src/Pure/drule.ML
author berghofe
Tue Oct 26 16:33:09 2004 +0200 (2004-10-26)
changeset 15262 49f70168f4c0
parent 15001 fb2141a9f8c0
child 15442 3b75e1b22ff1
permissions -rw-r--r--
Added function strip_type (for ctyps).
wenzelm@252
     1
(*  Title:      Pure/drule.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@252
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1993  University of Cambridge
clasohm@0
     5
wenzelm@3766
     6
Derived rules and other operations on theorems.
clasohm@0
     7
*)
clasohm@0
     8
berghofe@13606
     9
infix 0 RS RSN RL RLN MRS MRL OF COMP;
clasohm@0
    10
wenzelm@5903
    11
signature BASIC_DRULE =
wenzelm@3766
    12
sig
paulson@9547
    13
  val mk_implies        : cterm * cterm -> cterm
paulson@9547
    14
  val list_implies      : cterm list * cterm -> cterm
wenzelm@4285
    15
  val dest_implies      : cterm -> cterm * cterm
berghofe@10414
    16
  val dest_equals       : cterm -> cterm * cterm
wenzelm@8328
    17
  val strip_imp_prems   : cterm -> cterm list
berghofe@10414
    18
  val strip_imp_concl   : cterm -> cterm
wenzelm@8328
    19
  val cprems_of         : thm -> cterm list
wenzelm@8328
    20
  val read_insts        :
wenzelm@4285
    21
          Sign.sg -> (indexname -> typ option) * (indexname -> sort option)
wenzelm@4285
    22
                  -> (indexname -> typ option) * (indexname -> sort option)
wenzelm@4285
    23
                  -> string list -> (string*string)list
wenzelm@4285
    24
                  -> (indexname*ctyp)list * (cterm*cterm)list
wenzelm@4285
    25
  val types_sorts: thm -> (indexname-> typ option) * (indexname-> sort option)
wenzelm@7636
    26
  val strip_shyps_warning : thm -> thm
wenzelm@8328
    27
  val forall_intr_list  : cterm list -> thm -> thm
wenzelm@8328
    28
  val forall_intr_frees : thm -> thm
wenzelm@8328
    29
  val forall_intr_vars  : thm -> thm
wenzelm@8328
    30
  val forall_elim_list  : cterm list -> thm -> thm
wenzelm@8328
    31
  val forall_elim_var   : int -> thm -> thm
wenzelm@8328
    32
  val forall_elim_vars  : int -> thm -> thm
wenzelm@12725
    33
  val gen_all           : thm -> thm
wenzelm@8328
    34
  val freeze_thaw       : thm -> thm * (thm -> thm)
wenzelm@8328
    35
  val implies_elim_list : thm -> thm list -> thm
wenzelm@8328
    36
  val implies_intr_list : cterm list -> thm -> thm
paulson@8129
    37
  val instantiate       :
paulson@8129
    38
    (indexname * ctyp) list * (cterm * cterm) list -> thm -> thm
wenzelm@8328
    39
  val zero_var_indexes  : thm -> thm
wenzelm@8328
    40
  val standard          : thm -> thm
berghofe@11512
    41
  val standard'         : thm -> thm
paulson@4610
    42
  val rotate_prems      : int -> thm -> thm
oheimb@11163
    43
  val rearrange_prems   : int list -> thm -> thm
wenzelm@8328
    44
  val assume_ax         : theory -> string -> thm
wenzelm@8328
    45
  val RSN               : thm * (int * thm) -> thm
wenzelm@8328
    46
  val RS                : thm * thm -> thm
wenzelm@8328
    47
  val RLN               : thm list * (int * thm list) -> thm list
wenzelm@8328
    48
  val RL                : thm list * thm list -> thm list
wenzelm@8328
    49
  val MRS               : thm list * thm -> thm
wenzelm@8328
    50
  val MRL               : thm list list * thm list -> thm list
wenzelm@9288
    51
  val OF                : thm * thm list -> thm
wenzelm@8328
    52
  val compose           : thm * int * thm -> thm list
wenzelm@8328
    53
  val COMP              : thm * thm -> thm
clasohm@0
    54
  val read_instantiate_sg: Sign.sg -> (string*string)list -> thm -> thm
wenzelm@8328
    55
  val read_instantiate  : (string*string)list -> thm -> thm
wenzelm@8328
    56
  val cterm_instantiate : (cterm*cterm)list -> thm -> thm
wenzelm@13105
    57
  val eq_thm_sg         : thm * thm -> bool
wenzelm@13105
    58
  val eq_thm_prop	: thm * thm -> bool
wenzelm@8328
    59
  val weak_eq_thm       : thm * thm -> bool
wenzelm@8328
    60
  val size_of_thm       : thm -> int
wenzelm@8328
    61
  val reflexive_thm     : thm
wenzelm@8328
    62
  val symmetric_thm     : thm
wenzelm@8328
    63
  val transitive_thm    : thm
nipkow@4679
    64
  val symmetric_fun     : thm -> thm
berghofe@11512
    65
  val extensional       : thm -> thm
berghofe@10414
    66
  val imp_cong          : thm
berghofe@10414
    67
  val swap_prems_eq     : thm
wenzelm@8328
    68
  val equal_abs_elim    : cterm  -> thm -> thm
wenzelm@4285
    69
  val equal_abs_elim_list: cterm list -> thm -> thm
wenzelm@8328
    70
  val asm_rl            : thm
wenzelm@8328
    71
  val cut_rl            : thm
wenzelm@8328
    72
  val revcut_rl         : thm
wenzelm@8328
    73
  val thin_rl           : thm
wenzelm@4285
    74
  val triv_forall_equality: thm
nipkow@1756
    75
  val swap_prems_rl     : thm
wenzelm@4285
    76
  val equal_intr_rule   : thm
wenzelm@13368
    77
  val equal_elim_rule1  : thm
paulson@8550
    78
  val inst              : string -> string -> thm -> thm
wenzelm@8328
    79
  val instantiate'      : ctyp option list -> cterm option list -> thm -> thm
wenzelm@8328
    80
  val incr_indexes_wrt  : int list -> ctyp list -> cterm list -> thm list -> thm -> thm
wenzelm@5903
    81
end;
wenzelm@5903
    82
wenzelm@5903
    83
signature DRULE =
wenzelm@5903
    84
sig
wenzelm@5903
    85
  include BASIC_DRULE
berghofe@12908
    86
  val strip_comb: cterm -> cterm * cterm list
berghofe@15262
    87
  val strip_type: ctyp -> ctyp list * ctyp
wenzelm@11975
    88
  val rule_attribute: ('a -> thm -> thm) -> 'a attribute
wenzelm@11975
    89
  val tag_rule: tag -> thm -> thm
wenzelm@11975
    90
  val untag_rule: string -> thm -> thm
wenzelm@11975
    91
  val tag: tag -> 'a attribute
wenzelm@11975
    92
  val untag: string -> 'a attribute
wenzelm@11975
    93
  val get_kind: thm -> string
wenzelm@11975
    94
  val kind: string -> 'a attribute
wenzelm@11975
    95
  val theoremK: string
wenzelm@11975
    96
  val lemmaK: string
wenzelm@11975
    97
  val corollaryK: string
wenzelm@11975
    98
  val internalK: string
wenzelm@11975
    99
  val kind_internal: 'a attribute
wenzelm@11975
   100
  val has_internal: tag list -> bool
wenzelm@11975
   101
  val impose_hyps: cterm list -> thm -> thm
wenzelm@13389
   102
  val satisfy_hyps: thm list -> thm -> thm
wenzelm@11975
   103
  val close_derivation: thm -> thm
wenzelm@12005
   104
  val local_standard: thm -> thm
wenzelm@11975
   105
  val compose_single: thm * int * thm -> thm
wenzelm@12373
   106
  val add_rule: thm -> thm list -> thm list
wenzelm@12373
   107
  val del_rule: thm -> thm list -> thm list
wenzelm@11975
   108
  val add_rules: thm list -> thm list -> thm list
wenzelm@11975
   109
  val del_rules: thm list -> thm list -> thm list
wenzelm@11975
   110
  val merge_rules: thm list * thm list -> thm list
skalberg@15001
   111
  val imp_cong'         : thm -> thm -> thm
skalberg@15001
   112
  val beta_eta_conversion: cterm -> thm
skalberg@15001
   113
  val goals_conv        : (int -> bool) -> (cterm -> thm) -> cterm -> thm
skalberg@15001
   114
  val forall_conv       : (cterm -> thm) -> cterm -> thm
skalberg@15001
   115
  val fconv_rule        : (cterm -> thm) -> thm -> thm
wenzelm@11975
   116
  val norm_hhf_eq: thm
wenzelm@12800
   117
  val is_norm_hhf: term -> bool
wenzelm@12800
   118
  val norm_hhf: Sign.sg -> term -> term
wenzelm@11975
   119
  val triv_goal: thm
wenzelm@11975
   120
  val rev_triv_goal: thm
wenzelm@11815
   121
  val implies_intr_goals: cterm list -> thm -> thm
wenzelm@11975
   122
  val freeze_all: thm -> thm
wenzelm@11975
   123
  val mk_triv_goal: cterm -> thm
wenzelm@11975
   124
  val tvars_of_terms: term list -> (indexname * sort) list
wenzelm@11975
   125
  val vars_of_terms: term list -> (indexname * typ) list
wenzelm@11975
   126
  val tvars_of: thm -> (indexname * sort) list
wenzelm@11975
   127
  val vars_of: thm -> (indexname * typ) list
berghofe@14081
   128
  val rename_bvars: (string * string) list -> thm -> thm
berghofe@14081
   129
  val rename_bvars': string option list -> thm -> thm
wenzelm@11975
   130
  val unvarifyT: thm -> thm
wenzelm@11975
   131
  val unvarify: thm -> thm
wenzelm@12495
   132
  val tvars_intr_list: string list -> thm -> thm * (string * indexname) list
wenzelm@12297
   133
  val remdups_rl: thm
wenzelm@11975
   134
  val conj_intr: thm -> thm -> thm
wenzelm@11975
   135
  val conj_intr_list: thm list -> thm
wenzelm@11975
   136
  val conj_elim: thm -> thm * thm
wenzelm@11975
   137
  val conj_elim_list: thm -> thm list
wenzelm@12135
   138
  val conj_elim_precise: int -> thm -> thm list
wenzelm@12135
   139
  val conj_intr_thm: thm
berghofe@13325
   140
  val abs_def: thm -> thm
wenzelm@3766
   141
end;
clasohm@0
   142
wenzelm@5903
   143
structure Drule: DRULE =
clasohm@0
   144
struct
clasohm@0
   145
wenzelm@3991
   146
lcp@708
   147
(** some cterm->cterm operations: much faster than calling cterm_of! **)
lcp@708
   148
paulson@2004
   149
(** SAME NAMES as in structure Logic: use compound identifiers! **)
paulson@2004
   150
clasohm@1703
   151
(*dest_implies for cterms. Note T=prop below*)
paulson@2004
   152
fun dest_implies ct =
wenzelm@8328
   153
    case term_of ct of
wenzelm@8328
   154
        (Const("==>", _) $ _ $ _) =>
wenzelm@10767
   155
            let val (ct1,ct2) = Thm.dest_comb ct
wenzelm@10767
   156
            in  (#2 (Thm.dest_comb ct1), ct2)  end
paulson@2004
   157
      | _ => raise TERM ("dest_implies", [term_of ct]) ;
clasohm@1703
   158
berghofe@10414
   159
fun dest_equals ct =
berghofe@10414
   160
    case term_of ct of
berghofe@10414
   161
        (Const("==", _) $ _ $ _) =>
wenzelm@10767
   162
            let val (ct1,ct2) = Thm.dest_comb ct
wenzelm@10767
   163
            in  (#2 (Thm.dest_comb ct1), ct2)  end
berghofe@10414
   164
      | _ => raise TERM ("dest_equals", [term_of ct]) ;
berghofe@10414
   165
clasohm@1703
   166
lcp@708
   167
(* A1==>...An==>B  goes to  [A1,...,An], where B is not an implication *)
paulson@2004
   168
fun strip_imp_prems ct =
paulson@2004
   169
    let val (cA,cB) = dest_implies ct
paulson@2004
   170
    in  cA :: strip_imp_prems cB  end
lcp@708
   171
    handle TERM _ => [];
lcp@708
   172
paulson@2004
   173
(* A1==>...An==>B  goes to B, where B is not an implication *)
paulson@2004
   174
fun strip_imp_concl ct =
wenzelm@8328
   175
    case term_of ct of (Const("==>", _) $ _ $ _) =>
wenzelm@10767
   176
        strip_imp_concl (#2 (Thm.dest_comb ct))
paulson@2004
   177
  | _ => ct;
paulson@2004
   178
lcp@708
   179
(*The premises of a theorem, as a cterm list*)
berghofe@13659
   180
val cprems_of = strip_imp_prems o cprop_of;
lcp@708
   181
paulson@9547
   182
val proto_sign = Theory.sign_of ProtoPure.thy;
paulson@9547
   183
paulson@9547
   184
val implies = cterm_of proto_sign Term.implies;
paulson@9547
   185
paulson@9547
   186
(*cterm version of mk_implies*)
wenzelm@10767
   187
fun mk_implies(A,B) = Thm.capply (Thm.capply implies A) B;
paulson@9547
   188
paulson@9547
   189
(*cterm version of list_implies: [A1,...,An], B  goes to [|A1;==>;An|]==>B *)
paulson@9547
   190
fun list_implies([], B) = B
paulson@9547
   191
  | list_implies(A::AS, B) = mk_implies (A, list_implies(AS,B));
paulson@9547
   192
berghofe@12908
   193
(*cterm version of strip_comb: maps  f(t1,...,tn)  to  (f, [t1,...,tn]) *)
berghofe@12908
   194
fun strip_comb ct = 
berghofe@12908
   195
  let
berghofe@12908
   196
    fun stripc (p as (ct, cts)) =
berghofe@12908
   197
      let val (ct1, ct2) = Thm.dest_comb ct
berghofe@12908
   198
      in stripc (ct1, ct2 :: cts) end handle CTERM _ => p
berghofe@12908
   199
  in stripc (ct, []) end;
berghofe@12908
   200
berghofe@15262
   201
(* cterm version of strip_type: maps  [T1,...,Tn]--->T  to   ([T1,T2,...,Tn], T) *)
berghofe@15262
   202
fun strip_type cT = (case Thm.typ_of cT of
berghofe@15262
   203
    Type ("fun", _) =>
berghofe@15262
   204
      let
berghofe@15262
   205
        val [cT1, cT2] = Thm.dest_ctyp cT;
berghofe@15262
   206
        val (cTs, cT') = strip_type cT2
berghofe@15262
   207
      in (cT1 :: cTs, cT') end
berghofe@15262
   208
  | _ => ([], cT));
berghofe@15262
   209
lcp@708
   210
lcp@229
   211
(** reading of instantiations **)
lcp@229
   212
lcp@229
   213
fun absent ixn =
lcp@229
   214
  error("No such variable in term: " ^ Syntax.string_of_vname ixn);
lcp@229
   215
lcp@229
   216
fun inst_failure ixn =
lcp@229
   217
  error("Instantiation of " ^ Syntax.string_of_vname ixn ^ " fails");
lcp@229
   218
nipkow@4281
   219
fun read_insts sign (rtypes,rsorts) (types,sorts) used insts =
wenzelm@10403
   220
let
nipkow@4281
   221
    fun split([],tvs,vs) = (tvs,vs)
wenzelm@4691
   222
      | split((sv,st)::l,tvs,vs) = (case Symbol.explode sv of
wenzelm@4691
   223
                  "'"::cs => split(l,(Syntax.indexname cs,st)::tvs,vs)
wenzelm@4691
   224
                | cs => split(l,tvs,(Syntax.indexname cs,st)::vs));
nipkow@4281
   225
    val (tvs,vs) = split(insts,[],[]);
nipkow@4281
   226
    fun readT((a,i),st) =
nipkow@4281
   227
        let val ixn = ("'" ^ a,i);
nipkow@4281
   228
            val S = case rsorts ixn of Some S => S | None => absent ixn;
nipkow@4281
   229
            val T = Sign.read_typ (sign,sorts) st;
wenzelm@10403
   230
        in if Sign.typ_instance sign (T, TVar(ixn,S)) then (ixn,T)
nipkow@4281
   231
           else inst_failure ixn
nipkow@4281
   232
        end
nipkow@4281
   233
    val tye = map readT tvs;
nipkow@4281
   234
    fun mkty(ixn,st) = (case rtypes ixn of
nipkow@4281
   235
                          Some T => (ixn,(st,typ_subst_TVars tye T))
nipkow@4281
   236
                        | None => absent ixn);
nipkow@4281
   237
    val ixnsTs = map mkty vs;
nipkow@4281
   238
    val ixns = map fst ixnsTs
nipkow@4281
   239
    and sTs  = map snd ixnsTs
nipkow@4281
   240
    val (cts,tye2) = read_def_cterms(sign,types,sorts) used false sTs;
nipkow@4281
   241
    fun mkcVar(ixn,T) =
nipkow@4281
   242
        let val U = typ_subst_TVars tye2 T
nipkow@4281
   243
        in cterm_of sign (Var(ixn,U)) end
nipkow@4281
   244
    val ixnTs = ListPair.zip(ixns, map snd sTs)
nipkow@4281
   245
in (map (fn (ixn,T) => (ixn,ctyp_of sign T)) (tye2 @ tye),
nipkow@4281
   246
    ListPair.zip(map mkcVar ixnTs,cts))
nipkow@4281
   247
end;
lcp@229
   248
lcp@229
   249
wenzelm@252
   250
(*** Find the type (sort) associated with a (T)Var or (T)Free in a term
clasohm@0
   251
     Used for establishing default types (of variables) and sorts (of
clasohm@0
   252
     type variables) when reading another term.
clasohm@0
   253
     Index -1 indicates that a (T)Free rather than a (T)Var is wanted.
clasohm@0
   254
***)
clasohm@0
   255
clasohm@0
   256
fun types_sorts thm =
clasohm@0
   257
    let val {prop,hyps,...} = rep_thm thm;
wenzelm@252
   258
        val big = list_comb(prop,hyps); (* bogus term! *)
wenzelm@252
   259
        val vars = map dest_Var (term_vars big);
wenzelm@252
   260
        val frees = map dest_Free (term_frees big);
wenzelm@252
   261
        val tvars = term_tvars big;
wenzelm@252
   262
        val tfrees = term_tfrees big;
wenzelm@252
   263
        fun typ(a,i) = if i<0 then assoc(frees,a) else assoc(vars,(a,i));
wenzelm@252
   264
        fun sort(a,i) = if i<0 then assoc(tfrees,a) else assoc(tvars,(a,i));
clasohm@0
   265
    in (typ,sort) end;
clasohm@0
   266
wenzelm@7636
   267
wenzelm@9455
   268
wenzelm@9455
   269
(** basic attributes **)
wenzelm@9455
   270
wenzelm@9455
   271
(* dependent rules *)
wenzelm@9455
   272
wenzelm@9455
   273
fun rule_attribute f (x, thm) = (x, (f x thm));
wenzelm@9455
   274
wenzelm@9455
   275
wenzelm@9455
   276
(* add / delete tags *)
wenzelm@9455
   277
wenzelm@9455
   278
fun map_tags f thm =
wenzelm@9455
   279
  Thm.put_name_tags (Thm.name_of_thm thm, f (#2 (Thm.get_name_tags thm))) thm;
wenzelm@9455
   280
wenzelm@9455
   281
fun tag_rule tg = map_tags (fn tgs => if tg mem tgs then tgs else tgs @ [tg]);
wenzelm@9455
   282
fun untag_rule s = map_tags (filter_out (equal s o #1));
wenzelm@9455
   283
wenzelm@9455
   284
fun tag tg x = rule_attribute (K (tag_rule tg)) x;
wenzelm@9455
   285
fun untag s x = rule_attribute (K (untag_rule s)) x;
wenzelm@9455
   286
wenzelm@9455
   287
fun simple_tag name x = tag (name, []) x;
wenzelm@9455
   288
wenzelm@11741
   289
wenzelm@11741
   290
(* theorem kinds *)
wenzelm@11741
   291
wenzelm@11741
   292
val theoremK = "theorem";
wenzelm@11741
   293
val lemmaK = "lemma";
wenzelm@11741
   294
val corollaryK = "corollary";
wenzelm@11741
   295
val internalK = "internal";
wenzelm@9455
   296
wenzelm@11741
   297
fun get_kind thm =
wenzelm@11741
   298
  (case Library.assoc (#2 (Thm.get_name_tags thm), "kind") of
wenzelm@11741
   299
    Some (k :: _) => k
wenzelm@11741
   300
  | _ => "unknown");
wenzelm@11741
   301
wenzelm@11741
   302
fun kind_rule k = tag_rule ("kind", [k]) o untag_rule "kind";
wenzelm@12710
   303
fun kind k x = if k = "" then x else rule_attribute (K (kind_rule k)) x;
wenzelm@11741
   304
fun kind_internal x = kind internalK x;
wenzelm@11741
   305
fun has_internal tags = exists (equal internalK o fst) tags;
wenzelm@9455
   306
wenzelm@9455
   307
wenzelm@9455
   308
clasohm@0
   309
(** Standardization of rules **)
clasohm@0
   310
wenzelm@7636
   311
(*Strip extraneous shyps as far as possible*)
wenzelm@7636
   312
fun strip_shyps_warning thm =
wenzelm@7636
   313
  let
wenzelm@14824
   314
    val str_of_sort = Pretty.str_of o Sign.pretty_sort (Thm.sign_of_thm thm);
wenzelm@7636
   315
    val thm' = Thm.strip_shyps thm;
wenzelm@7636
   316
    val xshyps = Thm.extra_shyps thm';
wenzelm@7636
   317
  in
wenzelm@7636
   318
    if null xshyps then ()
wenzelm@7636
   319
    else warning ("Pending sort hypotheses: " ^ commas (map str_of_sort xshyps));
wenzelm@7636
   320
    thm'
wenzelm@7636
   321
  end;
wenzelm@7636
   322
clasohm@0
   323
(*Generalization over a list of variables, IGNORING bad ones*)
clasohm@0
   324
fun forall_intr_list [] th = th
clasohm@0
   325
  | forall_intr_list (y::ys) th =
wenzelm@252
   326
        let val gth = forall_intr_list ys th
wenzelm@252
   327
        in  forall_intr y gth   handle THM _ =>  gth  end;
clasohm@0
   328
clasohm@0
   329
(*Generalization over all suitable Free variables*)
clasohm@0
   330
fun forall_intr_frees th =
clasohm@0
   331
    let val {prop,sign,...} = rep_thm th
clasohm@0
   332
    in  forall_intr_list
wenzelm@4440
   333
         (map (cterm_of sign) (sort (make_ord atless) (term_frees prop)))
clasohm@0
   334
         th
clasohm@0
   335
    end;
clasohm@0
   336
wenzelm@7898
   337
val forall_elim_var = PureThy.forall_elim_var;
wenzelm@7898
   338
val forall_elim_vars = PureThy.forall_elim_vars;
clasohm@0
   339
wenzelm@12725
   340
fun gen_all thm =
wenzelm@12719
   341
  let
wenzelm@12719
   342
    val {sign, prop, maxidx, ...} = Thm.rep_thm thm;
wenzelm@12719
   343
    fun elim (th, (x, T)) = Thm.forall_elim (Thm.cterm_of sign (Var ((x, maxidx + 1), T))) th;
wenzelm@12719
   344
    val vs = Term.strip_all_vars prop;
wenzelm@12719
   345
  in foldl elim (thm, Term.variantlist (map #1 vs, []) ~~ map #2 vs) end;
wenzelm@9554
   346
clasohm@0
   347
(*Specialization over a list of cterms*)
clasohm@0
   348
fun forall_elim_list cts th = foldr (uncurry forall_elim) (rev cts, th);
clasohm@0
   349
wenzelm@11815
   350
(* maps A1,...,An |- B   to   [| A1;...;An |] ==> B  *)
clasohm@0
   351
fun implies_intr_list cAs th = foldr (uncurry implies_intr) (cAs,th);
clasohm@0
   352
clasohm@0
   353
(* maps [| A1;...;An |] ==> B and [A1,...,An]   to   B *)
clasohm@0
   354
fun implies_elim_list impth ths = foldl (uncurry implies_elim) (impth,ths);
clasohm@0
   355
wenzelm@11960
   356
(* maps |- B to A1,...,An |- B *)
wenzelm@11960
   357
fun impose_hyps chyps th =
wenzelm@12092
   358
  let val chyps' = gen_rems (op aconv o apfst Thm.term_of) (chyps, #hyps (Thm.rep_thm th))
wenzelm@12092
   359
  in implies_elim_list (implies_intr_list chyps' th) (map Thm.assume chyps') end;
wenzelm@11960
   360
wenzelm@13389
   361
(* maps A1,...,An and A1,...,An |- B to |- B *)
wenzelm@13389
   362
fun satisfy_hyps ths th =
wenzelm@13389
   363
  implies_elim_list (implies_intr_list (map (#prop o Thm.crep_thm) ths) th) ths;
wenzelm@13389
   364
clasohm@0
   365
(*Reset Var indexes to zero, renaming to preserve distinctness*)
wenzelm@252
   366
fun zero_var_indexes th =
clasohm@0
   367
    let val {prop,sign,...} = rep_thm th;
clasohm@0
   368
        val vars = term_vars prop
clasohm@0
   369
        val bs = foldl add_new_id ([], map (fn Var((a,_),_)=>a) vars)
wenzelm@252
   370
        val inrs = add_term_tvars(prop,[]);
wenzelm@252
   371
        val nms' = rev(foldl add_new_id ([], map (#1 o #1) inrs));
paulson@2266
   372
        val tye = ListPair.map (fn ((v,rs),a) => (v, TVar((a,0),rs)))
wenzelm@8328
   373
                     (inrs, nms')
wenzelm@252
   374
        val ctye = map (fn (v,T) => (v,ctyp_of sign T)) tye;
wenzelm@252
   375
        fun varpairs([],[]) = []
wenzelm@252
   376
          | varpairs((var as Var(v,T)) :: vars, b::bs) =
wenzelm@252
   377
                let val T' = typ_subst_TVars tye T
wenzelm@252
   378
                in (cterm_of sign (Var(v,T')),
wenzelm@252
   379
                    cterm_of sign (Var((b,0),T'))) :: varpairs(vars,bs)
wenzelm@252
   380
                end
wenzelm@252
   381
          | varpairs _ = raise TERM("varpairs", []);
paulson@8129
   382
    in Thm.instantiate (ctye, varpairs(vars,rev bs)) th end;
clasohm@0
   383
clasohm@0
   384
paulson@14394
   385
(** Standard form of object-rule: no hypotheses, flexflex constraints,
paulson@14394
   386
    Frees, or outer quantifiers; all generality expressed by Vars of index 0.**)
wenzelm@10515
   387
paulson@14394
   388
(*Squash a theorem's flexflex constraints provided it can be done uniquely.
paulson@14394
   389
  This step can lose information.*)
paulson@14387
   390
fun flexflex_unique th =
paulson@14387
   391
    case Seq.chop (2, flexflex_rule th) of
paulson@14387
   392
      ([th],_) => th
paulson@14387
   393
    | ([],_)   => raise THM("flexflex_unique: impossible constraints", 0, [th])
paulson@14387
   394
    |      _   => raise THM("flexflex_unique: multiple unifiers", 0, [th]);
paulson@14387
   395
wenzelm@10515
   396
fun close_derivation thm =
wenzelm@10515
   397
  if Thm.get_name_tags thm = ("", []) then Thm.name_thm ("", thm)
wenzelm@10515
   398
  else thm;
wenzelm@10515
   399
berghofe@11512
   400
fun standard' th =
wenzelm@10515
   401
  let val {maxidx,...} = rep_thm th in
wenzelm@10515
   402
    th
berghofe@14391
   403
    |> implies_intr_hyps
wenzelm@10515
   404
    |> forall_intr_frees |> forall_elim_vars (maxidx + 1)
wenzelm@10515
   405
    |> strip_shyps_warning
berghofe@11512
   406
    |> zero_var_indexes |> Thm.varifyT |> Thm.compress
wenzelm@1218
   407
  end;
wenzelm@1218
   408
berghofe@14391
   409
val standard = close_derivation o standard' o flexflex_unique;
berghofe@11512
   410
wenzelm@12005
   411
fun local_standard th =
wenzelm@12221
   412
  th |> strip_shyps |> zero_var_indexes
wenzelm@12005
   413
  |> Thm.compress |> close_derivation;
wenzelm@12005
   414
clasohm@0
   415
wenzelm@8328
   416
(*Convert all Vars in a theorem to Frees.  Also return a function for
paulson@4610
   417
  reversing that operation.  DOES NOT WORK FOR TYPE VARIABLES.
paulson@4610
   418
  Similar code in type/freeze_thaw*)
paulson@4610
   419
fun freeze_thaw th =
paulson@7248
   420
 let val fth = freezeT th
berghofe@13659
   421
     val {prop, tpairs, sign, ...} = rep_thm fth
paulson@7248
   422
 in
berghofe@13659
   423
   case foldr add_term_vars (prop :: Thm.terms_of_tpairs tpairs, []) of
paulson@7248
   424
       [] => (fth, fn x => x)
paulson@7248
   425
     | vars =>
wenzelm@8328
   426
         let fun newName (Var(ix,_), (pairs,used)) =
wenzelm@8328
   427
                   let val v = variant used (string_of_indexname ix)
wenzelm@8328
   428
                   in  ((ix,v)::pairs, v::used)  end;
berghofe@13659
   429
             val (alist, _) = foldr newName (vars, ([], foldr add_term_names
berghofe@13659
   430
               (prop :: Thm.terms_of_tpairs tpairs, [])))
wenzelm@8328
   431
             fun mk_inst (Var(v,T)) =
wenzelm@8328
   432
                 (cterm_of sign (Var(v,T)),
wenzelm@8328
   433
                  cterm_of sign (Free(the (assoc(alist,v)), T)))
wenzelm@8328
   434
             val insts = map mk_inst vars
wenzelm@8328
   435
             fun thaw th' =
wenzelm@8328
   436
                 th' |> forall_intr_list (map #2 insts)
wenzelm@8328
   437
                     |> forall_elim_list (map #1 insts)
wenzelm@8328
   438
         in  (Thm.instantiate ([],insts) fth, thaw)  end
paulson@7248
   439
 end;
paulson@4610
   440
paulson@4610
   441
paulson@7248
   442
(*Rotates a rule's premises to the left by k*)
paulson@7248
   443
val rotate_prems = permute_prems 0;
paulson@4610
   444
oheimb@11163
   445
(* permute prems, where the i-th position in the argument list (counting from 0)
oheimb@11163
   446
   gives the position within the original thm to be transferred to position i.
oheimb@11163
   447
   Any remaining trailing positions are left unchanged. *)
oheimb@11163
   448
val rearrange_prems = let
oheimb@11163
   449
  fun rearr new []      thm = thm
wenzelm@11815
   450
  |   rearr new (p::ps) thm = rearr (new+1)
oheimb@11163
   451
     (map (fn q => if new<=q andalso q<p then q+1 else q) ps)
oheimb@11163
   452
     (permute_prems (new+1) (new-p) (permute_prems new (p-new) thm))
oheimb@11163
   453
  in rearr 0 end;
paulson@4610
   454
wenzelm@252
   455
(*Assume a new formula, read following the same conventions as axioms.
clasohm@0
   456
  Generalizes over Free variables,
clasohm@0
   457
  creates the assumption, and then strips quantifiers.
clasohm@0
   458
  Example is [| ALL x:?A. ?P(x) |] ==> [| ?P(?a) |]
wenzelm@252
   459
             [ !(A,P,a)[| ALL x:A. P(x) |] ==> [| P(a) |] ]    *)
clasohm@0
   460
fun assume_ax thy sP =
wenzelm@6390
   461
    let val sign = Theory.sign_of thy
paulson@4610
   462
        val prop = Logic.close_form (term_of (read_cterm sign (sP, propT)))
lcp@229
   463
    in forall_elim_vars 0 (assume (cterm_of sign prop))  end;
clasohm@0
   464
wenzelm@252
   465
(*Resolution: exactly one resolvent must be produced.*)
clasohm@0
   466
fun tha RSN (i,thb) =
wenzelm@4270
   467
  case Seq.chop (2, biresolution false [(false,tha)] i thb) of
clasohm@0
   468
      ([th],_) => th
clasohm@0
   469
    | ([],_)   => raise THM("RSN: no unifiers", i, [tha,thb])
clasohm@0
   470
    |      _   => raise THM("RSN: multiple unifiers", i, [tha,thb]);
clasohm@0
   471
clasohm@0
   472
(*resolution: P==>Q, Q==>R gives P==>R. *)
clasohm@0
   473
fun tha RS thb = tha RSN (1,thb);
clasohm@0
   474
clasohm@0
   475
(*For joining lists of rules*)
wenzelm@252
   476
fun thas RLN (i,thbs) =
clasohm@0
   477
  let val resolve = biresolution false (map (pair false) thas) i
wenzelm@4270
   478
      fun resb thb = Seq.list_of (resolve thb) handle THM _ => []
paulson@2672
   479
  in  List.concat (map resb thbs)  end;
clasohm@0
   480
clasohm@0
   481
fun thas RL thbs = thas RLN (1,thbs);
clasohm@0
   482
lcp@11
   483
(*Resolve a list of rules against bottom_rl from right to left;
lcp@11
   484
  makes proof trees*)
wenzelm@252
   485
fun rls MRS bottom_rl =
lcp@11
   486
  let fun rs_aux i [] = bottom_rl
wenzelm@252
   487
        | rs_aux i (rl::rls) = rl RSN (i, rs_aux (i+1) rls)
lcp@11
   488
  in  rs_aux 1 rls  end;
lcp@11
   489
lcp@11
   490
(*As above, but for rule lists*)
wenzelm@252
   491
fun rlss MRL bottom_rls =
lcp@11
   492
  let fun rs_aux i [] = bottom_rls
wenzelm@252
   493
        | rs_aux i (rls::rlss) = rls RLN (i, rs_aux (i+1) rlss)
lcp@11
   494
  in  rs_aux 1 rlss  end;
lcp@11
   495
wenzelm@9288
   496
(*A version of MRS with more appropriate argument order*)
wenzelm@9288
   497
fun bottom_rl OF rls = rls MRS bottom_rl;
wenzelm@9288
   498
wenzelm@252
   499
(*compose Q and [...,Qi,Q(i+1),...]==>R to [...,Q(i+1),...]==>R
clasohm@0
   500
  with no lifting or renaming!  Q may contain ==> or meta-quants
clasohm@0
   501
  ALWAYS deletes premise i *)
wenzelm@252
   502
fun compose(tha,i,thb) =
wenzelm@4270
   503
    Seq.list_of (bicompose false (false,tha,0) i thb);
clasohm@0
   504
wenzelm@6946
   505
fun compose_single (tha,i,thb) =
wenzelm@6946
   506
  (case compose (tha,i,thb) of
wenzelm@6946
   507
    [th] => th
wenzelm@6946
   508
  | _ => raise THM ("compose: unique result expected", i, [tha,thb]));
wenzelm@6946
   509
clasohm@0
   510
(*compose Q and [Q1,Q2,...,Qk]==>R to [Q2,...,Qk]==>R getting unique result*)
clasohm@0
   511
fun tha COMP thb =
clasohm@0
   512
    case compose(tha,1,thb) of
wenzelm@252
   513
        [th] => th
clasohm@0
   514
      | _ =>   raise THM("COMP", 1, [tha,thb]);
clasohm@0
   515
wenzelm@13105
   516
wenzelm@4016
   517
(** theorem equality **)
clasohm@0
   518
paulson@13650
   519
(*True if the two theorems have the same signature.*)
wenzelm@13105
   520
val eq_thm_sg = Sign.eq_sg o pairself Thm.sign_of_thm;
paulson@13650
   521
paulson@13650
   522
(*True if the two theorems have the same prop field, ignoring hyps, der, etc.*)
wenzelm@13105
   523
val eq_thm_prop = op aconv o pairself Thm.prop_of;
clasohm@0
   524
clasohm@0
   525
(*Useful "distance" function for BEST_FIRST*)
wenzelm@12800
   526
val size_of_thm = size_of_term o prop_of;
clasohm@0
   527
wenzelm@9829
   528
(*maintain lists of theorems --- preserving canonical order*)
wenzelm@13105
   529
fun del_rules rs rules = Library.gen_rems eq_thm_prop (rules, rs);
wenzelm@9862
   530
fun add_rules rs rules = rs @ del_rules rs rules;
wenzelm@12373
   531
val del_rule = del_rules o single;
wenzelm@12373
   532
val add_rule = add_rules o single;
wenzelm@13105
   533
fun merge_rules (rules1, rules2) = gen_merge_lists' eq_thm_prop rules1 rules2;
wenzelm@9829
   534
lcp@1194
   535
(** Mark Staples's weaker version of eq_thm: ignores variable renaming and
lcp@1194
   536
    (some) type variable renaming **)
lcp@1194
   537
lcp@1194
   538
 (* Can't use term_vars, because it sorts the resulting list of variable names.
lcp@1194
   539
    We instead need the unique list noramlised by the order of appearance
lcp@1194
   540
    in the term. *)
lcp@1194
   541
fun term_vars' (t as Var(v,T)) = [t]
lcp@1194
   542
  | term_vars' (Abs(_,_,b)) = term_vars' b
lcp@1194
   543
  | term_vars' (f$a) = (term_vars' f) @ (term_vars' a)
lcp@1194
   544
  | term_vars' _ = [];
lcp@1194
   545
lcp@1194
   546
fun forall_intr_vars th =
lcp@1194
   547
  let val {prop,sign,...} = rep_thm th;
lcp@1194
   548
      val vars = distinct (term_vars' prop);
lcp@1194
   549
  in forall_intr_list (map (cterm_of sign) vars) th end;
lcp@1194
   550
wenzelm@13105
   551
val weak_eq_thm = Thm.eq_thm o pairself (forall_intr_vars o freezeT);
lcp@1194
   552
lcp@1194
   553
clasohm@0
   554
(*** Meta-Rewriting Rules ***)
clasohm@0
   555
paulson@4610
   556
fun read_prop s = read_cterm proto_sign (s, propT);
paulson@4610
   557
wenzelm@9455
   558
fun store_thm name thm = hd (PureThy.smart_store_thms (name, [thm]));
wenzelm@9455
   559
fun store_standard_thm name thm = store_thm name (standard thm);
wenzelm@12135
   560
fun store_thm_open name thm = hd (PureThy.smart_store_thms_open (name, [thm]));
wenzelm@12135
   561
fun store_standard_thm_open name thm = store_thm_open name (standard' thm);
wenzelm@4016
   562
clasohm@0
   563
val reflexive_thm =
wenzelm@14854
   564
  let val cx = cterm_of proto_sign (Var(("x",0),TVar(("'a",0),[])))
wenzelm@12135
   565
  in store_standard_thm_open "reflexive" (Thm.reflexive cx) end;
clasohm@0
   566
clasohm@0
   567
val symmetric_thm =
wenzelm@14854
   568
  let val xy = read_prop "x == y"
wenzelm@12135
   569
  in store_standard_thm_open "symmetric" (Thm.implies_intr_hyps (Thm.symmetric (Thm.assume xy))) end;
clasohm@0
   570
clasohm@0
   571
val transitive_thm =
wenzelm@14854
   572
  let val xy = read_prop "x == y"
wenzelm@14854
   573
      val yz = read_prop "y == z"
clasohm@0
   574
      val xythm = Thm.assume xy and yzthm = Thm.assume yz
wenzelm@12135
   575
  in store_standard_thm_open "transitive" (Thm.implies_intr yz (Thm.transitive xythm yzthm)) end;
clasohm@0
   576
nipkow@4679
   577
fun symmetric_fun thm = thm RS symmetric_thm;
nipkow@4679
   578
berghofe@11512
   579
fun extensional eq =
berghofe@11512
   580
  let val eq' =
berghofe@11512
   581
    abstract_rule "x" (snd (Thm.dest_comb (fst (dest_equals (cprop_of eq))))) eq
berghofe@11512
   582
  in equal_elim (eta_conversion (cprop_of eq')) eq' end;
berghofe@11512
   583
berghofe@10414
   584
val imp_cong =
berghofe@10414
   585
  let
berghofe@10414
   586
    val ABC = read_prop "PROP A ==> PROP B == PROP C"
berghofe@10414
   587
    val AB = read_prop "PROP A ==> PROP B"
berghofe@10414
   588
    val AC = read_prop "PROP A ==> PROP C"
berghofe@10414
   589
    val A = read_prop "PROP A"
berghofe@10414
   590
  in
wenzelm@12135
   591
    store_standard_thm_open "imp_cong" (implies_intr ABC (equal_intr
berghofe@10414
   592
      (implies_intr AB (implies_intr A
berghofe@10414
   593
        (equal_elim (implies_elim (assume ABC) (assume A))
berghofe@10414
   594
          (implies_elim (assume AB) (assume A)))))
berghofe@10414
   595
      (implies_intr AC (implies_intr A
berghofe@10414
   596
        (equal_elim (symmetric (implies_elim (assume ABC) (assume A)))
berghofe@10414
   597
          (implies_elim (assume AC) (assume A)))))))
berghofe@10414
   598
  end;
berghofe@10414
   599
berghofe@10414
   600
val swap_prems_eq =
berghofe@10414
   601
  let
berghofe@10414
   602
    val ABC = read_prop "PROP A ==> PROP B ==> PROP C"
berghofe@10414
   603
    val BAC = read_prop "PROP B ==> PROP A ==> PROP C"
berghofe@10414
   604
    val A = read_prop "PROP A"
berghofe@10414
   605
    val B = read_prop "PROP B"
berghofe@10414
   606
  in
wenzelm@12135
   607
    store_standard_thm_open "swap_prems_eq" (equal_intr
berghofe@10414
   608
      (implies_intr ABC (implies_intr B (implies_intr A
berghofe@10414
   609
        (implies_elim (implies_elim (assume ABC) (assume A)) (assume B)))))
berghofe@10414
   610
      (implies_intr BAC (implies_intr A (implies_intr B
berghofe@10414
   611
        (implies_elim (implies_elim (assume BAC) (assume B)) (assume A))))))
berghofe@10414
   612
  end;
lcp@229
   613
skalberg@15001
   614
val imp_cong' = combination o combination (reflexive implies)
clasohm@0
   615
berghofe@13325
   616
fun abs_def thm =
berghofe@13325
   617
  let
berghofe@13325
   618
    val (_, cvs) = strip_comb (fst (dest_equals (cprop_of thm)));
berghofe@13325
   619
    val thm' = foldr (fn (ct, thm) => Thm.abstract_rule
berghofe@13325
   620
      (case term_of ct of Var ((a, _), _) => a | Free (a, _) => a | _ => "x")
berghofe@13325
   621
        ct thm) (cvs, thm)
berghofe@13325
   622
  in transitive
berghofe@13325
   623
    (symmetric (eta_conversion (fst (dest_equals (cprop_of thm'))))) thm'
berghofe@13325
   624
  end;
berghofe@13325
   625
clasohm@0
   626
skalberg@15001
   627
local
skalberg@15001
   628
  val dest_eq = dest_equals o cprop_of
skalberg@15001
   629
  val rhs_of = snd o dest_eq
skalberg@15001
   630
in
skalberg@15001
   631
fun beta_eta_conversion t =
skalberg@15001
   632
  let val thm = beta_conversion true t
skalberg@15001
   633
  in transitive thm (eta_conversion (rhs_of thm)) end
skalberg@15001
   634
end;
skalberg@15001
   635
skalberg@15001
   636
(*In [A1,...,An]==>B, rewrite the selected A's only -- for rewrite_goals_tac*)
skalberg@15001
   637
fun goals_conv pred cv =
skalberg@15001
   638
  let fun gconv i ct =
skalberg@15001
   639
        let val (A,B) = dest_implies ct
skalberg@15001
   640
        in imp_cong' (if pred i then cv A else reflexive A) (gconv (i+1) B) end
skalberg@15001
   641
        handle TERM _ => reflexive ct
skalberg@15001
   642
  in gconv 1 end
skalberg@15001
   643
skalberg@15001
   644
(* Rewrite A in !!x1,...,xn. A *)
skalberg@15001
   645
fun forall_conv cv ct =
skalberg@15001
   646
  let val p as (ct1, ct2) = Thm.dest_comb ct
skalberg@15001
   647
  in (case pairself term_of p of
skalberg@15001
   648
      (Const ("all", _), Abs (s, _, _)) =>
skalberg@15001
   649
         let val (v, ct') = Thm.dest_abs (Some "@") ct2;
skalberg@15001
   650
         in Thm.combination (Thm.reflexive ct1)
skalberg@15001
   651
           (Thm.abstract_rule s v (forall_conv cv ct'))
skalberg@15001
   652
         end
skalberg@15001
   653
    | _ => cv ct)
skalberg@15001
   654
  end handle TERM _ => cv ct;
skalberg@15001
   655
skalberg@15001
   656
(*Use a conversion to transform a theorem*)
skalberg@15001
   657
fun fconv_rule cv th = equal_elim (cv (cprop_of th)) th;
skalberg@15001
   658
clasohm@0
   659
(*** Some useful meta-theorems ***)
clasohm@0
   660
clasohm@0
   661
(*The rule V/V, obtains assumption solving for eresolve_tac*)
wenzelm@12135
   662
val asm_rl = store_standard_thm_open "asm_rl" (Thm.trivial (read_prop "PROP ?psi"));
wenzelm@7380
   663
val _ = store_thm "_" asm_rl;
clasohm@0
   664
clasohm@0
   665
(*Meta-level cut rule: [| V==>W; V |] ==> W *)
wenzelm@4016
   666
val cut_rl =
wenzelm@12135
   667
  store_standard_thm_open "cut_rl"
wenzelm@9455
   668
    (Thm.trivial (read_prop "PROP ?psi ==> PROP ?theta"));
clasohm@0
   669
wenzelm@252
   670
(*Generalized elim rule for one conclusion; cut_rl with reversed premises:
clasohm@0
   671
     [| PROP V;  PROP V ==> PROP W |] ==> PROP W *)
clasohm@0
   672
val revcut_rl =
paulson@4610
   673
  let val V = read_prop "PROP V"
paulson@4610
   674
      and VW = read_prop "PROP V ==> PROP W";
wenzelm@4016
   675
  in
wenzelm@12135
   676
    store_standard_thm_open "revcut_rl"
wenzelm@4016
   677
      (implies_intr V (implies_intr VW (implies_elim (assume VW) (assume V))))
clasohm@0
   678
  end;
clasohm@0
   679
lcp@668
   680
(*for deleting an unwanted assumption*)
lcp@668
   681
val thin_rl =
paulson@4610
   682
  let val V = read_prop "PROP V"
paulson@4610
   683
      and W = read_prop "PROP W";
wenzelm@12135
   684
  in store_standard_thm_open "thin_rl" (implies_intr V (implies_intr W (assume W))) end;
lcp@668
   685
clasohm@0
   686
(* (!!x. PROP ?V) == PROP ?V       Allows removal of redundant parameters*)
clasohm@0
   687
val triv_forall_equality =
paulson@4610
   688
  let val V  = read_prop "PROP V"
paulson@4610
   689
      and QV = read_prop "!!x::'a. PROP V"
wenzelm@8086
   690
      and x  = read_cterm proto_sign ("x", TypeInfer.logicT);
wenzelm@4016
   691
  in
wenzelm@12135
   692
    store_standard_thm_open "triv_forall_equality"
berghofe@11512
   693
      (equal_intr (implies_intr QV (forall_elim x (assume QV)))
berghofe@11512
   694
        (implies_intr V  (forall_intr x (assume V))))
clasohm@0
   695
  end;
clasohm@0
   696
nipkow@1756
   697
(* (PROP ?PhiA ==> PROP ?PhiB ==> PROP ?Psi) ==>
nipkow@1756
   698
   (PROP ?PhiB ==> PROP ?PhiA ==> PROP ?Psi)
nipkow@1756
   699
   `thm COMP swap_prems_rl' swaps the first two premises of `thm'
nipkow@1756
   700
*)
nipkow@1756
   701
val swap_prems_rl =
paulson@4610
   702
  let val cmajor = read_prop "PROP PhiA ==> PROP PhiB ==> PROP Psi";
nipkow@1756
   703
      val major = assume cmajor;
paulson@4610
   704
      val cminor1 = read_prop "PROP PhiA";
nipkow@1756
   705
      val minor1 = assume cminor1;
paulson@4610
   706
      val cminor2 = read_prop "PROP PhiB";
nipkow@1756
   707
      val minor2 = assume cminor2;
wenzelm@12135
   708
  in store_standard_thm_open "swap_prems_rl"
nipkow@1756
   709
       (implies_intr cmajor (implies_intr cminor2 (implies_intr cminor1
nipkow@1756
   710
         (implies_elim (implies_elim major minor1) minor2))))
nipkow@1756
   711
  end;
nipkow@1756
   712
nipkow@3653
   713
(* [| PROP ?phi ==> PROP ?psi; PROP ?psi ==> PROP ?phi |]
nipkow@3653
   714
   ==> PROP ?phi == PROP ?psi
wenzelm@8328
   715
   Introduction rule for == as a meta-theorem.
nipkow@3653
   716
*)
nipkow@3653
   717
val equal_intr_rule =
paulson@4610
   718
  let val PQ = read_prop "PROP phi ==> PROP psi"
paulson@4610
   719
      and QP = read_prop "PROP psi ==> PROP phi"
wenzelm@4016
   720
  in
wenzelm@12135
   721
    store_standard_thm_open "equal_intr_rule"
wenzelm@4016
   722
      (implies_intr PQ (implies_intr QP (equal_intr (assume PQ) (assume QP))))
nipkow@3653
   723
  end;
nipkow@3653
   724
wenzelm@13368
   725
(* [| PROP ?phi == PROP ?psi; PROP ?phi |] ==> PROP ?psi *)
wenzelm@13368
   726
val equal_elim_rule1 =
wenzelm@13368
   727
  let val eq = read_prop "PROP phi == PROP psi"
wenzelm@13368
   728
      and P = read_prop "PROP phi"
wenzelm@13368
   729
  in store_standard_thm_open "equal_elim_rule1"
wenzelm@13368
   730
    (Thm.equal_elim (assume eq) (assume P) |> implies_intr_list [eq, P])
wenzelm@13368
   731
  end;
wenzelm@4285
   732
wenzelm@12297
   733
(* "[| PROP ?phi; PROP ?phi; PROP ?psi |] ==> PROP ?psi" *)
wenzelm@12297
   734
wenzelm@12297
   735
val remdups_rl =
wenzelm@12297
   736
  let val P = read_prop "PROP phi" and Q = read_prop "PROP psi";
wenzelm@12297
   737
  in store_standard_thm_open "remdups_rl" (implies_intr_list [P, P, Q] (Thm.assume Q)) end;
wenzelm@12297
   738
wenzelm@12297
   739
wenzelm@9554
   740
(*(PROP ?phi ==> (!!x. PROP ?psi(x))) == (!!x. PROP ?phi ==> PROP ?psi(x))
wenzelm@12297
   741
  Rewrite rule for HHF normalization.*)
wenzelm@9554
   742
wenzelm@9554
   743
val norm_hhf_eq =
wenzelm@9554
   744
  let
wenzelm@9554
   745
    val cert = Thm.cterm_of proto_sign;
wenzelm@14854
   746
    val aT = TFree ("'a", []);
wenzelm@9554
   747
    val all = Term.all aT;
wenzelm@9554
   748
    val x = Free ("x", aT);
wenzelm@9554
   749
    val phi = Free ("phi", propT);
wenzelm@9554
   750
    val psi = Free ("psi", aT --> propT);
wenzelm@9554
   751
wenzelm@9554
   752
    val cx = cert x;
wenzelm@9554
   753
    val cphi = cert phi;
wenzelm@9554
   754
    val lhs = cert (Logic.mk_implies (phi, all $ Abs ("x", aT, psi $ Bound 0)));
wenzelm@9554
   755
    val rhs = cert (all $ Abs ("x", aT, Logic.mk_implies (phi, psi $ Bound 0)));
wenzelm@9554
   756
  in
wenzelm@9554
   757
    Thm.equal_intr
wenzelm@9554
   758
      (Thm.implies_elim (Thm.assume lhs) (Thm.assume cphi)
wenzelm@9554
   759
        |> Thm.forall_elim cx
wenzelm@9554
   760
        |> Thm.implies_intr cphi
wenzelm@9554
   761
        |> Thm.forall_intr cx
wenzelm@9554
   762
        |> Thm.implies_intr lhs)
wenzelm@9554
   763
      (Thm.implies_elim
wenzelm@9554
   764
          (Thm.assume rhs |> Thm.forall_elim cx) (Thm.assume cphi)
wenzelm@9554
   765
        |> Thm.forall_intr cx
wenzelm@9554
   766
        |> Thm.implies_intr cphi
wenzelm@9554
   767
        |> Thm.implies_intr rhs)
wenzelm@12135
   768
    |> store_standard_thm_open "norm_hhf_eq"
wenzelm@9554
   769
  end;
wenzelm@9554
   770
wenzelm@12800
   771
fun is_norm_hhf tm =
wenzelm@12800
   772
  let
wenzelm@12800
   773
    fun is_norm (Const ("==>", _) $ _ $ (Const ("all", _) $ _)) = false
wenzelm@12800
   774
      | is_norm (t $ u) = is_norm t andalso is_norm u
wenzelm@12800
   775
      | is_norm (Abs (_, _, t)) = is_norm t
wenzelm@12800
   776
      | is_norm _ = true;
wenzelm@12800
   777
  in is_norm (Pattern.beta_eta_contract tm) end;
wenzelm@12800
   778
wenzelm@12800
   779
fun norm_hhf sg t =
wenzelm@12800
   780
  if is_norm_hhf t then t
berghofe@13198
   781
  else Pattern.rewrite_term (Sign.tsig_of sg) [Logic.dest_equals (prop_of norm_hhf_eq)] [] t;
wenzelm@12800
   782
wenzelm@9554
   783
paulson@8129
   784
(*** Instantiate theorem th, reading instantiations under signature sg ****)
paulson@8129
   785
paulson@8129
   786
(*Version that normalizes the result: Thm.instantiate no longer does that*)
paulson@8129
   787
fun instantiate instpair th = Thm.instantiate instpair th  COMP   asm_rl;
paulson@8129
   788
paulson@8129
   789
fun read_instantiate_sg sg sinsts th =
paulson@8129
   790
    let val ts = types_sorts th;
wenzelm@12800
   791
        val used = add_term_tvarnames (prop_of th, []);
paulson@8129
   792
    in  instantiate (read_insts sg ts ts used sinsts) th  end;
paulson@8129
   793
paulson@8129
   794
(*Instantiate theorem th, reading instantiations under theory of th*)
paulson@8129
   795
fun read_instantiate sinsts th =
wenzelm@14643
   796
    read_instantiate_sg (Thm.sign_of_thm th) sinsts th;
paulson@8129
   797
paulson@8129
   798
paulson@8129
   799
(*Left-to-right replacements: tpairs = [...,(vi,ti),...].
paulson@8129
   800
  Instantiates distinct Vars by terms, inferring type instantiations. *)
paulson@8129
   801
local
paulson@8129
   802
  fun add_types ((ct,cu), (sign,tye,maxidx)) =
paulson@8129
   803
    let val {sign=signt, t=t, T= T, maxidx=maxt,...} = rep_cterm ct
paulson@8129
   804
        and {sign=signu, t=u, T= U, maxidx=maxu,...} = rep_cterm cu;
paulson@8129
   805
        val maxi = Int.max(maxidx, Int.max(maxt, maxu));
paulson@8129
   806
        val sign' = Sign.merge(sign, Sign.merge(signt, signu))
wenzelm@14643
   807
        val (tye',maxi') = Type.unify (Sign.tsig_of sign') (tye, maxi) (T, U)
wenzelm@10403
   808
          handle Type.TUNIFY => raise TYPE("Ill-typed instantiation", [T,U], [t,u])
paulson@8129
   809
    in  (sign', tye', maxi')  end;
paulson@8129
   810
in
paulson@8129
   811
fun cterm_instantiate ctpairs0 th =
wenzelm@14643
   812
  let val (sign,tye,_) = foldr add_types (ctpairs0, (Thm.sign_of_thm th, Vartab.empty, 0))
paulson@14340
   813
      fun instT(ct,cu) = 
paulson@14340
   814
        let val inst = cterm_of sign o subst_TVars_Vartab tye o term_of
paulson@14340
   815
        in (inst ct, inst cu) end
paulson@8129
   816
      fun ctyp2 (ix,T) = (ix, ctyp_of sign T)
berghofe@8406
   817
  in  instantiate (map ctyp2 (Vartab.dest tye), map instT ctpairs0) th  end
paulson@8129
   818
  handle TERM _ =>
paulson@8129
   819
           raise THM("cterm_instantiate: incompatible signatures",0,[th])
paulson@8129
   820
       | TYPE (msg, _, _) => raise THM(msg, 0, [th])
paulson@8129
   821
end;
paulson@8129
   822
paulson@8129
   823
paulson@8129
   824
(** Derived rules mainly for METAHYPS **)
paulson@8129
   825
paulson@8129
   826
(*Given the term "a", takes (%x.t)==(%x.u) to t[a/x]==u[a/x]*)
paulson@8129
   827
fun equal_abs_elim ca eqth =
paulson@8129
   828
  let val {sign=signa, t=a, ...} = rep_cterm ca
paulson@8129
   829
      and combth = combination eqth (reflexive ca)
paulson@8129
   830
      val {sign,prop,...} = rep_thm eqth
paulson@8129
   831
      val (abst,absu) = Logic.dest_equals prop
paulson@8129
   832
      val cterm = cterm_of (Sign.merge (sign,signa))
berghofe@10414
   833
  in  transitive (symmetric (beta_conversion false (cterm (abst$a))))
berghofe@10414
   834
           (transitive combth (beta_conversion false (cterm (absu$a))))
paulson@8129
   835
  end
paulson@8129
   836
  handle THM _ => raise THM("equal_abs_elim", 0, [eqth]);
paulson@8129
   837
paulson@8129
   838
(*Calling equal_abs_elim with multiple terms*)
paulson@8129
   839
fun equal_abs_elim_list cts th = foldr (uncurry equal_abs_elim) (rev cts, th);
paulson@8129
   840
paulson@8129
   841
wenzelm@10667
   842
(*** Goal (PROP A) <==> PROP A ***)
wenzelm@4789
   843
wenzelm@4789
   844
local
wenzelm@10667
   845
  val cert = Thm.cterm_of proto_sign;
wenzelm@10667
   846
  val A = Free ("A", propT);
wenzelm@10667
   847
  val G = Logic.mk_goal A;
wenzelm@4789
   848
  val (G_def, _) = freeze_thaw ProtoPure.Goal_def;
wenzelm@4789
   849
in
wenzelm@11741
   850
  val triv_goal = store_thm "triv_goal" (kind_rule internalK (standard
wenzelm@10667
   851
      (Thm.equal_elim (Thm.symmetric G_def) (Thm.assume (cert A)))));
wenzelm@11741
   852
  val rev_triv_goal = store_thm "rev_triv_goal" (kind_rule internalK (standard
wenzelm@10667
   853
      (Thm.equal_elim G_def (Thm.assume (cert G)))));
wenzelm@4789
   854
end;
wenzelm@4789
   855
wenzelm@9460
   856
val mk_cgoal = Thm.capply (Thm.cterm_of proto_sign Logic.goal_const);
wenzelm@6995
   857
fun assume_goal ct = Thm.assume (mk_cgoal ct) RS rev_triv_goal;
wenzelm@6995
   858
wenzelm@11815
   859
fun implies_intr_goals cprops thm =
wenzelm@11815
   860
  implies_elim_list (implies_intr_list cprops thm) (map assume_goal cprops)
wenzelm@11815
   861
  |> implies_intr_list (map mk_cgoal cprops);
wenzelm@11815
   862
wenzelm@4789
   863
wenzelm@4285
   864
wenzelm@5688
   865
(** variations on instantiate **)
wenzelm@4285
   866
paulson@8550
   867
(*shorthand for instantiating just one variable in the current theory*)
paulson@8550
   868
fun inst x t = read_instantiate_sg (sign_of (the_context())) [(x,t)];
paulson@8550
   869
paulson@8550
   870
wenzelm@12495
   871
(* collect vars in left-to-right order *)
wenzelm@4285
   872
wenzelm@12495
   873
fun tvars_of_terms ts = rev (foldl Term.add_tvars ([], ts));
wenzelm@12495
   874
fun vars_of_terms ts = rev (foldl Term.add_vars ([], ts));
wenzelm@5903
   875
wenzelm@12800
   876
fun tvars_of thm = tvars_of_terms [prop_of thm];
wenzelm@12800
   877
fun vars_of thm = vars_of_terms [prop_of thm];
wenzelm@4285
   878
wenzelm@4285
   879
wenzelm@4285
   880
(* instantiate by left-to-right occurrence of variables *)
wenzelm@4285
   881
wenzelm@4285
   882
fun instantiate' cTs cts thm =
wenzelm@4285
   883
  let
wenzelm@4285
   884
    fun err msg =
wenzelm@4285
   885
      raise TYPE ("instantiate': " ^ msg,
wenzelm@4285
   886
        mapfilter (apsome Thm.typ_of) cTs,
wenzelm@4285
   887
        mapfilter (apsome Thm.term_of) cts);
wenzelm@4285
   888
wenzelm@4285
   889
    fun inst_of (v, ct) =
wenzelm@4285
   890
      (Thm.cterm_of (#sign (Thm.rep_cterm ct)) (Var v), ct)
wenzelm@4285
   891
        handle TYPE (msg, _, _) => err msg;
wenzelm@4285
   892
wenzelm@4285
   893
    fun zip_vars _ [] = []
wenzelm@4285
   894
      | zip_vars (_ :: vs) (None :: opt_ts) = zip_vars vs opt_ts
wenzelm@4285
   895
      | zip_vars (v :: vs) (Some t :: opt_ts) = (v, t) :: zip_vars vs opt_ts
wenzelm@4285
   896
      | zip_vars [] _ = err "more instantiations than variables in thm";
wenzelm@4285
   897
wenzelm@4285
   898
    (*instantiate types first!*)
wenzelm@4285
   899
    val thm' =
wenzelm@4285
   900
      if forall is_none cTs then thm
wenzelm@4285
   901
      else Thm.instantiate (zip_vars (map fst (tvars_of thm)) cTs, []) thm;
wenzelm@4285
   902
    in
wenzelm@4285
   903
      if forall is_none cts then thm'
wenzelm@4285
   904
      else Thm.instantiate ([], map inst_of (zip_vars (vars_of thm') cts)) thm'
wenzelm@4285
   905
    end;
wenzelm@4285
   906
wenzelm@4285
   907
berghofe@14081
   908
berghofe@14081
   909
(** renaming of bound variables **)
berghofe@14081
   910
berghofe@14081
   911
(* replace bound variables x_i in thm by y_i *)
berghofe@14081
   912
(* where vs = [(x_1, y_1), ..., (x_n, y_n)]  *)
berghofe@14081
   913
berghofe@14081
   914
fun rename_bvars [] thm = thm
berghofe@14081
   915
  | rename_bvars vs thm =
berghofe@14081
   916
    let
berghofe@14081
   917
      val {sign, prop, ...} = rep_thm thm;
berghofe@14081
   918
      fun ren (Abs (x, T, t)) = Abs (if_none (assoc (vs, x)) x, T, ren t)
berghofe@14081
   919
        | ren (t $ u) = ren t $ ren u
berghofe@14081
   920
        | ren t = t;
berghofe@14081
   921
    in equal_elim (reflexive (cterm_of sign (ren prop))) thm end;
berghofe@14081
   922
berghofe@14081
   923
berghofe@14081
   924
(* renaming in left-to-right order *)
berghofe@14081
   925
berghofe@14081
   926
fun rename_bvars' xs thm =
berghofe@14081
   927
  let
berghofe@14081
   928
    val {sign, prop, ...} = rep_thm thm;
berghofe@14081
   929
    fun rename [] t = ([], t)
berghofe@14081
   930
      | rename (x' :: xs) (Abs (x, T, t)) =
berghofe@14081
   931
          let val (xs', t') = rename xs t
berghofe@14081
   932
          in (xs', Abs (if_none x' x, T, t')) end
berghofe@14081
   933
      | rename xs (t $ u) =
berghofe@14081
   934
          let
berghofe@14081
   935
            val (xs', t') = rename xs t;
berghofe@14081
   936
            val (xs'', u') = rename xs' u
berghofe@14081
   937
          in (xs'', t' $ u') end
berghofe@14081
   938
      | rename xs t = (xs, t);
berghofe@14081
   939
  in case rename xs prop of
berghofe@14081
   940
      ([], prop') => equal_elim (reflexive (cterm_of sign prop')) thm
berghofe@14081
   941
    | _ => error "More names than abstractions in theorem"
berghofe@14081
   942
  end;
berghofe@14081
   943
berghofe@14081
   944
berghofe@14081
   945
wenzelm@5688
   946
(* unvarify(T) *)
wenzelm@5688
   947
wenzelm@5688
   948
(*assume thm in standard form, i.e. no frees, 0 var indexes*)
wenzelm@5688
   949
wenzelm@5688
   950
fun unvarifyT thm =
wenzelm@5688
   951
  let
wenzelm@5688
   952
    val cT = Thm.ctyp_of (Thm.sign_of_thm thm);
wenzelm@5688
   953
    val tfrees = map (fn ((x, _), S) => Some (cT (TFree (x, S)))) (tvars_of thm);
wenzelm@5688
   954
  in instantiate' tfrees [] thm end;
wenzelm@5688
   955
wenzelm@5688
   956
fun unvarify raw_thm =
wenzelm@5688
   957
  let
wenzelm@5688
   958
    val thm = unvarifyT raw_thm;
wenzelm@5688
   959
    val ct = Thm.cterm_of (Thm.sign_of_thm thm);
wenzelm@5688
   960
    val frees = map (fn ((x, _), T) => Some (ct (Free (x, T)))) (vars_of thm);
wenzelm@5688
   961
  in instantiate' [] frees thm end;
wenzelm@5688
   962
wenzelm@5688
   963
wenzelm@8605
   964
(* tvars_intr_list *)
wenzelm@8605
   965
wenzelm@8605
   966
fun tfrees_of thm =
wenzelm@8605
   967
  let val {hyps, prop, ...} = Thm.rep_thm thm
wenzelm@8605
   968
  in foldr Term.add_term_tfree_names (prop :: hyps, []) end;
wenzelm@8605
   969
wenzelm@8605
   970
fun tvars_intr_list tfrees thm =
wenzelm@8605
   971
  Thm.varifyT' (tfrees_of thm \\ tfrees) thm;
wenzelm@8605
   972
wenzelm@8605
   973
wenzelm@6435
   974
(* increment var indexes *)
wenzelm@6435
   975
wenzelm@6435
   976
fun incr_indexes_wrt is cTs cts thms =
wenzelm@6435
   977
  let
wenzelm@6435
   978
    val maxidx =
wenzelm@6435
   979
      foldl Int.max (~1, is @
wenzelm@6435
   980
        map (maxidx_of_typ o #T o Thm.rep_ctyp) cTs @
wenzelm@6435
   981
        map (#maxidx o Thm.rep_cterm) cts @
wenzelm@6435
   982
        map (#maxidx o Thm.rep_thm) thms);
berghofe@10414
   983
  in Thm.incr_indexes (maxidx + 1) end;
wenzelm@6435
   984
wenzelm@6435
   985
wenzelm@8328
   986
(* freeze_all *)
wenzelm@8328
   987
wenzelm@8328
   988
(*freeze all (T)Vars; assumes thm in standard form*)
wenzelm@8328
   989
wenzelm@8328
   990
fun freeze_all_TVars thm =
wenzelm@8328
   991
  (case tvars_of thm of
wenzelm@8328
   992
    [] => thm
wenzelm@8328
   993
  | tvars =>
wenzelm@8328
   994
      let val cert = Thm.ctyp_of (Thm.sign_of_thm thm)
wenzelm@8328
   995
      in instantiate' (map (fn ((x, _), S) => Some (cert (TFree (x, S)))) tvars) [] thm end);
wenzelm@8328
   996
wenzelm@8328
   997
fun freeze_all_Vars thm =
wenzelm@8328
   998
  (case vars_of thm of
wenzelm@8328
   999
    [] => thm
wenzelm@8328
  1000
  | vars =>
wenzelm@8328
  1001
      let val cert = Thm.cterm_of (Thm.sign_of_thm thm)
wenzelm@8328
  1002
      in instantiate' [] (map (fn ((x, _), T) => Some (cert (Free (x, T)))) vars) thm end);
wenzelm@8328
  1003
wenzelm@8328
  1004
val freeze_all = freeze_all_Vars o freeze_all_TVars;
wenzelm@8328
  1005
wenzelm@8328
  1006
wenzelm@5688
  1007
(* mk_triv_goal *)
wenzelm@5688
  1008
wenzelm@5688
  1009
(*make an initial proof state, "PROP A ==> (PROP A)" *)
paulson@5311
  1010
fun mk_triv_goal ct = instantiate' [] [Some ct] triv_goal;
paulson@5311
  1011
wenzelm@11975
  1012
wenzelm@11975
  1013
wenzelm@11975
  1014
(** meta-level conjunction **)
wenzelm@11975
  1015
wenzelm@11975
  1016
local
wenzelm@11975
  1017
  val A = read_prop "PROP A";
wenzelm@11975
  1018
  val B = read_prop "PROP B";
wenzelm@11975
  1019
  val C = read_prop "PROP C";
wenzelm@11975
  1020
  val ABC = read_prop "PROP A ==> PROP B ==> PROP C";
wenzelm@11975
  1021
wenzelm@11975
  1022
  val proj1 =
wenzelm@11975
  1023
    forall_intr_list [A, B] (implies_intr_list [A, B] (Thm.assume A))
wenzelm@11975
  1024
    |> forall_elim_vars 0;
wenzelm@11975
  1025
wenzelm@11975
  1026
  val proj2 =
wenzelm@11975
  1027
    forall_intr_list [A, B] (implies_intr_list [A, B] (Thm.assume B))
wenzelm@11975
  1028
    |> forall_elim_vars 0;
wenzelm@11975
  1029
wenzelm@11975
  1030
  val conj_intr_rule =
wenzelm@11975
  1031
    forall_intr_list [A, B] (implies_intr_list [A, B]
wenzelm@11975
  1032
      (Thm.forall_intr C (Thm.implies_intr ABC
wenzelm@11975
  1033
        (implies_elim_list (Thm.assume ABC) [Thm.assume A, Thm.assume B]))))
wenzelm@11975
  1034
    |> forall_elim_vars 0;
wenzelm@11975
  1035
wenzelm@11975
  1036
  val incr = incr_indexes_wrt [] [] [];
wenzelm@11975
  1037
in
wenzelm@11975
  1038
wenzelm@11975
  1039
fun conj_intr tha thb = thb COMP (tha COMP incr [tha, thb] conj_intr_rule);
wenzelm@12756
  1040
wenzelm@12756
  1041
fun conj_intr_list [] = asm_rl
wenzelm@12756
  1042
  | conj_intr_list ths = foldr1 (uncurry conj_intr) ths;
wenzelm@11975
  1043
wenzelm@11975
  1044
fun conj_elim th =
wenzelm@11975
  1045
  let val th' = forall_elim_var (#maxidx (Thm.rep_thm th) + 1) th
wenzelm@11975
  1046
  in (incr [th'] proj1 COMP th', incr [th'] proj2 COMP th') end;
wenzelm@11975
  1047
wenzelm@11975
  1048
fun conj_elim_list th =
wenzelm@11975
  1049
  let val (th1, th2) = conj_elim th
wenzelm@11975
  1050
  in conj_elim_list th1 @ conj_elim_list th2 end handle THM _ => [th];
wenzelm@11975
  1051
wenzelm@12756
  1052
fun conj_elim_precise 0 _ = []
wenzelm@12756
  1053
  | conj_elim_precise 1 th = [th]
wenzelm@12135
  1054
  | conj_elim_precise n th =
wenzelm@12135
  1055
      let val (th1, th2) = conj_elim th
wenzelm@12135
  1056
      in th1 :: conj_elim_precise (n - 1) th2 end;
wenzelm@12135
  1057
wenzelm@12135
  1058
val conj_intr_thm = store_standard_thm_open "conjunctionI"
wenzelm@12135
  1059
  (implies_intr_list [A, B] (conj_intr (Thm.assume A) (Thm.assume B)));
wenzelm@12135
  1060
clasohm@0
  1061
end;
wenzelm@252
  1062
wenzelm@11975
  1063
end;
wenzelm@5903
  1064
wenzelm@5903
  1065
structure BasicDrule: BASIC_DRULE = Drule;
wenzelm@5903
  1066
open BasicDrule;