src/HOL/Hyperreal/Integration.thy
author paulson
Fri Jul 30 18:37:58 2004 +0200 (2004-07-30)
changeset 15093 49ede01e9ee6
parent 13958 c1c67582c9b5
child 15094 a7d1a3fdc30d
permissions -rw-r--r--
conversion of Integration and NSPrimes to Isar scripts
paulson@13958
     1
(*  Title       : Integration.thy
paulson@13958
     2
    Author      : Jacques D. Fleuriot
paulson@13958
     3
    Copyright   : 2000  University of Edinburgh
paulson@15093
     4
    Conversion to Isar and new proofs by Lawrence C Paulson, 2004
paulson@13958
     5
*)
paulson@13958
     6
paulson@15093
     7
header{*Theory of Integration*}
paulson@13958
     8
paulson@15093
     9
theory Integration = MacLaurin:
paulson@15093
    10
paulson@15093
    11
text{*We follow John Harrison in formalizing the Gauge integral.*}
paulson@13958
    12
paulson@13958
    13
constdefs
paulson@13958
    14
paulson@15093
    15
  --{*Partitions and tagged partitions etc.*}
paulson@13958
    16
paulson@13958
    17
  partition :: "[(real*real),nat => real] => bool"
paulson@15093
    18
  "partition == %(a,b) D. ((D 0 = a) &
paulson@15093
    19
                         (\<exists>N. ((\<forall>n. n < N --> D(n) < D(Suc n)) &
paulson@15093
    20
                            (\<forall>n. N \<le> n --> (D(n) = b)))))"
paulson@15093
    21
paulson@15093
    22
  psize :: "(nat => real) => nat"
paulson@15093
    23
  "psize D == @N. (\<forall>n. n < N --> D(n) < D(Suc n)) &
paulson@15093
    24
                  (\<forall>n. N \<le> n --> (D(n) = D(N)))"
paulson@15093
    25
paulson@13958
    26
  tpart :: "[(real*real),((nat => real)*(nat =>real))] => bool"
paulson@13958
    27
  "tpart == %(a,b) (D,p). partition(a,b) D &
paulson@15093
    28
                          (\<forall>n. D(n) \<le> p(n) & p(n) \<le> D(Suc n))"
paulson@13958
    29
paulson@15093
    30
  --{*Gauges and gauge-fine divisions*}
paulson@15093
    31
paulson@15093
    32
  gauge :: "[real => bool, real => real] => bool"
paulson@15093
    33
  "gauge E g == \<forall>x. E x --> 0 < g(x)"
paulson@13958
    34
paulson@13958
    35
  fine :: "[real => real, ((nat => real)*(nat => real))] => bool"
paulson@15093
    36
  "fine == % g (D,p). \<forall>n. n < (psize D) --> D(Suc n) - D(n) < g(p n)"
paulson@13958
    37
paulson@15093
    38
  --{*Riemann sum*}
paulson@13958
    39
paulson@13958
    40
  rsum :: "[((nat=>real)*(nat=>real)),real=>real] => real"
paulson@13958
    41
  "rsum == %(D,p) f. sumr 0 (psize(D)) (%n. f(p n) * (D(Suc n) - D(n)))"
paulson@13958
    42
paulson@15093
    43
  --{*Gauge integrability (definite)*}
paulson@13958
    44
paulson@13958
    45
   Integral :: "[(real*real),real=>real,real] => bool"
paulson@15093
    46
   "Integral == %(a,b) f k. \<forall>e. 0 < e -->
paulson@15093
    47
                               (\<exists>g. gauge(%x. a \<le> x & x \<le> b) g &
paulson@15093
    48
                               (\<forall>D p. tpart(a,b) (D,p) & fine(g)(D,p) -->
paulson@15093
    49
                                         \<bar>rsum(D,p) f - k\<bar> < e))"
paulson@15093
    50
paulson@15093
    51
paulson@15093
    52
lemma partition_zero [simp]: "a = b ==> psize (%n. if n = 0 then a else b) = 0"
paulson@15093
    53
by (auto simp add: psize_def)
paulson@15093
    54
paulson@15093
    55
lemma partition_one [simp]: "a < b ==> psize (%n. if n = 0 then a else b) = 1"
paulson@15093
    56
apply (simp add: psize_def)
paulson@15093
    57
apply (rule some_equality, auto)
paulson@15093
    58
apply (drule_tac x = 1 in spec, auto)
paulson@15093
    59
done
paulson@15093
    60
paulson@15093
    61
lemma partition_single [simp]:
paulson@15093
    62
     "a \<le> b ==> partition(a,b)(%n. if n = 0 then a else b)"
paulson@15093
    63
by (auto simp add: partition_def order_le_less)
paulson@15093
    64
paulson@15093
    65
lemma partition_lhs: "partition(a,b) D ==> (D(0) = a)"
paulson@15093
    66
by (simp add: partition_def)
paulson@15093
    67
paulson@15093
    68
lemma partition:
paulson@15093
    69
       "(partition(a,b) D) =
paulson@15093
    70
        ((D 0 = a) &
paulson@15093
    71
         (\<forall>n. n < (psize D) --> D n < D(Suc n)) &
paulson@15093
    72
         (\<forall>n. (psize D) \<le> n --> (D n = b)))"
paulson@15093
    73
apply (simp add: partition_def, auto)
paulson@15093
    74
apply (subgoal_tac [!] "psize D = N", auto)
paulson@15093
    75
apply (simp_all (no_asm) add: psize_def)
paulson@15093
    76
apply (rule_tac [!] some_equality, blast)
paulson@15093
    77
  prefer 2 apply blast
paulson@15093
    78
apply (rule_tac [!] ccontr)
paulson@15093
    79
apply (simp_all add: linorder_neq_iff, safe)
paulson@15093
    80
apply (drule_tac x = Na in spec)
paulson@15093
    81
apply (rotate_tac 3)
paulson@15093
    82
apply (drule_tac x = "Suc Na" in spec, simp)
paulson@15093
    83
apply (rotate_tac 2)
paulson@15093
    84
apply (drule_tac x = N in spec, simp)
paulson@15093
    85
apply (drule_tac x = Na in spec)
paulson@15093
    86
apply (drule_tac x = "Suc Na" and P = "%n. Na \<le> n \<longrightarrow> D n = D Na" in spec, auto)
paulson@15093
    87
done
paulson@15093
    88
paulson@15093
    89
lemma partition_rhs: "partition(a,b) D ==> (D(psize D) = b)"
paulson@15093
    90
by (simp add: partition)
paulson@15093
    91
paulson@15093
    92
lemma partition_rhs2: "[|partition(a,b) D; psize D \<le> n |] ==> (D n = b)"
paulson@15093
    93
by (simp add: partition)
paulson@15093
    94
paulson@15093
    95
lemma lemma_partition_lt_gen [rule_format]:
paulson@15093
    96
 "partition(a,b) D & m + Suc d \<le> n & n \<le> (psize D) --> D(m) < D(m + Suc d)"
paulson@15093
    97
apply (induct_tac "d", auto simp add: partition)
paulson@15093
    98
apply (blast dest: Suc_le_lessD  intro: less_le_trans order_less_trans)
paulson@15093
    99
done
paulson@15093
   100
paulson@15093
   101
lemma less_eq_add_Suc: "m < n ==> \<exists>d. n = m + Suc d"
paulson@15093
   102
by (auto simp add: less_iff_Suc_add)
paulson@15093
   103
paulson@15093
   104
lemma partition_lt_gen:
paulson@15093
   105
     "[|partition(a,b) D; m < n; n \<le> (psize D)|] ==> D(m) < D(n)"
paulson@15093
   106
by (auto dest: less_eq_add_Suc intro: lemma_partition_lt_gen)
paulson@15093
   107
paulson@15093
   108
lemma partition_lt: "partition(a,b) D ==> n < (psize D) ==> D(0) < D(Suc n)"
paulson@15093
   109
apply (induct "n")
paulson@15093
   110
apply (auto simp add: partition)
paulson@15093
   111
done
paulson@15093
   112
paulson@15093
   113
lemma partition_le: "partition(a,b) D ==> a \<le> b"
paulson@15093
   114
apply (frule partition [THEN iffD1], safe)
paulson@15093
   115
apply (rotate_tac 2)
paulson@15093
   116
apply (drule_tac x = "psize D" in spec, safe)
paulson@15093
   117
apply (rule ccontr)
paulson@15093
   118
apply (case_tac "psize D = 0", safe)
paulson@15093
   119
apply (drule_tac [2] n = "psize D - 1" in partition_lt, auto)
paulson@15093
   120
done
paulson@15093
   121
paulson@15093
   122
lemma partition_gt: "[|partition(a,b) D; n < (psize D)|] ==> D(n) < D(psize D)"
paulson@15093
   123
by (auto intro: partition_lt_gen)
paulson@15093
   124
paulson@15093
   125
lemma partition_eq: "partition(a,b) D ==> ((a = b) = (psize D = 0))"
paulson@15093
   126
apply (frule partition [THEN iffD1], safe)
paulson@15093
   127
apply (rotate_tac 2)
paulson@15093
   128
apply (drule_tac x = "psize D" in spec)
paulson@15093
   129
apply (rule ccontr)
paulson@15093
   130
apply (drule_tac n = "psize D - 1" in partition_lt)
paulson@15093
   131
prefer 3 apply (blast, auto)
paulson@15093
   132
done
paulson@15093
   133
paulson@15093
   134
lemma partition_lb: "partition(a,b) D ==> a \<le> D(r)"
paulson@15093
   135
apply (frule partition [THEN iffD1], safe)
paulson@15093
   136
apply (induct_tac "r")
paulson@15093
   137
apply (cut_tac [2] y = "Suc n" and x = "psize D" in linorder_le_less_linear, safe)
paulson@15093
   138
 apply (blast intro: order_trans partition_le)
paulson@15093
   139
apply (drule_tac x = n in spec)
paulson@15093
   140
apply (best intro: order_less_trans order_trans order_less_imp_le)
paulson@15093
   141
done
paulson@15093
   142
paulson@15093
   143
lemma partition_lb_lt: "[| partition(a,b) D; psize D ~= 0 |] ==> a < D(Suc n)"
paulson@15093
   144
apply (rule_tac t = a in partition_lhs [THEN subst], assumption)
paulson@15093
   145
apply (cut_tac x = "Suc n" and y = "psize D" in linorder_le_less_linear)
paulson@15093
   146
apply (frule partition [THEN iffD1], safe)
paulson@15093
   147
 apply (blast intro: partition_lt less_le_trans)
paulson@15093
   148
apply (rotate_tac 3)
paulson@15093
   149
apply (drule_tac x = "Suc n" in spec)
paulson@15093
   150
apply (erule impE)
paulson@15093
   151
apply (erule less_imp_le)
paulson@15093
   152
apply (frule partition_rhs)
paulson@15093
   153
apply (drule partition_gt, assumption)
paulson@15093
   154
apply (simp (no_asm_simp))
paulson@15093
   155
done
paulson@15093
   156
paulson@15093
   157
lemma partition_ub: "partition(a,b) D ==> D(r) \<le> b"
paulson@15093
   158
apply (frule partition [THEN iffD1])
paulson@15093
   159
apply (cut_tac x = "psize D" and y = r in linorder_le_less_linear, safe, blast)
paulson@15093
   160
apply (subgoal_tac "\<forall>x. D ((psize D) - x) \<le> b")
paulson@15093
   161
apply (rotate_tac 4)
paulson@15093
   162
apply (drule_tac x = "psize D - r" in spec)
paulson@15093
   163
apply (subgoal_tac "psize D - (psize D - r) = r")
paulson@15093
   164
apply simp
paulson@15093
   165
apply arith
paulson@15093
   166
apply safe
paulson@15093
   167
apply (induct_tac "x")
paulson@15093
   168
apply (simp (no_asm), blast)
paulson@15093
   169
apply (case_tac "psize D - Suc n = 0")
paulson@15093
   170
apply (erule_tac V = "\<forall>n. psize D \<le> n --> D n = b" in thin_rl)
paulson@15093
   171
apply (simp (no_asm_simp) add: partition_le)
paulson@15093
   172
apply (rule order_trans)
paulson@15093
   173
 prefer 2 apply assumption
paulson@15093
   174
apply (subgoal_tac "psize D - n = Suc (psize D - Suc n)")
paulson@15093
   175
 prefer 2 apply arith
paulson@15093
   176
apply (drule_tac x = "psize D - Suc n" in spec)
paulson@15093
   177
apply (erule_tac V = "\<forall>n. psize D \<le> n --> D n = b" in thin_rl, simp)
paulson@15093
   178
done
paulson@15093
   179
paulson@15093
   180
lemma partition_ub_lt: "[| partition(a,b) D; n < psize D |] ==> D(n) < b"
paulson@15093
   181
by (blast intro: partition_rhs [THEN subst] partition_gt)
paulson@15093
   182
paulson@15093
   183
lemma lemma_partition_append1:
paulson@15093
   184
     "[| partition (a, b) D1; partition (b, c) D2 |]
paulson@15093
   185
       ==> (\<forall>n.
paulson@15093
   186
             n < psize D1 + psize D2 -->
paulson@15093
   187
             (if n < psize D1 then D1 n else D2 (n - psize D1))
paulson@15093
   188
             < (if Suc n < psize D1 then D1 (Suc n)
paulson@15093
   189
                else D2 (Suc n - psize D1))) &
paulson@15093
   190
         (\<forall>n.
paulson@15093
   191
             psize D1 + psize D2 \<le> n -->
paulson@15093
   192
             (if n < psize D1 then D1 n else D2 (n - psize D1)) =
paulson@15093
   193
             (if psize D1 + psize D2 < psize D1 then D1 (psize D1 + psize D2)
paulson@15093
   194
              else D2 (psize D1 + psize D2 - psize D1)))"
paulson@15093
   195
apply safe
paulson@15093
   196
apply (auto intro: partition_lt_gen)
paulson@15093
   197
apply (subgoal_tac "psize D1 = Suc n")
paulson@15093
   198
apply (auto intro!: partition_lt_gen simp add: partition_lhs partition_ub_lt)
paulson@15093
   199
apply (auto intro!: partition_rhs2 simp add: partition_rhs
paulson@15093
   200
            split: nat_diff_split)
paulson@15093
   201
done
paulson@15093
   202
paulson@15093
   203
lemma lemma_psize1:
paulson@15093
   204
     "[| partition (a, b) D1; partition (b, c) D2; N < psize D1 |]
paulson@15093
   205
      ==> D1(N) < D2 (psize D2)"
paulson@15093
   206
apply (rule_tac y = "D1 (psize D1) " in order_less_le_trans)
paulson@15093
   207
apply (erule partition_gt, assumption)
paulson@15093
   208
apply (auto simp add: partition_rhs partition_le)
paulson@15093
   209
done
paulson@15093
   210
paulson@15093
   211
lemma lemma_partition_append2:
paulson@15093
   212
     "[| partition (a, b) D1; partition (b, c) D2 |]
paulson@15093
   213
      ==> psize (%n. if n < psize D1 then D1 n else D2 (n - psize D1)) =
paulson@15093
   214
          psize D1 + psize D2"
paulson@15093
   215
apply (rule_tac D2 = "%n. if n < psize D1 then D1 n else D2 (n - psize D1) "
paulson@15093
   216
       in psize_def [THEN meta_eq_to_obj_eq, THEN ssubst])
paulson@15093
   217
apply (rule some1_equality)
paulson@15093
   218
prefer 2 apply (blast intro!: lemma_partition_append1)
paulson@15093
   219
apply (rule ex1I, rule lemma_partition_append1, auto)
paulson@15093
   220
apply (rule ccontr)
paulson@15093
   221
apply (simp add: linorder_neq_iff, safe)
paulson@15093
   222
apply (rotate_tac 3)
paulson@15093
   223
apply (drule_tac x = "psize D1 + psize D2" in spec, auto)
paulson@15093
   224
apply (case_tac "N < psize D1")
paulson@15093
   225
apply (auto dest: lemma_psize1)
paulson@15093
   226
apply (subgoal_tac "N - psize D1 < psize D2")
paulson@15093
   227
 prefer 2 apply arith
paulson@15093
   228
apply (drule_tac a = b and b = c in partition_gt, auto)
paulson@15093
   229
apply (drule_tac x = "psize D1 + psize D2" in spec)
paulson@15093
   230
apply (auto simp add: partition_rhs2)
paulson@15093
   231
done
paulson@15093
   232
paulson@15093
   233
lemma tpart_eq_lhs_rhs:
paulson@15093
   234
"[|psize D = 0; tpart(a,b) (D,p)|] ==> a = b"
paulson@15093
   235
apply (simp add: tpart_def)
paulson@15093
   236
apply (auto simp add: partition_eq)
paulson@15093
   237
done
paulson@15093
   238
paulson@15093
   239
lemma tpart_partition: "tpart(a,b) (D,p) ==> partition(a,b) D"
paulson@15093
   240
by (simp add: tpart_def)
paulson@15093
   241
paulson@15093
   242
lemma partition_append:
paulson@15093
   243
     "[| tpart(a,b) (D1,p1); fine(g) (D1,p1);
paulson@15093
   244
         tpart(b,c) (D2,p2); fine(g) (D2,p2) |]
paulson@15093
   245
       ==> \<exists>D p. tpart(a,c) (D,p) & fine(g) (D,p)"
paulson@15093
   246
apply (rule_tac x = "%n. if n < psize D1 then D1 n else D2 (n - psize D1)"
paulson@15093
   247
       in exI)
paulson@15093
   248
apply (rule_tac x = "%n. if n < psize D1 then p1 n else p2 (n - psize D1)"
paulson@15093
   249
       in exI)
paulson@15093
   250
apply (case_tac "psize D1 = 0")
paulson@15093
   251
apply (auto dest: tpart_eq_lhs_rhs)
paulson@15093
   252
 prefer 2
paulson@15093
   253
apply (simp add: fine_def
paulson@15093
   254
                 lemma_partition_append2 [OF tpart_partition tpart_partition])
paulson@15093
   255
  --{*But must not expand @{term fine} in other subgoals*}
paulson@15093
   256
apply auto
paulson@15093
   257
apply (subgoal_tac "psize D1 = Suc n")
paulson@15093
   258
 prefer 2 apply arith
paulson@15093
   259
apply (drule tpart_partition [THEN partition_rhs])
paulson@15093
   260
apply (drule tpart_partition [THEN partition_lhs])
paulson@15093
   261
apply (auto split: nat_diff_split)
paulson@15093
   262
apply (auto simp add: tpart_def)
paulson@15093
   263
defer 1
paulson@15093
   264
 apply (subgoal_tac "psize D1 = Suc n")
paulson@15093
   265
  prefer 2 apply arith
paulson@15093
   266
 apply (drule partition_rhs)
paulson@15093
   267
 apply (drule partition_lhs, auto)
paulson@15093
   268
apply (simp split: nat_diff_split)
paulson@15093
   269
apply (subst partition)
paulson@15093
   270
apply (subst lemma_partition_append2)
paulson@15093
   271
apply (rule_tac [3] conjI)
paulson@15093
   272
apply (drule_tac [4] lemma_partition_append1)
paulson@15093
   273
apply (auto simp add: partition_lhs partition_rhs)
paulson@15093
   274
done
paulson@15093
   275
paulson@15093
   276
text{*We can always find a division which is fine wrt any gauge*}
paulson@15093
   277
paulson@15093
   278
lemma partition_exists:
paulson@15093
   279
     "[| a \<le> b; gauge(%x. a \<le> x & x \<le> b) g |]
paulson@15093
   280
      ==> \<exists>D p. tpart(a,b) (D,p) & fine g (D,p)"
paulson@15093
   281
apply (cut_tac P = "%(u,v). a \<le> u & v \<le> b --> 
paulson@15093
   282
                   (\<exists>D p. tpart (u,v) (D,p) & fine (g) (D,p))" 
paulson@15093
   283
       in lemma_BOLZANO2)
paulson@15093
   284
apply safe
paulson@15093
   285
apply (blast intro: real_le_trans)+
paulson@15093
   286
apply (auto intro: partition_append)
paulson@15093
   287
apply (case_tac "a \<le> x & x \<le> b")
paulson@15093
   288
apply (rule_tac [2] x = 1 in exI, auto)
paulson@15093
   289
apply (rule_tac x = "g x" in exI)
paulson@15093
   290
apply (auto simp add: gauge_def)
paulson@15093
   291
apply (rule_tac x = "%n. if n = 0 then aa else ba" in exI)
paulson@15093
   292
apply (rule_tac x = "%n. if n = 0 then x else ba" in exI)
paulson@15093
   293
apply (auto simp add: tpart_def fine_def)
paulson@15093
   294
done
paulson@15093
   295
paulson@15093
   296
text{*Lemmas about combining gauges*}
paulson@15093
   297
paulson@15093
   298
lemma gauge_min:
paulson@15093
   299
     "[| gauge(E) g1; gauge(E) g2 |]
paulson@15093
   300
      ==> gauge(E) (%x. if g1(x) < g2(x) then g1(x) else g2(x))"
paulson@15093
   301
by (simp add: gauge_def)
paulson@15093
   302
paulson@15093
   303
lemma fine_min:
paulson@15093
   304
      "fine (%x. if g1(x) < g2(x) then g1(x) else g2(x)) (D,p)
paulson@15093
   305
       ==> fine(g1) (D,p) & fine(g2) (D,p)"
paulson@15093
   306
by (auto simp add: fine_def split: split_if_asm)
paulson@15093
   307
paulson@15093
   308
paulson@15093
   309
text{*The integral is unique if it exists*}
paulson@15093
   310
paulson@15093
   311
lemma Integral_unique:
paulson@15093
   312
    "[| a \<le> b; Integral(a,b) f k1; Integral(a,b) f k2 |] ==> k1 = k2"
paulson@15093
   313
apply (simp add: Integral_def)
paulson@15093
   314
apply (drule_tac x = "\<bar>k1 - k2\<bar> /2" in spec)+
paulson@15093
   315
apply auto
paulson@15093
   316
apply (drule gauge_min, assumption)
paulson@15093
   317
apply (drule_tac g = "%x. if g x < ga x then g x else ga x" 
paulson@15093
   318
       in partition_exists, assumption, auto)
paulson@15093
   319
apply (drule fine_min)
paulson@15093
   320
apply (drule spec)+
paulson@15093
   321
apply auto
paulson@15093
   322
apply (subgoal_tac "abs ((rsum (D,p) f - k2) - (rsum (D,p) f - k1)) < \<bar>k1 - k2\<bar> ")
paulson@15093
   323
apply arith
paulson@15093
   324
apply (drule add_strict_mono, assumption)
paulson@15093
   325
apply (auto simp only: left_distrib [symmetric] mult_2_right [symmetric] 
paulson@15093
   326
                mult_less_cancel_right, arith)
paulson@15093
   327
done
paulson@15093
   328
paulson@15093
   329
lemma Integral_zero [simp]: "Integral(a,a) f 0"
paulson@15093
   330
apply (auto simp add: Integral_def)
paulson@15093
   331
apply (rule_tac x = "%x. 1" in exI)
paulson@15093
   332
apply (auto dest: partition_eq simp add: gauge_def tpart_def rsum_def)
paulson@15093
   333
done
paulson@15093
   334
paulson@15093
   335
lemma sumr_partition_eq_diff_bounds [simp]:
paulson@15093
   336
     "sumr 0 m (%n. D (Suc n) - D n) = D(m) - D 0"
paulson@15093
   337
by (induct_tac "m", auto)
paulson@15093
   338
paulson@15093
   339
lemma Integral_eq_diff_bounds: "a \<le> b ==> Integral(a,b) (%x. 1) (b - a)"
paulson@15093
   340
apply (drule real_le_imp_less_or_eq, auto)
paulson@15093
   341
apply (auto simp add: rsum_def Integral_def)
paulson@15093
   342
apply (rule_tac x = "%x. b - a" in exI)
paulson@15093
   343
apply (auto simp add: gauge_def abs_interval_iff tpart_def partition)
paulson@15093
   344
done
paulson@15093
   345
paulson@15093
   346
lemma Integral_mult_const: "a \<le> b ==> Integral(a,b) (%x. c)  (c*(b - a))"
paulson@15093
   347
apply (drule real_le_imp_less_or_eq, auto)
paulson@15093
   348
apply (auto simp add: rsum_def Integral_def)
paulson@15093
   349
apply (rule_tac x = "%x. b - a" in exI)
paulson@15093
   350
apply (auto simp add: sumr_mult [symmetric] gauge_def abs_interval_iff 
paulson@15093
   351
               right_diff_distrib [symmetric] partition tpart_def)
paulson@15093
   352
done
paulson@15093
   353
paulson@15093
   354
lemma Integral_mult:
paulson@15093
   355
     "[| a \<le> b; Integral(a,b) f k |] ==> Integral(a,b) (%x. c * f x) (c * k)"
paulson@15093
   356
apply (drule real_le_imp_less_or_eq)
paulson@15093
   357
apply (auto dest: Integral_unique [OF real_le_refl Integral_zero])
paulson@15093
   358
apply (auto simp add: rsum_def Integral_def sumr_mult [symmetric] real_mult_assoc)
paulson@15093
   359
apply (rule_tac a2 = c in abs_ge_zero [THEN real_le_imp_less_or_eq, THEN disjE])
paulson@15093
   360
 prefer 2 apply force
paulson@15093
   361
apply (drule_tac x = "e/abs c" in spec, auto)
paulson@15093
   362
apply (simp add: zero_less_mult_iff divide_inverse)
paulson@15093
   363
apply (rule exI, auto)
paulson@15093
   364
apply (drule spec)+
paulson@15093
   365
apply auto
paulson@15093
   366
apply (rule_tac z1 = "inverse (abs c) " in real_mult_less_iff1 [THEN iffD1])
paulson@15093
   367
apply (auto simp add: divide_inverse [symmetric] right_diff_distrib [symmetric])
paulson@15093
   368
done
paulson@15093
   369
paulson@15093
   370
text{*Fundamental theorem of calculus (Part I)*}
paulson@15093
   371
paulson@15093
   372
text{*"Straddle Lemma" : Swartz & Thompson: AMM 95(7) 1988 *}
paulson@15093
   373
paulson@15093
   374
lemma choiceP: "\<forall>x. P(x) --> (\<exists>y. Q x y) ==> \<exists>f. (\<forall>x. P(x) --> Q x (f x))"
paulson@15093
   375
by meson
paulson@15093
   376
paulson@15093
   377
lemma choiceP2: "\<forall>x. P(x) --> (\<exists>y. R(y) & (\<exists>z. Q x y z)) ==>
paulson@15093
   378
      \<exists>f fa. (\<forall>x. P(x) --> R(f x) & Q x (f x) (fa x))"
paulson@15093
   379
by meson
paulson@15093
   380
paulson@15093
   381
(*UNUSED
paulson@15093
   382
lemma choice2: "\<forall>x. (\<exists>y. R(y) & (\<exists>z. Q x y z)) ==>
paulson@15093
   383
      \<exists>f fa. (\<forall>x. R(f x) & Q x (f x) (fa x))"
paulson@15093
   384
*)
paulson@15093
   385
paulson@15093
   386
paulson@15093
   387
(* new simplifications e.g. (y < x/n) = (y * n < x) are a real nuisance
paulson@15093
   388
   they break the original proofs and make new proofs longer!                 *)
paulson@15093
   389
lemma strad1:
paulson@15093
   390
       "\<lbrakk>\<forall>xa::real. xa \<noteq> x \<and> \<bar>xa + - x\<bar> < s \<longrightarrow>
paulson@15093
   391
             \<bar>(f xa - f x) / (xa - x) + - f' x\<bar> * 2 < e;
paulson@15093
   392
        0 < e; a \<le> x; x \<le> b; 0 < s\<rbrakk>
paulson@15093
   393
       \<Longrightarrow> \<forall>z. \<bar>z - x\<bar> < s -->\<bar>f z - f x - f' x * (z - x)\<bar> * 2 \<le> e * \<bar>z - x\<bar>"
paulson@15093
   394
apply auto
paulson@15093
   395
apply (case_tac "0 < \<bar>z - x\<bar> ")
paulson@15093
   396
 prefer 2 apply (simp add: zero_less_abs_iff)
paulson@15093
   397
apply (drule_tac x = z in spec)
paulson@15093
   398
apply (rule_tac z1 = "\<bar>inverse (z - x)\<bar>" 
paulson@15093
   399
       in real_mult_le_cancel_iff2 [THEN iffD1])
paulson@15093
   400
 apply simp
paulson@15093
   401
apply (simp del: abs_inverse abs_mult add: abs_mult [symmetric]
paulson@15093
   402
          mult_assoc [symmetric])
paulson@15093
   403
apply (subgoal_tac "inverse (z - x) * (f z - f x - f' x * (z - x)) 
paulson@15093
   404
                    = (f z - f x) / (z - x) - f' x")
paulson@15093
   405
 apply (simp add: abs_mult [symmetric] mult_ac diff_minus)
paulson@15093
   406
apply (subst mult_commute)
paulson@15093
   407
apply (simp add: left_distrib diff_minus)
paulson@15093
   408
apply (simp add: mult_assoc divide_inverse)
paulson@15093
   409
apply (simp add: left_distrib)
paulson@15093
   410
done
paulson@15093
   411
paulson@15093
   412
lemma lemma_straddle:
paulson@15093
   413
     "[| \<forall>x. a \<le> x & x \<le> b --> DERIV f x :> f'(x); 0 < e |]
paulson@15093
   414
      ==> \<exists>g. gauge(%x. a \<le> x & x \<le> b) g &
paulson@15093
   415
                (\<forall>x u v. a \<le> u & u \<le> x & x \<le> v & v \<le> b & (v - u) < g(x)
paulson@15093
   416
                  --> abs((f(v) - f(u)) - (f'(x) * (v - u))) \<le> e * (v - u))"
paulson@15093
   417
apply (simp add: gauge_def)
paulson@15093
   418
apply (subgoal_tac "\<forall>x. a \<le> x & x \<le> b --> 
paulson@15093
   419
        (\<exists>d. 0 < d & (\<forall>u v. u \<le> x & x \<le> v & (v - u) < d --> abs ((f (v) - f (u)) - (f' (x) * (v - u))) \<le> e * (v - u)))")
paulson@15093
   420
apply (drule choiceP, auto)
paulson@15093
   421
apply (drule spec, auto)
paulson@15093
   422
apply (auto simp add: DERIV_iff2 LIM_def)
paulson@15093
   423
apply (drule_tac x = "e/2" in spec, auto)
paulson@15093
   424
apply (frule strad1, assumption+)
paulson@15093
   425
apply (rule_tac x = s in exI, auto)
paulson@15093
   426
apply (rule_tac x = u and y = v in linorder_cases, auto)
paulson@15093
   427
apply (rule_tac j = "abs ((f (v) - f (x)) - (f' (x) * (v - x))) + abs ((f (x) - f (u)) - (f' (x) * (x - u)))"
paulson@15093
   428
       in real_le_trans)
paulson@15093
   429
apply (rule abs_triangle_ineq [THEN [2] real_le_trans])
paulson@15093
   430
apply (simp add: right_diff_distrib, arith)
paulson@15093
   431
apply (rule_tac t = "e* (v - u) " in real_sum_of_halves [THEN subst])
paulson@15093
   432
apply (rule add_mono)
paulson@15093
   433
apply (rule_tac j = " (e / 2) * \<bar>v - x\<bar> " in real_le_trans)
paulson@15093
   434
 prefer 2 apply simp apply arith
paulson@15093
   435
apply (erule_tac [!]
paulson@15093
   436
       V= "\<forall>xa. xa ~= x & \<bar>xa + - x\<bar> < s --> \<bar>(f xa - f x) / (xa - x) + - f' x\<bar> * 2 < e"
paulson@15093
   437
        in thin_rl)
paulson@15093
   438
apply (drule_tac x = v in spec, auto, arith)
paulson@15093
   439
apply (drule_tac x = u in spec, auto, arith)
paulson@15093
   440
apply (subgoal_tac "\<bar>f u - f x - f' x * (u - x)\<bar> = \<bar>f x - f u - f' x * (x - u)\<bar>")
paulson@15093
   441
apply (rule order_trans)
paulson@15093
   442
apply (auto simp add: abs_le_interval_iff)
paulson@15093
   443
apply (simp add: right_diff_distrib, arith)
paulson@15093
   444
done
paulson@15093
   445
paulson@15093
   446
lemma FTC1: "[|a \<le> b; \<forall>x. a \<le> x & x \<le> b --> DERIV f x :> f'(x) |]
paulson@15093
   447
      ==> Integral(a,b) f' (f(b) - f(a))"
paulson@15093
   448
apply (drule real_le_imp_less_or_eq, auto)
paulson@15093
   449
apply (auto simp add: Integral_def)
paulson@15093
   450
apply (rule ccontr)
paulson@15093
   451
apply (subgoal_tac "\<forall>e. 0 < e --> (\<exists>g. gauge (%x. a \<le> x & x \<le> b) g & (\<forall>D p. tpart (a, b) (D, p) & fine g (D, p) --> \<bar>rsum (D, p) f' - (f b - f a)\<bar> \<le> e))")
paulson@15093
   452
apply (rotate_tac 3)
paulson@15093
   453
apply (drule_tac x = "e/2" in spec, auto)
paulson@15093
   454
apply (drule spec, auto)
paulson@15093
   455
apply ((drule spec)+, auto)
paulson@15093
   456
apply (drule_tac e = "ea/ (b - a) " in lemma_straddle)
paulson@15093
   457
apply (auto simp add: zero_less_divide_iff)
paulson@15093
   458
apply (rule exI)
paulson@15093
   459
apply (auto simp add: tpart_def rsum_def)
paulson@15093
   460
apply (subgoal_tac "sumr 0 (psize D) (%n. f (D (Suc n)) - f (D n)) = f b - f a")
paulson@15093
   461
 prefer 2
paulson@15093
   462
 apply (cut_tac D = "%n. f (D n) " and m = "psize D"
paulson@15093
   463
        in sumr_partition_eq_diff_bounds)
paulson@15093
   464
 apply (simp add: partition_lhs partition_rhs)
paulson@15093
   465
apply (drule sym, simp)
paulson@15093
   466
apply (simp (no_asm) add: sumr_diff)
paulson@15093
   467
apply (rule sumr_rabs [THEN real_le_trans])
paulson@15093
   468
apply (subgoal_tac "ea = sumr 0 (psize D) (%n. (ea / (b - a)) * (D (Suc n) - (D n))) ")
paulson@15093
   469
apply (simp add: abs_minus_commute)
paulson@15093
   470
apply (rule_tac t = ea in ssubst, assumption)
paulson@15093
   471
apply (rule sumr_le2)
paulson@15093
   472
apply (rule_tac [2] sumr_mult [THEN subst])
paulson@15093
   473
apply (auto simp add: partition_rhs partition_lhs partition_lb partition_ub
paulson@15093
   474
          fine_def)
paulson@15093
   475
done
paulson@13958
   476
paulson@13958
   477
paulson@15093
   478
lemma Integral_subst: "[| Integral(a,b) f k1; k2=k1 |] ==> Integral(a,b) f k2"
paulson@15093
   479
by simp
paulson@15093
   480
paulson@15093
   481
lemma Integral_add:
paulson@15093
   482
     "[| a \<le> b; b \<le> c; Integral(a,b) f' k1; Integral(b,c) f' k2;
paulson@15093
   483
         \<forall>x. a \<le> x & x \<le> c --> DERIV f x :> f' x |]
paulson@15093
   484
     ==> Integral(a,c) f' (k1 + k2)"
paulson@15093
   485
apply (rule FTC1 [THEN Integral_subst], auto)
paulson@15093
   486
apply (frule FTC1, auto)
paulson@15093
   487
apply (frule_tac a = b in FTC1, auto)
paulson@15093
   488
apply (drule_tac x = x in spec, auto)
paulson@15093
   489
apply (drule_tac ?k2.0 = "f b - f a" in Integral_unique)
paulson@15093
   490
apply (drule_tac [3] ?k2.0 = "f c - f b" in Integral_unique, auto)
paulson@15093
   491
done
paulson@15093
   492
paulson@15093
   493
lemma partition_psize_Least:
paulson@15093
   494
     "partition(a,b) D ==> psize D = (LEAST n. D(n) = b)"
paulson@15093
   495
apply (auto intro!: Least_equality [symmetric] partition_rhs)
paulson@15093
   496
apply (rule ccontr)
paulson@15093
   497
apply (drule partition_ub_lt)
paulson@15093
   498
apply (auto simp add: linorder_not_less [symmetric])
paulson@15093
   499
done
paulson@15093
   500
paulson@15093
   501
lemma lemma_partition_bounded: "partition (a, c) D ==> ~ (\<exists>n. c < D(n))"
paulson@15093
   502
apply safe
paulson@15093
   503
apply (drule_tac r = n in partition_ub, auto)
paulson@15093
   504
done
paulson@15093
   505
paulson@15093
   506
lemma lemma_partition_eq:
paulson@15093
   507
     "partition (a, c) D ==> D = (%n. if D n < c then D n else c)"
paulson@15093
   508
apply (rule ext, auto)
paulson@15093
   509
apply (auto dest!: lemma_partition_bounded)
paulson@15093
   510
apply (drule_tac x = n in spec, auto)
paulson@15093
   511
done
paulson@15093
   512
paulson@15093
   513
lemma lemma_partition_eq2:
paulson@15093
   514
     "partition (a, c) D ==> D = (%n. if D n \<le> c then D n else c)"
paulson@15093
   515
apply (rule ext, auto)
paulson@15093
   516
apply (auto dest!: lemma_partition_bounded)
paulson@15093
   517
apply (drule_tac x = n in spec, auto)
paulson@15093
   518
done
paulson@15093
   519
paulson@15093
   520
lemma partition_lt_Suc:
paulson@15093
   521
     "[| partition(a,b) D; n < psize D |] ==> D n < D (Suc n)"
paulson@15093
   522
by (auto simp add: partition)
paulson@15093
   523
paulson@15093
   524
lemma tpart_tag_eq: "tpart(a,c) (D,p) ==> p = (%n. if D n < c then p n else c)"
paulson@15093
   525
apply (rule ext)
paulson@15093
   526
apply (auto simp add: tpart_def)
paulson@15093
   527
apply (drule linorder_not_less [THEN iffD1])
paulson@15093
   528
apply (drule_tac r = "Suc n" in partition_ub)
paulson@15093
   529
apply (drule_tac x = n in spec, auto)
paulson@15093
   530
done
paulson@15093
   531
paulson@15093
   532
subsection{*Lemmas for Additivity Theorem of Gauge Integral*}
paulson@15093
   533
paulson@15093
   534
lemma lemma_additivity1:
paulson@15093
   535
     "[| a \<le> D n; D n < b; partition(a,b) D |] ==> n < psize D"
paulson@15093
   536
by (auto simp add: partition linorder_not_less [symmetric])
paulson@15093
   537
paulson@15093
   538
lemma lemma_additivity2: "[| a \<le> D n; partition(a,D n) D |] ==> psize D \<le> n"
paulson@15093
   539
apply (rule ccontr, drule not_leE)
paulson@15093
   540
apply (frule partition [THEN iffD1], safe)
paulson@15093
   541
apply (frule_tac r = "Suc n" in partition_ub)
paulson@15093
   542
apply (auto dest!: spec)
paulson@15093
   543
done
paulson@15093
   544
paulson@15093
   545
lemma partition_eq_bound:
paulson@15093
   546
     "[| partition(a,b) D; psize D < m |] ==> D(m) = D(psize D)"
paulson@15093
   547
by (auto simp add: partition)
paulson@15093
   548
paulson@15093
   549
lemma partition_ub2: "[| partition(a,b) D; psize D < m |] ==> D(r) \<le> D(m)"
paulson@15093
   550
by (simp add: partition partition_ub)
paulson@15093
   551
paulson@15093
   552
lemma tag_point_eq_partition_point:
paulson@15093
   553
    "[| tpart(a,b) (D,p); psize D \<le> m |] ==> p(m) = D(m)"
paulson@15093
   554
apply (simp add: tpart_def, auto)
paulson@15093
   555
apply (drule_tac x = m in spec)
paulson@15093
   556
apply (auto simp add: partition_rhs2)
paulson@15093
   557
done
paulson@15093
   558
paulson@15093
   559
lemma partition_lt_cancel: "[| partition(a,b) D; D m < D n |] ==> m < n"
paulson@15093
   560
apply (cut_tac m = n and n = "psize D" in less_linear, auto)
paulson@15093
   561
apply (rule ccontr, drule leI, drule le_imp_less_or_eq)
paulson@15093
   562
apply (cut_tac m = m and n = "psize D" in less_linear)
paulson@15093
   563
apply (auto dest: partition_gt)
paulson@15093
   564
apply (drule_tac n = m in partition_lt_gen, auto)
paulson@15093
   565
apply (frule partition_eq_bound)
paulson@15093
   566
apply (drule_tac [2] partition_gt, auto)
paulson@15093
   567
apply (rule ccontr, drule leI, drule le_imp_less_or_eq)
paulson@15093
   568
apply (auto dest: partition_eq_bound)
paulson@15093
   569
apply (rule ccontr, drule leI, drule le_imp_less_or_eq)
paulson@15093
   570
apply (frule partition_eq_bound, assumption)
paulson@15093
   571
apply (drule_tac m = m in partition_eq_bound, auto)
paulson@15093
   572
done
paulson@15093
   573
paulson@15093
   574
lemma lemma_additivity4_psize_eq:
paulson@15093
   575
     "[| a \<le> D n; D n < b; partition (a, b) D |]
paulson@15093
   576
      ==> psize (%x. if D x < D n then D(x) else D n) = n"
paulson@15093
   577
apply (unfold psize_def)
paulson@15093
   578
apply (frule lemma_additivity1)
paulson@15093
   579
apply (assumption, assumption)
paulson@15093
   580
apply (rule some_equality)
paulson@15093
   581
apply (auto intro: partition_lt_Suc)
paulson@15093
   582
apply (drule_tac n = n in partition_lt_gen)
paulson@15093
   583
apply (assumption, arith, arith)
paulson@15093
   584
apply (cut_tac m = na and n = "psize D" in less_linear)
paulson@15093
   585
apply (auto dest: partition_lt_cancel)
paulson@15093
   586
apply (rule_tac x=N and y=n in linorder_cases)
paulson@15093
   587
apply (drule_tac x = n and P="%m. N \<le> m --> ?f m = ?g m" in spec, auto)
paulson@15093
   588
apply (drule_tac n = n in partition_lt_gen, auto, arith)
paulson@15093
   589
apply (drule_tac x = n in spec)
paulson@15093
   590
apply (simp split: split_if_asm)
paulson@15093
   591
done
paulson@15093
   592
paulson@15093
   593
lemma lemma_psize_left_less_psize:
paulson@15093
   594
     "partition (a, b) D
paulson@15093
   595
      ==> psize (%x. if D x < D n then D(x) else D n) \<le> psize D"
paulson@15093
   596
apply (frule_tac r = n in partition_ub)
paulson@15093
   597
apply (drule_tac x = "D n" in real_le_imp_less_or_eq)
paulson@15093
   598
apply (auto simp add: lemma_partition_eq [symmetric])
paulson@15093
   599
apply (frule_tac r = n in partition_lb)
paulson@15093
   600
apply (drule lemma_additivity4_psize_eq)
paulson@15093
   601
apply (rule_tac [3] ccontr, auto)
paulson@15093
   602
apply (frule_tac not_leE [THEN [2] partition_eq_bound])
paulson@15093
   603
apply (auto simp add: partition_rhs)
paulson@15093
   604
done
paulson@15093
   605
paulson@15093
   606
lemma lemma_psize_left_less_psize2:
paulson@15093
   607
     "[| partition(a,b) D; na < psize (%x. if D x < D n then D(x) else D n) |]
paulson@15093
   608
      ==> na < psize D"
paulson@15093
   609
apply (erule_tac lemma_psize_left_less_psize [THEN [2] less_le_trans], assumption)
paulson@15093
   610
done
paulson@15093
   611
paulson@15093
   612
paulson@15093
   613
lemma lemma_additivity3:
paulson@15093
   614
     "[| partition(a,b) D; D na < D n; D n < D (Suc na);
paulson@15093
   615
         n < psize D |]
paulson@15093
   616
      ==> False"
paulson@15093
   617
apply (cut_tac m = n and n = "Suc na" in less_linear, auto)
paulson@15093
   618
apply (drule_tac [2] n = n in partition_lt_gen, auto)
paulson@15093
   619
apply (cut_tac m = "psize D" and n = na in less_linear)
paulson@15093
   620
apply (auto simp add: partition_rhs2 less_Suc_eq)
paulson@15093
   621
apply (drule_tac n = na in partition_lt_gen, auto)
paulson@15093
   622
done
paulson@15093
   623
paulson@15093
   624
lemma psize_const [simp]: "psize (%x. k) = 0"
paulson@15093
   625
by (simp add: psize_def, auto)
paulson@15093
   626
paulson@15093
   627
lemma lemma_additivity3a:
paulson@15093
   628
     "[| partition(a,b) D; D na < D n; D n < D (Suc na);
paulson@15093
   629
         na < psize D |]
paulson@15093
   630
      ==> False"
paulson@15093
   631
apply (frule_tac m = n in partition_lt_cancel)
paulson@15093
   632
apply (auto intro: lemma_additivity3)
paulson@15093
   633
done
paulson@15093
   634
paulson@15093
   635
lemma better_lemma_psize_right_eq1:
paulson@15093
   636
     "[| partition(a,b) D; D n < b |] ==> psize (%x. D (x + n)) \<le> psize D - n"
paulson@15093
   637
apply (simp add: psize_def [of "(%x. D (x + n))"]);
paulson@15093
   638
apply (rule_tac a = "psize D - n" in someI2, auto)
paulson@15093
   639
  apply (simp add: partition less_diff_conv)
paulson@15093
   640
 apply (simp add: le_diff_conv)
paulson@15093
   641
 apply (case_tac "psize D \<le> n")
paulson@15093
   642
  apply (simp add: partition_rhs2)
paulson@15093
   643
 apply (simp add: partition linorder_not_le)
paulson@15093
   644
apply (rule ccontr, drule not_leE)
paulson@15093
   645
apply (drule_tac x = "psize D - n" in spec, auto)
paulson@15093
   646
apply (frule partition_rhs, safe)
paulson@15093
   647
apply (frule partition_lt_cancel, assumption)
paulson@15093
   648
apply (drule partition [THEN iffD1], safe)
paulson@15093
   649
apply (subgoal_tac "~ D (psize D - n + n) < D (Suc (psize D - n + n))")
paulson@15093
   650
 apply blast
paulson@15093
   651
apply (drule_tac x = "Suc (psize D)" and P="%n. ?P n \<longrightarrow> D n = D (psize D)"
paulson@15093
   652
       in spec)
paulson@15093
   653
apply (simp (no_asm_simp))
paulson@15093
   654
done
paulson@15093
   655
paulson@15093
   656
lemma psize_le_n: "partition (a, D n) D ==> psize D \<le> n"
paulson@15093
   657
apply (rule ccontr, drule not_leE)
paulson@15093
   658
apply (frule partition_lt_Suc, assumption)
paulson@15093
   659
apply (frule_tac r = "Suc n" in partition_ub, auto)
paulson@15093
   660
done
paulson@15093
   661
paulson@15093
   662
lemma better_lemma_psize_right_eq1a:
paulson@15093
   663
     "partition(a,D n) D ==> psize (%x. D (x + n)) \<le> psize D - n"
paulson@15093
   664
apply (simp add: psize_def [of "(%x. D (x + n))"]);
paulson@15093
   665
apply (rule_tac a = "psize D - n" in someI2, auto)
paulson@15093
   666
  apply (simp add: partition less_diff_conv)
paulson@15093
   667
 apply (simp add: le_diff_conv)
paulson@15093
   668
apply (case_tac "psize D \<le> n")
paulson@15093
   669
  apply (force intro: partition_rhs2)
paulson@15093
   670
 apply (simp add: partition linorder_not_le)
paulson@15093
   671
apply (rule ccontr, drule not_leE)
paulson@15093
   672
apply (frule psize_le_n)
paulson@15093
   673
apply (drule_tac x = "psize D - n" in spec, simp)
paulson@15093
   674
apply (drule partition [THEN iffD1], safe)
paulson@15093
   675
apply (drule_tac x = "Suc n" and P="%na. psize D \<le> na \<longrightarrow> D na = D n" in spec, auto)
paulson@15093
   676
done
paulson@15093
   677
paulson@15093
   678
lemma better_lemma_psize_right_eq:
paulson@15093
   679
     "partition(a,b) D ==> psize (%x. D (x + n)) \<le> psize D - n"
paulson@15093
   680
apply (frule_tac r1 = n in partition_ub [THEN real_le_imp_less_or_eq])
paulson@15093
   681
apply (blast intro: better_lemma_psize_right_eq1a better_lemma_psize_right_eq1)
paulson@15093
   682
done
paulson@15093
   683
paulson@15093
   684
lemma lemma_psize_right_eq1:
paulson@15093
   685
     "[| partition(a,b) D; D n < b |] ==> psize (%x. D (x + n)) \<le> psize D"
paulson@15093
   686
apply (simp add: psize_def [of "(%x. D (x + n))"]);
paulson@15093
   687
apply (rule_tac a = "psize D - n" in someI2, auto)
paulson@15093
   688
  apply (simp add: partition less_diff_conv)
paulson@15093
   689
 apply (subgoal_tac "n \<le> psize D")
paulson@15093
   690
  apply (simp add: partition le_diff_conv)
paulson@15093
   691
 apply (rule ccontr, drule not_leE)
paulson@15093
   692
 apply (drule_tac less_imp_le [THEN [2] partition_rhs2], auto)
paulson@15093
   693
apply (rule ccontr, drule not_leE)
paulson@15093
   694
apply (drule_tac x = "psize D" in spec)
paulson@15093
   695
apply (simp add: partition)
paulson@15093
   696
done
paulson@15093
   697
paulson@15093
   698
(* should be combined with previous theorem; also proof has redundancy *)
paulson@15093
   699
lemma lemma_psize_right_eq1a:
paulson@15093
   700
     "partition(a,D n) D ==> psize (%x. D (x + n)) \<le> psize D"
paulson@15093
   701
apply (simp add: psize_def [of "(%x. D (x + n))"]);
paulson@15093
   702
apply (rule_tac a = "psize D - n" in someI2, auto)
paulson@15093
   703
  apply (simp add: partition less_diff_conv)
paulson@15093
   704
 apply (case_tac "psize D \<le> n")
paulson@15093
   705
  apply (force intro: partition_rhs2 simp add: le_diff_conv)
paulson@15093
   706
 apply (simp add: partition le_diff_conv)
paulson@15093
   707
apply (rule ccontr, drule not_leE)
paulson@15093
   708
apply (drule_tac x = "psize D" in spec)
paulson@15093
   709
apply (simp add: partition)
paulson@15093
   710
done
paulson@15093
   711
paulson@15093
   712
lemma lemma_psize_right_eq:
paulson@15093
   713
     "[| partition(a,b) D |] ==> psize (%x. D (x + n)) \<le> psize D"
paulson@15093
   714
apply (frule_tac r1 = n in partition_ub [THEN real_le_imp_less_or_eq])
paulson@15093
   715
apply (blast intro: lemma_psize_right_eq1a lemma_psize_right_eq1)
paulson@15093
   716
done
paulson@15093
   717
paulson@15093
   718
lemma tpart_left1:
paulson@15093
   719
     "[| a \<le> D n; tpart (a, b) (D, p) |]
paulson@15093
   720
      ==> tpart(a, D n) (%x. if D x < D n then D(x) else D n,
paulson@15093
   721
          %x. if D x < D n then p(x) else D n)"
paulson@15093
   722
apply (frule_tac r = n in tpart_partition [THEN partition_ub])
paulson@15093
   723
apply (drule_tac x = "D n" in real_le_imp_less_or_eq)
paulson@15093
   724
apply (auto simp add: tpart_partition [THEN lemma_partition_eq, symmetric] tpart_tag_eq [symmetric])
paulson@15093
   725
apply (frule_tac tpart_partition [THEN [3] lemma_additivity1])
paulson@15093
   726
apply (auto simp add: tpart_def)
paulson@15093
   727
apply (drule_tac [2] linorder_not_less [THEN iffD1, THEN real_le_imp_less_or_eq], auto)
paulson@15093
   728
  prefer 3
paulson@15093
   729
  apply (drule linorder_not_less [THEN iffD1])
paulson@15093
   730
  apply (drule_tac x=na in spec, arith)
paulson@15093
   731
 prefer 2 apply (blast dest: lemma_additivity3)
paulson@15093
   732
apply (frule lemma_additivity4_psize_eq)
paulson@15093
   733
apply (assumption+)
paulson@15093
   734
apply (rule partition [THEN iffD2])
paulson@15093
   735
apply (frule partition [THEN iffD1])
paulson@15093
   736
apply (auto intro: partition_lt_gen)
paulson@15093
   737
apply (drule_tac n = n in partition_lt_gen)
paulson@15093
   738
apply (assumption, arith, blast)
paulson@15093
   739
apply (drule partition_lt_cancel, auto)
paulson@15093
   740
done
paulson@15093
   741
paulson@15093
   742
lemma fine_left1:
paulson@15093
   743
     "[| a \<le> D n; tpart (a, b) (D, p); gauge (%x. a \<le> x & x \<le> D n) g;
paulson@15093
   744
         fine (%x. if x < D n then min (g x) ((D n - x)/ 2)
paulson@15093
   745
                 else if x = D n then min (g (D n)) (ga (D n))
paulson@15093
   746
                      else min (ga x) ((x - D n)/ 2)) (D, p) |]
paulson@15093
   747
      ==> fine g
paulson@15093
   748
           (%x. if D x < D n then D(x) else D n,
paulson@15093
   749
            %x. if D x < D n then p(x) else D n)"
paulson@15093
   750
apply (auto simp add: fine_def tpart_def gauge_def)
paulson@15093
   751
apply (frule_tac [!] na=na in lemma_psize_left_less_psize2)
paulson@15093
   752
apply (drule_tac [!] x = na in spec, auto)
paulson@15093
   753
apply (drule_tac [!] x = na in spec, auto)
paulson@15093
   754
apply (auto dest: lemma_additivity3a simp add: split_if_asm)
paulson@15093
   755
done
paulson@15093
   756
paulson@15093
   757
lemma tpart_right1:
paulson@15093
   758
     "[| a \<le> D n; tpart (a, b) (D, p) |]
paulson@15093
   759
      ==> tpart(D n, b) (%x. D(x + n),%x. p(x + n))"
paulson@15093
   760
apply (simp add: tpart_def partition_def, safe)
paulson@15093
   761
apply (rule_tac x = "N - n" in exI, auto)
paulson@15093
   762
apply (rotate_tac 2)
paulson@15093
   763
apply (drule_tac x = "na + n" in spec)
paulson@15093
   764
apply (rotate_tac [2] 3)
paulson@15093
   765
apply (drule_tac [2] x = "na + n" in spec, arith+)
paulson@15093
   766
done
paulson@15093
   767
paulson@15093
   768
lemma fine_right1:
paulson@15093
   769
     "[| a \<le> D n; tpart (a, b) (D, p); gauge (%x. D n \<le> x & x \<le> b) ga;
paulson@15093
   770
         fine (%x. if x < D n then min (g x) ((D n - x)/ 2)
paulson@15093
   771
                 else if x = D n then min (g (D n)) (ga (D n))
paulson@15093
   772
                      else min (ga x) ((x - D n)/ 2)) (D, p) |]
paulson@15093
   773
      ==> fine ga (%x. D(x + n),%x. p(x + n))"
paulson@15093
   774
apply (auto simp add: fine_def gauge_def)
paulson@15093
   775
apply (drule_tac x = "na + n" in spec)
paulson@15093
   776
apply (frule_tac n = n in tpart_partition [THEN better_lemma_psize_right_eq], auto, arith)
paulson@15093
   777
apply (simp add: tpart_def, safe)
paulson@15093
   778
apply (subgoal_tac "D n \<le> p (na + n) ")
paulson@15093
   779
apply (drule_tac y = "p (na + n) " in real_le_imp_less_or_eq)
paulson@15093
   780
apply safe
paulson@15093
   781
apply (simp split: split_if_asm, simp)
paulson@15093
   782
apply (drule less_le_trans, assumption)
paulson@15093
   783
apply (rotate_tac 5)
paulson@15093
   784
apply (drule_tac x = "na + n" in spec, safe)
paulson@15093
   785
apply (rule_tac y="D (na + n)" in order_trans)
paulson@15093
   786
apply (case_tac "na = 0", auto)
paulson@15093
   787
apply (erule partition_lt_gen [THEN order_less_imp_le], arith+)
paulson@15093
   788
done
paulson@15093
   789
paulson@15093
   790
lemma rsum_add: "rsum (D, p) (%x. f x + g x) =  rsum (D, p) f + rsum(D, p) g"
paulson@15093
   791
by (simp add: rsum_def sumr_add left_distrib)
paulson@15093
   792
paulson@15093
   793
(* Bartle/Sherbert: Theorem 10.1.5 p. 278 *)
paulson@15093
   794
lemma Integral_add_fun:
paulson@15093
   795
    "[| a \<le> b; Integral(a,b) f k1; Integral(a,b) g k2 |]
paulson@15093
   796
     ==> Integral(a,b) (%x. f x + g x) (k1 + k2)"
paulson@15093
   797
apply (simp add: Integral_def, auto)
paulson@15093
   798
apply ((drule_tac x = "e/2" in spec)+)
paulson@15093
   799
apply auto
paulson@15093
   800
apply (drule gauge_min, assumption)
paulson@15093
   801
apply (rule_tac x = " (%x. if ga x < gaa x then ga x else gaa x) " in exI)
paulson@15093
   802
apply auto
paulson@15093
   803
apply (drule fine_min)
paulson@15093
   804
apply ((drule spec)+, auto)
paulson@15093
   805
apply (drule_tac a = "\<bar>rsum (D, p) f - k1\<bar> * 2" and c = "\<bar>rsum (D, p) g - k2\<bar> * 2" in add_strict_mono, assumption)
paulson@15093
   806
apply (auto simp only: rsum_add left_distrib [symmetric]
paulson@15093
   807
                mult_2_right [symmetric] real_mult_less_iff1, arith)
paulson@15093
   808
done
paulson@15093
   809
paulson@15093
   810
lemma partition_lt_gen2:
paulson@15093
   811
     "[| partition(a,b) D; r < psize D |] ==> 0 < D (Suc r) - D r"
paulson@15093
   812
by (auto simp add: partition)
paulson@15093
   813
paulson@15093
   814
lemma lemma_Integral_le:
paulson@15093
   815
     "[| \<forall>x. a \<le> x & x \<le> b --> f x \<le> g x;
paulson@15093
   816
         tpart(a,b) (D,p)
paulson@15093
   817
      |] ==> \<forall>n. n \<le> psize D --> f (p n) \<le> g (p n)"
paulson@15093
   818
apply (simp add: tpart_def)
paulson@15093
   819
apply (auto, frule partition [THEN iffD1], auto)
paulson@15093
   820
apply (drule_tac x = "p n" in spec, auto)
paulson@15093
   821
apply (case_tac "n = 0", simp)
paulson@15093
   822
apply (rule partition_lt_gen [THEN order_less_le_trans, THEN order_less_imp_le], auto)
paulson@15093
   823
apply (drule le_imp_less_or_eq, auto)
paulson@15093
   824
apply (drule_tac [2] x = "psize D" in spec, auto)
paulson@15093
   825
apply (drule_tac r = "Suc n" in partition_ub)
paulson@15093
   826
apply (drule_tac x = n in spec, auto)
paulson@15093
   827
done
paulson@15093
   828
paulson@15093
   829
lemma lemma_Integral_rsum_le:
paulson@15093
   830
     "[| \<forall>x. a \<le> x & x \<le> b --> f x \<le> g x;
paulson@15093
   831
         tpart(a,b) (D,p)
paulson@15093
   832
      |] ==> rsum(D,p) f \<le> rsum(D,p) g"
paulson@15093
   833
apply (simp add: rsum_def)
paulson@15093
   834
apply (auto intro!: sumr_le2 dest: tpart_partition [THEN partition_lt_gen2]
paulson@15093
   835
               dest!: lemma_Integral_le)
paulson@15093
   836
done
paulson@15093
   837
paulson@15093
   838
lemma Integral_le:
paulson@15093
   839
    "[| a \<le> b;
paulson@15093
   840
        \<forall>x. a \<le> x & x \<le> b --> f(x) \<le> g(x);
paulson@15093
   841
        Integral(a,b) f k1; Integral(a,b) g k2
paulson@15093
   842
     |] ==> k1 \<le> k2"
paulson@15093
   843
apply (simp add: Integral_def)
paulson@15093
   844
apply (rotate_tac 2)
paulson@15093
   845
apply (drule_tac x = "\<bar>k1 - k2\<bar> /2" in spec)
paulson@15093
   846
apply (drule_tac x = "\<bar>k1 - k2\<bar> /2" in spec)
paulson@15093
   847
apply auto
paulson@15093
   848
apply (drule gauge_min, assumption)
paulson@15093
   849
apply (drule_tac g = "%x. if ga x < gaa x then ga x else gaa x" 
paulson@15093
   850
       in partition_exists, assumption, auto)
paulson@15093
   851
apply (drule fine_min)
paulson@15093
   852
apply (drule_tac x = D in spec, drule_tac x = D in spec)
paulson@15093
   853
apply (drule_tac x = p in spec, drule_tac x = p in spec, auto)
paulson@15093
   854
apply (frule lemma_Integral_rsum_le, assumption)
paulson@15093
   855
apply (subgoal_tac "\<bar>(rsum (D,p) f - k1) - (rsum (D,p) g - k2)\<bar> < \<bar>k1 - k2\<bar> ")
paulson@15093
   856
apply arith
paulson@15093
   857
apply (drule add_strict_mono, assumption)
paulson@15093
   858
apply (auto simp only: left_distrib [symmetric] mult_2_right [symmetric]
paulson@15093
   859
                       real_mult_less_iff1, arith)
paulson@15093
   860
done
paulson@15093
   861
paulson@15093
   862
lemma Integral_imp_Cauchy:
paulson@15093
   863
     "(\<exists>k. Integral(a,b) f k) ==>
paulson@15093
   864
      (\<forall>e. 0 < e -->
paulson@15093
   865
               (\<exists>g. gauge (%x. a \<le> x & x \<le> b) g &
paulson@15093
   866
                       (\<forall>D1 D2 p1 p2.
paulson@15093
   867
                            tpart(a,b) (D1, p1) & fine g (D1,p1) &
paulson@15093
   868
                            tpart(a,b) (D2, p2) & fine g (D2,p2) -->
paulson@15093
   869
                            \<bar>rsum(D1,p1) f - rsum(D2,p2) f\<bar> < e)))"
paulson@15093
   870
apply (simp add: Integral_def, auto)
paulson@15093
   871
apply (drule_tac x = "e/2" in spec, auto)
paulson@15093
   872
apply (rule exI, auto)
paulson@15093
   873
apply (frule_tac x = D1 in spec)
paulson@15093
   874
apply (frule_tac x = D2 in spec)
paulson@15093
   875
apply ((drule spec)+, auto)
paulson@15093
   876
apply (erule_tac V = "0 < e" in thin_rl)
paulson@15093
   877
apply (drule add_strict_mono, assumption)
paulson@15093
   878
apply (auto simp only: left_distrib [symmetric] mult_2_right [symmetric]
paulson@15093
   879
                       real_mult_less_iff1, arith)
paulson@15093
   880
done
paulson@15093
   881
paulson@15093
   882
lemma Cauchy_iff2:
paulson@15093
   883
     "Cauchy X =
paulson@15093
   884
      (\<forall>j. (\<exists>M. \<forall>m n. M \<le> m & M \<le> n -->
paulson@15093
   885
               \<bar>X m + - X n\<bar> < inverse(real (Suc j))))"
paulson@15093
   886
apply (simp add: Cauchy_def, auto)
paulson@15093
   887
apply (drule reals_Archimedean, safe)
paulson@15093
   888
apply (drule_tac x = n in spec, auto)
paulson@15093
   889
apply (rule_tac x = M in exI, auto)
paulson@15093
   890
apply (drule_tac x = m in spec)
paulson@15093
   891
apply (drule_tac x = na in spec, auto)
paulson@15093
   892
done
paulson@15093
   893
paulson@15093
   894
lemma partition_exists2:
paulson@15093
   895
     "[| a \<le> b; \<forall>n. gauge (%x. a \<le> x & x \<le> b) (fa n) |]
paulson@15093
   896
      ==> \<forall>n. \<exists>D p. tpart (a, b) (D, p) & fine (fa n) (D, p)"
paulson@15093
   897
apply safe
paulson@15093
   898
apply (rule partition_exists, auto)
paulson@15093
   899
done
paulson@15093
   900
paulson@15093
   901
lemma monotonic_anti_derivative:
paulson@15093
   902
     "[| a \<le> b; \<forall>c. a \<le> c & c \<le> b --> f' c \<le> g' c;
paulson@15093
   903
         \<forall>x. DERIV f x :> f' x; \<forall>x. DERIV g x :> g' x |]
paulson@15093
   904
      ==> f b - f a \<le> g b - g a"
paulson@15093
   905
apply (rule Integral_le, assumption)
paulson@15093
   906
apply (rule_tac [2] FTC1)
paulson@15093
   907
apply (rule_tac [4] FTC1, auto)
paulson@15093
   908
done
paulson@15093
   909
paulson@15093
   910
end