src/Pure/tactic.ML
author wenzelm
Sun Oct 14 22:05:46 2001 +0200 (2001-10-14)
changeset 11768 48bc55f43774
parent 11762 7aa0702d3340
child 11774 3bc4f67d7fe1
permissions -rw-r--r--
unified rewrite/rewrite_cterm/simplify interface;
wenzelm@10805
     1
(*  Title:      Pure/tactic.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@10805
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1991  University of Cambridge
clasohm@0
     5
wenzelm@10805
     6
Tactics.
clasohm@0
     7
*)
clasohm@0
     8
clasohm@0
     9
signature TACTIC =
paulson@1501
    10
  sig
wenzelm@10805
    11
  val ares_tac          : thm list -> int -> tactic
wenzelm@11671
    12
  val asm_rewrite_goal_tac: bool*bool*bool ->
wenzelm@11671
    13
    (MetaSimplifier.meta_simpset -> tactic) -> MetaSimplifier.meta_simpset -> int -> tactic
wenzelm@10805
    14
  val assume_tac        : int -> tactic
wenzelm@10805
    15
  val atac      : int ->tactic
wenzelm@10817
    16
  val bimatch_from_nets_tac:
paulson@1501
    17
      (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net -> int -> tactic
wenzelm@10805
    18
  val bimatch_tac       : (bool*thm)list -> int -> tactic
wenzelm@10817
    19
  val biresolution_from_nets_tac:
wenzelm@10805
    20
        ('a list -> (bool * thm) list) ->
wenzelm@10805
    21
        bool -> 'a Net.net * 'a Net.net -> int -> tactic
wenzelm@10817
    22
  val biresolve_from_nets_tac:
paulson@1501
    23
      (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net -> int -> tactic
wenzelm@10805
    24
  val biresolve_tac     : (bool*thm)list -> int -> tactic
wenzelm@10805
    25
  val build_net : thm list -> (int*thm) Net.net
paulson@1501
    26
  val build_netpair:    (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net ->
paulson@1501
    27
      (bool*thm)list -> (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net
wenzelm@10817
    28
  val compose_inst_tac  : (string*string)list -> (bool*thm*int) ->
paulson@3409
    29
                          int -> tactic
wenzelm@10817
    30
  val compose_tac       : (bool * thm * int) -> int -> tactic
wenzelm@10805
    31
  val cut_facts_tac     : thm list -> int -> tactic
wenzelm@10817
    32
  val cut_inst_tac      : (string*string)list -> thm -> int -> tactic
oheimb@7491
    33
  val datac             : thm -> int -> int -> tactic
wenzelm@10805
    34
  val defer_tac         : int -> tactic
wenzelm@10805
    35
  val distinct_subgoals_tac     : tactic
wenzelm@10805
    36
  val dmatch_tac        : thm list -> int -> tactic
wenzelm@10805
    37
  val dresolve_tac      : thm list -> int -> tactic
wenzelm@10817
    38
  val dres_inst_tac     : (string*string)list -> thm -> int -> tactic
wenzelm@10805
    39
  val dtac              : thm -> int ->tactic
oheimb@7491
    40
  val eatac             : thm -> int -> int -> tactic
wenzelm@10805
    41
  val etac              : thm -> int ->tactic
wenzelm@10817
    42
  val eq_assume_tac     : int -> tactic
wenzelm@10805
    43
  val ematch_tac        : thm list -> int -> tactic
wenzelm@10805
    44
  val eresolve_tac      : thm list -> int -> tactic
wenzelm@10805
    45
  val eres_inst_tac     : (string*string)list -> thm -> int -> tactic
oheimb@7491
    46
  val fatac             : thm -> int -> int -> tactic
wenzelm@10817
    47
  val filter_prems_tac  : (term -> bool) -> int -> tactic
wenzelm@10805
    48
  val filter_thms       : (term*term->bool) -> int*term*thm list -> thm list
wenzelm@10805
    49
  val filt_resolve_tac  : thm list -> int -> int -> tactic
wenzelm@10805
    50
  val flexflex_tac      : tactic
wenzelm@10805
    51
  val fold_goals_tac    : thm list -> tactic
wenzelm@10805
    52
  val fold_rule         : thm list -> thm -> thm
wenzelm@10805
    53
  val fold_tac          : thm list -> tactic
wenzelm@10817
    54
  val forward_tac       : thm list -> int -> tactic
wenzelm@10805
    55
  val forw_inst_tac     : (string*string)list -> thm -> int -> tactic
wenzelm@10805
    56
  val ftac              : thm -> int ->tactic
wenzelm@10817
    57
  val insert_tagged_brl : ('a*(bool*thm)) *
paulson@3409
    58
                          (('a*(bool*thm))Net.net * ('a*(bool*thm))Net.net) ->
paulson@3409
    59
                          ('a*(bool*thm))Net.net * ('a*(bool*thm))Net.net
wenzelm@10817
    60
  val delete_tagged_brl : (bool*thm) *
paulson@3409
    61
                         ((int*(bool*thm))Net.net * (int*(bool*thm))Net.net) ->
paulson@1801
    62
                    (int*(bool*thm))Net.net * (int*(bool*thm))Net.net
wenzelm@10805
    63
  val is_fact           : thm -> bool
wenzelm@10805
    64
  val lessb             : (bool * thm) * (bool * thm) -> bool
wenzelm@10805
    65
  val lift_inst_rule    : thm * int * (string*string)list * thm -> thm
wenzelm@10805
    66
  val make_elim         : thm -> thm
wenzelm@10805
    67
  val match_from_net_tac        : (int*thm) Net.net -> int -> tactic
wenzelm@10805
    68
  val match_tac : thm list -> int -> tactic
wenzelm@10805
    69
  val metacut_tac       : thm -> int -> tactic
wenzelm@10805
    70
  val net_bimatch_tac   : (bool*thm) list -> int -> tactic
wenzelm@10805
    71
  val net_biresolve_tac : (bool*thm) list -> int -> tactic
wenzelm@10805
    72
  val net_match_tac     : thm list -> int -> tactic
wenzelm@10805
    73
  val net_resolve_tac   : thm list -> int -> tactic
wenzelm@10805
    74
  val norm_hhf          : thm -> thm
wenzelm@10805
    75
  val norm_hhf_tac      : int -> tactic
wenzelm@10805
    76
  val orderlist         : (int * 'a) list -> 'a list
wenzelm@10817
    77
  val PRIMITIVE         : (thm -> thm) -> tactic
wenzelm@10817
    78
  val PRIMSEQ           : (thm -> thm Seq.seq) -> tactic
wenzelm@10805
    79
  val prune_params_tac  : tactic
wenzelm@10805
    80
  val rename_params_tac : string list -> int -> tactic
wenzelm@10805
    81
  val rename_tac        : string -> int -> tactic
wenzelm@10805
    82
  val rename_last_tac   : string -> string list -> int -> tactic
wenzelm@10805
    83
  val resolve_from_net_tac      : (int*thm) Net.net -> int -> tactic
wenzelm@10805
    84
  val resolve_tac       : thm list -> int -> tactic
wenzelm@10817
    85
  val res_inst_tac      : (string*string)list -> thm -> int -> tactic
wenzelm@11768
    86
  val rewrite           : bool -> thm list -> cterm -> thm
wenzelm@11768
    87
  val rewrite_cterm     : bool -> thm list -> cterm -> cterm
wenzelm@11768
    88
  val simplify          : bool -> thm list -> thm -> thm
wenzelm@10444
    89
  val rewrite_goal_tac  : thm list -> int -> tactic
wenzelm@3575
    90
  val rewrite_goals_rule: thm list -> thm -> thm
wenzelm@10805
    91
  val rewrite_rule      : thm list -> thm -> thm
wenzelm@10805
    92
  val rewrite_goals_tac : thm list -> tactic
wenzelm@10805
    93
  val rewrite_tac       : thm list -> tactic
wenzelm@10805
    94
  val rewtac            : thm -> tactic
wenzelm@10805
    95
  val rotate_tac        : int -> int -> tactic
wenzelm@10805
    96
  val rtac              : thm -> int -> tactic
wenzelm@10805
    97
  val rule_by_tactic    : tactic -> thm -> thm
wenzelm@10805
    98
  val solve_tac         : thm list -> int -> tactic
wenzelm@10805
    99
  val subgoal_tac       : string -> int -> tactic
wenzelm@10805
   100
  val subgoals_tac      : string list -> int -> tactic
wenzelm@10805
   101
  val subgoals_of_brl   : bool * thm -> int
wenzelm@10805
   102
  val term_lift_inst_rule       :
nipkow@1975
   103
      thm * int * (indexname*typ)list * ((indexname*typ)*term)list  * thm
nipkow@1975
   104
      -> thm
oheimb@10347
   105
  val instantiate_tac   : (string * string) list -> tactic
wenzelm@10805
   106
  val thin_tac          : string -> int -> tactic
wenzelm@10805
   107
  val trace_goalno_tac  : (int -> tactic) -> int -> tactic
paulson@1501
   108
  end;
clasohm@0
   109
clasohm@0
   110
wenzelm@10817
   111
structure Tactic : TACTIC =
clasohm@0
   112
struct
clasohm@0
   113
paulson@1501
   114
(*Discover which goal is chosen:  SOMEGOAL(trace_goalno_tac tac) *)
wenzelm@10817
   115
fun trace_goalno_tac tac i st =
wenzelm@4270
   116
    case Seq.pull(tac i st) of
wenzelm@10805
   117
        None    => Seq.empty
wenzelm@10817
   118
      | seqcell => (writeln ("Subgoal " ^ string_of_int i ^ " selected");
wenzelm@10805
   119
                         Seq.make(fn()=> seqcell));
clasohm@0
   120
clasohm@0
   121
(*Makes a rule by applying a tactic to an existing rule*)
paulson@1501
   122
fun rule_by_tactic tac rl =
paulson@2688
   123
  let val (st, thaw) = freeze_thaw (zero_var_indexes rl)
wenzelm@4270
   124
  in case Seq.pull (tac st)  of
wenzelm@10805
   125
        None        => raise THM("rule_by_tactic", 0, [rl])
paulson@2688
   126
      | Some(st',_) => Thm.varifyT (thaw st')
paulson@2688
   127
  end;
wenzelm@10817
   128
clasohm@0
   129
(*** Basic tactics ***)
clasohm@0
   130
clasohm@0
   131
(*Makes a tactic whose effect on a state is given by thmfun: thm->thm seq.*)
wenzelm@4270
   132
fun PRIMSEQ thmfun st =  thmfun st handle THM _ => Seq.empty;
clasohm@0
   133
clasohm@0
   134
(*Makes a tactic whose effect on a state is given by thmfun: thm->thm.*)
wenzelm@4270
   135
fun PRIMITIVE thmfun = PRIMSEQ (Seq.single o thmfun);
clasohm@0
   136
clasohm@0
   137
(*** The following fail if the goal number is out of range:
clasohm@0
   138
     thus (REPEAT (resolve_tac rules i)) stops once subgoal i disappears. *)
clasohm@0
   139
clasohm@0
   140
(*Solve subgoal i by assumption*)
clasohm@0
   141
fun assume_tac i = PRIMSEQ (assumption i);
clasohm@0
   142
clasohm@0
   143
(*Solve subgoal i by assumption, using no unification*)
clasohm@0
   144
fun eq_assume_tac i = PRIMITIVE (eq_assumption i);
clasohm@0
   145
clasohm@0
   146
(** Resolution/matching tactics **)
clasohm@0
   147
clasohm@0
   148
(*The composition rule/state: no lifting or var renaming.
clasohm@0
   149
  The arg = (bires_flg, orule, m) ;  see bicompose for explanation.*)
clasohm@0
   150
fun compose_tac arg i = PRIMSEQ (bicompose false arg i);
clasohm@0
   151
clasohm@0
   152
(*Converts a "destruct" rule like P&Q==>P to an "elimination" rule
clasohm@0
   153
  like [| P&Q; P==>R |] ==> R *)
clasohm@0
   154
fun make_elim rl = zero_var_indexes (rl RS revcut_rl);
clasohm@0
   155
clasohm@0
   156
(*Attack subgoal i by resolution, using flags to indicate elimination rules*)
clasohm@0
   157
fun biresolve_tac brules i = PRIMSEQ (biresolution false brules i);
clasohm@0
   158
clasohm@0
   159
(*Resolution: the simple case, works for introduction rules*)
clasohm@0
   160
fun resolve_tac rules = biresolve_tac (map (pair false) rules);
clasohm@0
   161
clasohm@0
   162
(*Resolution with elimination rules only*)
clasohm@0
   163
fun eresolve_tac rules = biresolve_tac (map (pair true) rules);
clasohm@0
   164
clasohm@0
   165
(*Forward reasoning using destruction rules.*)
clasohm@0
   166
fun forward_tac rls = resolve_tac (map make_elim rls) THEN' assume_tac;
clasohm@0
   167
clasohm@0
   168
(*Like forward_tac, but deletes the assumption after use.*)
clasohm@0
   169
fun dresolve_tac rls = eresolve_tac (map make_elim rls);
clasohm@0
   170
clasohm@0
   171
(*Shorthand versions: for resolution with a single theorem*)
oheimb@7491
   172
val atac    =   assume_tac;
oheimb@7491
   173
fun rtac rl =  resolve_tac [rl];
oheimb@7491
   174
fun dtac rl = dresolve_tac [rl];
clasohm@1460
   175
fun etac rl = eresolve_tac [rl];
oheimb@7491
   176
fun ftac rl =  forward_tac [rl];
oheimb@7491
   177
fun datac thm j = EVERY' (dtac thm::replicate j atac);
oheimb@7491
   178
fun eatac thm j = EVERY' (etac thm::replicate j atac);
oheimb@7491
   179
fun fatac thm j = EVERY' (ftac thm::replicate j atac);
clasohm@0
   180
clasohm@0
   181
(*Use an assumption or some rules ... A popular combination!*)
clasohm@0
   182
fun ares_tac rules = assume_tac  ORELSE'  resolve_tac rules;
clasohm@0
   183
wenzelm@5263
   184
fun solve_tac rules = resolve_tac rules THEN_ALL_NEW assume_tac;
wenzelm@5263
   185
clasohm@0
   186
(*Matching tactics -- as above, but forbid updating of state*)
clasohm@0
   187
fun bimatch_tac brules i = PRIMSEQ (biresolution true brules i);
clasohm@0
   188
fun match_tac rules  = bimatch_tac (map (pair false) rules);
clasohm@0
   189
fun ematch_tac rules = bimatch_tac (map (pair true) rules);
clasohm@0
   190
fun dmatch_tac rls   = ematch_tac (map make_elim rls);
clasohm@0
   191
clasohm@0
   192
(*Smash all flex-flex disagreement pairs in the proof state.*)
clasohm@0
   193
val flexflex_tac = PRIMSEQ flexflex_rule;
clasohm@0
   194
paulson@3409
   195
paulson@3409
   196
(*Remove duplicate subgoals.  By Mark Staples*)
paulson@3409
   197
local
paulson@3409
   198
fun cterm_aconv (a,b) = #t (rep_cterm a) aconv #t (rep_cterm b);
paulson@3409
   199
in
wenzelm@10817
   200
fun distinct_subgoals_tac state =
paulson@3409
   201
    let val (frozth,thawfn) = freeze_thaw state
wenzelm@10805
   202
        val froz_prems = cprems_of frozth
wenzelm@10805
   203
        val assumed = implies_elim_list frozth (map assume froz_prems)
wenzelm@10805
   204
        val implied = implies_intr_list (gen_distinct cterm_aconv froz_prems)
wenzelm@10805
   205
                                        assumed;
wenzelm@4270
   206
    in  Seq.single (thawfn implied)  end
wenzelm@10817
   207
end;
paulson@3409
   208
paulson@3409
   209
clasohm@0
   210
(*Lift and instantiate a rule wrt the given state and subgoal number *)
paulson@1501
   211
fun lift_inst_rule (st, i, sinsts, rule) =
paulson@1501
   212
let val {maxidx,sign,...} = rep_thm st
paulson@1501
   213
    val (_, _, Bi, _) = dest_state(st,i)
wenzelm@10805
   214
    val params = Logic.strip_params Bi          (*params of subgoal i*)
clasohm@0
   215
    val params = rev(rename_wrt_term Bi params) (*as they are printed*)
clasohm@0
   216
    val paramTs = map #2 params
clasohm@0
   217
    and inc = maxidx+1
clasohm@0
   218
    fun liftvar (Var ((a,j), T)) = Var((a, j+inc), paramTs---> incr_tvar inc T)
clasohm@0
   219
      | liftvar t = raise TERM("Variable expected", [t]);
wenzelm@10817
   220
    fun liftterm t = list_abs_free (params,
wenzelm@10805
   221
                                    Logic.incr_indexes(paramTs,inc) t)
clasohm@0
   222
    (*Lifts instantiation pair over params*)
lcp@230
   223
    fun liftpair (cv,ct) = (cterm_fun liftvar cv, cterm_fun liftterm ct)
clasohm@0
   224
    fun lifttvar((a,i),ctyp) =
wenzelm@10805
   225
        let val {T,sign} = rep_ctyp ctyp
wenzelm@10805
   226
        in  ((a,i+inc), ctyp_of sign (incr_tvar inc T)) end
paulson@1501
   227
    val rts = types_sorts rule and (types,sorts) = types_sorts st
clasohm@0
   228
    fun types'(a,~1) = (case assoc(params,a) of None => types(a,~1) | sm => sm)
clasohm@0
   229
      | types'(ixn) = types ixn;
nipkow@949
   230
    val used = add_term_tvarnames
paulson@1501
   231
                  (#prop(rep_thm st) $ #prop(rep_thm rule),[])
nipkow@949
   232
    val (Tinsts,insts) = read_insts sign rts (types',sorts) used sinsts
paulson@8129
   233
in Drule.instantiate (map lifttvar Tinsts, map liftpair insts)
paulson@8129
   234
                     (lift_rule (st,i) rule)
clasohm@0
   235
end;
clasohm@0
   236
nipkow@3984
   237
(*
nipkow@3984
   238
Like lift_inst_rule but takes terms, not strings, where the terms may contain
nipkow@3984
   239
Bounds referring to parameters of the subgoal.
nipkow@3984
   240
nipkow@3984
   241
insts: [...,(vj,tj),...]
nipkow@3984
   242
nipkow@3984
   243
The tj may contain references to parameters of subgoal i of the state st
nipkow@3984
   244
in the form of Bound k, i.e. the tj may be subterms of the subgoal.
nipkow@3984
   245
To saturate the lose bound vars, the tj are enclosed in abstractions
nipkow@3984
   246
corresponding to the parameters of subgoal i, thus turning them into
nipkow@3984
   247
functions. At the same time, the types of the vj are lifted.
nipkow@3984
   248
nipkow@3984
   249
NB: the types in insts must be correctly instantiated already,
nipkow@3984
   250
    i.e. Tinsts is not applied to insts.
nipkow@3984
   251
*)
nipkow@1975
   252
fun term_lift_inst_rule (st, i, Tinsts, insts, rule) =
nipkow@1966
   253
let val {maxidx,sign,...} = rep_thm st
nipkow@1966
   254
    val (_, _, Bi, _) = dest_state(st,i)
nipkow@1966
   255
    val params = Logic.strip_params Bi          (*params of subgoal i*)
nipkow@1966
   256
    val paramTs = map #2 params
nipkow@1966
   257
    and inc = maxidx+1
nipkow@1975
   258
    fun liftvar ((a,j), T) = Var((a, j+inc), paramTs---> incr_tvar inc T)
nipkow@1975
   259
    (*lift only Var, not term, which must be lifted already*)
nipkow@1975
   260
    fun liftpair (v,t) = (cterm_of sign (liftvar v), cterm_of sign t)
nipkow@1975
   261
    fun liftTpair((a,i),T) = ((a,i+inc), ctyp_of sign (incr_tvar inc T))
paulson@8129
   262
in Drule.instantiate (map liftTpair Tinsts, map liftpair insts)
paulson@8129
   263
                     (lift_rule (st,i) rule)
nipkow@1966
   264
end;
clasohm@0
   265
clasohm@0
   266
(*** Resolve after lifting and instantation; may refer to parameters of the
clasohm@0
   267
     subgoal.  Fails if "i" is out of range.  ***)
clasohm@0
   268
clasohm@0
   269
(*compose version: arguments are as for bicompose.*)
wenzelm@10817
   270
fun compose_inst_tac sinsts (bires_flg, rule, nsubgoal) i st =
paulson@8977
   271
  if i > nprems_of st then no_tac st
paulson@8977
   272
  else st |>
paulson@8977
   273
    (compose_tac (bires_flg, lift_inst_rule (st, i, sinsts, rule), nsubgoal) i
paulson@8977
   274
     handle TERM (msg,_)   => (writeln msg;  no_tac)
wenzelm@10805
   275
          | THM  (msg,_,_) => (writeln msg;  no_tac));
clasohm@0
   276
lcp@761
   277
(*"Resolve" version.  Note: res_inst_tac cannot behave sensibly if the
lcp@761
   278
  terms that are substituted contain (term or type) unknowns from the
lcp@761
   279
  goal, because it is unable to instantiate goal unknowns at the same time.
lcp@761
   280
paulson@2029
   281
  The type checker is instructed not to freeze flexible type vars that
nipkow@952
   282
  were introduced during type inference and still remain in the term at the
nipkow@952
   283
  end.  This increases flexibility but can introduce schematic type vars in
nipkow@952
   284
  goals.
lcp@761
   285
*)
clasohm@0
   286
fun res_inst_tac sinsts rule i =
clasohm@0
   287
    compose_inst_tac sinsts (false, rule, nprems_of rule) i;
clasohm@0
   288
paulson@1501
   289
(*eresolve elimination version*)
clasohm@0
   290
fun eres_inst_tac sinsts rule i =
clasohm@0
   291
    compose_inst_tac sinsts (true, rule, nprems_of rule) i;
clasohm@0
   292
lcp@270
   293
(*For forw_inst_tac and dres_inst_tac.  Preserve Var indexes of rl;
lcp@270
   294
  increment revcut_rl instead.*)
wenzelm@10817
   295
fun make_elim_preserve rl =
lcp@270
   296
  let val {maxidx,...} = rep_thm rl
wenzelm@6390
   297
      fun cvar ixn = cterm_of (Theory.sign_of ProtoPure.thy) (Var(ixn,propT));
wenzelm@10817
   298
      val revcut_rl' =
wenzelm@10805
   299
          instantiate ([],  [(cvar("V",0), cvar("V",maxidx+1)),
wenzelm@10805
   300
                             (cvar("W",0), cvar("W",maxidx+1))]) revcut_rl
clasohm@0
   301
      val arg = (false, rl, nprems_of rl)
wenzelm@4270
   302
      val [th] = Seq.list_of (bicompose false arg 1 revcut_rl')
clasohm@0
   303
  in  th  end
clasohm@0
   304
  handle Bind => raise THM("make_elim_preserve", 1, [rl]);
clasohm@0
   305
lcp@270
   306
(*instantiate and cut -- for a FACT, anyway...*)
lcp@270
   307
fun cut_inst_tac sinsts rule = res_inst_tac sinsts (make_elim_preserve rule);
clasohm@0
   308
lcp@270
   309
(*forward tactic applies a RULE to an assumption without deleting it*)
lcp@270
   310
fun forw_inst_tac sinsts rule = cut_inst_tac sinsts rule THEN' assume_tac;
lcp@270
   311
lcp@270
   312
(*dresolve tactic applies a RULE to replace an assumption*)
clasohm@0
   313
fun dres_inst_tac sinsts rule = eres_inst_tac sinsts (make_elim_preserve rule);
clasohm@0
   314
oheimb@10347
   315
(*instantiate variables in the whole state*)
oheimb@10347
   316
val instantiate_tac = PRIMITIVE o read_instantiate;
oheimb@10347
   317
paulson@1951
   318
(*Deletion of an assumption*)
paulson@1951
   319
fun thin_tac s = eres_inst_tac [("V",s)] thin_rl;
paulson@1951
   320
lcp@270
   321
(*** Applications of cut_rl ***)
clasohm@0
   322
clasohm@0
   323
(*Used by metacut_tac*)
clasohm@0
   324
fun bires_cut_tac arg i =
clasohm@1460
   325
    resolve_tac [cut_rl] i  THEN  biresolve_tac arg (i+1) ;
clasohm@0
   326
clasohm@0
   327
(*The conclusion of the rule gets assumed in subgoal i,
clasohm@0
   328
  while subgoal i+1,... are the premises of the rule.*)
clasohm@0
   329
fun metacut_tac rule = bires_cut_tac [(false,rule)];
clasohm@0
   330
clasohm@0
   331
(*Recognizes theorems that are not rules, but simple propositions*)
clasohm@0
   332
fun is_fact rl =
clasohm@0
   333
    case prems_of rl of
wenzelm@10805
   334
        [] => true  |  _::_ => false;
clasohm@0
   335
clasohm@0
   336
(*"Cut" all facts from theorem list into the goal as assumptions. *)
clasohm@0
   337
fun cut_facts_tac ths i =
clasohm@0
   338
    EVERY (map (fn th => metacut_tac th i) (filter is_fact ths));
clasohm@0
   339
clasohm@0
   340
(*Introduce the given proposition as a lemma and subgoal*)
wenzelm@10817
   341
fun subgoal_tac sprop i st =
wenzelm@4270
   342
  let val st'    = Seq.hd (res_inst_tac [("psi", sprop)] cut_rl i st)
paulson@4178
   343
      val concl' = Logic.strip_assums_concl (List.nth(prems_of st', i))
wenzelm@10817
   344
  in
paulson@4178
   345
      if null (term_tvars concl') then ()
paulson@4178
   346
      else warning"Type variables in new subgoal: add a type constraint?";
wenzelm@4270
   347
      Seq.single st'
paulson@4178
   348
  end;
clasohm@0
   349
lcp@439
   350
(*Introduce a list of lemmas and subgoals*)
lcp@439
   351
fun subgoals_tac sprops = EVERY' (map subgoal_tac sprops);
lcp@439
   352
clasohm@0
   353
clasohm@0
   354
(**** Indexing and filtering of theorems ****)
clasohm@0
   355
clasohm@0
   356
(*Returns the list of potentially resolvable theorems for the goal "prem",
wenzelm@10805
   357
        using the predicate  could(subgoal,concl).
clasohm@0
   358
  Resulting list is no longer than "limit"*)
clasohm@0
   359
fun filter_thms could (limit, prem, ths) =
clasohm@0
   360
  let val pb = Logic.strip_assums_concl prem;   (*delete assumptions*)
clasohm@0
   361
      fun filtr (limit, []) = []
wenzelm@10805
   362
        | filtr (limit, th::ths) =
wenzelm@10805
   363
            if limit=0 then  []
wenzelm@10805
   364
            else if could(pb, concl_of th)  then th :: filtr(limit-1, ths)
wenzelm@10805
   365
            else filtr(limit,ths)
clasohm@0
   366
  in  filtr(limit,ths)  end;
clasohm@0
   367
clasohm@0
   368
clasohm@0
   369
(*** biresolution and resolution using nets ***)
clasohm@0
   370
clasohm@0
   371
(** To preserve the order of the rules, tag them with increasing integers **)
clasohm@0
   372
clasohm@0
   373
(*insert tags*)
clasohm@0
   374
fun taglist k [] = []
clasohm@0
   375
  | taglist k (x::xs) = (k,x) :: taglist (k+1) xs;
clasohm@0
   376
clasohm@0
   377
(*remove tags and suppress duplicates -- list is assumed sorted!*)
clasohm@0
   378
fun untaglist [] = []
clasohm@0
   379
  | untaglist [(k:int,x)] = [x]
clasohm@0
   380
  | untaglist ((k,x) :: (rest as (k',x')::_)) =
clasohm@0
   381
      if k=k' then untaglist rest
clasohm@0
   382
      else    x :: untaglist rest;
clasohm@0
   383
clasohm@0
   384
(*return list elements in original order*)
wenzelm@10817
   385
fun orderlist kbrls = untaglist (sort (int_ord o pairself fst) kbrls);
clasohm@0
   386
clasohm@0
   387
(*insert one tagged brl into the pair of nets*)
lcp@1077
   388
fun insert_tagged_brl (kbrl as (k,(eres,th)), (inet,enet)) =
wenzelm@10817
   389
    if eres then
wenzelm@10805
   390
        case prems_of th of
wenzelm@10805
   391
            prem::_ => (inet, Net.insert_term ((prem,kbrl), enet, K false))
wenzelm@10805
   392
          | [] => error"insert_tagged_brl: elimination rule with no premises"
clasohm@0
   393
    else (Net.insert_term ((concl_of th, kbrl), inet, K false), enet);
clasohm@0
   394
clasohm@0
   395
(*build a pair of nets for biresolution*)
wenzelm@10817
   396
fun build_netpair netpair brls =
lcp@1077
   397
    foldr insert_tagged_brl (taglist 1 brls, netpair);
clasohm@0
   398
paulson@1801
   399
(*delete one kbrl from the pair of nets;
paulson@1801
   400
  we don't know the value of k, so we use 0 and ignore it in the comparison*)
paulson@1801
   401
local
paulson@1801
   402
  fun eq_kbrl ((k,(eres,th)), (k',(eres',th'))) = eq_thm (th,th')
paulson@1801
   403
in
paulson@1801
   404
fun delete_tagged_brl (brl as (eres,th), (inet,enet)) =
wenzelm@10817
   405
    if eres then
wenzelm@10805
   406
        case prems_of th of
wenzelm@10805
   407
            prem::_ => (inet, Net.delete_term ((prem, (0,brl)), enet, eq_kbrl))
wenzelm@10805
   408
          | []      => (inet,enet)     (*no major premise: ignore*)
paulson@1801
   409
    else (Net.delete_term ((concl_of th, (0,brl)), inet, eq_kbrl), enet);
paulson@1801
   410
end;
paulson@1801
   411
paulson@1801
   412
wenzelm@10817
   413
(*biresolution using a pair of nets rather than rules.
paulson@3706
   414
    function "order" must sort and possibly filter the list of brls.
paulson@3706
   415
    boolean "match" indicates matching or unification.*)
paulson@3706
   416
fun biresolution_from_nets_tac order match (inet,enet) =
clasohm@0
   417
  SUBGOAL
clasohm@0
   418
    (fn (prem,i) =>
clasohm@0
   419
      let val hyps = Logic.strip_assums_hyp prem
wenzelm@10817
   420
          and concl = Logic.strip_assums_concl prem
clasohm@0
   421
          val kbrls = Net.unify_term inet concl @
paulson@2672
   422
                      List.concat (map (Net.unify_term enet) hyps)
paulson@3706
   423
      in PRIMSEQ (biresolution match (order kbrls) i) end);
clasohm@0
   424
paulson@3706
   425
(*versions taking pre-built nets.  No filtering of brls*)
paulson@3706
   426
val biresolve_from_nets_tac = biresolution_from_nets_tac orderlist false;
paulson@3706
   427
val bimatch_from_nets_tac   = biresolution_from_nets_tac orderlist true;
clasohm@0
   428
clasohm@0
   429
(*fast versions using nets internally*)
lcp@670
   430
val net_biresolve_tac =
lcp@670
   431
    biresolve_from_nets_tac o build_netpair(Net.empty,Net.empty);
lcp@670
   432
lcp@670
   433
val net_bimatch_tac =
lcp@670
   434
    bimatch_from_nets_tac o build_netpair(Net.empty,Net.empty);
clasohm@0
   435
clasohm@0
   436
(*** Simpler version for resolve_tac -- only one net, and no hyps ***)
clasohm@0
   437
clasohm@0
   438
(*insert one tagged rl into the net*)
clasohm@0
   439
fun insert_krl (krl as (k,th), net) =
clasohm@0
   440
    Net.insert_term ((concl_of th, krl), net, K false);
clasohm@0
   441
clasohm@0
   442
(*build a net of rules for resolution*)
wenzelm@10817
   443
fun build_net rls =
clasohm@0
   444
    foldr insert_krl (taglist 1 rls, Net.empty);
clasohm@0
   445
clasohm@0
   446
(*resolution using a net rather than rules; pred supports filt_resolve_tac*)
clasohm@0
   447
fun filt_resolution_from_net_tac match pred net =
clasohm@0
   448
  SUBGOAL
clasohm@0
   449
    (fn (prem,i) =>
clasohm@0
   450
      let val krls = Net.unify_term net (Logic.strip_assums_concl prem)
wenzelm@10817
   451
      in
wenzelm@10817
   452
         if pred krls
clasohm@0
   453
         then PRIMSEQ
wenzelm@10805
   454
                (biresolution match (map (pair false) (orderlist krls)) i)
clasohm@0
   455
         else no_tac
clasohm@0
   456
      end);
clasohm@0
   457
clasohm@0
   458
(*Resolve the subgoal using the rules (making a net) unless too flexible,
clasohm@0
   459
   which means more than maxr rules are unifiable.      *)
wenzelm@10817
   460
fun filt_resolve_tac rules maxr =
clasohm@0
   461
    let fun pred krls = length krls <= maxr
clasohm@0
   462
    in  filt_resolution_from_net_tac false pred (build_net rules)  end;
clasohm@0
   463
clasohm@0
   464
(*versions taking pre-built nets*)
clasohm@0
   465
val resolve_from_net_tac = filt_resolution_from_net_tac false (K true);
clasohm@0
   466
val match_from_net_tac = filt_resolution_from_net_tac true (K true);
clasohm@0
   467
clasohm@0
   468
(*fast versions using nets internally*)
clasohm@0
   469
val net_resolve_tac = resolve_from_net_tac o build_net;
clasohm@0
   470
val net_match_tac = match_from_net_tac o build_net;
clasohm@0
   471
clasohm@0
   472
clasohm@0
   473
(*** For Natural Deduction using (bires_flg, rule) pairs ***)
clasohm@0
   474
clasohm@0
   475
(*The number of new subgoals produced by the brule*)
lcp@1077
   476
fun subgoals_of_brl (true,rule)  = nprems_of rule - 1
lcp@1077
   477
  | subgoals_of_brl (false,rule) = nprems_of rule;
clasohm@0
   478
clasohm@0
   479
(*Less-than test: for sorting to minimize number of new subgoals*)
clasohm@0
   480
fun lessb (brl1,brl2) = subgoals_of_brl brl1 < subgoals_of_brl brl2;
clasohm@0
   481
clasohm@0
   482
clasohm@0
   483
(*** Meta-Rewriting Tactics ***)
clasohm@0
   484
clasohm@0
   485
fun result1 tacf mss thm =
wenzelm@4270
   486
  apsome fst (Seq.pull (tacf mss thm));
clasohm@0
   487
wenzelm@3575
   488
val simple_prover =
wenzelm@11671
   489
  result1 (fn mss => ALLGOALS (resolve_tac (MetaSimplifier.prems_of_mss mss)));
wenzelm@3575
   490
wenzelm@11768
   491
val rewrite = MetaSimplifier.rewrite_aux simple_prover;
wenzelm@11768
   492
val rewrite_cterm = (#2 o Thm.dest_comb o #prop o Thm.crep_thm) ooo rewrite;
wenzelm@11768
   493
val simplify = MetaSimplifier.simplify_aux simple_prover;
wenzelm@11768
   494
val rewrite_rule = simplify true;
berghofe@10415
   495
val rewrite_goals_rule = MetaSimplifier.rewrite_goals_rule_aux simple_prover;
wenzelm@3575
   496
paulson@2145
   497
(*Rewrite subgoal i only.  SELECT_GOAL avoids inefficiencies in goals_conv.*)
paulson@2145
   498
fun asm_rewrite_goal_tac mode prover_tac mss =
wenzelm@11671
   499
  SELECT_GOAL
wenzelm@11671
   500
    (PRIMITIVE (MetaSimplifier.rewrite_goal_rule mode (result1 prover_tac) mss 1));
clasohm@0
   501
wenzelm@10444
   502
fun rewrite_goal_tac rews =
wenzelm@10444
   503
  asm_rewrite_goal_tac (true, false, false) (K no_tac) (MetaSimplifier.mss_of rews);
wenzelm@10444
   504
lcp@69
   505
(*Rewrite throughout proof state. *)
lcp@69
   506
fun rewrite_tac defs = PRIMITIVE(rewrite_rule defs);
clasohm@0
   507
clasohm@0
   508
(*Rewrite subgoals only, not main goal. *)
lcp@69
   509
fun rewrite_goals_tac defs = PRIMITIVE (rewrite_goals_rule defs);
clasohm@1460
   510
fun rewtac def = rewrite_goals_tac [def];
clasohm@0
   511
wenzelm@10817
   512
fun norm_hhf th =
wenzelm@10817
   513
  (if Logic.is_norm_hhf (#prop (Thm.rep_thm th)) then th else rewrite_rule [Drule.norm_hhf_eq] th)
wenzelm@10817
   514
  |> Drule.forall_elim_vars_safe;
wenzelm@10817
   515
wenzelm@10817
   516
val norm_hhf_tac = SUBGOAL (fn (t, i) =>
wenzelm@10817
   517
  if Logic.is_norm_hhf t then all_tac
wenzelm@10817
   518
  else rewrite_goal_tac [Drule.norm_hhf_eq] i);
wenzelm@10805
   519
clasohm@0
   520
paulson@1501
   521
(*** for folding definitions, handling critical pairs ***)
lcp@69
   522
lcp@69
   523
(*The depth of nesting in a term*)
lcp@69
   524
fun term_depth (Abs(a,T,t)) = 1 + term_depth t
paulson@2145
   525
  | term_depth (f$t) = 1 + Int.max(term_depth f, term_depth t)
lcp@69
   526
  | term_depth _ = 0;
lcp@69
   527
lcp@69
   528
val lhs_of_thm = #1 o Logic.dest_equals o #prop o rep_thm;
lcp@69
   529
lcp@69
   530
(*folding should handle critical pairs!  E.g. K == Inl(0),  S == Inr(Inl(0))
lcp@69
   531
  Returns longest lhs first to avoid folding its subexpressions.*)
lcp@69
   532
fun sort_lhs_depths defs =
lcp@69
   533
  let val keylist = make_keylist (term_depth o lhs_of_thm) defs
wenzelm@4438
   534
      val keys = distinct (sort (rev_order o int_ord) (map #2 keylist))
lcp@69
   535
  in  map (keyfilter keylist) keys  end;
lcp@69
   536
wenzelm@7596
   537
val rev_defs = sort_lhs_depths o map symmetric;
lcp@69
   538
wenzelm@7596
   539
fun fold_rule defs thm = foldl (fn (th, ds) => rewrite_rule ds th) (thm, rev_defs defs);
wenzelm@7596
   540
fun fold_tac defs = EVERY (map rewrite_tac (rev_defs defs));
wenzelm@7596
   541
fun fold_goals_tac defs = EVERY (map rewrite_goals_tac (rev_defs defs));
lcp@69
   542
lcp@69
   543
lcp@69
   544
(*** Renaming of parameters in a subgoal
lcp@69
   545
     Names may contain letters, digits or primes and must be
lcp@69
   546
     separated by blanks ***)
clasohm@0
   547
clasohm@0
   548
(*Calling this will generate the warning "Same as previous level" since
clasohm@0
   549
  it affects nothing but the names of bound variables!*)
wenzelm@9535
   550
fun rename_params_tac xs i =
wenzelm@9535
   551
  (if !Logic.auto_rename
wenzelm@10817
   552
    then (warning "Resetting Logic.auto_rename";
wenzelm@10805
   553
        Logic.auto_rename := false)
wenzelm@9535
   554
   else (); PRIMITIVE (rename_params_rule (xs, i)));
wenzelm@9535
   555
wenzelm@10817
   556
fun rename_tac str i =
wenzelm@10817
   557
  let val cs = Symbol.explode str in
wenzelm@4693
   558
  case #2 (take_prefix (Symbol.is_letdig orf Symbol.is_blank) cs) of
wenzelm@9535
   559
      [] => rename_params_tac (scanwords Symbol.is_letdig cs) i
clasohm@0
   560
    | c::_ => error ("Illegal character: " ^ c)
clasohm@0
   561
  end;
clasohm@0
   562
paulson@1501
   563
(*Rename recent parameters using names generated from a and the suffixes,
paulson@1501
   564
  provided the string a, which represents a term, is an identifier. *)
wenzelm@10817
   565
fun rename_last_tac a sufs i =
clasohm@0
   566
  let val names = map (curry op^ a) sufs
clasohm@0
   567
  in  if Syntax.is_identifier a
clasohm@0
   568
      then PRIMITIVE (rename_params_rule (names,i))
clasohm@0
   569
      else all_tac
clasohm@0
   570
  end;
clasohm@0
   571
paulson@2043
   572
(*Prunes all redundant parameters from the proof state by rewriting.
paulson@2043
   573
  DOES NOT rewrite main goal, where quantification over an unused bound
paulson@2043
   574
    variable is sometimes done to avoid the need for cut_facts_tac.*)
paulson@2043
   575
val prune_params_tac = rewrite_goals_tac [triv_forall_equality];
clasohm@0
   576
paulson@1501
   577
(*rotate_tac n i: rotate the assumptions of subgoal i by n positions, from
paulson@1501
   578
  right to left if n is positive, and from left to right if n is negative.*)
paulson@2672
   579
fun rotate_tac 0 i = all_tac
paulson@2672
   580
  | rotate_tac k i = PRIMITIVE (rotate_rule k i);
nipkow@1209
   581
paulson@7248
   582
(*Rotates the given subgoal to be the last.*)
paulson@7248
   583
fun defer_tac i = PRIMITIVE (permute_prems (i-1) 1);
paulson@7248
   584
nipkow@5974
   585
(* remove premises that do not satisfy p; fails if all prems satisfy p *)
nipkow@5974
   586
fun filter_prems_tac p =
nipkow@5974
   587
  let fun Then None tac = Some tac
nipkow@5974
   588
        | Then (Some tac) tac' = Some(tac THEN' tac');
nipkow@5974
   589
      fun thins ((tac,n),H) =
nipkow@5974
   590
        if p H then (tac,n+1)
nipkow@5974
   591
        else (Then tac (rotate_tac n THEN' etac thin_rl),0);
nipkow@5974
   592
  in SUBGOAL(fn (subg,n) =>
nipkow@5974
   593
       let val Hs = Logic.strip_assums_hyp subg
nipkow@5974
   594
       in case fst(foldl thins ((None,0),Hs)) of
nipkow@5974
   595
            None => no_tac | Some tac => tac n
nipkow@5974
   596
       end)
nipkow@5974
   597
  end;
nipkow@5974
   598
clasohm@0
   599
end;
paulson@1501
   600
paulson@1501
   601
open Tactic;