@0
   314
wenzelm@20329
   315
val add_used =
wenzelm@20329
   316
  (fold_terms o fold_types o fold_atyps)
wenzelm@20329
   317
    (fn TFree (a, _) => insert (op =) a
wenzelm@20329
   318
      | TVar ((a, _), _) => insert (op =) a
wenzelm@20329
   319
      | _ => I);
wenzelm@15669
   320
wenzelm@7636
   321
wenzelm@9455
   322
clasohm@0
   323
(** Standardization of rules **)
clasohm@0
   324
wenzelm@19523
   325
(* type classes and sorts *)
wenzelm@19523
   326
wenzelm@19523
   327
fun sort_triv thy (T, S) =
wenzelm@19523
   328
  let
wenzelm@19523
   329
    val certT = Thm.ctyp_of thy;
wenzelm@19523
   330
    val cT = certT T;
wenzelm@19523
   331
    fun class_triv c =
wenzelm@19523
   332
      Thm.class_triv thy c
wenzelm@19523
   333
      |> Thm.instantiate ([(certT (TVar (("'a", 0), [c])), cT)], []);
wenzelm@19523
   334
  in map class_triv S end;
wenzelm@19523
   335
wenzelm@19504
   336
fun unconstrainTs th =
wenzelm@20298
   337
  fold (Thm.unconstrainT o Thm.ctyp_of (Thm.theory_of_thm th) o TVar)
wenzelm@20298
   338
    (fold_terms Term.add_tvars th []) th;
wenzelm@19504
   339
wenzelm@19730
   340
(*Generalization over a list of variables*)
wenzelm@19730
   341
val forall_intr_list = fold_rev forall_intr;
clasohm@0
   342
clasohm@0
   343
(*Generalization over all suitable Free variables*)
clasohm@0
   344
fun forall_intr_frees th =
wenzelm@19730
   345
    let
wenzelm@19730
   346
      val {prop, hyps, tpairs, thy,...} = rep_thm th;
wenzelm@19730
   347
      val fixed = fold Term.add_frees (Thm.terms_of_tpairs tpairs @ hyps) [];
wenzelm@19730
   348
      val frees = Term.fold_aterms (fn Free v =>
wenzelm@19730
   349
        if member (op =) fixed v then I else insert (op =) v | _ => I) prop [];
wenzelm@19730
   350
    in fold (forall_intr o cterm_of thy o Free) frees th end;
clasohm@0
   351
wenzelm@18535
   352
(*Generalization over Vars -- canonical order*)
wenzelm@18535
   353
fun forall_intr_vars th =
wenzelm@20298
   354
  fold forall_intr
wenzelm@20298
   355
    (map (Thm.cterm_of (Thm.theory_of_thm th) o Var) (fold_terms Term.add_vars th [])) th;
wenzelm@18535
   356
wenzelm@7898
   357
val forall_elim_var = PureThy.forall_elim_var;
wenzelm@7898
   358
val forall_elim_vars = PureThy.forall_elim_vars;
clasohm@0
   359
wenzelm@18025
   360
fun outer_params t =
wenzelm@20077
   361
  let val vs = Term.strip_all_vars t
wenzelm@20077
   362
  in Name.variant_list [] (map (Name.clean o #1) vs) ~~ map #2 vs end;
wenzelm@18025
   363
wenzelm@18025
   364
(*generalize outermost parameters*)
wenzelm@18025
   365
fun gen_all th =
wenzelm@12719
   366
  let
wenzelm@18025
   367
    val {thy, prop, maxidx, ...} = Thm.rep_thm th;
wenzelm@18025
   368
    val cert = Thm.cterm_of thy;
wenzelm@18025
   369
    fun elim (x, T) = Thm.forall_elim (cert (Var ((x, maxidx + 1), T)));
wenzelm@18025
   370
  in fold elim (outer_params prop) th end;
wenzelm@18025
   371
wenzelm@18025
   372
(*lift vars wrt. outermost goal parameters
wenzelm@18118
   373
  -- reverses the effect of gen_all modulo higher-order unification*)
wenzelm@18025
   374
fun lift_all goal th =
wenzelm@18025
   375
  let
wenzelm@18025
   376
    val thy = Theory.merge (Thm.theory_of_cterm goal, Thm.theory_of_thm th);
wenzelm@18025
   377
    val cert = Thm.cterm_of thy;
wenzelm@19421
   378
    val maxidx = Thm.maxidx_of th;
wenzelm@18025
   379
    val ps = outer_params (Thm.term_of goal)
wenzelm@18025
   380
      |> map (fn (x, T) => Var ((x, maxidx + 1), Logic.incr_tvar (maxidx + 1) T));
wenzelm@18025
   381
    val Ts = map Term.fastype_of ps;
wenzelm@20298
   382
    val inst = fold_terms Term.add_vars th [] |> map (fn (xi, T) =>
wenzelm@18025
   383
      (cert (Var (xi, T)), cert (Term.list_comb (Var (xi, Ts ---> T), ps))));
wenzelm@18025
   384
  in
wenzelm@18025
   385
    th |> Thm.instantiate ([], inst)
wenzelm@18025
   386
    |> fold_rev (Thm.forall_intr o cert) ps
wenzelm@18025
   387
  end;
wenzelm@18025
   388
wenzelm@19999
   389
(*direct generalization*)
wenzelm@19999
   390
fun generalize names th = Thm.generalize names (Thm.maxidx_of th + 1) th;
wenzelm@9554
   391
wenzelm@16949
   392
(*specialization over a list of cterms*)
wenzelm@16949
   393
val forall_elim_list = fold forall_elim;
clasohm@0
   394
wenzelm@16949
   395
(*maps A1,...,An |- B  to  [| A1;...;An |] ==> B*)
wenzelm@16949
   396
val implies_intr_list = fold_rev implies_intr;
clasohm@0
   397
wenzelm@16949
   398
(*maps [| A1;...;An |] ==> B and [A1,...,An]  to  B*)
skalberg@15570
   399
fun implies_elim_list impth ths = Library.foldl (uncurry implies_elim) (impth,ths);
clasohm@0
   400
clasohm@0
   401
(*Reset Var indexes to zero, renaming to preserve distinctness*)
wenzelm@21596
   402
fun zero_var_indexes_list [] = []
wenzelm@21596
   403
  | zero_var_indexes_list ths =
wenzelm@21596
   404
      let
wenzelm@21596
   405
        val thy = Theory.merge_list (map Thm.theory_of_thm ths);
wenzelm@21596
   406
        val certT = Thm.ctyp_of thy and cert = Thm.cterm_of thy;
wenzelm@21596
   407
        val (instT, inst) = TermSubst.zero_var_indexes_inst (map Thm.full_prop_of ths);
wenzelm@21596
   408
        val cinstT = map (fn (v, T) => (certT (TVar v), certT T)) instT;
wenzelm@21596
   409
        val cinst = map (fn (v, t) => (cert (Var v), cert t)) inst;
wenzelm@21596
   410
      in map (Thm.adjust_maxidx_thm ~1 o Thm.instantiate (cinstT, cinst)) ths end;
wenzelm@21596
   411
wenzelm@21596
   412
val zero_var_indexes = singleton zero_var_indexes_list;
clasohm@0
   413
clasohm@0
   414
paulson@14394
   415
(** Standard form of object-rule: no hypotheses, flexflex constraints,
paulson@14394
   416
    Frees, or outer quantifiers; all generality expressed by Vars of index 0.**)
wenzelm@10515
   417
wenzelm@16595
   418
(*Discharge all hypotheses.*)
wenzelm@16595
   419
fun implies_intr_hyps th =
wenzelm@16595
   420
  fold Thm.implies_intr (#hyps (Thm.crep_thm th)) th;
wenzelm@16595
   421
paulson@14394
   422
(*Squash a theorem's flexflex constraints provided it can be done uniquely.
paulson@14394
   423
  This step can lose information.*)
paulson@14387
   424
fun flexflex_unique th =
berghofe@17713
   425
  if null (tpairs_of th) then th else
wenzelm@19861
   426
    case Seq.chop 2 (flexflex_rule th) of
paulson@14387
   427
      ([th],_) => th
paulson@14387
   428
    | ([],_)   => raise THM("flexflex_unique: impossible constraints", 0, [th])
paulson@14387
   429
    |      _   => raise THM("flexflex_unique: multiple unifiers", 0, [th]);
paulson@14387
   430
wenzelm@10515
   431
fun close_derivation thm =
wenzelm@10515
   432
  if Thm.get_name_tags thm = ("", []) then Thm.name_thm ("", thm)
wenzelm@10515
   433
  else thm;
wenzelm@10515
   434
wenzelm@16949
   435
val standard' =
wenzelm@16949
   436
  implies_intr_hyps
wenzelm@16949
   437
  #> forall_intr_frees
wenzelm@19421
   438
  #> `Thm.maxidx_of
wenzelm@16949
   439
  #-> (fn maxidx =>
wenzelm@16949
   440
    forall_elim_vars (maxidx + 1)
wenzelm@20904
   441
    #> Thm.strip_shyps
wenzelm@16949
   442
    #> zero_var_indexes
wenzelm@16949
   443
    #> Thm.varifyT
wenzelm@21596
   444
    #> Thm.compress);   (* FIXME !? *)
wenzelm@1218
   445
wenzelm@16949
   446
val standard =
wenzelm@21596
   447
  flexflex_unique       (* FIXME !? *)
wenzelm@16949
   448
  #> standard'
wenzelm@16949
   449
  #> close_derivation;
berghofe@11512
   450
wenzelm@21596
   451
val local_standard' =
wenzelm@20904
   452
  flexflex_unique
wenzelm@20904
   453
  #> Thm.strip_shyps
wenzelm@21596
   454
  #> zero_var_indexes;
wenzelm@21596
   455
wenzelm@21596
   456
val local_standard =
wenzelm@21596
   457
  local_standard'
wenzelm@16949
   458
  #> Thm.compress
wenzelm@16949
   459
  #> close_derivation;
wenzelm@12005
   460
clasohm@0
   461
wenzelm@8328
   462
(*Convert all Vars in a theorem to Frees.  Also return a function for
paulson@4610
   463
  reversing that operation.  DOES NOT WORK FOR TYPE VARIABLES.
paulson@4610
   464
  Similar code in type/freeze_thaw*)
paulson@15495
   465
paulson@15495
   466
fun freeze_thaw_robust th =
wenzelm@19878
   467
 let val fth = Thm.freezeT th
wenzelm@16425
   468
     val {prop, tpairs, thy, ...} = rep_thm fth
paulson@15495
   469
 in
skalberg@15574
   470
   case foldr add_term_vars [] (prop :: Thm.terms_of_tpairs tpairs) of
paulson@15495
   471
       [] => (fth, fn i => fn x => x)   (*No vars: nothing to do!*)
paulson@15495
   472
     | vars =>
paulson@19753
   473
         let fun newName (Var(ix,_)) = (ix, gensym (string_of_indexname ix))
paulson@19753
   474
             val alist = map newName vars
paulson@15495
   475
             fun mk_inst (Var(v,T)) =
wenzelm@16425
   476
                 (cterm_of thy (Var(v,T)),
haftmann@17325
   477
                  cterm_of thy (Free(((the o AList.lookup (op =) alist) v), T)))
paulson@15495
   478
             val insts = map mk_inst vars
paulson@15495
   479
             fun thaw i th' = (*i is non-negative increment for Var indexes*)
paulson@15495
   480
                 th' |> forall_intr_list (map #2 insts)
paulson@15495
   481
                     |> forall_elim_list (map (Thm.cterm_incr_indexes i o #1) insts)
paulson@15495
   482
         in  (Thm.instantiate ([],insts) fth, thaw)  end
paulson@15495
   483
 end;
paulson@15495
   484
paulson@15495
   485
(*Basic version of the function above. No option to rename Vars apart in thaw.
wenzelm@19999
   486
  The Frees created from Vars have nice names. FIXME: does not check for
paulson@19753
   487
  clashes with variables in the assumptions, so delete and use freeze_thaw_robust instead?*)
paulson@4610
   488
fun freeze_thaw th =
wenzelm@19878
   489
 let val fth = Thm.freezeT th
wenzelm@16425
   490
     val {prop, tpairs, thy, ...} = rep_thm fth
paulson@7248
   491
 in
skalberg@15574
   492
   case foldr add_term_vars [] (prop :: Thm.terms_of_tpairs tpairs) of
paulson@7248
   493
       [] => (fth, fn x => x)
paulson@7248
   494
     | vars =>
wenzelm@8328
   495
         let fun newName (Var(ix,_), (pairs,used)) =
wenzelm@20077
   496
                   let val v = Name.variant used (string_of_indexname ix)
wenzelm@8328
   497
                   in  ((ix,v)::pairs, v::used)  end;
skalberg@15574
   498
             val (alist, _) = foldr newName ([], Library.foldr add_term_names
skalberg@15574
   499
               (prop :: Thm.terms_of_tpairs tpairs, [])) vars
wenzelm@8328
   500
             fun mk_inst (Var(v,T)) =
wenzelm@16425
   501
                 (cterm_of thy (Var(v,T)),
haftmann@17325
   502
                  cterm_of thy (Free(((the o AList.lookup (op =) alist) v), T)))
wenzelm@8328
   503
             val insts = map mk_inst vars
wenzelm@8328
   504
             fun thaw th' =
wenzelm@8328
   505
                 th' |> forall_intr_list (map #2 insts)
wenzelm@8328
   506
                     |> forall_elim_list (map #1 insts)
wenzelm@8328
   507
         in  (Thm.instantiate ([],insts) fth, thaw)  end
paulson@7248
   508
 end;
paulson@4610
   509
paulson@7248
   510
(*Rotates a rule's premises to the left by k*)
paulson@7248
   511
val rotate_prems = permute_prems 0;
paulson@4610
   512
oheimb@11163
   513
(* permute prems, where the i-th position in the argument list (counting from 0)
oheimb@11163
   514
   gives the position within the original thm to be transferred to position i.
oheimb@11163
   515
   Any remaining trailing positions are left unchanged. *)
oheimb@11163
   516
val rearrange_prems = let
oheimb@11163
   517
  fun rearr new []      thm = thm
wenzelm@11815
   518
  |   rearr new (p::ps) thm = rearr (new+1)
oheimb@11163
   519
     (map (fn q => if new<=q andalso q<p then q+1 else q) ps)
oheimb@11163
   520
     (permute_prems (new+1) (new-p) (permute_prems new (p-new) thm))
oheimb@11163
   521
  in rearr 0 end;
paulson@4610
   522
wenzelm@252
   523
(*Resolution: exactly one resolvent must be produced.*)
clasohm@0
   524
fun tha RSN (i,thb) =
wenzelm@19861
   525
  case Seq.chop 2 (biresolution false [(false,tha)] i thb) of
clasohm@0
   526
      ([th],_) => th
clasohm@0
   527
    | ([],_)   => raise THM("RSN: no unifiers", i, [tha,thb])
clasohm@0
   528
    |      _   => raise THM("RSN: multiple unifiers", i, [tha,thb]);
clasohm@0
   529
clasohm@0
   530
(*resolution: P==>Q, Q==>R gives P==>R. *)
clasohm@0
   531
fun tha RS thb = tha RSN (1,thb);
clasohm@0
   532
clasohm@0
   533
(*For joining lists of rules*)
wenzelm@252
   534
fun thas RLN (i,thbs) =
clasohm@0
   535
  let val resolve = biresolution false (map (pair false) thas) i
wenzelm@4270
   536
      fun resb thb = Seq.list_of (resolve thb) handle THM _ => []
wenzelm@19482
   537
  in maps resb thbs end;
clasohm@0
   538
clasohm@0
   539
fun thas RL thbs = thas RLN (1,thbs);
clasohm@0
   540
lcp@11
   541
(*Resolve a list of rules against bottom_rl from right to left;
lcp@11
   542
  makes proof trees*)
wenzelm@252
   543
fun rls MRS bottom_rl =
lcp@11
   544
  let fun rs_aux i [] = bottom_rl
wenzelm@252
   545
        | rs_aux i (rl::rls) = rl RSN (i, rs_aux (i+1) rls)
lcp@11
   546
  in  rs_aux 1 rls  end;
lcp@11
   547
lcp@11
   548
(*As above, but for rule lists*)
wenzelm@252
   549
fun rlss MRL bottom_rls =
lcp@11
   550
  let fun rs_aux i [] = bottom_rls
wenzelm@252
   551
        | rs_aux i (rls::rlss) = rls RLN (i, rs_aux (i+1) rlss)
lcp@11
   552
  in  rs_aux 1 rlss  end;
lcp@11
   553
wenzelm@9288
   554
(*A version of MRS with more appropriate argument order*)
wenzelm@9288
   555
fun bottom_rl OF rls = rls MRS bottom_rl;
wenzelm@9288
   556
wenzelm@252
   557
(*compose Q and [...,Qi,Q(i+1),...]==>R to [...,Q(i+1),...]==>R
clasohm@0
   558
  with no lifting or renaming!  Q may contain ==> or meta-quants
clasohm@0
   559
  ALWAYS deletes premise i *)
wenzelm@252
   560
fun compose(tha,i,thb) =
wenzelm@4270
   561
    Seq.list_of (bicompose false (false,tha,0) i thb);
clasohm@0
   562
wenzelm@6946
   563
fun compose_single (tha,i,thb) =
wenzelm@6946
   564
  (case compose (tha,i,thb) of
wenzelm@6946
   565
    [th] => th
wenzelm@6946
   566
  | _ => raise THM ("compose: unique result expected", i, [tha,thb]));
wenzelm@6946
   567
clasohm@0
   568
(*compose Q and [Q1,Q2,...,Qk]==>R to [Q2,...,Qk]==>R getting unique result*)
clasohm@0
   569
fun tha COMP thb =
clasohm@0
   570
    case compose(tha,1,thb) of
wenzelm@252
   571
        [th] => th
clasohm@0
   572
      | _ =>   raise THM("COMP", 1, [tha,thb]);
clasohm@0
   573
wenzelm@13105
   574
wenzelm@4016
   575
(** theorem equality **)
clasohm@0
   576
wenzelm@16425
   577
(*True if the two theorems have the same theory.*)
wenzelm@16425
   578
val eq_thm_thy = eq_thy o pairself Thm.theory_of_thm;
paulson@13650
   579
paulson@13650
   580
(*True if the two theorems have the same prop field, ignoring hyps, der, etc.*)
wenzelm@16720
   581
val eq_thm_prop = op aconv o pairself Thm.full_prop_of;
clasohm@0
   582
clasohm@0
   583
(*Useful "distance" function for BEST_FIRST*)
wenzelm@16720
   584
val size_of_thm = size_of_term o Thm.full_prop_of;
clasohm@0
   585
wenzelm@9829
   586
(*maintain lists of theorems --- preserving canonical order*)
wenzelm@18922
   587
val del_rule = remove eq_thm_prop;
wenzelm@18922
   588
fun add_rule th = cons th o del_rule th;
wenzelm@18922
   589
val merge_rules = Library.merge eq_thm_prop;
wenzelm@9829
   590
wenzelm@19878
   591
(*pattern equivalence*)
wenzelm@19878
   592
fun equiv_thm ths =
wenzelm@19878
   593
  Pattern.equiv (Theory.merge (pairself Thm.theory_of_thm ths)) (pairself Thm.full_prop_of ths);
lcp@1194
   594
lcp@1194
   595
clasohm@0
   596
(*** Meta-Rewriting Rules ***)
clasohm@0
   597
wenzelm@16425
   598
fun read_prop s = read_cterm ProtoPure.thy (s, propT);
paulson@4610
   599
wenzelm@9455
   600
fun store_thm name thm = hd (PureThy.smart_store_thms (name, [thm]));
wenzelm@9455
   601
fun store_standard_thm name thm = store_thm name (standard thm);
wenzelm@12135
   602
fun store_thm_open name thm = hd (PureThy.smart_store_thms_open (name, [thm]));
wenzelm@12135
   603
fun store_standard_thm_open name thm = store_thm_open name (standard' thm);
wenzelm@4016
   604
clasohm@0
   605
val reflexive_thm =
wenzelm@19421
   606
  let val cx = cert (Var(("x",0),TVar(("'a",0),[])))
wenzelm@12135
   607
  in store_standard_thm_open "reflexive" (Thm.reflexive cx) end;
clasohm@0
   608
clasohm@0
   609
val symmetric_thm =
wenzelm@14854
   610
  let val xy = read_prop "x == y"
wenzelm@16595
   611
  in store_standard_thm_open "symmetric" (Thm.implies_intr xy (Thm.symmetric (Thm.assume xy))) end;
clasohm@0
   612
clasohm@0
   613
val transitive_thm =
wenzelm@14854
   614
  let val xy = read_prop "x == y"
wenzelm@14854
   615
      val yz = read_prop "y == z"
clasohm@0
   616
      val xythm = Thm.assume xy and yzthm = Thm.assume yz
wenzelm@12135
   617
  in store_standard_thm_open "transitive" (Thm.implies_intr yz (Thm.transitive xythm yzthm)) end;
clasohm@0
   618
nipkow@4679
   619
fun symmetric_fun thm = thm RS symmetric_thm;
nipkow@4679
   620
berghofe@11512
   621
fun extensional eq =
berghofe@11512
   622
  let val eq' =
wenzelm@20579
   623
    abstract_rule "x" (Thm.dest_arg (fst (dest_equals (cprop_of eq)))) eq
berghofe@11512
   624
  in equal_elim (eta_conversion (cprop_of eq')) eq' end;
berghofe@11512
   625
wenzelm@18820
   626
val equals_cong =
wenzelm@18820
   627
  store_standard_thm_open "equals_cong" (Thm.reflexive (read_prop "x == y"));
wenzelm@18820
   628
berghofe@10414
   629
val imp_cong =
berghofe@10414
   630
  let
berghofe@10414
   631
    val ABC = read_prop "PROP A ==> PROP B == PROP C"
berghofe@10414
   632
    val AB = read_prop "PROP A ==> PROP B"
berghofe@10414
   633
    val AC = read_prop "PROP A ==> PROP C"
berghofe@10414
   634
    val A = read_prop "PROP A"
berghofe@10414
   635
  in
wenzelm@12135
   636
    store_standard_thm_open "imp_cong" (implies_intr ABC (equal_intr
berghofe@10414
   637
      (implies_intr AB (implies_intr A
berghofe@10414
   638
        (equal_elim (implies_elim (assume ABC) (assume A))
berghofe@10414
   639
          (implies_elim (assume AB) (assume A)))))
berghofe@10414
   640
      (implies_intr AC (implies_intr A
berghofe@10414
   641
        (equal_elim (symmetric (implies_elim (assume ABC) (assume A)))
berghofe@10414
   642
          (implies_elim (assume AC) (assume A)))))))
berghofe@10414
   643
  end;
berghofe@10414
   644
berghofe@10414
   645
val swap_prems_eq =
berghofe@10414
   646
  let
berghofe@10414
   647
    val ABC = read_prop "PROP A ==> PROP B ==> PROP C"
berghofe@10414
   648
    val BAC = read_prop "PROP B ==> PROP A ==> PROP C"
berghofe@10414
   649
    val A = read_prop "PROP A"
berghofe@10414
   650
    val B = read_prop "PROP B"
berghofe@10414
   651
  in
wenzelm@12135
   652
    store_standard_thm_open "swap_prems_eq" (equal_intr
berghofe@10414
   653
      (implies_intr ABC (implies_intr B (implies_intr A
berghofe@10414
   654
        (implies_elim (implies_elim (assume ABC) (assume A)) (assume B)))))
berghofe@10414
   655
      (implies_intr BAC (implies_intr A (implies_intr B
berghofe@10414
   656
        (implies_elim (implies_elim (assume BAC) (assume B)) (assume A))))))
berghofe@10414
   657
  end;
lcp@229
   658
wenzelm@18468
   659
val imp_cong_rule = combination o combination (reflexive implies);
clasohm@0
   660
skalberg@15001
   661
local
skalberg@15001
   662
  val dest_eq = dest_equals o cprop_of
skalberg@15001
   663
  val rhs_of = snd o dest_eq
skalberg@15001
   664
in
skalberg@15001
   665
fun beta_eta_conversion t =
skalberg@15001
   666
  let val thm = beta_conversion true t
skalberg@15001
   667
  in transitive thm (eta_conversion (rhs_of thm)) end
skalberg@15001
   668
end;
skalberg@15001
   669
berghofe@15925
   670
fun eta_long_conversion ct = transitive (beta_eta_conversion ct)
berghofe@15925
   671
  (symmetric (beta_eta_conversion (cterm_fun (Pattern.eta_long []) ct)));
berghofe@15925
   672
paulson@20861
   673
(*Contract all eta-redexes in the theorem, lest they give rise to needless abstractions*)
paulson@20861
   674
fun eta_contraction_rule th =
paulson@20861
   675
  equal_elim (eta_conversion (cprop_of th)) th;
paulson@20861
   676
wenzelm@18337
   677
val abs_def =
wenzelm@18337
   678
  let
wenzelm@18337
   679
    fun contract_lhs th =
wenzelm@18337
   680
      Thm.transitive (Thm.symmetric (beta_eta_conversion (fst (dest_equals (cprop_of th))))) th;
wenzelm@18777
   681
    fun abstract cx th = Thm.abstract_rule
wenzelm@18777
   682
        (case Thm.term_of cx of Var ((x, _), _) => x | Free (x, _) => x | _ => "x") cx th
wenzelm@18777
   683
      handle THM _ => raise THM ("Malformed definitional equation", 0, [th]);
wenzelm@18337
   684
  in
wenzelm@18337
   685
    contract_lhs
wenzelm@18337
   686
    #> `(snd o strip_comb o fst o dest_equals o cprop_of)
wenzelm@18337
   687
    #-> fold_rev abstract
wenzelm@18337
   688
    #> contract_lhs
wenzelm@18337
   689
  end;
wenzelm@18337
   690
wenzelm@18468
   691
(*rewrite B in !!x1 ... xn. B*)
wenzelm@18251
   692
fun forall_conv 0 cv ct = cv ct
wenzelm@18251
   693
  | forall_conv n cv ct =
wenzelm@18468
   694
      (case try Thm.dest_comb ct of
wenzelm@18468
   695
        NONE => cv ct
wenzelm@18468
   696
      | SOME (A, B) =>
wenzelm@18468
   697
          (case (term_of A, term_of B) of
wenzelm@18468
   698
            (Const ("all", _), Abs (x, _, _)) =>
wenzelm@18468
   699
              let val (v, B') = Thm.dest_abs (SOME (gensym "all_")) B in
wenzelm@18468
   700
                Thm.combination (Thm.reflexive A)
wenzelm@18468
   701
                  (Thm.abstract_rule x v (forall_conv (n - 1) cv B'))
wenzelm@18468
   702
              end
wenzelm@18468
   703
          | _ => cv ct));
wenzelm@18468
   704
wenzelm@18468
   705
(*rewrite B in A1 ==> ... ==> An ==> B*)
wenzelm@18468
   706
fun concl_conv 0 cv ct = cv ct
wenzelm@18468
   707
  | concl_conv n cv ct =
wenzelm@18468
   708
      (case try dest_implies ct of
wenzelm@18468
   709
        NONE => cv ct
wenzelm@18468
   710
      | SOME (A, B) => imp_cong_rule (reflexive A) (concl_conv (n - 1) cv B));
skalberg@15001
   711
wenzelm@18468
   712
(*rewrite the A's in A1 ==> ... ==> An ==> B*)
wenzelm@18468
   713
fun prems_conv 0 _ = reflexive
wenzelm@18468
   714
  | prems_conv n cv =
wenzelm@18468
   715
      let
wenzelm@18468
   716
        fun conv i ct =
wenzelm@18468
   717
          if i = n + 1 then reflexive ct
wenzelm@18468
   718
          else
wenzelm@18468
   719
            (case try dest_implies ct of
wenzelm@18468
   720
              NONE => reflexive ct
wenzelm@18468
   721
            | SOME (A, B) => imp_cong_rule (cv i A) (conv (i + 1) B));
wenzelm@18468
   722
  in conv 1 end;
wenzelm@18468
   723
wenzelm@18468
   724
fun goals_conv pred cv = prems_conv ~1 (fn i => if pred i then cv else reflexive);
skalberg@15001
   725
fun fconv_rule cv th = equal_elim (cv (cprop_of th)) th;
skalberg@15001
   726
wenzelm@18468
   727
wenzelm@15669
   728
(*** Some useful meta-theorems ***)
clasohm@0
   729
clasohm@0
   730
(*The rule V/V, obtains assumption solving for eresolve_tac*)
wenzelm@12135
   731
val asm_rl = store_standard_thm_open "asm_rl" (Thm.trivial (read_prop "PROP ?psi"));
wenzelm@7380
   732
val _ = store_thm "_" asm_rl;
clasohm@0
   733
clasohm@0
   734
(*Meta-level cut rule: [| V==>W; V |] ==> W *)
wenzelm@4016
   735
val cut_rl =
wenzelm@12135
   736
  store_standard_thm_open "cut_rl"
wenzelm@9455
   737
    (Thm.trivial (read_prop "PROP ?psi ==> PROP ?theta"));
clasohm@0
   738
wenzelm@252
   739
(*Generalized elim rule for one conclusion; cut_rl with reversed premises:
clasohm@0
   740
     [| PROP V;  PROP V ==> PROP W |] ==> PROP W *)
clasohm@0
   741
val revcut_rl =
paulson@4610
   742
  let val V = read_prop "PROP V"
paulson@4610
   743
      and VW = read_prop "PROP V ==> PROP W";
wenzelm@4016
   744
  in
wenzelm@12135
   745
    store_standard_thm_open "revcut_rl"
wenzelm@4016
   746
      (implies_intr V (implies_intr VW (implies_elim (assume VW) (assume V))))
clasohm@0
   747
  end;
clasohm@0
   748
lcp@668
   749
(*for deleting an unwanted assumption*)
lcp@668
   750
val thin_rl =
paulson@4610
   751
  let val V = read_prop "PROP V"
paulson@4610
   752
      and W = read_prop "PROP W";
wenzelm@12135
   753
  in store_standard_thm_open "thin_rl" (implies_intr V (implies_intr W (assume W))) end;
lcp@668
   754
clasohm@0
   755
(* (!!x. PROP ?V) == PROP ?V       Allows removal of redundant parameters*)
clasohm@0
   756
val triv_forall_equality =
paulson@4610
   757
  let val V  = read_prop "PROP V"
paulson@4610
   758
      and QV = read_prop "!!x::'a. PROP V"
wenzelm@19421
   759
      and x  = cert (Free ("x", Term.aT []));
wenzelm@4016
   760
  in
wenzelm@12135
   761
    store_standard_thm_open "triv_forall_equality"
berghofe@11512
   762
      (equal_intr (implies_intr QV (forall_elim x (assume QV)))
berghofe@11512
   763
        (implies_intr V  (forall_intr x (assume V))))
clasohm@0
   764
  end;
clasohm@0
   765
wenzelm@19051
   766
(* (PROP ?Phi ==> PROP ?Phi ==> PROP ?Psi) ==>
wenzelm@19051
   767
   (PROP ?Phi ==> PROP ?Psi)
wenzelm@19051
   768
*)
wenzelm@19051
   769
val distinct_prems_rl =
wenzelm@19051
   770
  let
wenzelm@19051
   771
    val AAB = read_prop "PROP Phi ==> PROP Phi ==> PROP Psi"
wenzelm@19051
   772
    val A = read_prop "PROP Phi";
wenzelm@19051
   773
  in
wenzelm@19051
   774
    store_standard_thm_open "distinct_prems_rl"
wenzelm@19051
   775
      (implies_intr_list [AAB, A] (implies_elim_list (assume AAB) [assume A, assume A]))
wenzelm@19051
   776
  end;
wenzelm@19051
   777
nipkow@1756
   778
(* (PROP ?PhiA ==> PROP ?PhiB ==> PROP ?Psi) ==>
nipkow@1756
   779
   (PROP ?PhiB ==> PROP ?PhiA ==> PROP ?Psi)
nipkow@1756
   780
   `thm COMP swap_prems_rl' swaps the first two premises of `thm'
nipkow@1756
   781
*)
nipkow@1756
   782
val swap_prems_rl =
paulson@4610
   783
  let val cmajor = read_prop "PROP PhiA ==> PROP PhiB ==> PROP Psi";
nipkow@1756
   784
      val major = assume cmajor;
paulson@4610
   785
      val cminor1 = read_prop "PROP PhiA";
nipkow@1756
   786
      val minor1 = assume cminor1;
paulson@4610
   787
      val cminor2 = read_prop "PROP PhiB";
nipkow@1756
   788
      val minor2 = assume cminor2;
wenzelm@12135
   789
  in store_standard_thm_open "swap_prems_rl"
nipkow@1756
   790
       (implies_intr cmajor (implies_intr cminor2 (implies_intr cminor1
nipkow@1756
   791
         (implies_elim (implies_elim major minor1) minor2))))
nipkow@1756
   792
  end;
nipkow@1756
   793
nipkow@3653
   794
(* [| PROP ?phi ==> PROP ?psi; PROP ?psi ==> PROP ?phi |]
nipkow@3653
   795
   ==> PROP ?phi == PROP ?psi
wenzelm@8328
   796
   Introduction rule for == as a meta-theorem.
nipkow@3653
   797
*)
nipkow@3653
   798
val equal_intr_rule =
paulson@4610
   799
  let val PQ = read_prop "PROP phi ==> PROP psi"
paulson@4610
   800
      and QP = read_prop "PROP psi ==> PROP phi"
wenzelm@4016
   801
  in
wenzelm@12135
   802
    store_standard_thm_open "equal_intr_rule"
wenzelm@4016
   803
      (implies_intr PQ (implies_intr QP (equal_intr (assume PQ) (assume QP))))
nipkow@3653
   804
  end;
nipkow@3653
   805
wenzelm@19421
   806
(* PROP ?phi == PROP ?psi ==> PROP ?phi ==> PROP ?psi *)
wenzelm@13368
   807
val equal_elim_rule1 =
wenzelm@13368
   808
  let val eq = read_prop "PROP phi == PROP psi"
wenzelm@13368
   809
      and P = read_prop "PROP phi"
wenzelm@13368
   810
  in store_standard_thm_open "equal_elim_rule1"
wenzelm@13368
   811
    (Thm.equal_elim (assume eq) (assume P) |> implies_intr_list [eq, P])
wenzelm@13368
   812
  end;
wenzelm@4285
   813
wenzelm@19421
   814
(* PROP ?psi == PROP ?phi ==> PROP ?phi ==> PROP ?psi *)
wenzelm@19421
   815
val equal_elim_rule2 =
wenzelm@19421
   816
  store_standard_thm_open "equal_elim_rule2" (symmetric_thm RS equal_elim_rule1);
wenzelm@19421
   817
wenzelm@12297
   818
(* "[| PROP ?phi; PROP ?phi; PROP ?psi |] ==> PROP ?psi" *)
wenzelm@12297
   819
val remdups_rl =
wenzelm@12297
   820
  let val P = read_prop "PROP phi" and Q = read_prop "PROP psi";
wenzelm@12297
   821
  in store_standard_thm_open "remdups_rl" (implies_intr_list [P, P, Q] (Thm.assume Q)) end;
wenzelm@12297
   822
wenzelm@12297
   823
wenzelm@9554
   824
(*(PROP ?phi ==> (!!x. PROP ?psi(x))) == (!!x. PROP ?phi ==> PROP ?psi(x))
wenzelm@12297
   825
  Rewrite rule for HHF normalization.*)
wenzelm@9554
   826
wenzelm@9554
   827
val norm_hhf_eq =
wenzelm@9554
   828
  let
wenzelm@14854
   829
    val aT = TFree ("'a", []);
wenzelm@9554
   830
    val all = Term.all aT;
wenzelm@9554
   831
    val x = Free ("x", aT);
wenzelm@9554
   832
    val phi = Free ("phi", propT);
wenzelm@9554
   833
    val psi = Free ("psi", aT --> propT);
wenzelm@9554
   834
wenzelm@9554
   835
    val cx = cert x;
wenzelm@9554
   836
    val cphi = cert phi;
wenzelm@9554
   837
    val lhs = cert (Logic.mk_implies (phi, all $ Abs ("x", aT, psi $ Bound 0)));
wenzelm@9554
   838
    val rhs = cert (all $ Abs ("x", aT, Logic.mk_implies (phi, psi $ Bound 0)));
wenzelm@9554
   839
  in
wenzelm@9554
   840
    Thm.equal_intr
wenzelm@9554
   841
      (Thm.implies_elim (Thm.assume lhs) (Thm.assume cphi)
wenzelm@9554
   842
        |> Thm.forall_elim cx
wenzelm@9554
   843
        |> Thm.implies_intr cphi
wenzelm@9554
   844
        |> Thm.forall_intr cx
wenzelm@9554
   845
        |> Thm.implies_intr lhs)
wenzelm@9554
   846
      (Thm.implies_elim
wenzelm@9554
   847
          (Thm.assume rhs |> Thm.forall_elim cx) (Thm.assume cphi)
wenzelm@9554
   848
        |> Thm.forall_intr cx
wenzelm@9554
   849
        |> Thm.implies_intr cphi
wenzelm@9554
   850
        |> Thm.implies_intr rhs)
wenzelm@12135
   851
    |> store_standard_thm_open "norm_hhf_eq"
wenzelm@9554
   852
  end;
wenzelm@9554
   853
wenzelm@18179
   854
val norm_hhf_prop = Logic.dest_equals (Thm.prop_of norm_hhf_eq);
wenzelm@18179
   855
wenzelm@12800
   856
fun is_norm_hhf tm =
wenzelm@12800
   857
  let
wenzelm@12800
   858
    fun is_norm (Const ("==>", _) $ _ $ (Const ("all", _) $ _)) = false
wenzelm@12800
   859
      | is_norm (t $ u) = is_norm t andalso is_norm u
wenzelm@12800
   860
      | is_norm (Abs (_, _, t)) = is_norm t
wenzelm@12800
   861
      | is_norm _ = true;
wenzelm@18929
   862
  in is_norm (Envir.beta_eta_contract tm) end;
wenzelm@12800
   863
wenzelm@16425
   864
fun norm_hhf thy t =
wenzelm@12800
   865
  if is_norm_hhf t then t
wenzelm@18179
   866
  else Pattern.rewrite_term thy [norm_hhf_prop] [] t;
wenzelm@18179
   867
wenzelm@20298
   868
fun norm_hhf_cterm ct =
wenzelm@20298
   869
  if is_norm_hhf (Thm.term_of ct) then ct
wenzelm@20298
   870
  else cterm_fun (Pattern.rewrite_term (Thm.theory_of_cterm ct) [norm_hhf_prop] []) ct;
wenzelm@20298
   871
wenzelm@12800
   872
wenzelm@21596
   873
(* var indexes *)
wenzelm@21596
   874
wenzelm@21596
   875
fun incr_indexes th = Thm.incr_indexes (Thm.maxidx_of th + 1);
wenzelm@21596
   876
wenzelm@21596
   877
fun incr_indexes2 th1 th2 =
wenzelm@21596
   878
  Thm.incr_indexes (Int.max (Thm.maxidx_of th1, Thm.maxidx_of th2) + 1);
wenzelm@21596
   879
wenzelm@21596
   880
fun th1 INCR_COMP th2 = incr_indexes th2 th1 COMP th2;
wenzelm@21596
   881
fun th1 COMP_INCR th2 = th1 COMP incr_indexes th1 th2;
wenzelm@21596
   882
wenzelm@9554
   883
wenzelm@16425
   884
(*** Instantiate theorem th, reading instantiations in theory thy ****)
paulson@8129
   885
paulson@8129
   886
(*Version that normalizes the result: Thm.instantiate no longer does that*)
wenzelm@21596
   887
fun instantiate instpair th = Thm.instantiate instpair th COMP_INCR asm_rl;
paulson@8129
   888
wenzelm@16425
   889
fun read_instantiate_sg' thy sinsts th =
paulson@8129
   890
    let val ts = types_sorts th;
wenzelm@15669
   891
        val used = add_used th [];
wenzelm@16425
   892
    in  instantiate (read_insts thy ts ts used sinsts) th  end;
berghofe@15797
   893
wenzelm@16425
   894
fun read_instantiate_sg thy sinsts th =
wenzelm@20298
   895
  read_instantiate_sg' thy (map (apfst Syntax.read_indexname) sinsts) th;
paulson@8129
   896
paulson@8129
   897
(*Instantiate theorem th, reading instantiations under theory of th*)
paulson@8129
   898
fun read_instantiate sinsts th =
wenzelm@16425
   899
    read_instantiate_sg (Thm.theory_of_thm th) sinsts th;
paulson@8129
   900
berghofe@15797
   901
fun read_instantiate' sinsts th =
wenzelm@16425
   902
    read_instantiate_sg' (Thm.theory_of_thm th) sinsts th;
berghofe@15797
   903
paulson@8129
   904
paulson@8129
   905
(*Left-to-right replacements: tpairs = [...,(vi,ti),...].
paulson@8129
   906
  Instantiates distinct Vars by terms, inferring type instantiations. *)
paulson@8129
   907
local
wenzelm@16425
   908
  fun add_types ((ct,cu), (thy,tye,maxidx)) =
wenzelm@16425
   909
    let val {thy=thyt, t=t, T= T, maxidx=maxt,...} = rep_cterm ct
wenzelm@16425
   910
        and {thy=thyu, t=u, T= U, maxidx=maxu,...} = rep_cterm cu;
paulson@8129
   911
        val maxi = Int.max(maxidx, Int.max(maxt, maxu));
wenzelm@16425
   912
        val thy' = Theory.merge(thy, Theory.merge(thyt, thyu))
wenzelm@16949
   913
        val (tye',maxi') = Sign.typ_unify thy' (T, U) (tye, maxi)
wenzelm@10403
   914
          handle Type.TUNIFY => raise TYPE("Ill-typed instantiation", [T,U], [t,u])
wenzelm@16425
   915
    in  (thy', tye', maxi')  end;
paulson@8129
   916
in
paulson@8129
   917
fun cterm_instantiate ctpairs0 th =
wenzelm@16425
   918
  let val (thy,tye,_) = foldr add_types (Thm.theory_of_thm th, Vartab.empty, 0) ctpairs0
wenzelm@18179
   919
      fun instT(ct,cu) =
wenzelm@16425
   920
        let val inst = cterm_of thy o Envir.subst_TVars tye o term_of
paulson@14340
   921
        in (inst ct, inst cu) end
wenzelm@16425
   922
      fun ctyp2 (ixn, (S, T)) = (ctyp_of thy (TVar (ixn, S)), ctyp_of thy T)
berghofe@8406
   923
  in  instantiate (map ctyp2 (Vartab.dest tye), map instT ctpairs0) th  end
paulson@8129
   924
  handle TERM _ =>
wenzelm@16425
   925
           raise THM("cterm_instantiate: incompatible theories",0,[th])
paulson@8129
   926
       | TYPE (msg, _, _) => raise THM(msg, 0, [th])
paulson@8129
   927
end;
paulson@8129
   928
paulson@8129
   929
wenzelm@19878
   930
(* global schematic variables *)
wenzelm@19878
   931
wenzelm@19878
   932
fun unvarify th =
wenzelm@19878
   933
  let
wenzelm@19878
   934
    val thy = Thm.theory_of_thm th;
wenzelm@19878
   935
    val cert = Thm.cterm_of thy;
wenzelm@19878
   936
    val certT = Thm.ctyp_of thy;
wenzelm@19878
   937
wenzelm@19878
   938
    val prop = Thm.full_prop_of th;
wenzelm@19878
   939
    val _ = map Logic.unvarify (prop :: Thm.hyps_of th)
wenzelm@19878
   940
      handle TERM (msg, _) => raise THM (msg, 0, [th]);
wenzelm@19878
   941
wenzelm@19878
   942
    val instT0 = rev (Term.add_tvars prop []) |> map (fn v as ((a, _), S) => (v, TFree (a, S)));
wenzelm@19878
   943
    val instT = map (fn (v, T) => (certT (TVar v), certT T)) instT0;
wenzelm@19878
   944
    val inst = rev (Term.add_vars prop []) |> map (fn ((a, i), T) =>
wenzelm@20509
   945
      let val T' = TermSubst.instantiateT instT0 T
wenzelm@19878
   946
      in (cert (Var ((a, i), T')), cert (Free ((a, T')))) end);
wenzelm@19878
   947
  in Thm.instantiate (instT, inst) th end;
wenzelm@19878
   948
wenzelm@19878
   949
wenzelm@19775
   950
(** protected propositions and embedded terms **)
wenzelm@4789
   951
wenzelm@4789
   952
local
wenzelm@18025
   953
  val A = cert (Free ("A", propT));
wenzelm@19878
   954
  val prop_def = unvarify ProtoPure.prop_def;
wenzelm@19878
   955
  val term_def = unvarify ProtoPure.term_def;
wenzelm@4789
   956
in
wenzelm@18025
   957
  val protect = Thm.capply (cert Logic.protectC);
wenzelm@21437
   958
  val protectI = store_thm "protectI" (PureThy.kind_rule Thm.internalK (standard
wenzelm@18025
   959
      (Thm.equal_elim (Thm.symmetric prop_def) (Thm.assume A))));
wenzelm@21437
   960
  val protectD = store_thm "protectD" (PureThy.kind_rule Thm.internalK (standard
wenzelm@18025
   961
      (Thm.equal_elim prop_def (Thm.assume (protect A)))));
wenzelm@18179
   962
  val protect_cong = store_standard_thm_open "protect_cong" (Thm.reflexive (protect A));
wenzelm@19775
   963
wenzelm@21437
   964
  val termI = store_thm "termI" (PureThy.kind_rule Thm.internalK (standard
wenzelm@19775
   965
      (Thm.equal_elim (Thm.symmetric term_def) (Thm.forall_intr A (Thm.trivial A)))));
wenzelm@4789
   966
end;
wenzelm@4789
   967
wenzelm@18025
   968
fun implies_intr_protected asms th =
wenzelm@18118
   969
  let val asms' = map protect asms in
wenzelm@18118
   970
    implies_elim_list
wenzelm@18118
   971
      (implies_intr_list asms th)
wenzelm@18118
   972
      (map (fn asm' => Thm.assume asm' RS protectD) asms')
wenzelm@18118
   973
    |> implies_intr_list asms'
wenzelm@18118
   974
  end;
wenzelm@11815
   975
wenzelm@19775
   976
fun mk_term ct =
wenzelm@19775
   977
  let
wenzelm@19775
   978
    val {thy, T, ...} = Thm.rep_cterm ct;
wenzelm@19775
   979
    val cert = Thm.cterm_of thy;
wenzelm@19775
   980
    val certT = Thm.ctyp_of thy;
wenzelm@19775
   981
    val a = certT (TVar (("'a", 0), []));
wenzelm@19775
   982
    val x = cert (Var (("x", 0), T));
wenzelm@19775
   983
  in Thm.instantiate ([(a, certT T)], [(x, ct)]) termI end;
wenzelm@19775
   984
wenzelm@19775
   985
fun dest_term th =
wenzelm@21566
   986
  let val cprop = strip_imp_concl (Thm.cprop_of th) in
wenzelm@19775
   987
    if can Logic.dest_term (Thm.term_of cprop) then
wenzelm@20579
   988
      Thm.dest_arg cprop
wenzelm@19775
   989
    else raise THM ("dest_term", 0, [th])
wenzelm@19775
   990
  end;
wenzelm@19775
   991
wenzelm@21519
   992
fun cterm_rule f = dest_term o f o mk_term;
wenzelm@21519
   993
fun term_rule thy f t = Thm.term_of (cterm_rule f (Thm.cterm_of thy t));
wenzelm@20881
   994
wenzelm@19775
   995
wenzelm@4789
   996
wenzelm@5688
   997
(** variations on instantiate **)
wenzelm@4285
   998
paulson@8550
   999
(*shorthand for instantiating just one variable in the current theory*)
wenzelm@16425
  1000
fun inst x t = read_instantiate_sg (the_context()) [(x,t)];
paulson@8550
  1001
paulson@8550
  1002
wenzelm@4285
  1003
(* instantiate by left-to-right occurrence of variables *)
wenzelm@4285
  1004
wenzelm@4285
  1005
fun instantiate' cTs cts thm =
wenzelm@4285
  1006
  let
wenzelm@4285
  1007
    fun err msg =
wenzelm@4285
  1008
      raise TYPE ("instantiate': " ^ msg,
wenzelm@19482
  1009
        map_filter (Option.map Thm.typ_of) cTs,
wenzelm@19482
  1010
        map_filter (Option.map Thm.term_of) cts);
wenzelm@4285
  1011
wenzelm@4285
  1012
    fun inst_of (v, ct) =
wenzelm@16425
  1013
      (Thm.cterm_of (Thm.theory_of_cterm ct) (Var v), ct)
wenzelm@4285
  1014
        handle TYPE (msg, _, _) => err msg;
wenzelm@4285
  1015
berghofe@15797
  1016
    fun tyinst_of (v, cT) =
wenzelm@16425
  1017
      (Thm.ctyp_of (Thm.theory_of_ctyp cT) (TVar v), cT)
berghofe@15797
  1018
        handle TYPE (msg, _, _) => err msg;
berghofe@15797
  1019
wenzelm@20298
  1020
    fun zip_vars xs ys =
wenzelm@20298
  1021
      zip_options xs ys handle Library.UnequalLengths =>
wenzelm@20298
  1022
        err "more instantiations than variables in thm";
wenzelm@4285
  1023
wenzelm@4285
  1024
    (*instantiate types first!*)
wenzelm@4285
  1025
    val thm' =
wenzelm@4285
  1026
      if forall is_none cTs then thm
wenzelm@20298
  1027
      else Thm.instantiate
wenzelm@20298
  1028
        (map tyinst_of (zip_vars (rev (fold_terms Term.add_tvars thm [])) cTs), []) thm;
wenzelm@20579
  1029
    val thm'' =
wenzelm@4285
  1030
      if forall is_none cts then thm'
wenzelm@20298
  1031
      else Thm.instantiate
wenzelm@20298
  1032
        ([], map inst_of (zip_vars (rev (fold_terms Term.add_vars thm' [])) cts)) thm';
wenzelm@20298
  1033
    in thm'' end;
wenzelm@4285
  1034
wenzelm@4285
  1035
berghofe@14081
  1036
berghofe@14081
  1037
(** renaming of bound variables **)
berghofe@14081
  1038
berghofe@14081
  1039
(* replace bound variables x_i in thm by y_i *)
berghofe@14081
  1040
(* where vs = [(x_1, y_1), ..., (x_n, y_n)]  *)
berghofe@14081
  1041
berghofe@14081
  1042
fun rename_bvars [] thm = thm
berghofe@14081
  1043
  | rename_bvars vs thm =
berghofe@14081
  1044
    let
wenzelm@16425
  1045
      val {thy, prop, ...} = rep_thm thm;
haftmann@17325
  1046
      fun ren (Abs (x, T, t)) = Abs (AList.lookup (op =) vs x |> the_default x, T, ren t)
berghofe@14081
  1047
        | ren (t $ u) = ren t $ ren u
berghofe@14081
  1048
        | ren t = t;
wenzelm@16425
  1049
    in equal_elim (reflexive (cterm_of thy (ren prop))) thm end;
berghofe@14081
  1050
berghofe@14081
  1051
berghofe@14081
  1052
(* renaming in left-to-right order *)
berghofe@14081
  1053
berghofe@14081
  1054
fun rename_bvars' xs thm =
berghofe@14081
  1055
  let
wenzelm@16425
  1056
    val {thy, prop, ...} = rep_thm thm;
berghofe@14081
  1057
    fun rename [] t = ([], t)
berghofe@14081
  1058
      | rename (x' :: xs) (Abs (x, T, t)) =
berghofe@14081
  1059
          let val (xs', t') = rename xs t
wenzelm@18929
  1060
          in (xs', Abs (the_default x x', T, t')) end
berghofe@14081
  1061
      | rename xs (t $ u) =
berghofe@14081
  1062
          let
berghofe@14081
  1063
            val (xs', t') = rename xs t;
berghofe@14081
  1064
            val (xs'', u') = rename xs' u
berghofe@14081
  1065
          in (xs'', t' $ u') end
berghofe@14081
  1066
      | rename xs t = (xs, t);
berghofe@14081
  1067
  in case rename xs prop of
wenzelm@16425
  1068
      ([], prop') => equal_elim (reflexive (cterm_of thy prop')) thm
berghofe@14081
  1069
    | _ => error "More names than abstractions in theorem"
berghofe@14081
  1070
  end;
berghofe@14081
  1071
berghofe@14081
  1072
wenzelm@11975
  1073
wenzelm@18225
  1074
(** multi_resolve **)
wenzelm@18225
  1075
wenzelm@18225
  1076
local
wenzelm@18225
  1077
wenzelm@18225
  1078
fun res th i rule =
wenzelm@18225
  1079
  Thm.biresolution false [(false, th)] i rule handle THM _ => Seq.empty;
wenzelm@18225
  1080
wenzelm@18225
  1081
fun multi_res _ [] rule = Seq.single rule
wenzelm@18225
  1082
  | multi_res i (th :: ths) rule = Seq.maps (res th i) (multi_res (i + 1) ths rule);
wenzelm@18225
  1083
wenzelm@18225
  1084
in
wenzelm@18225
  1085
wenzelm@18225
  1086
val multi_resolve = multi_res 1;
wenzelm@18225
  1087
fun multi_resolves facts rules = Seq.maps (multi_resolve facts) (Seq.of_list rules);
wenzelm@18225
  1088
wenzelm@18225
  1089
end;
wenzelm@18225
  1090
wenzelm@11975
  1091
end;
wenzelm@5903
  1092
wenzelm@5903
  1093
structure BasicDrule: BASIC_DRULE = Drule;
wenzelm@5903
  1094
open BasicDrule;