src/Pure/drule.ML
author wenzelm
Wed Oct 12 16:38:58 1994 +0100 (1994-10-12)
changeset 641 49fc43cd6a35
parent 575 74f0e5fce609
child 655 9748dbcd4157
permissions -rw-r--r--
add_defs: improved error messages;
installed new print_goals with nice 'env mode';
wenzelm@252
     1
(*  Title:      Pure/drule.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@252
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1993  University of Cambridge
clasohm@0
     5
clasohm@0
     6
Derived rules and other operations on theorems and theories
clasohm@0
     7
*)
clasohm@0
     8
lcp@11
     9
infix 0 RS RSN RL RLN MRS MRL COMP;
clasohm@0
    10
clasohm@0
    11
signature DRULE =
clasohm@0
    12
  sig
clasohm@0
    13
  structure Thm : THM
clasohm@0
    14
  local open Thm  in
wenzelm@561
    15
  val add_defs: (string * string) list -> theory -> theory
wenzelm@561
    16
  val add_defs_i: (string * term) list -> theory -> theory
clasohm@0
    17
  val asm_rl: thm
clasohm@0
    18
  val assume_ax: theory -> string -> thm
clasohm@0
    19
  val COMP: thm * thm -> thm
clasohm@0
    20
  val compose: thm * int * thm -> thm list
lcp@229
    21
  val cterm_instantiate: (cterm*cterm)list -> thm -> thm
clasohm@0
    22
  val cut_rl: thm
lcp@229
    23
  val equal_abs_elim: cterm  -> thm -> thm
lcp@229
    24
  val equal_abs_elim_list: cterm list -> thm -> thm
clasohm@0
    25
  val eq_thm: thm * thm -> bool
clasohm@0
    26
  val eq_thm_sg: thm * thm -> bool
lcp@229
    27
  val flexpair_abs_elim_list: cterm list -> thm -> thm
lcp@229
    28
  val forall_intr_list: cterm list -> thm -> thm
clasohm@0
    29
  val forall_intr_frees: thm -> thm
lcp@229
    30
  val forall_elim_list: cterm list -> thm -> thm
clasohm@0
    31
  val forall_elim_var: int -> thm -> thm
clasohm@0
    32
  val forall_elim_vars: int -> thm -> thm
clasohm@0
    33
  val implies_elim_list: thm -> thm list -> thm
lcp@229
    34
  val implies_intr_list: cterm list -> thm -> thm
lcp@11
    35
  val MRL: thm list list * thm list -> thm list
lcp@11
    36
  val MRS: thm list * thm -> thm
lcp@229
    37
  val pprint_cterm: cterm -> pprint_args -> unit
lcp@229
    38
  val pprint_ctyp: ctyp -> pprint_args -> unit
lcp@229
    39
  val pprint_theory: theory -> pprint_args -> unit
lcp@229
    40
  val pprint_thm: thm -> pprint_args -> unit
lcp@229
    41
  val pretty_thm: thm -> Sign.Syntax.Pretty.T
lcp@229
    42
  val print_cterm: cterm -> unit
lcp@229
    43
  val print_ctyp: ctyp -> unit
clasohm@0
    44
  val print_goals: int -> thm -> unit
lcp@67
    45
  val print_goals_ref: (int -> thm -> unit) ref
wenzelm@575
    46
  val print_syntax: theory -> unit
wenzelm@385
    47
  val print_sign: theory -> unit
wenzelm@385
    48
  val print_axioms: theory -> unit
clasohm@0
    49
  val print_theory: theory -> unit
clasohm@0
    50
  val print_thm: thm -> unit
clasohm@0
    51
  val prth: thm -> thm
clasohm@0
    52
  val prthq: thm Sequence.seq -> thm Sequence.seq
clasohm@0
    53
  val prths: thm list -> thm list
clasohm@0
    54
  val read_instantiate: (string*string)list -> thm -> thm
clasohm@0
    55
  val read_instantiate_sg: Sign.sg -> (string*string)list -> thm -> thm
wenzelm@252
    56
  val read_insts:
lcp@229
    57
          Sign.sg -> (indexname -> typ option) * (indexname -> sort option)
lcp@229
    58
                  -> (indexname -> typ option) * (indexname -> sort option)
lcp@229
    59
                  -> (string*string)list
lcp@229
    60
                  -> (indexname*ctyp)list * (cterm*cterm)list
clasohm@0
    61
  val reflexive_thm: thm
clasohm@0
    62
  val revcut_rl: thm
nipkow@214
    63
  val rewrite_goal_rule: bool*bool -> (meta_simpset -> thm -> thm option)
nipkow@214
    64
        -> meta_simpset -> int -> thm -> thm
clasohm@0
    65
  val rewrite_goals_rule: thm list -> thm -> thm
clasohm@0
    66
  val rewrite_rule: thm list -> thm -> thm
clasohm@0
    67
  val RS: thm * thm -> thm
clasohm@0
    68
  val RSN: thm * (int * thm) -> thm
clasohm@0
    69
  val RL: thm list * thm list -> thm list
clasohm@0
    70
  val RLN: thm list * (int * thm list) -> thm list
clasohm@0
    71
  val show_hyps: bool ref
clasohm@0
    72
  val size_of_thm: thm -> int
clasohm@0
    73
  val standard: thm -> thm
lcp@229
    74
  val string_of_cterm: cterm -> string
lcp@229
    75
  val string_of_ctyp: ctyp -> string
clasohm@0
    76
  val string_of_thm: thm -> string
clasohm@0
    77
  val symmetric_thm: thm
clasohm@0
    78
  val transitive_thm: thm
clasohm@0
    79
  val triv_forall_equality: thm
clasohm@0
    80
  val types_sorts: thm -> (indexname-> typ option) * (indexname-> sort option)
clasohm@0
    81
  val zero_var_indexes: thm -> thm
clasohm@0
    82
  end
clasohm@0
    83
  end;
clasohm@0
    84
wenzelm@252
    85
functor DruleFun (structure Logic: LOGIC and Thm: THM): DRULE =
clasohm@0
    86
struct
clasohm@0
    87
structure Thm = Thm;
clasohm@0
    88
structure Sign = Thm.Sign;
clasohm@0
    89
structure Type = Sign.Type;
wenzelm@575
    90
structure Syntax = Sign.Syntax;
wenzelm@575
    91
structure Pretty = Syntax.Pretty
wenzelm@400
    92
structure Symtab = Sign.Symtab;
wenzelm@400
    93
clasohm@0
    94
local open Thm
clasohm@0
    95
in
clasohm@0
    96
wenzelm@561
    97
(**** Extend Theories ****)
wenzelm@561
    98
wenzelm@561
    99
(** add constant definitions **)
wenzelm@561
   100
wenzelm@561
   101
(* all_axioms_of *)
wenzelm@561
   102
wenzelm@561
   103
(*results may contain duplicates!*)
wenzelm@561
   104
wenzelm@561
   105
fun ancestry_of thy =
wenzelm@561
   106
  thy :: flat (map ancestry_of (parents_of thy));
wenzelm@561
   107
wenzelm@561
   108
val all_axioms_of = flat o map axioms_of o ancestry_of;
wenzelm@561
   109
wenzelm@561
   110
wenzelm@561
   111
(* clash_types, clash_consts *)
wenzelm@561
   112
wenzelm@561
   113
(*check if types have common instance (ignoring sorts)*)
wenzelm@561
   114
wenzelm@561
   115
fun clash_types ty1 ty2 =
wenzelm@561
   116
  let
wenzelm@561
   117
    val ty1' = Type.varifyT ty1;
wenzelm@561
   118
    val ty2' = incr_tvar (maxidx_of_typ ty1' + 1) (Type.varifyT ty2);
wenzelm@561
   119
  in
wenzelm@561
   120
    Type.raw_unify (ty1', ty2')
wenzelm@561
   121
  end;
wenzelm@561
   122
wenzelm@561
   123
fun clash_consts (c1, ty1) (c2, ty2) =
wenzelm@561
   124
  c1 = c2 andalso clash_types ty1 ty2;
wenzelm@561
   125
wenzelm@561
   126
wenzelm@561
   127
(* clash_defns *)
wenzelm@561
   128
wenzelm@561
   129
fun clash_defn c_ty (name, tm) =
wenzelm@561
   130
  let val (c, ty') = dest_Const (head_of (fst (Logic.dest_equals tm))) in
wenzelm@561
   131
    if clash_consts c_ty (c, ty') then Some (name, ty') else None
wenzelm@561
   132
  end handle TERM _ => None;
wenzelm@561
   133
wenzelm@561
   134
fun clash_defns c_ty axms =
wenzelm@561
   135
  distinct (mapfilter (clash_defn c_ty) axms);
wenzelm@561
   136
wenzelm@561
   137
wenzelm@561
   138
(* dest_defn *)
wenzelm@561
   139
wenzelm@561
   140
fun dest_defn tm =
wenzelm@561
   141
  let
wenzelm@561
   142
    fun err msg = raise_term msg [tm];
wenzelm@561
   143
wenzelm@561
   144
    val (lhs, rhs) = Logic.dest_equals tm
wenzelm@561
   145
      handle TERM _ => err "Not a meta-equality (==)";
wenzelm@561
   146
    val (head, args) = strip_comb lhs;
wenzelm@561
   147
    val (c, ty) = dest_Const head
wenzelm@561
   148
      handle TERM _ => err "Head of lhs not a constant";
wenzelm@561
   149
wenzelm@641
   150
    fun occs_const (Const (c', _)) = (c = c')
wenzelm@561
   151
      | occs_const (Abs (_, _, t)) = occs_const t
wenzelm@561
   152
      | occs_const (t $ u) = occs_const t orelse occs_const u
wenzelm@561
   153
      | occs_const _ = false;
wenzelm@641
   154
wenzelm@641
   155
    val show_frees = commas_quote o map (fst o dest_Free);
wenzelm@641
   156
    val show_tfrees = commas_quote o map fst;
wenzelm@641
   157
wenzelm@641
   158
    val lhs_dups = duplicates args;
wenzelm@641
   159
    val rhs_extras = gen_rems (op =) (term_frees rhs, args);
wenzelm@641
   160
    val rhs_extrasT = gen_rems (op =) (term_tfrees rhs, typ_tfrees ty);
wenzelm@561
   161
  in
wenzelm@561
   162
    if not (forall is_Free args) then
wenzelm@561
   163
      err "Arguments of lhs have to be variables"
wenzelm@641
   164
    else if not (null lhs_dups) then
wenzelm@641
   165
      err ("Duplicate variables on lhs: " ^ show_frees lhs_dups)
wenzelm@641
   166
    else if not (null rhs_extras) then
wenzelm@641
   167
      err ("Extra variables on rhs: " ^ show_frees rhs_extras)
wenzelm@641
   168
    else if not (null rhs_extrasT) then
wenzelm@641
   169
      err ("Extra type variables on rhs: " ^ show_tfrees rhs_extrasT)
wenzelm@561
   170
    else if occs_const rhs then
wenzelm@641
   171
      err ("Constant " ^ quote c ^ " occurs on rhs")
wenzelm@561
   172
    else (c, ty)
wenzelm@561
   173
  end;
wenzelm@561
   174
wenzelm@561
   175
wenzelm@561
   176
(* check_defn *)
wenzelm@561
   177
wenzelm@641
   178
fun err_in_defn name msg =
wenzelm@641
   179
  (writeln msg; error ("The error(s) above occurred in definition " ^ quote name));
wenzelm@561
   180
wenzelm@561
   181
fun check_defn sign (axms, (name, tm)) =
wenzelm@561
   182
  let
wenzelm@561
   183
    fun show_const (c, ty) = quote (Pretty.string_of (Pretty.block
wenzelm@561
   184
      [Pretty.str (c ^ " ::"), Pretty.brk 1, Sign.pretty_typ sign ty]));
wenzelm@561
   185
wenzelm@561
   186
    fun show_defn c (dfn, ty') = show_const (c, ty') ^ " in " ^ dfn;
wenzelm@561
   187
    fun show_defns c = commas o map (show_defn c);
wenzelm@561
   188
wenzelm@561
   189
    val (c, ty) = dest_defn tm
wenzelm@641
   190
      handle TERM (msg, _) => err_in_defn name msg;
wenzelm@561
   191
    val defns = clash_defns (c, ty) axms;
wenzelm@561
   192
  in
wenzelm@561
   193
    if not (null defns) then
wenzelm@641
   194
      err_in_defn name ("Definition of " ^ show_const (c, ty) ^
wenzelm@561
   195
        " clashes with " ^ show_defns c defns)
wenzelm@561
   196
    else (name, tm) :: axms
wenzelm@561
   197
  end;
wenzelm@561
   198
wenzelm@561
   199
wenzelm@561
   200
(* add_defs *)
wenzelm@561
   201
wenzelm@561
   202
fun ext_defns prep_axm raw_axms thy =
wenzelm@561
   203
  let
wenzelm@561
   204
    val axms = map (prep_axm (sign_of thy)) raw_axms;
wenzelm@561
   205
    val all_axms = all_axioms_of thy;
wenzelm@561
   206
  in
wenzelm@561
   207
    foldl (check_defn (sign_of thy)) (all_axms, axms);
wenzelm@561
   208
    add_axioms_i axms thy
wenzelm@561
   209
  end;
wenzelm@561
   210
wenzelm@561
   211
val add_defs_i = ext_defns cert_axm;
wenzelm@561
   212
val add_defs = ext_defns read_axm;
wenzelm@561
   213
wenzelm@561
   214
wenzelm@561
   215
clasohm@0
   216
(**** More derived rules and operations on theorems ****)
clasohm@0
   217
lcp@229
   218
(** reading of instantiations **)
lcp@229
   219
lcp@229
   220
fun indexname cs = case Syntax.scan_varname cs of (v,[]) => v
lcp@229
   221
        | _ => error("Lexical error in variable name " ^ quote (implode cs));
lcp@229
   222
lcp@229
   223
fun absent ixn =
lcp@229
   224
  error("No such variable in term: " ^ Syntax.string_of_vname ixn);
lcp@229
   225
lcp@229
   226
fun inst_failure ixn =
lcp@229
   227
  error("Instantiation of " ^ Syntax.string_of_vname ixn ^ " fails");
lcp@229
   228
lcp@229
   229
fun read_insts sign (rtypes,rsorts) (types,sorts) insts =
lcp@229
   230
let val {tsig,...} = Sign.rep_sg sign
lcp@229
   231
    fun split([],tvs,vs) = (tvs,vs)
lcp@229
   232
      | split((sv,st)::l,tvs,vs) = (case explode sv of
lcp@229
   233
                  "'"::cs => split(l,(indexname cs,st)::tvs,vs)
lcp@229
   234
                | cs => split(l,tvs,(indexname cs,st)::vs));
lcp@229
   235
    val (tvs,vs) = split(insts,[],[]);
lcp@229
   236
    fun readT((a,i),st) =
lcp@229
   237
        let val ixn = ("'" ^ a,i);
lcp@229
   238
            val S = case rsorts ixn of Some S => S | None => absent ixn;
lcp@229
   239
            val T = Sign.read_typ (sign,sorts) st;
lcp@229
   240
        in if Type.typ_instance(tsig,T,TVar(ixn,S)) then (ixn,T)
lcp@229
   241
           else inst_failure ixn
lcp@229
   242
        end
lcp@229
   243
    val tye = map readT tvs;
lcp@229
   244
    fun add_cterm ((cts,tye), (ixn,st)) =
lcp@229
   245
        let val T = case rtypes ixn of
lcp@229
   246
                      Some T => typ_subst_TVars tye T
lcp@229
   247
                    | None => absent ixn;
lcp@229
   248
            val (ct,tye2) = read_def_cterm (sign,types,sorts) (st,T);
lcp@229
   249
            val cv = cterm_of sign (Var(ixn,typ_subst_TVars tye2 T))
lcp@229
   250
        in ((cv,ct)::cts,tye2 @ tye) end
lcp@229
   251
    val (cterms,tye') = foldl add_cterm (([],tye), vs);
lcp@229
   252
in (map (fn (ixn,T) => (ixn,ctyp_of sign T)) tye', cterms) end;
lcp@229
   253
lcp@229
   254
wenzelm@252
   255
wenzelm@252
   256
(*** Printing of theories, theorems, etc. ***)
lcp@229
   257
lcp@229
   258
(*If false, hypotheses are printed as dots*)
lcp@229
   259
val show_hyps = ref true;
lcp@229
   260
lcp@229
   261
fun pretty_thm th =
lcp@229
   262
let val {sign, hyps, prop,...} = rep_thm th
lcp@229
   263
    val hsymbs = if null hyps then []
wenzelm@252
   264
                 else if !show_hyps then
wenzelm@252
   265
                      [Pretty.brk 2,
wenzelm@252
   266
                       Pretty.lst("[","]") (map (Sign.pretty_term sign) hyps)]
wenzelm@252
   267
                 else Pretty.str" [" :: map (fn _ => Pretty.str".") hyps @
wenzelm@252
   268
                      [Pretty.str"]"];
lcp@229
   269
in Pretty.blk(0, Sign.pretty_term sign prop :: hsymbs) end;
lcp@229
   270
lcp@229
   271
val string_of_thm = Pretty.string_of o pretty_thm;
lcp@229
   272
lcp@229
   273
val pprint_thm = Pretty.pprint o Pretty.quote o pretty_thm;
lcp@229
   274
lcp@229
   275
lcp@229
   276
(** Top-level commands for printing theorems **)
lcp@229
   277
val print_thm = writeln o string_of_thm;
lcp@229
   278
lcp@229
   279
fun prth th = (print_thm th; th);
lcp@229
   280
lcp@229
   281
(*Print and return a sequence of theorems, separated by blank lines. *)
lcp@229
   282
fun prthq thseq =
wenzelm@252
   283
  (Sequence.prints (fn _ => print_thm) 100000 thseq; thseq);
lcp@229
   284
lcp@229
   285
(*Print and return a list of theorems, separated by blank lines. *)
lcp@229
   286
fun prths ths = (print_list_ln print_thm ths; ths);
lcp@229
   287
wenzelm@252
   288
wenzelm@252
   289
(* other printing commands *)
lcp@229
   290
wenzelm@252
   291
fun pprint_ctyp cT =
wenzelm@252
   292
  let val {sign, T} = rep_ctyp cT in Sign.pprint_typ sign T end;
wenzelm@252
   293
wenzelm@252
   294
fun string_of_ctyp cT =
wenzelm@252
   295
  let val {sign, T} = rep_ctyp cT in Sign.string_of_typ sign T end;
lcp@229
   296
lcp@229
   297
val print_ctyp = writeln o string_of_ctyp;
lcp@229
   298
wenzelm@252
   299
fun pprint_cterm ct =
wenzelm@252
   300
  let val {sign, t, ...} = rep_cterm ct in Sign.pprint_term sign t end;
lcp@229
   301
wenzelm@252
   302
fun string_of_cterm ct =
wenzelm@252
   303
  let val {sign, t, ...} = rep_cterm ct in Sign.string_of_term sign t end;
lcp@229
   304
lcp@229
   305
val print_cterm = writeln o string_of_cterm;
lcp@229
   306
wenzelm@252
   307
wenzelm@252
   308
(* print theory *)
wenzelm@252
   309
wenzelm@252
   310
val pprint_theory = Sign.pprint_sg o sign_of;
lcp@229
   311
wenzelm@575
   312
val print_syntax = Syntax.print_syntax o syn_of;
wenzelm@575
   313
wenzelm@385
   314
val print_sign = Sign.print_sg o sign_of;
wenzelm@385
   315
wenzelm@385
   316
fun print_axioms thy =
wenzelm@252
   317
  let
wenzelm@400
   318
    val {sign, new_axioms, ...} = rep_theory thy;
wenzelm@400
   319
    val axioms = Symtab.dest new_axioms;
lcp@229
   320
wenzelm@385
   321
    fun prt_axm (a, t) = Pretty.block [Pretty.str (a ^ ":"), Pretty.brk 1,
wenzelm@385
   322
      Pretty.quote (Sign.pretty_term sign t)];
wenzelm@252
   323
  in
wenzelm@385
   324
    Pretty.writeln (Pretty.big_list "additional axioms:" (map prt_axm axioms))
wenzelm@252
   325
  end;
lcp@229
   326
wenzelm@385
   327
fun print_theory thy = (print_sign thy; print_axioms thy);
wenzelm@385
   328
lcp@229
   329
lcp@229
   330
lcp@229
   331
(** Print thm A1,...,An/B in "goal style" -- premises as numbered subgoals **)
lcp@229
   332
wenzelm@641
   333
(* get type_env, sort_env of term *)
wenzelm@641
   334
wenzelm@641
   335
local
wenzelm@641
   336
  open Syntax;
wenzelm@641
   337
wenzelm@641
   338
  fun ins_entry (x, y) [] = [(x, [y])]
wenzelm@641
   339
    | ins_entry (x, y) ((pair as (x', ys')) :: pairs) =
wenzelm@641
   340
        if x = x' then (x', y ins ys') :: pairs
wenzelm@641
   341
        else pair :: ins_entry (x, y) pairs;
wenzelm@641
   342
wenzelm@641
   343
  fun add_type_env (Free (x, T), env) = ins_entry (T, x) env
wenzelm@641
   344
    | add_type_env (Var (xi, T), env) = ins_entry (T, string_of_vname xi) env
wenzelm@641
   345
    | add_type_env (Abs (_, _, t), env) = add_type_env (t, env)
wenzelm@641
   346
    | add_type_env (t $ u, env) = add_type_env (u, add_type_env (t, env))
wenzelm@641
   347
    | add_type_env (_, env) = env;
wenzelm@641
   348
wenzelm@641
   349
  fun add_sort_env (Type (_, Ts), env) = foldr add_sort_env (Ts, env)
wenzelm@641
   350
    | add_sort_env (TFree (x, S), env) = ins_entry (S, x) env
wenzelm@641
   351
    | add_sort_env (TVar (xi, S), env) = ins_entry (S, string_of_vname xi) env;
wenzelm@641
   352
wenzelm@641
   353
  val sort = map (apsnd sort_strings);
wenzelm@641
   354
in
wenzelm@641
   355
  fun type_env t = sort (add_type_env (t, []));
wenzelm@641
   356
  fun sort_env t = rev (sort (it_term_types add_sort_env (t, [])));
wenzelm@641
   357
end;
wenzelm@641
   358
wenzelm@641
   359
wenzelm@641
   360
(* print_goals *)
wenzelm@641
   361
wenzelm@641
   362
fun print_goals maxgoals state =
wenzelm@641
   363
  let
wenzelm@641
   364
    open Syntax;
wenzelm@641
   365
wenzelm@641
   366
    val {sign, prop, ...} = rep_thm state;
wenzelm@641
   367
wenzelm@641
   368
    val pretty_term = Sign.pretty_term sign;
wenzelm@641
   369
    val pretty_typ = Sign.pretty_typ sign;
wenzelm@641
   370
    val pretty_sort = Sign.pretty_sort;
wenzelm@641
   371
wenzelm@641
   372
    fun pretty_vars prtf (X, vs) = Pretty.block
wenzelm@641
   373
      [Pretty.block (Pretty.commas (map Pretty.str vs)),
wenzelm@641
   374
        Pretty.str " ::", Pretty.brk 1, prtf X];
lcp@229
   375
wenzelm@641
   376
    fun print_list _ _ [] = ()
wenzelm@641
   377
      | print_list name prtf lst =
wenzelm@641
   378
          (writeln ""; Pretty.writeln (Pretty.big_list name (map prtf lst)));
wenzelm@641
   379
wenzelm@641
   380
wenzelm@641
   381
    fun print_goals (_, []) = ()
wenzelm@641
   382
      | print_goals (n, A :: As) = (Pretty.writeln (Pretty.blk (0,
wenzelm@641
   383
          [Pretty.str (" " ^ string_of_int n ^ ". "), pretty_term A]));
wenzelm@641
   384
            print_goals (n + 1, As));
wenzelm@641
   385
wenzelm@641
   386
    val print_ffpairs =
wenzelm@641
   387
      print_list "Flex-flex pairs:" (pretty_term o Logic.mk_flexpair);
wenzelm@641
   388
wenzelm@641
   389
    val print_types = print_list "Types:" (pretty_vars pretty_typ) o type_env;
wenzelm@641
   390
    val print_sorts = print_list "Sorts:" (pretty_vars pretty_sort) o sort_env;
wenzelm@641
   391
wenzelm@641
   392
wenzelm@641
   393
    val (tpairs, As, B) = Logic.strip_horn prop;
wenzelm@641
   394
    val ngoals = length As;
wenzelm@641
   395
wenzelm@641
   396
    val orig_no_freeTs = ! show_no_free_types;
wenzelm@641
   397
    val orig_sorts = ! show_sorts;
wenzelm@641
   398
wenzelm@641
   399
    fun restore () =
wenzelm@641
   400
      (show_no_free_types := orig_no_freeTs; show_sorts := orig_sorts);
wenzelm@641
   401
  in
wenzelm@641
   402
    (show_no_free_types := true; show_sorts := false;
wenzelm@641
   403
wenzelm@641
   404
      Pretty.writeln (pretty_term B);
wenzelm@641
   405
wenzelm@641
   406
      if ngoals = 0 then writeln "No subgoals!"
wenzelm@641
   407
      else if ngoals > maxgoals then
wenzelm@641
   408
        (print_goals (1, take (maxgoals, As));
wenzelm@641
   409
          writeln ("A total of " ^ string_of_int ngoals ^ " subgoals..."))
wenzelm@641
   410
      else print_goals (1, As);
wenzelm@641
   411
wenzelm@641
   412
      print_ffpairs tpairs;
wenzelm@641
   413
wenzelm@641
   414
      if orig_sorts then
wenzelm@641
   415
        (print_types prop; print_sorts prop)
wenzelm@641
   416
      else if ! show_types then
wenzelm@641
   417
        print_types prop
wenzelm@641
   418
      else ())
wenzelm@641
   419
    handle exn => (restore (); raise exn);
wenzelm@641
   420
    restore ()
wenzelm@641
   421
  end;
wenzelm@641
   422
lcp@229
   423
lcp@229
   424
(*"hook" for user interfaces: allows print_goals to be replaced*)
lcp@229
   425
val print_goals_ref = ref print_goals;
lcp@229
   426
wenzelm@252
   427
(*** Find the type (sort) associated with a (T)Var or (T)Free in a term
clasohm@0
   428
     Used for establishing default types (of variables) and sorts (of
clasohm@0
   429
     type variables) when reading another term.
clasohm@0
   430
     Index -1 indicates that a (T)Free rather than a (T)Var is wanted.
clasohm@0
   431
***)
clasohm@0
   432
clasohm@0
   433
fun types_sorts thm =
clasohm@0
   434
    let val {prop,hyps,...} = rep_thm thm;
wenzelm@252
   435
        val big = list_comb(prop,hyps); (* bogus term! *)
wenzelm@252
   436
        val vars = map dest_Var (term_vars big);
wenzelm@252
   437
        val frees = map dest_Free (term_frees big);
wenzelm@252
   438
        val tvars = term_tvars big;
wenzelm@252
   439
        val tfrees = term_tfrees big;
wenzelm@252
   440
        fun typ(a,i) = if i<0 then assoc(frees,a) else assoc(vars,(a,i));
wenzelm@252
   441
        fun sort(a,i) = if i<0 then assoc(tfrees,a) else assoc(tvars,(a,i));
clasohm@0
   442
    in (typ,sort) end;
clasohm@0
   443
clasohm@0
   444
(** Standardization of rules **)
clasohm@0
   445
clasohm@0
   446
(*Generalization over a list of variables, IGNORING bad ones*)
clasohm@0
   447
fun forall_intr_list [] th = th
clasohm@0
   448
  | forall_intr_list (y::ys) th =
wenzelm@252
   449
        let val gth = forall_intr_list ys th
wenzelm@252
   450
        in  forall_intr y gth   handle THM _ =>  gth  end;
clasohm@0
   451
clasohm@0
   452
(*Generalization over all suitable Free variables*)
clasohm@0
   453
fun forall_intr_frees th =
clasohm@0
   454
    let val {prop,sign,...} = rep_thm th
clasohm@0
   455
    in  forall_intr_list
wenzelm@252
   456
         (map (cterm_of sign) (sort atless (term_frees prop)))
clasohm@0
   457
         th
clasohm@0
   458
    end;
clasohm@0
   459
clasohm@0
   460
(*Replace outermost quantified variable by Var of given index.
clasohm@0
   461
    Could clash with Vars already present.*)
wenzelm@252
   462
fun forall_elim_var i th =
clasohm@0
   463
    let val {prop,sign,...} = rep_thm th
clasohm@0
   464
    in case prop of
wenzelm@252
   465
          Const("all",_) $ Abs(a,T,_) =>
wenzelm@252
   466
              forall_elim (cterm_of sign (Var((a,i), T)))  th
wenzelm@252
   467
        | _ => raise THM("forall_elim_var", i, [th])
clasohm@0
   468
    end;
clasohm@0
   469
clasohm@0
   470
(*Repeat forall_elim_var until all outer quantifiers are removed*)
wenzelm@252
   471
fun forall_elim_vars i th =
clasohm@0
   472
    forall_elim_vars i (forall_elim_var i th)
wenzelm@252
   473
        handle THM _ => th;
clasohm@0
   474
clasohm@0
   475
(*Specialization over a list of cterms*)
clasohm@0
   476
fun forall_elim_list cts th = foldr (uncurry forall_elim) (rev cts, th);
clasohm@0
   477
clasohm@0
   478
(* maps [A1,...,An], B   to   [| A1;...;An |] ==> B  *)
clasohm@0
   479
fun implies_intr_list cAs th = foldr (uncurry implies_intr) (cAs,th);
clasohm@0
   480
clasohm@0
   481
(* maps [| A1;...;An |] ==> B and [A1,...,An]   to   B *)
clasohm@0
   482
fun implies_elim_list impth ths = foldl (uncurry implies_elim) (impth,ths);
clasohm@0
   483
clasohm@0
   484
(*Reset Var indexes to zero, renaming to preserve distinctness*)
wenzelm@252
   485
fun zero_var_indexes th =
clasohm@0
   486
    let val {prop,sign,...} = rep_thm th;
clasohm@0
   487
        val vars = term_vars prop
clasohm@0
   488
        val bs = foldl add_new_id ([], map (fn Var((a,_),_)=>a) vars)
wenzelm@252
   489
        val inrs = add_term_tvars(prop,[]);
wenzelm@252
   490
        val nms' = rev(foldl add_new_id ([], map (#1 o #1) inrs));
wenzelm@252
   491
        val tye = map (fn ((v,rs),a) => (v, TVar((a,0),rs))) (inrs ~~ nms')
wenzelm@252
   492
        val ctye = map (fn (v,T) => (v,ctyp_of sign T)) tye;
wenzelm@252
   493
        fun varpairs([],[]) = []
wenzelm@252
   494
          | varpairs((var as Var(v,T)) :: vars, b::bs) =
wenzelm@252
   495
                let val T' = typ_subst_TVars tye T
wenzelm@252
   496
                in (cterm_of sign (Var(v,T')),
wenzelm@252
   497
                    cterm_of sign (Var((b,0),T'))) :: varpairs(vars,bs)
wenzelm@252
   498
                end
wenzelm@252
   499
          | varpairs _ = raise TERM("varpairs", []);
clasohm@0
   500
    in instantiate (ctye, varpairs(vars,rev bs)) th end;
clasohm@0
   501
clasohm@0
   502
clasohm@0
   503
(*Standard form of object-rule: no hypotheses, Frees, or outer quantifiers;
clasohm@0
   504
    all generality expressed by Vars having index 0.*)
clasohm@0
   505
fun standard th =
clasohm@0
   506
    let val {maxidx,...} = rep_thm th
wenzelm@252
   507
    in  varifyT (zero_var_indexes (forall_elim_vars(maxidx+1)
clasohm@0
   508
                         (forall_intr_frees(implies_intr_hyps th))))
clasohm@0
   509
    end;
clasohm@0
   510
wenzelm@252
   511
(*Assume a new formula, read following the same conventions as axioms.
clasohm@0
   512
  Generalizes over Free variables,
clasohm@0
   513
  creates the assumption, and then strips quantifiers.
clasohm@0
   514
  Example is [| ALL x:?A. ?P(x) |] ==> [| ?P(?a) |]
wenzelm@252
   515
             [ !(A,P,a)[| ALL x:A. P(x) |] ==> [| P(a) |] ]    *)
clasohm@0
   516
fun assume_ax thy sP =
clasohm@0
   517
    let val sign = sign_of thy
wenzelm@252
   518
        val prop = Logic.close_form (term_of (read_cterm sign
wenzelm@252
   519
                         (sP, propT)))
lcp@229
   520
    in forall_elim_vars 0 (assume (cterm_of sign prop))  end;
clasohm@0
   521
wenzelm@252
   522
(*Resolution: exactly one resolvent must be produced.*)
clasohm@0
   523
fun tha RSN (i,thb) =
clasohm@0
   524
  case Sequence.chop (2, biresolution false [(false,tha)] i thb) of
clasohm@0
   525
      ([th],_) => th
clasohm@0
   526
    | ([],_)   => raise THM("RSN: no unifiers", i, [tha,thb])
clasohm@0
   527
    |      _   => raise THM("RSN: multiple unifiers", i, [tha,thb]);
clasohm@0
   528
clasohm@0
   529
(*resolution: P==>Q, Q==>R gives P==>R. *)
clasohm@0
   530
fun tha RS thb = tha RSN (1,thb);
clasohm@0
   531
clasohm@0
   532
(*For joining lists of rules*)
wenzelm@252
   533
fun thas RLN (i,thbs) =
clasohm@0
   534
  let val resolve = biresolution false (map (pair false) thas) i
clasohm@0
   535
      fun resb thb = Sequence.list_of_s (resolve thb) handle THM _ => []
clasohm@0
   536
  in  flat (map resb thbs)  end;
clasohm@0
   537
clasohm@0
   538
fun thas RL thbs = thas RLN (1,thbs);
clasohm@0
   539
lcp@11
   540
(*Resolve a list of rules against bottom_rl from right to left;
lcp@11
   541
  makes proof trees*)
wenzelm@252
   542
fun rls MRS bottom_rl =
lcp@11
   543
  let fun rs_aux i [] = bottom_rl
wenzelm@252
   544
        | rs_aux i (rl::rls) = rl RSN (i, rs_aux (i+1) rls)
lcp@11
   545
  in  rs_aux 1 rls  end;
lcp@11
   546
lcp@11
   547
(*As above, but for rule lists*)
wenzelm@252
   548
fun rlss MRL bottom_rls =
lcp@11
   549
  let fun rs_aux i [] = bottom_rls
wenzelm@252
   550
        | rs_aux i (rls::rlss) = rls RLN (i, rs_aux (i+1) rlss)
lcp@11
   551
  in  rs_aux 1 rlss  end;
lcp@11
   552
wenzelm@252
   553
(*compose Q and [...,Qi,Q(i+1),...]==>R to [...,Q(i+1),...]==>R
clasohm@0
   554
  with no lifting or renaming!  Q may contain ==> or meta-quants
clasohm@0
   555
  ALWAYS deletes premise i *)
wenzelm@252
   556
fun compose(tha,i,thb) =
clasohm@0
   557
    Sequence.list_of_s (bicompose false (false,tha,0) i thb);
clasohm@0
   558
clasohm@0
   559
(*compose Q and [Q1,Q2,...,Qk]==>R to [Q2,...,Qk]==>R getting unique result*)
clasohm@0
   560
fun tha COMP thb =
clasohm@0
   561
    case compose(tha,1,thb) of
wenzelm@252
   562
        [th] => th
clasohm@0
   563
      | _ =>   raise THM("COMP", 1, [tha,thb]);
clasohm@0
   564
clasohm@0
   565
(*Instantiate theorem th, reading instantiations under signature sg*)
clasohm@0
   566
fun read_instantiate_sg sg sinsts th =
clasohm@0
   567
    let val ts = types_sorts th;
lcp@229
   568
    in  instantiate (read_insts sg ts ts sinsts) th  end;
clasohm@0
   569
clasohm@0
   570
(*Instantiate theorem th, reading instantiations under theory of th*)
clasohm@0
   571
fun read_instantiate sinsts th =
clasohm@0
   572
    read_instantiate_sg (#sign (rep_thm th)) sinsts th;
clasohm@0
   573
clasohm@0
   574
clasohm@0
   575
(*Left-to-right replacements: tpairs = [...,(vi,ti),...].
clasohm@0
   576
  Instantiates distinct Vars by terms, inferring type instantiations. *)
clasohm@0
   577
local
clasohm@0
   578
  fun add_types ((ct,cu), (sign,tye)) =
lcp@229
   579
    let val {sign=signt, t=t, T= T, ...} = rep_cterm ct
lcp@229
   580
        and {sign=signu, t=u, T= U, ...} = rep_cterm cu
clasohm@0
   581
        val sign' = Sign.merge(sign, Sign.merge(signt, signu))
wenzelm@252
   582
        val tye' = Type.unify (#tsig(Sign.rep_sg sign')) ((T,U), tye)
wenzelm@252
   583
          handle Type.TUNIFY => raise TYPE("add_types", [T,U], [t,u])
clasohm@0
   584
    in  (sign', tye')  end;
clasohm@0
   585
in
wenzelm@252
   586
fun cterm_instantiate ctpairs0 th =
clasohm@0
   587
  let val (sign,tye) = foldr add_types (ctpairs0, (#sign(rep_thm th),[]))
clasohm@0
   588
      val tsig = #tsig(Sign.rep_sg sign);
clasohm@0
   589
      fun instT(ct,cu) = let val inst = subst_TVars tye
wenzelm@252
   590
                         in (cterm_fun inst ct, cterm_fun inst cu) end
lcp@229
   591
      fun ctyp2 (ix,T) = (ix, ctyp_of sign T)
clasohm@0
   592
  in  instantiate (map ctyp2 tye, map instT ctpairs0) th  end
wenzelm@252
   593
  handle TERM _ =>
clasohm@0
   594
           raise THM("cterm_instantiate: incompatible signatures",0,[th])
clasohm@0
   595
       | TYPE _ => raise THM("cterm_instantiate: types", 0, [th])
clasohm@0
   596
end;
clasohm@0
   597
clasohm@0
   598
clasohm@0
   599
(** theorem equality test is exported and used by BEST_FIRST **)
clasohm@0
   600
wenzelm@252
   601
(*equality of theorems uses equality of signatures and
clasohm@0
   602
  the a-convertible test for terms*)
wenzelm@252
   603
fun eq_thm (th1,th2) =
clasohm@0
   604
    let val {sign=sg1, hyps=hyps1, prop=prop1, ...} = rep_thm th1
wenzelm@252
   605
        and {sign=sg2, hyps=hyps2, prop=prop2, ...} = rep_thm th2
wenzelm@252
   606
    in  Sign.eq_sg (sg1,sg2) andalso
wenzelm@252
   607
        aconvs(hyps1,hyps2) andalso
wenzelm@252
   608
        prop1 aconv prop2
clasohm@0
   609
    end;
clasohm@0
   610
clasohm@0
   611
(*Do the two theorems have the same signature?*)
wenzelm@252
   612
fun eq_thm_sg (th1,th2) = Sign.eq_sg(#sign(rep_thm th1), #sign(rep_thm th2));
clasohm@0
   613
clasohm@0
   614
(*Useful "distance" function for BEST_FIRST*)
clasohm@0
   615
val size_of_thm = size_of_term o #prop o rep_thm;
clasohm@0
   616
clasohm@0
   617
clasohm@0
   618
(*** Meta-Rewriting Rules ***)
clasohm@0
   619
clasohm@0
   620
clasohm@0
   621
val reflexive_thm =
wenzelm@385
   622
  let val cx = cterm_of Sign.pure (Var(("x",0),TVar(("'a",0),logicS)))
clasohm@0
   623
  in Thm.reflexive cx end;
clasohm@0
   624
clasohm@0
   625
val symmetric_thm =
lcp@229
   626
  let val xy = read_cterm Sign.pure ("x::'a::logic == y",propT)
clasohm@0
   627
  in standard(Thm.implies_intr_hyps(Thm.symmetric(Thm.assume xy))) end;
clasohm@0
   628
clasohm@0
   629
val transitive_thm =
lcp@229
   630
  let val xy = read_cterm Sign.pure ("x::'a::logic == y",propT)
lcp@229
   631
      val yz = read_cterm Sign.pure ("y::'a::logic == z",propT)
clasohm@0
   632
      val xythm = Thm.assume xy and yzthm = Thm.assume yz
clasohm@0
   633
  in standard(Thm.implies_intr yz (Thm.transitive xythm yzthm)) end;
clasohm@0
   634
lcp@229
   635
(** Below, a "conversion" has type cterm -> thm **)
lcp@229
   636
lcp@229
   637
val refl_cimplies = reflexive (cterm_of Sign.pure implies);
clasohm@0
   638
clasohm@0
   639
(*In [A1,...,An]==>B, rewrite the selected A's only -- for rewrite_goals_tac*)
nipkow@214
   640
(*Do not rewrite flex-flex pairs*)
wenzelm@252
   641
fun goals_conv pred cv =
lcp@229
   642
  let fun gconv i ct =
lcp@229
   643
        let val (A,B) = Thm.dest_cimplies ct
lcp@229
   644
            val (thA,j) = case term_of A of
lcp@229
   645
                  Const("=?=",_)$_$_ => (reflexive A, i)
lcp@229
   646
                | _ => (if pred i then cv A else reflexive A, i+1)
wenzelm@252
   647
        in  combination (combination refl_cimplies thA) (gconv j B) end
lcp@229
   648
        handle TERM _ => reflexive ct
clasohm@0
   649
  in gconv 1 end;
clasohm@0
   650
clasohm@0
   651
(*Use a conversion to transform a theorem*)
lcp@229
   652
fun fconv_rule cv th = equal_elim (cv (cprop_of th)) th;
clasohm@0
   653
clasohm@0
   654
(*rewriting conversion*)
lcp@229
   655
fun rew_conv mode prover mss = rewrite_cterm mode mss prover;
clasohm@0
   656
clasohm@0
   657
(*Rewrite a theorem*)
nipkow@214
   658
fun rewrite_rule thms =
nipkow@214
   659
  fconv_rule (rew_conv (true,false) (K(K None)) (Thm.mss_of thms));
clasohm@0
   660
clasohm@0
   661
(*Rewrite the subgoals of a proof state (represented by a theorem) *)
clasohm@0
   662
fun rewrite_goals_rule thms =
nipkow@214
   663
  fconv_rule (goals_conv (K true) (rew_conv (true,false) (K(K None))
nipkow@214
   664
             (Thm.mss_of thms)));
clasohm@0
   665
clasohm@0
   666
(*Rewrite the subgoal of a proof state (represented by a theorem) *)
nipkow@214
   667
fun rewrite_goal_rule mode prover mss i thm =
nipkow@214
   668
  if 0 < i  andalso  i <= nprems_of thm
nipkow@214
   669
  then fconv_rule (goals_conv (fn j => j=i) (rew_conv mode prover mss)) thm
nipkow@214
   670
  else raise THM("rewrite_goal_rule",i,[thm]);
clasohm@0
   671
clasohm@0
   672
clasohm@0
   673
(** Derived rules mainly for METAHYPS **)
clasohm@0
   674
clasohm@0
   675
(*Given the term "a", takes (%x.t)==(%x.u) to t[a/x]==u[a/x]*)
clasohm@0
   676
fun equal_abs_elim ca eqth =
lcp@229
   677
  let val {sign=signa, t=a, ...} = rep_cterm ca
clasohm@0
   678
      and combth = combination eqth (reflexive ca)
clasohm@0
   679
      val {sign,prop,...} = rep_thm eqth
clasohm@0
   680
      val (abst,absu) = Logic.dest_equals prop
lcp@229
   681
      val cterm = cterm_of (Sign.merge (sign,signa))
clasohm@0
   682
  in  transitive (symmetric (beta_conversion (cterm (abst$a))))
clasohm@0
   683
           (transitive combth (beta_conversion (cterm (absu$a))))
clasohm@0
   684
  end
clasohm@0
   685
  handle THM _ => raise THM("equal_abs_elim", 0, [eqth]);
clasohm@0
   686
clasohm@0
   687
(*Calling equal_abs_elim with multiple terms*)
clasohm@0
   688
fun equal_abs_elim_list cts th = foldr (uncurry equal_abs_elim) (rev cts, th);
clasohm@0
   689
clasohm@0
   690
local
clasohm@0
   691
  open Logic
clasohm@0
   692
  val alpha = TVar(("'a",0), [])     (*  type ?'a::{}  *)
clasohm@0
   693
  fun err th = raise THM("flexpair_inst: ", 0, [th])
clasohm@0
   694
  fun flexpair_inst def th =
clasohm@0
   695
    let val {prop = Const _ $ t $ u,  sign,...} = rep_thm th
wenzelm@252
   696
        val cterm = cterm_of sign
wenzelm@252
   697
        fun cvar a = cterm(Var((a,0),alpha))
wenzelm@252
   698
        val def' = cterm_instantiate [(cvar"t", cterm t), (cvar"u", cterm u)]
wenzelm@252
   699
                   def
clasohm@0
   700
    in  equal_elim def' th
clasohm@0
   701
    end
clasohm@0
   702
    handle THM _ => err th | bind => err th
clasohm@0
   703
in
clasohm@0
   704
val flexpair_intr = flexpair_inst (symmetric flexpair_def)
clasohm@0
   705
and flexpair_elim = flexpair_inst flexpair_def
clasohm@0
   706
end;
clasohm@0
   707
clasohm@0
   708
(*Version for flexflex pairs -- this supports lifting.*)
wenzelm@252
   709
fun flexpair_abs_elim_list cts =
clasohm@0
   710
    flexpair_intr o equal_abs_elim_list cts o flexpair_elim;
clasohm@0
   711
clasohm@0
   712
clasohm@0
   713
(*** Some useful meta-theorems ***)
clasohm@0
   714
clasohm@0
   715
(*The rule V/V, obtains assumption solving for eresolve_tac*)
lcp@229
   716
val asm_rl = trivial(read_cterm Sign.pure ("PROP ?psi",propT));
clasohm@0
   717
clasohm@0
   718
(*Meta-level cut rule: [| V==>W; V |] ==> W *)
wenzelm@252
   719
val cut_rl = trivial(read_cterm Sign.pure
wenzelm@252
   720
        ("PROP ?psi ==> PROP ?theta", propT));
clasohm@0
   721
wenzelm@252
   722
(*Generalized elim rule for one conclusion; cut_rl with reversed premises:
clasohm@0
   723
     [| PROP V;  PROP V ==> PROP W |] ==> PROP W *)
clasohm@0
   724
val revcut_rl =
lcp@229
   725
  let val V = read_cterm Sign.pure ("PROP V", propT)
lcp@229
   726
      and VW = read_cterm Sign.pure ("PROP V ==> PROP W", propT);
wenzelm@252
   727
  in  standard (implies_intr V
wenzelm@252
   728
                (implies_intr VW
wenzelm@252
   729
                 (implies_elim (assume VW) (assume V))))
clasohm@0
   730
  end;
clasohm@0
   731
clasohm@0
   732
(* (!!x. PROP ?V) == PROP ?V       Allows removal of redundant parameters*)
clasohm@0
   733
val triv_forall_equality =
lcp@229
   734
  let val V  = read_cterm Sign.pure ("PROP V", propT)
lcp@229
   735
      and QV = read_cterm Sign.pure ("!!x::'a. PROP V", propT)
wenzelm@385
   736
      and x  = read_cterm Sign.pure ("x", TFree("'a",logicS));
clasohm@0
   737
  in  standard (equal_intr (implies_intr QV (forall_elim x (assume QV)))
wenzelm@252
   738
                           (implies_intr V  (forall_intr x (assume V))))
clasohm@0
   739
  end;
clasohm@0
   740
clasohm@0
   741
end
clasohm@0
   742
end;
wenzelm@252
   743