src/HOL/Meson.thy
author wenzelm
Sat Nov 04 15:24:40 2017 +0100 (19 months ago)
changeset 67003 49850a679c2c
parent 62381 a6479cb85944
child 67091 1393c2340eec
permissions -rw-r--r--
more robust sorted_entries;
blanchet@39941
     1
(*  Title:      HOL/Meson.thy
blanchet@39944
     2
    Author:     Lawrence C. Paulson, Cambridge University Computer Laboratory
blanchet@39944
     3
    Author:     Tobias Nipkow, TU Muenchen
blanchet@39944
     4
    Author:     Jasmin Blanchette, TU Muenchen
blanchet@39941
     5
    Copyright   2001  University of Cambridge
blanchet@39941
     6
*)
blanchet@39941
     7
wenzelm@60758
     8
section \<open>MESON Proof Method\<close>
blanchet@39941
     9
blanchet@39941
    10
theory Meson
blanchet@54553
    11
imports Nat
blanchet@39941
    12
begin
blanchet@39941
    13
wenzelm@60758
    14
subsection \<open>Negation Normal Form\<close>
blanchet@39941
    15
wenzelm@60758
    16
text \<open>de Morgan laws\<close>
blanchet@39941
    17
blanchet@39953
    18
lemma not_conjD: "~(P&Q) ==> ~P | ~Q"
blanchet@39953
    19
  and not_disjD: "~(P|Q) ==> ~P & ~Q"
blanchet@39953
    20
  and not_notD: "~~P ==> P"
blanchet@39953
    21
  and not_allD: "!!P. ~(\<forall>x. P(x)) ==> \<exists>x. ~P(x)"
blanchet@39953
    22
  and not_exD: "!!P. ~(\<exists>x. P(x)) ==> \<forall>x. ~P(x)"
blanchet@39941
    23
  by fast+
blanchet@39941
    24
wenzelm@61941
    25
text \<open>Removal of \<open>\<longrightarrow>\<close> and \<open>\<longleftrightarrow>\<close> (positive and negative occurrences)\<close>
blanchet@39941
    26
blanchet@39953
    27
lemma imp_to_disjD: "P-->Q ==> ~P | Q"
blanchet@39953
    28
  and not_impD: "~(P-->Q) ==> P & ~Q"
blanchet@39953
    29
  and iff_to_disjD: "P=Q ==> (~P | Q) & (~Q | P)"
blanchet@39953
    30
  and not_iffD: "~(P=Q) ==> (P | Q) & (~P | ~Q)"
wenzelm@61799
    31
    \<comment> \<open>Much more efficient than @{prop "(P & ~Q) | (Q & ~P)"} for computing CNF\<close>
blanchet@39953
    32
  and not_refl_disj_D: "x ~= x | P ==> P"
blanchet@39941
    33
  by fast+
blanchet@39941
    34
blanchet@39941
    35
wenzelm@60758
    36
subsection \<open>Pulling out the existential quantifiers\<close>
blanchet@39941
    37
wenzelm@60758
    38
text \<open>Conjunction\<close>
blanchet@39941
    39
blanchet@39953
    40
lemma conj_exD1: "!!P Q. (\<exists>x. P(x)) & Q ==> \<exists>x. P(x) & Q"
blanchet@39953
    41
  and conj_exD2: "!!P Q. P & (\<exists>x. Q(x)) ==> \<exists>x. P & Q(x)"
blanchet@39941
    42
  by fast+
blanchet@39941
    43
blanchet@39941
    44
wenzelm@60758
    45
text \<open>Disjunction\<close>
blanchet@39941
    46
blanchet@39953
    47
lemma disj_exD: "!!P Q. (\<exists>x. P(x)) | (\<exists>x. Q(x)) ==> \<exists>x. P(x) | Q(x)"
wenzelm@61799
    48
  \<comment> \<open>DO NOT USE with forall-Skolemization: makes fewer schematic variables!!\<close>
wenzelm@61799
    49
  \<comment> \<open>With ex-Skolemization, makes fewer Skolem constants\<close>
blanchet@39953
    50
  and disj_exD1: "!!P Q. (\<exists>x. P(x)) | Q ==> \<exists>x. P(x) | Q"
blanchet@39953
    51
  and disj_exD2: "!!P Q. P | (\<exists>x. Q(x)) ==> \<exists>x. P | Q(x)"
blanchet@39941
    52
  by fast+
blanchet@39941
    53
blanchet@39953
    54
lemma disj_assoc: "(P|Q)|R ==> P|(Q|R)"
blanchet@39953
    55
  and disj_comm: "P|Q ==> Q|P"
blanchet@39953
    56
  and disj_FalseD1: "False|P ==> P"
blanchet@39953
    57
  and disj_FalseD2: "P|False ==> P"
blanchet@39941
    58
  by fast+
blanchet@39941
    59
blanchet@39941
    60
wenzelm@60758
    61
text\<open>Generation of contrapositives\<close>
blanchet@39941
    62
wenzelm@60758
    63
text\<open>Inserts negated disjunct after removing the negation; P is a literal.
blanchet@39941
    64
  Model elimination requires assuming the negation of every attempted subgoal,
wenzelm@60758
    65
  hence the negated disjuncts.\<close>
blanchet@39941
    66
lemma make_neg_rule: "~P|Q ==> ((~P==>P) ==> Q)"
blanchet@39941
    67
by blast
blanchet@39941
    68
wenzelm@60758
    69
text\<open>Version for Plaisted's "Postive refinement" of the Meson procedure\<close>
blanchet@39941
    70
lemma make_refined_neg_rule: "~P|Q ==> (P ==> Q)"
blanchet@39941
    71
by blast
blanchet@39941
    72
wenzelm@60758
    73
text\<open>@{term P} should be a literal\<close>
blanchet@39941
    74
lemma make_pos_rule: "P|Q ==> ((P==>~P) ==> Q)"
blanchet@39941
    75
by blast
blanchet@39941
    76
wenzelm@61799
    77
text\<open>Versions of \<open>make_neg_rule\<close> and \<open>make_pos_rule\<close> that don't
wenzelm@60758
    78
insert new assumptions, for ordinary resolution.\<close>
blanchet@39941
    79
blanchet@39941
    80
lemmas make_neg_rule' = make_refined_neg_rule
blanchet@39941
    81
blanchet@39941
    82
lemma make_pos_rule': "[|P|Q; ~P|] ==> Q"
blanchet@39941
    83
by blast
blanchet@39941
    84
wenzelm@60758
    85
text\<open>Generation of a goal clause -- put away the final literal\<close>
blanchet@39941
    86
blanchet@39941
    87
lemma make_neg_goal: "~P ==> ((~P==>P) ==> False)"
blanchet@39941
    88
by blast
blanchet@39941
    89
blanchet@39941
    90
lemma make_pos_goal: "P ==> ((P==>~P) ==> False)"
blanchet@39941
    91
by blast
blanchet@39941
    92
blanchet@39941
    93
wenzelm@60758
    94
subsection \<open>Lemmas for Forward Proof\<close>
blanchet@39941
    95
lp15@62381
    96
text\<open>There is a similarity to congruence rules. They are also useful in ordinary proofs.\<close>
blanchet@39941
    97
blanchet@39941
    98
(*NOTE: could handle conjunctions (faster?) by
blanchet@39941
    99
    nf(th RS conjunct2) RS (nf(th RS conjunct1) RS conjI) *)
blanchet@39941
   100
lemma conj_forward: "[| P'&Q';  P' ==> P;  Q' ==> Q |] ==> P&Q"
blanchet@39941
   101
by blast
blanchet@39941
   102
blanchet@39941
   103
lemma disj_forward: "[| P'|Q';  P' ==> P;  Q' ==> Q |] ==> P|Q"
blanchet@39941
   104
by blast
blanchet@39941
   105
lp15@62381
   106
lemma imp_forward: "[| P' \<longrightarrow> Q';  P ==> P';  Q' ==> Q |] ==> P \<longrightarrow> Q"
lp15@62381
   107
by blast
lp15@62381
   108
blanchet@39941
   109
(*Version of @{text disj_forward} for removal of duplicate literals*)
blanchet@39941
   110
lemma disj_forward2:
blanchet@39941
   111
    "[| P'|Q';  P' ==> P;  [| Q'; P==>False |] ==> Q |] ==> P|Q"
blanchet@39941
   112
apply blast 
blanchet@39941
   113
done
blanchet@39941
   114
blanchet@39941
   115
lemma all_forward: "[| \<forall>x. P'(x);  !!x. P'(x) ==> P(x) |] ==> \<forall>x. P(x)"
blanchet@39941
   116
by blast
blanchet@39941
   117
blanchet@39941
   118
lemma ex_forward: "[| \<exists>x. P'(x);  !!x. P'(x) ==> P(x) |] ==> \<exists>x. P(x)"
blanchet@39941
   119
by blast
blanchet@39941
   120
blanchet@39941
   121
wenzelm@60758
   122
subsection \<open>Clausification helper\<close>
blanchet@39941
   123
blanchet@39941
   124
lemma TruepropI: "P \<equiv> Q \<Longrightarrow> Trueprop P \<equiv> Trueprop Q"
blanchet@39941
   125
by simp
blanchet@39941
   126
blanchet@47953
   127
lemma ext_cong_neq: "F g \<noteq> F h \<Longrightarrow> F g \<noteq> F h \<and> (\<exists>x. g x \<noteq> h x)"
blanchet@47953
   128
apply (erule contrapos_np)
blanchet@47953
   129
apply clarsimp
blanchet@47953
   130
apply (rule cong[where f = F])
blanchet@47953
   131
by auto
blanchet@47953
   132
blanchet@39941
   133
wenzelm@60758
   134
text\<open>Combinator translation helpers\<close>
blanchet@39941
   135
blanchet@39941
   136
definition COMBI :: "'a \<Rightarrow> 'a" where
blanchet@54148
   137
"COMBI P = P"
blanchet@39941
   138
blanchet@39941
   139
definition COMBK :: "'a \<Rightarrow> 'b \<Rightarrow> 'a" where
blanchet@54148
   140
"COMBK P Q = P"
blanchet@39941
   141
blanchet@54148
   142
definition COMBB :: "('b => 'c) \<Rightarrow> ('a => 'b) \<Rightarrow> 'a \<Rightarrow> 'c" where
blanchet@39941
   143
"COMBB P Q R = P (Q R)"
blanchet@39941
   144
blanchet@39941
   145
definition COMBC :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'c" where
blanchet@54148
   146
"COMBC P Q R = P R Q"
blanchet@39941
   147
blanchet@39941
   148
definition COMBS :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c" where
blanchet@54148
   149
"COMBS P Q R = P R (Q R)"
blanchet@39941
   150
blanchet@54148
   151
lemma abs_S: "\<lambda>x. (f x) (g x) \<equiv> COMBS f g"
blanchet@39941
   152
apply (rule eq_reflection)
blanchet@39941
   153
apply (rule ext) 
blanchet@39941
   154
apply (simp add: COMBS_def) 
blanchet@39941
   155
done
blanchet@39941
   156
blanchet@54148
   157
lemma abs_I: "\<lambda>x. x \<equiv> COMBI"
blanchet@39941
   158
apply (rule eq_reflection)
blanchet@39941
   159
apply (rule ext) 
blanchet@39941
   160
apply (simp add: COMBI_def) 
blanchet@39941
   161
done
blanchet@39941
   162
blanchet@54148
   163
lemma abs_K: "\<lambda>x. y \<equiv> COMBK y"
blanchet@39941
   164
apply (rule eq_reflection)
blanchet@39941
   165
apply (rule ext) 
blanchet@39941
   166
apply (simp add: COMBK_def) 
blanchet@39941
   167
done
blanchet@39941
   168
blanchet@54148
   169
lemma abs_B: "\<lambda>x. a (g x) \<equiv> COMBB a g"
blanchet@39941
   170
apply (rule eq_reflection)
blanchet@39941
   171
apply (rule ext) 
blanchet@39941
   172
apply (simp add: COMBB_def) 
blanchet@39941
   173
done
blanchet@39941
   174
blanchet@54148
   175
lemma abs_C: "\<lambda>x. (f x) b \<equiv> COMBC f b"
blanchet@39941
   176
apply (rule eq_reflection)
blanchet@39941
   177
apply (rule ext) 
blanchet@39941
   178
apply (simp add: COMBC_def) 
blanchet@39941
   179
done
blanchet@39941
   180
blanchet@39941
   181
wenzelm@60758
   182
subsection \<open>Skolemization helpers\<close>
blanchet@39941
   183
blanchet@39941
   184
definition skolem :: "'a \<Rightarrow> 'a" where
blanchet@54148
   185
"skolem = (\<lambda>x. x)"
blanchet@39941
   186
wenzelm@61076
   187
lemma skolem_COMBK_iff: "P \<longleftrightarrow> skolem (COMBK P (i::nat))"
blanchet@39941
   188
unfolding skolem_def COMBK_def by (rule refl)
blanchet@39941
   189
blanchet@39941
   190
lemmas skolem_COMBK_I = iffD1 [OF skolem_COMBK_iff]
blanchet@39941
   191
lemmas skolem_COMBK_D = iffD2 [OF skolem_COMBK_iff]
blanchet@39941
   192
blanchet@39941
   193
wenzelm@60758
   194
subsection \<open>Meson package\<close>
blanchet@39941
   195
wenzelm@48891
   196
ML_file "Tools/Meson/meson.ML"
wenzelm@48891
   197
ML_file "Tools/Meson/meson_clausify.ML"
wenzelm@48891
   198
ML_file "Tools/Meson/meson_tactic.ML"
blanchet@39941
   199
blanchet@39953
   200
hide_const (open) COMBI COMBK COMBB COMBC COMBS skolem
blanchet@39953
   201
hide_fact (open) not_conjD not_disjD not_notD not_allD not_exD imp_to_disjD
blanchet@39953
   202
    not_impD iff_to_disjD not_iffD not_refl_disj_D conj_exD1 conj_exD2 disj_exD
blanchet@39953
   203
    disj_exD1 disj_exD2 disj_assoc disj_comm disj_FalseD1 disj_FalseD2 TruepropI
blanchet@47953
   204
    ext_cong_neq COMBI_def COMBK_def COMBB_def COMBC_def COMBS_def abs_I abs_K
blanchet@47953
   205
    abs_B abs_C abs_S skolem_def skolem_COMBK_iff skolem_COMBK_I skolem_COMBK_D
blanchet@39953
   206
blanchet@39941
   207
end