src/HOL/Library/Infinite_Set.thy
author haftmann
Fri Mar 22 19:18:08 2019 +0000 (3 months ago)
changeset 69946 494934c30f38
parent 69661 a03a63b81f44
child 70178 4900351361b0
permissions -rw-r--r--
improved code equations taken over from AFP
huffman@27407
     1
(*  Title:      HOL/Library/Infinite_Set.thy
wenzelm@20809
     2
    Author:     Stephan Merz
wenzelm@20809
     3
*)
wenzelm@20809
     4
wenzelm@60500
     5
section \<open>Infinite Sets and Related Concepts\<close>
wenzelm@20809
     6
wenzelm@20809
     7
theory Infinite_Set
wenzelm@64967
     8
  imports Main
wenzelm@20809
     9
begin
wenzelm@20809
    10
wenzelm@64967
    11
subsection \<open>The set of natural numbers is infinite\<close>
wenzelm@20809
    12
wenzelm@64967
    13
lemma infinite_nat_iff_unbounded_le: "infinite S \<longleftrightarrow> (\<forall>m. \<exists>n\<ge>m. n \<in> S)"
wenzelm@64967
    14
  for S :: "nat set"
hoelzl@60040
    15
  using frequently_cofinite[of "\<lambda>x. x \<in> S"]
hoelzl@60040
    16
  by (simp add: cofinite_eq_sequentially frequently_def eventually_sequentially)
hoelzl@60040
    17
wenzelm@64967
    18
lemma infinite_nat_iff_unbounded: "infinite S \<longleftrightarrow> (\<forall>m. \<exists>n>m. n \<in> S)"
wenzelm@64967
    19
  for S :: "nat set"
hoelzl@60040
    20
  using frequently_cofinite[of "\<lambda>x. x \<in> S"]
hoelzl@60040
    21
  by (simp add: cofinite_eq_sequentially frequently_def eventually_at_top_dense)
wenzelm@20809
    22
wenzelm@64967
    23
lemma finite_nat_iff_bounded: "finite S \<longleftrightarrow> (\<exists>k. S \<subseteq> {..<k})"
wenzelm@64967
    24
  for S :: "nat set"
hoelzl@60040
    25
  using infinite_nat_iff_unbounded_le[of S] by (simp add: subset_eq) (metis not_le)
wenzelm@20809
    26
wenzelm@64967
    27
lemma finite_nat_iff_bounded_le: "finite S \<longleftrightarrow> (\<exists>k. S \<subseteq> {.. k})"
wenzelm@64967
    28
  for S :: "nat set"
hoelzl@60040
    29
  using infinite_nat_iff_unbounded[of S] by (simp add: subset_eq) (metis not_le)
wenzelm@20809
    30
wenzelm@64967
    31
lemma finite_nat_bounded: "finite S \<Longrightarrow> \<exists>k. S \<subseteq> {..<k}"
wenzelm@64967
    32
  for S :: "nat set"
hoelzl@60040
    33
  by (simp add: finite_nat_iff_bounded)
wenzelm@20809
    34
lp15@61762
    35
wenzelm@60500
    36
text \<open>
wenzelm@20809
    37
  For a set of natural numbers to be infinite, it is enough to know
wenzelm@61585
    38
  that for any number larger than some \<open>k\<close>, there is some larger
wenzelm@20809
    39
  number that is an element of the set.
wenzelm@60500
    40
\<close>
wenzelm@20809
    41
hoelzl@60040
    42
lemma unbounded_k_infinite: "\<forall>m>k. \<exists>n>m. n \<in> S \<Longrightarrow> infinite (S::nat set)"
wenzelm@64967
    43
  apply (clarsimp simp add: finite_nat_set_iff_bounded)
wenzelm@64967
    44
  apply (drule_tac x="Suc (max m k)" in spec)
wenzelm@64967
    45
  using less_Suc_eq apply fastforce
wenzelm@64967
    46
  done
wenzelm@20809
    47
huffman@35056
    48
lemma nat_not_finite: "finite (UNIV::nat set) \<Longrightarrow> R"
wenzelm@20809
    49
  by simp
wenzelm@20809
    50
wenzelm@20809
    51
lemma range_inj_infinite:
wenzelm@64967
    52
  fixes f :: "nat \<Rightarrow> 'a"
wenzelm@64967
    53
  assumes "inj f"
wenzelm@64967
    54
  shows "infinite (range f)"
wenzelm@20809
    55
proof
wenzelm@64967
    56
  assume "finite (range f)"
wenzelm@64967
    57
  from this assms have "finite (UNIV::nat set)"
huffman@27407
    58
    by (rule finite_imageD)
wenzelm@20809
    59
  then show False by simp
wenzelm@20809
    60
qed
wenzelm@20809
    61
wenzelm@64967
    62
wenzelm@64967
    63
subsection \<open>The set of integers is also infinite\<close>
lp15@61762
    64
wenzelm@64967
    65
lemma infinite_int_iff_infinite_nat_abs: "infinite S \<longleftrightarrow> infinite ((nat \<circ> abs) ` S)"
wenzelm@64967
    66
  for S :: "int set"
haftmann@69661
    67
proof (unfold Not_eq_iff, rule iffI)
haftmann@69661
    68
  assume "finite ((nat \<circ> abs) ` S)"
haftmann@69661
    69
  then have "finite (nat ` (abs ` S))"
haftmann@69661
    70
    by (simp add: image_image cong: image_cong)
haftmann@69661
    71
  moreover have "inj_on nat (abs ` S)"
haftmann@66837
    72
    by (rule inj_onI) auto
haftmann@69661
    73
  ultimately have "finite (abs ` S)"
haftmann@69661
    74
    by (rule finite_imageD)
haftmann@69661
    75
  then show "finite S"
haftmann@69661
    76
    by (rule finite_image_absD)
haftmann@69661
    77
qed simp
lp15@61762
    78
wenzelm@64967
    79
proposition infinite_int_iff_unbounded_le: "infinite S \<longleftrightarrow> (\<forall>m. \<exists>n. \<bar>n\<bar> \<ge> m \<and> n \<in> S)"
wenzelm@64967
    80
  for S :: "int set"
wenzelm@64967
    81
  by (simp add: infinite_int_iff_infinite_nat_abs infinite_nat_iff_unbounded_le o_def image_def)
wenzelm@64967
    82
    (metis abs_ge_zero nat_le_eq_zle le_nat_iff)
lp15@61762
    83
wenzelm@64967
    84
proposition infinite_int_iff_unbounded: "infinite S \<longleftrightarrow> (\<forall>m. \<exists>n. \<bar>n\<bar> > m \<and> n \<in> S)"
wenzelm@64967
    85
  for S :: "int set"
wenzelm@64967
    86
  by (simp add: infinite_int_iff_infinite_nat_abs infinite_nat_iff_unbounded o_def image_def)
wenzelm@64967
    87
    (metis (full_types) nat_le_iff nat_mono not_le)
lp15@61762
    88
wenzelm@64967
    89
proposition finite_int_iff_bounded: "finite S \<longleftrightarrow> (\<exists>k. abs ` S \<subseteq> {..<k})"
wenzelm@64967
    90
  for S :: "int set"
lp15@61762
    91
  using infinite_int_iff_unbounded_le[of S] by (simp add: subset_eq) (metis not_le)
lp15@61762
    92
wenzelm@64967
    93
proposition finite_int_iff_bounded_le: "finite S \<longleftrightarrow> (\<exists>k. abs ` S \<subseteq> {.. k})"
wenzelm@64967
    94
  for S :: "int set"
lp15@61762
    95
  using infinite_int_iff_unbounded[of S] by (simp add: subset_eq) (metis not_le)
lp15@61762
    96
wenzelm@64967
    97
wenzelm@64967
    98
subsection \<open>Infinitely Many and Almost All\<close>
wenzelm@20809
    99
wenzelm@60500
   100
text \<open>
wenzelm@20809
   101
  We often need to reason about the existence of infinitely many
wenzelm@20809
   102
  (resp., all but finitely many) objects satisfying some predicate, so
wenzelm@20809
   103
  we introduce corresponding binders and their proof rules.
wenzelm@60500
   104
\<close>
wenzelm@20809
   105
wenzelm@64967
   106
lemma not_INFM [simp]: "\<not> (INFM x. P x) \<longleftrightarrow> (MOST x. \<not> P x)"
wenzelm@64967
   107
  by (rule not_frequently)
wenzelm@64967
   108
wenzelm@64967
   109
lemma not_MOST [simp]: "\<not> (MOST x. P x) \<longleftrightarrow> (INFM x. \<not> P x)"
wenzelm@64967
   110
  by (rule not_eventually)
huffman@34112
   111
huffman@34112
   112
lemma INFM_const [simp]: "(INFM x::'a. P) \<longleftrightarrow> P \<and> infinite (UNIV::'a set)"
hoelzl@60040
   113
  by (simp add: frequently_const_iff)
huffman@34112
   114
huffman@34112
   115
lemma MOST_const [simp]: "(MOST x::'a. P) \<longleftrightarrow> P \<or> finite (UNIV::'a set)"
hoelzl@60040
   116
  by (simp add: eventually_const_iff)
wenzelm@20809
   117
hoelzl@60040
   118
lemma INFM_imp_distrib: "(INFM x. P x \<longrightarrow> Q x) \<longleftrightarrow> ((MOST x. P x) \<longrightarrow> (INFM x. Q x))"
wenzelm@64967
   119
  by (rule frequently_imp_iff)
huffman@34112
   120
hoelzl@60040
   121
lemma MOST_imp_iff: "MOST x. P x \<Longrightarrow> (MOST x. P x \<longrightarrow> Q x) \<longleftrightarrow> (MOST x. Q x)"
lp15@61810
   122
  by (auto intro: eventually_rev_mp eventually_mono)
huffman@34113
   123
hoelzl@60040
   124
lemma INFM_conjI: "INFM x. P x \<Longrightarrow> MOST x. Q x \<Longrightarrow> INFM x. P x \<and> Q x"
lp15@61810
   125
  by (rule frequently_rev_mp[of P]) (auto elim: eventually_mono)
huffman@34112
   126
wenzelm@64967
   127
wenzelm@60500
   128
text \<open>Properties of quantifiers with injective functions.\<close>
huffman@34112
   129
wenzelm@53239
   130
lemma INFM_inj: "INFM x. P (f x) \<Longrightarrow> inj f \<Longrightarrow> INFM x. P x"
hoelzl@60040
   131
  using finite_vimageI[of "{x. P x}" f] by (auto simp: frequently_cofinite)
huffman@27407
   132
wenzelm@53239
   133
lemma MOST_inj: "MOST x. P x \<Longrightarrow> inj f \<Longrightarrow> MOST x. P (f x)"
hoelzl@60040
   134
  using finite_vimageI[of "{x. \<not> P x}" f] by (auto simp: eventually_cofinite)
huffman@34112
   135
wenzelm@64967
   136
wenzelm@60500
   137
text \<open>Properties of quantifiers with singletons.\<close>
huffman@34112
   138
huffman@34112
   139
lemma not_INFM_eq [simp]:
huffman@34112
   140
  "\<not> (INFM x. x = a)"
huffman@34112
   141
  "\<not> (INFM x. a = x)"
hoelzl@60040
   142
  unfolding frequently_cofinite by simp_all
huffman@34112
   143
huffman@34112
   144
lemma MOST_neq [simp]:
huffman@34112
   145
  "MOST x. x \<noteq> a"
huffman@34112
   146
  "MOST x. a \<noteq> x"
hoelzl@60040
   147
  unfolding eventually_cofinite by simp_all
huffman@27407
   148
huffman@34112
   149
lemma INFM_neq [simp]:
huffman@34112
   150
  "(INFM x::'a. x \<noteq> a) \<longleftrightarrow> infinite (UNIV::'a set)"
huffman@34112
   151
  "(INFM x::'a. a \<noteq> x) \<longleftrightarrow> infinite (UNIV::'a set)"
hoelzl@60040
   152
  unfolding frequently_cofinite by simp_all
huffman@34112
   153
huffman@34112
   154
lemma MOST_eq [simp]:
huffman@34112
   155
  "(MOST x::'a. x = a) \<longleftrightarrow> finite (UNIV::'a set)"
huffman@34112
   156
  "(MOST x::'a. a = x) \<longleftrightarrow> finite (UNIV::'a set)"
hoelzl@60040
   157
  unfolding eventually_cofinite by simp_all
huffman@34112
   158
huffman@34112
   159
lemma MOST_eq_imp:
huffman@34112
   160
  "MOST x. x = a \<longrightarrow> P x"
huffman@34112
   161
  "MOST x. a = x \<longrightarrow> P x"
hoelzl@60040
   162
  unfolding eventually_cofinite by simp_all
huffman@34112
   163
wenzelm@64967
   164
wenzelm@60500
   165
text \<open>Properties of quantifiers over the naturals.\<close>
huffman@27407
   166
wenzelm@64967
   167
lemma MOST_nat: "(\<forall>\<^sub>\<infinity>n. P n) \<longleftrightarrow> (\<exists>m. \<forall>n>m. P n)"
wenzelm@64967
   168
  for P :: "nat \<Rightarrow> bool"
nipkow@68406
   169
  by (auto simp add: eventually_cofinite finite_nat_iff_bounded_le subset_eq simp flip: not_le)
hoelzl@60040
   170
wenzelm@64967
   171
lemma MOST_nat_le: "(\<forall>\<^sub>\<infinity>n. P n) \<longleftrightarrow> (\<exists>m. \<forall>n\<ge>m. P n)"
wenzelm@64967
   172
  for P :: "nat \<Rightarrow> bool"
nipkow@68406
   173
  by (auto simp add: eventually_cofinite finite_nat_iff_bounded subset_eq simp flip: not_le)
hoelzl@60040
   174
wenzelm@64967
   175
lemma INFM_nat: "(\<exists>\<^sub>\<infinity>n. P n) \<longleftrightarrow> (\<forall>m. \<exists>n>m. P n)"
wenzelm@64967
   176
  for P :: "nat \<Rightarrow> bool"
hoelzl@60040
   177
  by (simp add: frequently_cofinite infinite_nat_iff_unbounded)
wenzelm@20809
   178
wenzelm@64967
   179
lemma INFM_nat_le: "(\<exists>\<^sub>\<infinity>n. P n) \<longleftrightarrow> (\<forall>m. \<exists>n\<ge>m. P n)"
wenzelm@64967
   180
  for P :: "nat \<Rightarrow> bool"
hoelzl@60040
   181
  by (simp add: frequently_cofinite infinite_nat_iff_unbounded_le)
hoelzl@60040
   182
hoelzl@60040
   183
lemma MOST_INFM: "infinite (UNIV::'a set) \<Longrightarrow> MOST x::'a. P x \<Longrightarrow> INFM x::'a. P x"
hoelzl@60040
   184
  by (simp add: eventually_frequently)
hoelzl@60040
   185
hoelzl@60040
   186
lemma MOST_Suc_iff: "(MOST n. P (Suc n)) \<longleftrightarrow> (MOST n. P n)"
wenzelm@64697
   187
  by (simp add: cofinite_eq_sequentially)
wenzelm@20809
   188
wenzelm@64967
   189
lemma MOST_SucI: "MOST n. P n \<Longrightarrow> MOST n. P (Suc n)"
wenzelm@64967
   190
  and MOST_SucD: "MOST n. P (Suc n) \<Longrightarrow> MOST n. P n"
hoelzl@60040
   191
  by (simp_all add: MOST_Suc_iff)
hoelzl@60040
   192
hoelzl@60040
   193
lemma MOST_ge_nat: "MOST n::nat. m \<le> n"
haftmann@66837
   194
  by (simp add: cofinite_eq_sequentially)
wenzelm@20809
   195
wenzelm@67408
   196
\<comment> \<open>legacy names\<close>
hoelzl@60040
   197
lemma Inf_many_def: "Inf_many P \<longleftrightarrow> infinite {x. P x}" by (fact frequently_cofinite)
hoelzl@60040
   198
lemma Alm_all_def: "Alm_all P \<longleftrightarrow> \<not> (INFM x. \<not> P x)" by simp
hoelzl@60040
   199
lemma INFM_iff_infinite: "(INFM x. P x) \<longleftrightarrow> infinite {x. P x}" by (fact frequently_cofinite)
hoelzl@60040
   200
lemma MOST_iff_cofinite: "(MOST x. P x) \<longleftrightarrow> finite {x. \<not> P x}" by (fact eventually_cofinite)
hoelzl@60040
   201
lemma INFM_EX: "(\<exists>\<^sub>\<infinity>x. P x) \<Longrightarrow> (\<exists>x. P x)" by (fact frequently_ex)
hoelzl@60040
   202
lemma ALL_MOST: "\<forall>x. P x \<Longrightarrow> \<forall>\<^sub>\<infinity>x. P x" by (fact always_eventually)
hoelzl@60040
   203
lemma INFM_mono: "\<exists>\<^sub>\<infinity>x. P x \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> \<exists>\<^sub>\<infinity>x. Q x" by (fact frequently_elim1)
lp15@61810
   204
lemma MOST_mono: "\<forall>\<^sub>\<infinity>x. P x \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> \<forall>\<^sub>\<infinity>x. Q x" by (fact eventually_mono)
hoelzl@60040
   205
lemma INFM_disj_distrib: "(\<exists>\<^sub>\<infinity>x. P x \<or> Q x) \<longleftrightarrow> (\<exists>\<^sub>\<infinity>x. P x) \<or> (\<exists>\<^sub>\<infinity>x. Q x)" by (fact frequently_disj_iff)
hoelzl@60040
   206
lemma MOST_rev_mp: "\<forall>\<^sub>\<infinity>x. P x \<Longrightarrow> \<forall>\<^sub>\<infinity>x. P x \<longrightarrow> Q x \<Longrightarrow> \<forall>\<^sub>\<infinity>x. Q x" by (fact eventually_rev_mp)
hoelzl@60040
   207
lemma MOST_conj_distrib: "(\<forall>\<^sub>\<infinity>x. P x \<and> Q x) \<longleftrightarrow> (\<forall>\<^sub>\<infinity>x. P x) \<and> (\<forall>\<^sub>\<infinity>x. Q x)" by (fact eventually_conj_iff)
hoelzl@60040
   208
lemma MOST_conjI: "MOST x. P x \<Longrightarrow> MOST x. Q x \<Longrightarrow> MOST x. P x \<and> Q x" by (fact eventually_conj)
hoelzl@60040
   209
lemma INFM_finite_Bex_distrib: "finite A \<Longrightarrow> (INFM y. \<exists>x\<in>A. P x y) \<longleftrightarrow> (\<exists>x\<in>A. INFM y. P x y)" by (fact frequently_bex_finite_distrib)
hoelzl@60040
   210
lemma MOST_finite_Ball_distrib: "finite A \<Longrightarrow> (MOST y. \<forall>x\<in>A. P x y) \<longleftrightarrow> (\<forall>x\<in>A. MOST y. P x y)" by (fact eventually_ball_finite_distrib)
hoelzl@60040
   211
lemma INFM_E: "INFM x. P x \<Longrightarrow> (\<And>x. P x \<Longrightarrow> thesis) \<Longrightarrow> thesis" by (fact frequentlyE)
hoelzl@60040
   212
lemma MOST_I: "(\<And>x. P x) \<Longrightarrow> MOST x. P x" by (rule eventuallyI)
hoelzl@60040
   213
lemmas MOST_iff_finiteNeg = MOST_iff_cofinite
wenzelm@20809
   214
wenzelm@20809
   215
wenzelm@64967
   216
subsection \<open>Enumeration of an Infinite Set\<close>
wenzelm@64967
   217
wenzelm@64967
   218
text \<open>The set's element type must be wellordered (e.g. the natural numbers).\<close>
wenzelm@20809
   219
hoelzl@60040
   220
text \<open>
hoelzl@60040
   221
  Could be generalized to
wenzelm@69593
   222
    \<^prop>\<open>enumerate' S n = (SOME t. t \<in> s \<and> finite {s\<in>S. s < t} \<and> card {s\<in>S. s < t} = n)\<close>.
hoelzl@60040
   223
\<close>
hoelzl@60040
   224
wenzelm@53239
   225
primrec (in wellorder) enumerate :: "'a set \<Rightarrow> nat \<Rightarrow> 'a"
wenzelm@64967
   226
  where
wenzelm@64967
   227
    enumerate_0: "enumerate S 0 = (LEAST n. n \<in> S)"
wenzelm@64967
   228
  | enumerate_Suc: "enumerate S (Suc n) = enumerate (S - {LEAST n. n \<in> S}) n"
wenzelm@20809
   229
wenzelm@53239
   230
lemma enumerate_Suc': "enumerate S (Suc n) = enumerate (S - {enumerate S 0}) n"
wenzelm@20809
   231
  by simp
wenzelm@20809
   232
hoelzl@60040
   233
lemma enumerate_in_set: "infinite S \<Longrightarrow> enumerate S n \<in> S"
wenzelm@64967
   234
proof (induct n arbitrary: S)
wenzelm@64967
   235
  case 0
wenzelm@64967
   236
  then show ?case
wenzelm@64967
   237
    by (fastforce intro: LeastI dest!: infinite_imp_nonempty)
wenzelm@64967
   238
next
wenzelm@64967
   239
  case (Suc n)
wenzelm@64967
   240
  then show ?case
wenzelm@64967
   241
    by simp (metis DiffE infinite_remove)
wenzelm@64967
   242
qed
wenzelm@20809
   243
wenzelm@20809
   244
declare enumerate_0 [simp del] enumerate_Suc [simp del]
wenzelm@20809
   245
wenzelm@20809
   246
lemma enumerate_step: "infinite S \<Longrightarrow> enumerate S n < enumerate S (Suc n)"
wenzelm@20809
   247
  apply (induct n arbitrary: S)
wenzelm@20809
   248
   apply (rule order_le_neq_trans)
wenzelm@20809
   249
    apply (simp add: enumerate_0 Least_le enumerate_in_set)
wenzelm@20809
   250
   apply (simp only: enumerate_Suc')
hoelzl@60040
   251
   apply (subgoal_tac "enumerate (S - {enumerate S 0}) 0 \<in> S - {enumerate S 0}")
wenzelm@20809
   252
    apply (blast intro: sym)
wenzelm@20809
   253
   apply (simp add: enumerate_in_set del: Diff_iff)
wenzelm@20809
   254
  apply (simp add: enumerate_Suc')
wenzelm@20809
   255
  done
wenzelm@20809
   256
hoelzl@60040
   257
lemma enumerate_mono: "m < n \<Longrightarrow> infinite S \<Longrightarrow> enumerate S m < enumerate S n"
wenzelm@64967
   258
  by (induct m n rule: less_Suc_induct) (auto intro: enumerate_step)
wenzelm@20809
   259
hoelzl@50134
   260
lemma le_enumerate:
hoelzl@50134
   261
  assumes S: "infinite S"
hoelzl@50134
   262
  shows "n \<le> enumerate S n"
lp15@61810
   263
  using S
hoelzl@50134
   264
proof (induct n)
wenzelm@53239
   265
  case 0
wenzelm@53239
   266
  then show ?case by simp
wenzelm@53239
   267
next
hoelzl@50134
   268
  case (Suc n)
hoelzl@50134
   269
  then have "n \<le> enumerate S n" by simp
wenzelm@60500
   270
  also note enumerate_mono[of n "Suc n", OF _ \<open>infinite S\<close>]
hoelzl@50134
   271
  finally show ?case by simp
wenzelm@53239
   272
qed
hoelzl@50134
   273
immler@69516
   274
lemma infinite_enumerate:
immler@69516
   275
  assumes fS: "infinite S"
immler@69516
   276
  shows "\<exists>r::nat\<Rightarrow>nat. strict_mono r \<and> (\<forall>n. r n \<in> S)"
immler@69516
   277
  unfolding strict_mono_def
immler@69516
   278
  using enumerate_in_set[OF fS] enumerate_mono[of _ _ S] fS by auto
immler@69516
   279
hoelzl@50134
   280
lemma enumerate_Suc'':
hoelzl@50134
   281
  fixes S :: "'a::wellorder set"
wenzelm@53239
   282
  assumes "infinite S"
wenzelm@53239
   283
  shows "enumerate S (Suc n) = (LEAST s. s \<in> S \<and> enumerate S n < s)"
wenzelm@53239
   284
  using assms
hoelzl@50134
   285
proof (induct n arbitrary: S)
hoelzl@50134
   286
  case 0
wenzelm@53239
   287
  then have "\<forall>s \<in> S. enumerate S 0 \<le> s"
hoelzl@50134
   288
    by (auto simp: enumerate.simps intro: Least_le)
hoelzl@50134
   289
  then show ?case
hoelzl@50134
   290
    unfolding enumerate_Suc' enumerate_0[of "S - {enumerate S 0}"]
wenzelm@53239
   291
    by (intro arg_cong[where f = Least] ext) auto
hoelzl@50134
   292
next
hoelzl@50134
   293
  case (Suc n S)
hoelzl@50134
   294
  show ?case
wenzelm@60500
   295
    using enumerate_mono[OF zero_less_Suc \<open>infinite S\<close>, of n] \<open>infinite S\<close>
hoelzl@50134
   296
    apply (subst (1 2) enumerate_Suc')
hoelzl@50134
   297
    apply (subst Suc)
wenzelm@64967
   298
     apply (use \<open>infinite S\<close> in simp)
wenzelm@53239
   299
    apply (intro arg_cong[where f = Least] ext)
nipkow@68406
   300
    apply (auto simp flip: enumerate_Suc')
wenzelm@53239
   301
    done
hoelzl@50134
   302
qed
hoelzl@50134
   303
hoelzl@50134
   304
lemma enumerate_Ex:
wenzelm@64967
   305
  fixes S :: "nat set"
wenzelm@64967
   306
  assumes S: "infinite S"
wenzelm@64967
   307
    and s: "s \<in> S"
wenzelm@64967
   308
  shows "\<exists>n. enumerate S n = s"
wenzelm@64967
   309
  using s
hoelzl@50134
   310
proof (induct s rule: less_induct)
hoelzl@50134
   311
  case (less s)
hoelzl@50134
   312
  show ?case
wenzelm@64967
   313
  proof (cases "\<exists>y\<in>S. y < s")
wenzelm@64967
   314
    case True
hoelzl@50134
   315
    let ?y = "Max {s'\<in>S. s' < s}"
wenzelm@64967
   316
    from True have y: "\<And>x. ?y < x \<longleftrightarrow> (\<forall>s'\<in>S. s' < s \<longrightarrow> s' < x)"
wenzelm@53239
   317
      by (subst Max_less_iff) auto
wenzelm@53239
   318
    then have y_in: "?y \<in> {s'\<in>S. s' < s}"
wenzelm@53239
   319
      by (intro Max_in) auto
wenzelm@53239
   320
    with less.hyps[of ?y] obtain n where "enumerate S n = ?y"
wenzelm@53239
   321
      by auto
hoelzl@50134
   322
    with S have "enumerate S (Suc n) = s"
hoelzl@50134
   323
      by (auto simp: y less enumerate_Suc'' intro!: Least_equality)
wenzelm@64967
   324
    then show ?thesis by auto
hoelzl@50134
   325
  next
wenzelm@64967
   326
    case False
hoelzl@50134
   327
    then have "\<forall>t\<in>S. s \<le> t" by auto
wenzelm@60500
   328
    with \<open>s \<in> S\<close> show ?thesis
hoelzl@50134
   329
      by (auto intro!: exI[of _ 0] Least_equality simp: enumerate_0)
hoelzl@50134
   330
  qed
hoelzl@50134
   331
qed
hoelzl@50134
   332
hoelzl@50134
   333
lemma bij_enumerate:
hoelzl@50134
   334
  fixes S :: "nat set"
hoelzl@50134
   335
  assumes S: "infinite S"
hoelzl@50134
   336
  shows "bij_betw (enumerate S) UNIV S"
hoelzl@50134
   337
proof -
hoelzl@50134
   338
  have "\<And>n m. n \<noteq> m \<Longrightarrow> enumerate S n \<noteq> enumerate S m"
wenzelm@60500
   339
    using enumerate_mono[OF _ \<open>infinite S\<close>] by (auto simp: neq_iff)
hoelzl@50134
   340
  then have "inj (enumerate S)"
hoelzl@50134
   341
    by (auto simp: inj_on_def)
wenzelm@53239
   342
  moreover have "\<forall>s \<in> S. \<exists>i. enumerate S i = s"
hoelzl@50134
   343
    using enumerate_Ex[OF S] by auto
wenzelm@60500
   344
  moreover note \<open>infinite S\<close>
hoelzl@50134
   345
  ultimately show ?thesis
hoelzl@50134
   346
    unfolding bij_betw_def by (auto intro: enumerate_in_set)
hoelzl@50134
   347
qed
hoelzl@50134
   348
wenzelm@64967
   349
text \<open>A pair of weird and wonderful lemmas from HOL Light.\<close>
lp15@63492
   350
lemma finite_transitivity_chain:
lp15@63492
   351
  assumes "finite A"
wenzelm@64967
   352
    and R: "\<And>x. \<not> R x x" "\<And>x y z. \<lbrakk>R x y; R y z\<rbrakk> \<Longrightarrow> R x z"
wenzelm@64967
   353
    and A: "\<And>x. x \<in> A \<Longrightarrow> \<exists>y. y \<in> A \<and> R x y"
lp15@63492
   354
  shows "A = {}"
wenzelm@64967
   355
  using \<open>finite A\<close> A
wenzelm@64967
   356
proof (induct A)
wenzelm@64967
   357
  case empty
wenzelm@64967
   358
  then show ?case by simp
wenzelm@64967
   359
next
lp15@63492
   360
  case (insert a A)
lp15@63492
   361
  with R show ?case
wenzelm@64967
   362
    by (metis empty_iff insert_iff)   (* somewhat slow *)
wenzelm@64967
   363
qed
lp15@63492
   364
lp15@63492
   365
corollary Union_maximal_sets:
lp15@63492
   366
  assumes "finite \<F>"
wenzelm@64967
   367
  shows "\<Union>{T \<in> \<F>. \<forall>U\<in>\<F>. \<not> T \<subset> U} = \<Union>\<F>"
lp15@63492
   368
    (is "?lhs = ?rhs")
lp15@63492
   369
proof
wenzelm@64967
   370
  show "?lhs \<subseteq> ?rhs" by force
lp15@63492
   371
  show "?rhs \<subseteq> ?lhs"
lp15@63492
   372
  proof (rule Union_subsetI)
lp15@63492
   373
    fix S
lp15@63492
   374
    assume "S \<in> \<F>"
wenzelm@64967
   375
    have "{T \<in> \<F>. S \<subseteq> T} = {}"
wenzelm@64967
   376
      if "\<not> (\<exists>y. y \<in> {T \<in> \<F>. \<forall>U\<in>\<F>. \<not> T \<subset> U} \<and> S \<subseteq> y)"
lp15@63492
   377
      apply (rule finite_transitivity_chain [of _ "\<lambda>T U. S \<subseteq> T \<and> T \<subset> U"])
wenzelm@64967
   378
         apply (use assms that in auto)
wenzelm@64967
   379
      apply (blast intro: dual_order.trans psubset_imp_subset)
wenzelm@64967
   380
      done
wenzelm@64967
   381
    with \<open>S \<in> \<F>\<close> show "\<exists>y. y \<in> {T \<in> \<F>. \<forall>U\<in>\<F>. \<not> T \<subset> U} \<and> S \<subseteq> y"
wenzelm@64967
   382
      by blast
lp15@63492
   383
  qed
wenzelm@64967
   384
qed
lp15@63492
   385
wenzelm@20809
   386
end