src/HOL/Analysis/Infinite_Products.thy
author nipkow
Sat Dec 29 15:43:53 2018 +0100 (6 months ago)
changeset 69529 4ab9657b3257
parent 68651 16d98ef49a2c
child 69565 1daf07b65385
permissions -rw-r--r--
capitalize proper names in lemma names
lp15@68064
     1
(*File:      HOL/Analysis/Infinite_Product.thy
lp15@68064
     2
  Author:    Manuel Eberl & LC Paulson
eberlm@66277
     3
eberlm@66277
     4
  Basic results about convergence and absolute convergence of infinite products
eberlm@66277
     5
  and their connection to summability.
eberlm@66277
     6
*)
eberlm@66277
     7
section \<open>Infinite Products\<close>
eberlm@66277
     8
theory Infinite_Products
lp15@68585
     9
  imports Topology_Euclidean_Space Complex_Transcendental
eberlm@66277
    10
begin
lp15@68424
    11
eberlm@68651
    12
subsection%unimportant \<open>Preliminaries\<close>
lp15@68424
    13
eberlm@66277
    14
lemma sum_le_prod:
eberlm@66277
    15
  fixes f :: "'a \<Rightarrow> 'b :: linordered_semidom"
eberlm@66277
    16
  assumes "\<And>x. x \<in> A \<Longrightarrow> f x \<ge> 0"
eberlm@66277
    17
  shows   "sum f A \<le> (\<Prod>x\<in>A. 1 + f x)"
eberlm@66277
    18
  using assms
eberlm@66277
    19
proof (induction A rule: infinite_finite_induct)
eberlm@66277
    20
  case (insert x A)
eberlm@66277
    21
  from insert.hyps have "sum f A + f x * (\<Prod>x\<in>A. 1) \<le> (\<Prod>x\<in>A. 1 + f x) + f x * (\<Prod>x\<in>A. 1 + f x)"
eberlm@66277
    22
    by (intro add_mono insert mult_left_mono prod_mono) (auto intro: insert.prems)
eberlm@66277
    23
  with insert.hyps show ?case by (simp add: algebra_simps)
eberlm@66277
    24
qed simp_all
eberlm@66277
    25
eberlm@66277
    26
lemma prod_le_exp_sum:
eberlm@66277
    27
  fixes f :: "'a \<Rightarrow> real"
eberlm@66277
    28
  assumes "\<And>x. x \<in> A \<Longrightarrow> f x \<ge> 0"
eberlm@66277
    29
  shows   "prod (\<lambda>x. 1 + f x) A \<le> exp (sum f A)"
eberlm@66277
    30
  using assms
eberlm@66277
    31
proof (induction A rule: infinite_finite_induct)
eberlm@66277
    32
  case (insert x A)
eberlm@66277
    33
  have "(1 + f x) * (\<Prod>x\<in>A. 1 + f x) \<le> exp (f x) * exp (sum f A)"
eberlm@66277
    34
    using insert.prems by (intro mult_mono insert prod_nonneg exp_ge_add_one_self) auto
eberlm@66277
    35
  with insert.hyps show ?case by (simp add: algebra_simps exp_add)
eberlm@66277
    36
qed simp_all
eberlm@66277
    37
eberlm@66277
    38
lemma lim_ln_1_plus_x_over_x_at_0: "(\<lambda>x::real. ln (1 + x) / x) \<midarrow>0\<rightarrow> 1"
eberlm@66277
    39
proof (rule lhopital)
eberlm@66277
    40
  show "(\<lambda>x::real. ln (1 + x)) \<midarrow>0\<rightarrow> 0"
eberlm@66277
    41
    by (rule tendsto_eq_intros refl | simp)+
eberlm@66277
    42
  have "eventually (\<lambda>x::real. x \<in> {-1/2<..<1/2}) (nhds 0)"
eberlm@66277
    43
    by (rule eventually_nhds_in_open) auto
eberlm@66277
    44
  hence *: "eventually (\<lambda>x::real. x \<in> {-1/2<..<1/2}) (at 0)"
eberlm@66277
    45
    by (rule filter_leD [rotated]) (simp_all add: at_within_def)   
eberlm@66277
    46
  show "eventually (\<lambda>x::real. ((\<lambda>x. ln (1 + x)) has_field_derivative inverse (1 + x)) (at x)) (at 0)"
eberlm@66277
    47
    using * by eventually_elim (auto intro!: derivative_eq_intros simp: field_simps)
eberlm@66277
    48
  show "eventually (\<lambda>x::real. ((\<lambda>x. x) has_field_derivative 1) (at x)) (at 0)"
eberlm@66277
    49
    using * by eventually_elim (auto intro!: derivative_eq_intros simp: field_simps)
eberlm@66277
    50
  show "\<forall>\<^sub>F x in at 0. x \<noteq> 0" by (auto simp: at_within_def eventually_inf_principal)
eberlm@66277
    51
  show "(\<lambda>x::real. inverse (1 + x) / 1) \<midarrow>0\<rightarrow> 1"
eberlm@66277
    52
    by (rule tendsto_eq_intros refl | simp)+
eberlm@66277
    53
qed auto
eberlm@66277
    54
lp15@68424
    55
subsection\<open>Definitions and basic properties\<close>
lp15@68424
    56
eberlm@68651
    57
definition%important raw_has_prod :: "[nat \<Rightarrow> 'a::{t2_space, comm_semiring_1}, nat, 'a] \<Rightarrow> bool" 
lp15@68361
    58
  where "raw_has_prod f M p \<equiv> (\<lambda>n. \<Prod>i\<le>n. f (i+M)) \<longlonglongrightarrow> p \<and> p \<noteq> 0"
lp15@68064
    59
lp15@68064
    60
text\<open>The nonzero and zero cases, as in \emph{Complex Analysis} by Joseph Bak and Donald J.Newman, page 241\<close>
eberlm@68651
    61
definition%important
eberlm@68651
    62
  has_prod :: "(nat \<Rightarrow> 'a::{t2_space, comm_semiring_1}) \<Rightarrow> 'a \<Rightarrow> bool" (infixr "has'_prod" 80)
lp15@68361
    63
  where "f has_prod p \<equiv> raw_has_prod f 0 p \<or> (\<exists>i q. p = 0 \<and> f i = 0 \<and> raw_has_prod f (Suc i) q)"
lp15@68064
    64
eberlm@68651
    65
definition%important convergent_prod :: "(nat \<Rightarrow> 'a :: {t2_space,comm_semiring_1}) \<Rightarrow> bool" where
lp15@68361
    66
  "convergent_prod f \<equiv> \<exists>M p. raw_has_prod f M p"
lp15@68064
    67
eberlm@68651
    68
definition%important prodinf :: "(nat \<Rightarrow> 'a::{t2_space, comm_semiring_1}) \<Rightarrow> 'a"
lp15@68064
    69
    (binder "\<Prod>" 10)
lp15@68064
    70
  where "prodinf f = (THE p. f has_prod p)"
lp15@68064
    71
lp15@68361
    72
lemmas prod_defs = raw_has_prod_def has_prod_def convergent_prod_def prodinf_def
lp15@68064
    73
lp15@68064
    74
lemma has_prod_subst[trans]: "f = g \<Longrightarrow> g has_prod z \<Longrightarrow> f has_prod z"
lp15@68064
    75
  by simp
lp15@68064
    76
lp15@68064
    77
lemma has_prod_cong: "(\<And>n. f n = g n) \<Longrightarrow> f has_prod c \<longleftrightarrow> g has_prod c"
lp15@68064
    78
  by presburger
eberlm@66277
    79
lp15@68361
    80
lemma raw_has_prod_nonzero [simp]: "\<not> raw_has_prod f M 0"
lp15@68361
    81
  by (simp add: raw_has_prod_def)
lp15@68071
    82
lp15@68361
    83
lemma raw_has_prod_eq_0:
lp15@68361
    84
  fixes f :: "nat \<Rightarrow> 'a::{semidom,t2_space}"
lp15@68361
    85
  assumes p: "raw_has_prod f m p" and i: "f i = 0" "i \<ge> m"
lp15@68136
    86
  shows "p = 0"
lp15@68136
    87
proof -
lp15@68136
    88
  have eq0: "(\<Prod>k\<le>n. f (k+m)) = 0" if "i - m \<le> n" for n
lp15@68361
    89
  proof -
lp15@68361
    90
    have "\<exists>k\<le>n. f (k + m) = 0"
lp15@68361
    91
      using i that by auto
lp15@68361
    92
    then show ?thesis
lp15@68361
    93
      by auto
lp15@68361
    94
  qed
lp15@68136
    95
  have "(\<lambda>n. \<Prod>i\<le>n. f (i + m)) \<longlonglongrightarrow> 0"
lp15@68136
    96
    by (rule LIMSEQ_offset [where k = "i-m"]) (simp add: eq0)
lp15@68136
    97
    with p show ?thesis
lp15@68361
    98
      unfolding raw_has_prod_def
lp15@68136
    99
    using LIMSEQ_unique by blast
lp15@68136
   100
qed
lp15@68136
   101
lp15@68452
   102
lemma raw_has_prod_Suc: 
lp15@68452
   103
  "raw_has_prod f (Suc M) a \<longleftrightarrow> raw_has_prod (\<lambda>n. f (Suc n)) M a"
lp15@68452
   104
  unfolding raw_has_prod_def by auto
lp15@68452
   105
lp15@68361
   106
lemma has_prod_0_iff: "f has_prod 0 \<longleftrightarrow> (\<exists>i. f i = 0 \<and> (\<exists>p. raw_has_prod f (Suc i) p))"
lp15@68071
   107
  by (simp add: has_prod_def)
lp15@68136
   108
      
lp15@68136
   109
lemma has_prod_unique2: 
lp15@68361
   110
  fixes f :: "nat \<Rightarrow> 'a::{semidom,t2_space}"
lp15@68136
   111
  assumes "f has_prod a" "f has_prod b" shows "a = b"
lp15@68136
   112
  using assms
lp15@68361
   113
  by (auto simp: has_prod_def raw_has_prod_eq_0) (meson raw_has_prod_def sequentially_bot tendsto_unique)
lp15@68136
   114
lp15@68136
   115
lemma has_prod_unique:
lp15@68361
   116
  fixes f :: "nat \<Rightarrow> 'a :: {semidom,t2_space}"
lp15@68136
   117
  shows "f has_prod s \<Longrightarrow> s = prodinf f"
lp15@68136
   118
  by (simp add: has_prod_unique2 prodinf_def the_equality)
lp15@68071
   119
eberlm@66277
   120
lemma convergent_prod_altdef:
eberlm@66277
   121
  fixes f :: "nat \<Rightarrow> 'a :: {t2_space,comm_semiring_1}"
eberlm@66277
   122
  shows "convergent_prod f \<longleftrightarrow> (\<exists>M L. (\<forall>n\<ge>M. f n \<noteq> 0) \<and> (\<lambda>n. \<Prod>i\<le>n. f (i+M)) \<longlonglongrightarrow> L \<and> L \<noteq> 0)"
eberlm@66277
   123
proof
eberlm@66277
   124
  assume "convergent_prod f"
eberlm@66277
   125
  then obtain M L where *: "(\<lambda>n. \<Prod>i\<le>n. f (i+M)) \<longlonglongrightarrow> L" "L \<noteq> 0"
lp15@68064
   126
    by (auto simp: prod_defs)
eberlm@66277
   127
  have "f i \<noteq> 0" if "i \<ge> M" for i
eberlm@66277
   128
  proof
eberlm@66277
   129
    assume "f i = 0"
eberlm@66277
   130
    have **: "eventually (\<lambda>n. (\<Prod>i\<le>n. f (i+M)) = 0) sequentially"
eberlm@66277
   131
      using eventually_ge_at_top[of "i - M"]
eberlm@66277
   132
    proof eventually_elim
eberlm@66277
   133
      case (elim n)
eberlm@66277
   134
      with \<open>f i = 0\<close> and \<open>i \<ge> M\<close> show ?case
eberlm@66277
   135
        by (auto intro!: bexI[of _ "i - M"] prod_zero)
eberlm@66277
   136
    qed
eberlm@66277
   137
    have "(\<lambda>n. (\<Prod>i\<le>n. f (i+M))) \<longlonglongrightarrow> 0"
eberlm@66277
   138
      unfolding filterlim_iff
eberlm@66277
   139
      by (auto dest!: eventually_nhds_x_imp_x intro!: eventually_mono[OF **])
eberlm@66277
   140
    from tendsto_unique[OF _ this *(1)] and *(2)
eberlm@66277
   141
      show False by simp
eberlm@66277
   142
  qed
eberlm@66277
   143
  with * show "(\<exists>M L. (\<forall>n\<ge>M. f n \<noteq> 0) \<and> (\<lambda>n. \<Prod>i\<le>n. f (i+M)) \<longlonglongrightarrow> L \<and> L \<noteq> 0)" 
eberlm@66277
   144
    by blast
lp15@68064
   145
qed (auto simp: prod_defs)
eberlm@66277
   146
lp15@68424
   147
lp15@68424
   148
subsection\<open>Absolutely convergent products\<close>
lp15@68424
   149
eberlm@68651
   150
definition%important abs_convergent_prod :: "(nat \<Rightarrow> _) \<Rightarrow> bool" where
eberlm@66277
   151
  "abs_convergent_prod f \<longleftrightarrow> convergent_prod (\<lambda>i. 1 + norm (f i - 1))"
eberlm@66277
   152
eberlm@66277
   153
lemma abs_convergent_prodI:
eberlm@66277
   154
  assumes "convergent (\<lambda>n. \<Prod>i\<le>n. 1 + norm (f i - 1))"
eberlm@66277
   155
  shows   "abs_convergent_prod f"
eberlm@66277
   156
proof -
eberlm@66277
   157
  from assms obtain L where L: "(\<lambda>n. \<Prod>i\<le>n. 1 + norm (f i - 1)) \<longlonglongrightarrow> L"
eberlm@66277
   158
    by (auto simp: convergent_def)
eberlm@66277
   159
  have "L \<ge> 1"
eberlm@66277
   160
  proof (rule tendsto_le)
eberlm@66277
   161
    show "eventually (\<lambda>n. (\<Prod>i\<le>n. 1 + norm (f i - 1)) \<ge> 1) sequentially"
eberlm@66277
   162
    proof (intro always_eventually allI)
eberlm@66277
   163
      fix n
eberlm@66277
   164
      have "(\<Prod>i\<le>n. 1 + norm (f i - 1)) \<ge> (\<Prod>i\<le>n. 1)"
eberlm@66277
   165
        by (intro prod_mono) auto
eberlm@66277
   166
      thus "(\<Prod>i\<le>n. 1 + norm (f i - 1)) \<ge> 1" by simp
eberlm@66277
   167
    qed
eberlm@66277
   168
  qed (use L in simp_all)
eberlm@66277
   169
  hence "L \<noteq> 0" by auto
lp15@68064
   170
  with L show ?thesis unfolding abs_convergent_prod_def prod_defs
eberlm@66277
   171
    by (intro exI[of _ "0::nat"] exI[of _ L]) auto
eberlm@66277
   172
qed
eberlm@66277
   173
eberlm@66277
   174
lemma
lp15@68064
   175
  fixes f :: "nat \<Rightarrow> 'a :: {topological_semigroup_mult,t2_space,idom}"
eberlm@66277
   176
  assumes "convergent_prod f"
eberlm@66277
   177
  shows   convergent_prod_imp_convergent: "convergent (\<lambda>n. \<Prod>i\<le>n. f i)"
eberlm@66277
   178
    and   convergent_prod_to_zero_iff:    "(\<lambda>n. \<Prod>i\<le>n. f i) \<longlonglongrightarrow> 0 \<longleftrightarrow> (\<exists>i. f i = 0)"
eberlm@66277
   179
proof -
eberlm@66277
   180
  from assms obtain M L 
eberlm@66277
   181
    where M: "\<And>n. n \<ge> M \<Longrightarrow> f n \<noteq> 0" and "(\<lambda>n. \<Prod>i\<le>n. f (i + M)) \<longlonglongrightarrow> L" and "L \<noteq> 0"
eberlm@66277
   182
    by (auto simp: convergent_prod_altdef)
eberlm@66277
   183
  note this(2)
eberlm@66277
   184
  also have "(\<lambda>n. \<Prod>i\<le>n. f (i + M)) = (\<lambda>n. \<Prod>i=M..M+n. f i)"
eberlm@66277
   185
    by (intro ext prod.reindex_bij_witness[of _ "\<lambda>n. n - M" "\<lambda>n. n + M"]) auto
eberlm@66277
   186
  finally have "(\<lambda>n. (\<Prod>i<M. f i) * (\<Prod>i=M..M+n. f i)) \<longlonglongrightarrow> (\<Prod>i<M. f i) * L"
eberlm@66277
   187
    by (intro tendsto_mult tendsto_const)
eberlm@66277
   188
  also have "(\<lambda>n. (\<Prod>i<M. f i) * (\<Prod>i=M..M+n. f i)) = (\<lambda>n. (\<Prod>i\<in>{..<M}\<union>{M..M+n}. f i))"
eberlm@66277
   189
    by (subst prod.union_disjoint) auto
eberlm@66277
   190
  also have "(\<lambda>n. {..<M} \<union> {M..M+n}) = (\<lambda>n. {..n+M})" by auto
eberlm@66277
   191
  finally have lim: "(\<lambda>n. prod f {..n}) \<longlonglongrightarrow> prod f {..<M} * L" 
eberlm@66277
   192
    by (rule LIMSEQ_offset)
eberlm@66277
   193
  thus "convergent (\<lambda>n. \<Prod>i\<le>n. f i)"
eberlm@66277
   194
    by (auto simp: convergent_def)
eberlm@66277
   195
eberlm@66277
   196
  show "(\<lambda>n. \<Prod>i\<le>n. f i) \<longlonglongrightarrow> 0 \<longleftrightarrow> (\<exists>i. f i = 0)"
eberlm@66277
   197
  proof
eberlm@66277
   198
    assume "\<exists>i. f i = 0"
eberlm@66277
   199
    then obtain i where "f i = 0" by auto
eberlm@66277
   200
    moreover with M have "i < M" by (cases "i < M") auto
eberlm@66277
   201
    ultimately have "(\<Prod>i<M. f i) = 0" by auto
eberlm@66277
   202
    with lim show "(\<lambda>n. \<Prod>i\<le>n. f i) \<longlonglongrightarrow> 0" by simp
eberlm@66277
   203
  next
eberlm@66277
   204
    assume "(\<lambda>n. \<Prod>i\<le>n. f i) \<longlonglongrightarrow> 0"
eberlm@66277
   205
    from tendsto_unique[OF _ this lim] and \<open>L \<noteq> 0\<close>
eberlm@66277
   206
    show "\<exists>i. f i = 0" by auto
eberlm@66277
   207
  qed
eberlm@66277
   208
qed
eberlm@66277
   209
lp15@68064
   210
lemma convergent_prod_iff_nz_lim:
lp15@68064
   211
  fixes f :: "nat \<Rightarrow> 'a :: {topological_semigroup_mult,t2_space,idom}"
lp15@68064
   212
  assumes "\<And>i. f i \<noteq> 0"
lp15@68064
   213
  shows "convergent_prod f \<longleftrightarrow> (\<exists>L. (\<lambda>n. \<Prod>i\<le>n. f i) \<longlonglongrightarrow> L \<and> L \<noteq> 0)"
lp15@68064
   214
    (is "?lhs \<longleftrightarrow> ?rhs")
lp15@68064
   215
proof
lp15@68064
   216
  assume ?lhs then show ?rhs
lp15@68064
   217
    using assms convergentD convergent_prod_imp_convergent convergent_prod_to_zero_iff by blast
lp15@68064
   218
next
lp15@68064
   219
  assume ?rhs then show ?lhs
lp15@68064
   220
    unfolding prod_defs
lp15@68138
   221
    by (rule_tac x=0 in exI) auto
lp15@68064
   222
qed
lp15@68064
   223
eberlm@68651
   224
lemma%important convergent_prod_iff_convergent: 
lp15@68064
   225
  fixes f :: "nat \<Rightarrow> 'a :: {topological_semigroup_mult,t2_space,idom}"
lp15@68064
   226
  assumes "\<And>i. f i \<noteq> 0"
lp15@68064
   227
  shows "convergent_prod f \<longleftrightarrow> convergent (\<lambda>n. \<Prod>i\<le>n. f i) \<and> lim (\<lambda>n. \<Prod>i\<le>n. f i) \<noteq> 0"
lp15@68138
   228
  by (force simp: convergent_prod_iff_nz_lim assms convergent_def limI)
lp15@68064
   229
lp15@68527
   230
lemma bounded_imp_convergent_prod:
lp15@68527
   231
  fixes a :: "nat \<Rightarrow> real"
lp15@68527
   232
  assumes 1: "\<And>n. a n \<ge> 1" and bounded: "\<And>n. (\<Prod>i\<le>n. a i) \<le> B"
lp15@68527
   233
  shows "convergent_prod a"
lp15@68527
   234
proof -
lp15@68527
   235
  have "bdd_above (range(\<lambda>n. \<Prod>i\<le>n. a i))"
lp15@68527
   236
    by (meson bdd_aboveI2 bounded)
lp15@68527
   237
  moreover have "incseq (\<lambda>n. \<Prod>i\<le>n. a i)"
lp15@68527
   238
    unfolding mono_def by (metis 1 prod_mono2 atMost_subset_iff dual_order.trans finite_atMost zero_le_one)
lp15@68527
   239
  ultimately obtain p where p: "(\<lambda>n. \<Prod>i\<le>n. a i) \<longlonglongrightarrow> p"
lp15@68527
   240
    using LIMSEQ_incseq_SUP by blast
lp15@68527
   241
  then have "p \<noteq> 0"
lp15@68527
   242
    by (metis "1" not_one_le_zero prod_ge_1 LIMSEQ_le_const)
lp15@68527
   243
  with 1 p show ?thesis
lp15@68527
   244
    by (metis convergent_prod_iff_nz_lim not_one_le_zero)
lp15@68527
   245
qed
lp15@68527
   246
lp15@68064
   247
eberlm@66277
   248
lemma abs_convergent_prod_altdef:
lp15@68064
   249
  fixes f :: "nat \<Rightarrow> 'a :: {one,real_normed_vector}"
lp15@68064
   250
  shows  "abs_convergent_prod f \<longleftrightarrow> convergent (\<lambda>n. \<Prod>i\<le>n. 1 + norm (f i - 1))"
eberlm@66277
   251
proof
eberlm@66277
   252
  assume "abs_convergent_prod f"
eberlm@66277
   253
  thus "convergent (\<lambda>n. \<Prod>i\<le>n. 1 + norm (f i - 1))"
eberlm@66277
   254
    by (auto simp: abs_convergent_prod_def intro!: convergent_prod_imp_convergent)
eberlm@66277
   255
qed (auto intro: abs_convergent_prodI)
eberlm@66277
   256
nipkow@69529
   257
lemma Weierstrass_prod_ineq:
eberlm@66277
   258
  fixes f :: "'a \<Rightarrow> real" 
eberlm@66277
   259
  assumes "\<And>x. x \<in> A \<Longrightarrow> f x \<in> {0..1}"
eberlm@66277
   260
  shows   "1 - sum f A \<le> (\<Prod>x\<in>A. 1 - f x)"
eberlm@66277
   261
  using assms
eberlm@66277
   262
proof (induction A rule: infinite_finite_induct)
eberlm@66277
   263
  case (insert x A)
eberlm@66277
   264
  from insert.hyps and insert.prems 
eberlm@66277
   265
    have "1 - sum f A + f x * (\<Prod>x\<in>A. 1 - f x) \<le> (\<Prod>x\<in>A. 1 - f x) + f x * (\<Prod>x\<in>A. 1)"
eberlm@66277
   266
    by (intro insert.IH add_mono mult_left_mono prod_mono) auto
eberlm@66277
   267
  with insert.hyps show ?case by (simp add: algebra_simps)
eberlm@66277
   268
qed simp_all
eberlm@66277
   269
eberlm@66277
   270
lemma norm_prod_minus1_le_prod_minus1:
eberlm@66277
   271
  fixes f :: "nat \<Rightarrow> 'a :: {real_normed_div_algebra,comm_ring_1}"  
eberlm@66277
   272
  shows "norm (prod (\<lambda>n. 1 + f n) A - 1) \<le> prod (\<lambda>n. 1 + norm (f n)) A - 1"
eberlm@66277
   273
proof (induction A rule: infinite_finite_induct)
eberlm@66277
   274
  case (insert x A)
eberlm@66277
   275
  from insert.hyps have 
eberlm@66277
   276
    "norm ((\<Prod>n\<in>insert x A. 1 + f n) - 1) = 
eberlm@66277
   277
       norm ((\<Prod>n\<in>A. 1 + f n) - 1 + f x * (\<Prod>n\<in>A. 1 + f n))"
eberlm@66277
   278
    by (simp add: algebra_simps)
eberlm@66277
   279
  also have "\<dots> \<le> norm ((\<Prod>n\<in>A. 1 + f n) - 1) + norm (f x * (\<Prod>n\<in>A. 1 + f n))"
eberlm@66277
   280
    by (rule norm_triangle_ineq)
eberlm@66277
   281
  also have "norm (f x * (\<Prod>n\<in>A. 1 + f n)) = norm (f x) * (\<Prod>x\<in>A. norm (1 + f x))"
eberlm@66277
   282
    by (simp add: prod_norm norm_mult)
eberlm@66277
   283
  also have "(\<Prod>x\<in>A. norm (1 + f x)) \<le> (\<Prod>x\<in>A. norm (1::'a) + norm (f x))"
eberlm@66277
   284
    by (intro prod_mono norm_triangle_ineq ballI conjI) auto
eberlm@66277
   285
  also have "norm (1::'a) = 1" by simp
eberlm@66277
   286
  also note insert.IH
eberlm@66277
   287
  also have "(\<Prod>n\<in>A. 1 + norm (f n)) - 1 + norm (f x) * (\<Prod>x\<in>A. 1 + norm (f x)) =
lp15@68064
   288
             (\<Prod>n\<in>insert x A. 1 + norm (f n)) - 1"
eberlm@66277
   289
    using insert.hyps by (simp add: algebra_simps)
eberlm@66277
   290
  finally show ?case by - (simp_all add: mult_left_mono)
eberlm@66277
   291
qed simp_all
eberlm@66277
   292
eberlm@66277
   293
lemma convergent_prod_imp_ev_nonzero:
eberlm@66277
   294
  fixes f :: "nat \<Rightarrow> 'a :: {t2_space,comm_semiring_1}"
eberlm@66277
   295
  assumes "convergent_prod f"
eberlm@66277
   296
  shows   "eventually (\<lambda>n. f n \<noteq> 0) sequentially"
eberlm@66277
   297
  using assms by (auto simp: eventually_at_top_linorder convergent_prod_altdef)
eberlm@66277
   298
eberlm@66277
   299
lemma convergent_prod_imp_LIMSEQ:
eberlm@66277
   300
  fixes f :: "nat \<Rightarrow> 'a :: {real_normed_field}"
eberlm@66277
   301
  assumes "convergent_prod f"
eberlm@66277
   302
  shows   "f \<longlonglongrightarrow> 1"
eberlm@66277
   303
proof -
eberlm@66277
   304
  from assms obtain M L where L: "(\<lambda>n. \<Prod>i\<le>n. f (i+M)) \<longlonglongrightarrow> L" "\<And>n. n \<ge> M \<Longrightarrow> f n \<noteq> 0" "L \<noteq> 0"
eberlm@66277
   305
    by (auto simp: convergent_prod_altdef)
eberlm@66277
   306
  hence L': "(\<lambda>n. \<Prod>i\<le>Suc n. f (i+M)) \<longlonglongrightarrow> L" by (subst filterlim_sequentially_Suc)
eberlm@66277
   307
  have "(\<lambda>n. (\<Prod>i\<le>Suc n. f (i+M)) / (\<Prod>i\<le>n. f (i+M))) \<longlonglongrightarrow> L / L"
eberlm@66277
   308
    using L L' by (intro tendsto_divide) simp_all
eberlm@66277
   309
  also from L have "L / L = 1" by simp
eberlm@66277
   310
  also have "(\<lambda>n. (\<Prod>i\<le>Suc n. f (i+M)) / (\<Prod>i\<le>n. f (i+M))) = (\<lambda>n. f (n + Suc M))"
eberlm@66277
   311
    using assms L by (auto simp: fun_eq_iff atMost_Suc)
eberlm@66277
   312
  finally show ?thesis by (rule LIMSEQ_offset)
eberlm@66277
   313
qed
eberlm@66277
   314
eberlm@66277
   315
lemma abs_convergent_prod_imp_summable:
eberlm@66277
   316
  fixes f :: "nat \<Rightarrow> 'a :: real_normed_div_algebra"
eberlm@66277
   317
  assumes "abs_convergent_prod f"
eberlm@66277
   318
  shows "summable (\<lambda>i. norm (f i - 1))"
eberlm@66277
   319
proof -
eberlm@66277
   320
  from assms have "convergent (\<lambda>n. \<Prod>i\<le>n. 1 + norm (f i - 1))" 
eberlm@66277
   321
    unfolding abs_convergent_prod_def by (rule convergent_prod_imp_convergent)
eberlm@66277
   322
  then obtain L where L: "(\<lambda>n. \<Prod>i\<le>n. 1 + norm (f i - 1)) \<longlonglongrightarrow> L"
eberlm@66277
   323
    unfolding convergent_def by blast
eberlm@66277
   324
  have "convergent (\<lambda>n. \<Sum>i\<le>n. norm (f i - 1))"
eberlm@66277
   325
  proof (rule Bseq_monoseq_convergent)
eberlm@66277
   326
    have "eventually (\<lambda>n. (\<Prod>i\<le>n. 1 + norm (f i - 1)) < L + 1) sequentially"
eberlm@66277
   327
      using L(1) by (rule order_tendstoD) simp_all
eberlm@66277
   328
    hence "\<forall>\<^sub>F x in sequentially. norm (\<Sum>i\<le>x. norm (f i - 1)) \<le> L + 1"
eberlm@66277
   329
    proof eventually_elim
eberlm@66277
   330
      case (elim n)
eberlm@66277
   331
      have "norm (\<Sum>i\<le>n. norm (f i - 1)) = (\<Sum>i\<le>n. norm (f i - 1))"
eberlm@66277
   332
        unfolding real_norm_def by (intro abs_of_nonneg sum_nonneg) simp_all
eberlm@66277
   333
      also have "\<dots> \<le> (\<Prod>i\<le>n. 1 + norm (f i - 1))" by (rule sum_le_prod) auto
eberlm@66277
   334
      also have "\<dots> < L + 1" by (rule elim)
eberlm@66277
   335
      finally show ?case by simp
eberlm@66277
   336
    qed
eberlm@66277
   337
    thus "Bseq (\<lambda>n. \<Sum>i\<le>n. norm (f i - 1))" by (rule BfunI)
eberlm@66277
   338
  next
eberlm@66277
   339
    show "monoseq (\<lambda>n. \<Sum>i\<le>n. norm (f i - 1))"
eberlm@66277
   340
      by (rule mono_SucI1) auto
eberlm@66277
   341
  qed
eberlm@66277
   342
  thus "summable (\<lambda>i. norm (f i - 1))" by (simp add: summable_iff_convergent')
eberlm@66277
   343
qed
eberlm@66277
   344
eberlm@66277
   345
lemma summable_imp_abs_convergent_prod:
eberlm@66277
   346
  fixes f :: "nat \<Rightarrow> 'a :: real_normed_div_algebra"
eberlm@66277
   347
  assumes "summable (\<lambda>i. norm (f i - 1))"
eberlm@66277
   348
  shows   "abs_convergent_prod f"
eberlm@66277
   349
proof (intro abs_convergent_prodI Bseq_monoseq_convergent)
eberlm@66277
   350
  show "monoseq (\<lambda>n. \<Prod>i\<le>n. 1 + norm (f i - 1))"
eberlm@66277
   351
    by (intro mono_SucI1) 
eberlm@66277
   352
       (auto simp: atMost_Suc algebra_simps intro!: mult_nonneg_nonneg prod_nonneg)
eberlm@66277
   353
next
eberlm@66277
   354
  show "Bseq (\<lambda>n. \<Prod>i\<le>n. 1 + norm (f i - 1))"
eberlm@66277
   355
  proof (rule Bseq_eventually_mono)
eberlm@66277
   356
    show "eventually (\<lambda>n. norm (\<Prod>i\<le>n. 1 + norm (f i - 1)) \<le> 
eberlm@66277
   357
            norm (exp (\<Sum>i\<le>n. norm (f i - 1)))) sequentially"
eberlm@66277
   358
      by (intro always_eventually allI) (auto simp: abs_prod exp_sum intro!: prod_mono)
eberlm@66277
   359
  next
eberlm@66277
   360
    from assms have "(\<lambda>n. \<Sum>i\<le>n. norm (f i - 1)) \<longlonglongrightarrow> (\<Sum>i. norm (f i - 1))"
eberlm@66277
   361
      using sums_def_le by blast
eberlm@66277
   362
    hence "(\<lambda>n. exp (\<Sum>i\<le>n. norm (f i - 1))) \<longlonglongrightarrow> exp (\<Sum>i. norm (f i - 1))"
eberlm@66277
   363
      by (rule tendsto_exp)
eberlm@66277
   364
    hence "convergent (\<lambda>n. exp (\<Sum>i\<le>n. norm (f i - 1)))"
eberlm@66277
   365
      by (rule convergentI)
eberlm@66277
   366
    thus "Bseq (\<lambda>n. exp (\<Sum>i\<le>n. norm (f i - 1)))"
eberlm@66277
   367
      by (rule convergent_imp_Bseq)
eberlm@66277
   368
  qed
eberlm@66277
   369
qed
eberlm@66277
   370
eberlm@68651
   371
theorem abs_convergent_prod_conv_summable:
eberlm@66277
   372
  fixes f :: "nat \<Rightarrow> 'a :: real_normed_div_algebra"
eberlm@66277
   373
  shows "abs_convergent_prod f \<longleftrightarrow> summable (\<lambda>i. norm (f i - 1))"
eberlm@66277
   374
  by (blast intro: abs_convergent_prod_imp_summable summable_imp_abs_convergent_prod)
eberlm@66277
   375
eberlm@66277
   376
lemma abs_convergent_prod_imp_LIMSEQ:
eberlm@66277
   377
  fixes f :: "nat \<Rightarrow> 'a :: {comm_ring_1,real_normed_div_algebra}"
eberlm@66277
   378
  assumes "abs_convergent_prod f"
eberlm@66277
   379
  shows   "f \<longlonglongrightarrow> 1"
eberlm@66277
   380
proof -
eberlm@66277
   381
  from assms have "summable (\<lambda>n. norm (f n - 1))"
eberlm@66277
   382
    by (rule abs_convergent_prod_imp_summable)
eberlm@66277
   383
  from summable_LIMSEQ_zero[OF this] have "(\<lambda>n. f n - 1) \<longlonglongrightarrow> 0"
eberlm@66277
   384
    by (simp add: tendsto_norm_zero_iff)
eberlm@66277
   385
  from tendsto_add[OF this tendsto_const[of 1]] show ?thesis by simp
eberlm@66277
   386
qed
eberlm@66277
   387
eberlm@66277
   388
lemma abs_convergent_prod_imp_ev_nonzero:
eberlm@66277
   389
  fixes f :: "nat \<Rightarrow> 'a :: {comm_ring_1,real_normed_div_algebra}"
eberlm@66277
   390
  assumes "abs_convergent_prod f"
eberlm@66277
   391
  shows   "eventually (\<lambda>n. f n \<noteq> 0) sequentially"
eberlm@66277
   392
proof -
eberlm@66277
   393
  from assms have "f \<longlonglongrightarrow> 1" 
eberlm@66277
   394
    by (rule abs_convergent_prod_imp_LIMSEQ)
eberlm@66277
   395
  hence "eventually (\<lambda>n. dist (f n) 1 < 1) at_top"
eberlm@66277
   396
    by (auto simp: tendsto_iff)
eberlm@66277
   397
  thus ?thesis by eventually_elim auto
eberlm@66277
   398
qed
eberlm@66277
   399
eberlm@68651
   400
subsection%unimportant \<open>Ignoring initial segments\<close>
eberlm@68651
   401
eberlm@66277
   402
lemma convergent_prod_offset:
eberlm@66277
   403
  assumes "convergent_prod (\<lambda>n. f (n + m))"  
eberlm@66277
   404
  shows   "convergent_prod f"
eberlm@66277
   405
proof -
eberlm@66277
   406
  from assms obtain M L where "(\<lambda>n. \<Prod>k\<le>n. f (k + (M + m))) \<longlonglongrightarrow> L" "L \<noteq> 0"
lp15@68064
   407
    by (auto simp: prod_defs add.assoc)
lp15@68064
   408
  thus "convergent_prod f" 
lp15@68064
   409
    unfolding prod_defs by blast
eberlm@66277
   410
qed
eberlm@66277
   411
eberlm@66277
   412
lemma abs_convergent_prod_offset:
eberlm@66277
   413
  assumes "abs_convergent_prod (\<lambda>n. f (n + m))"  
eberlm@66277
   414
  shows   "abs_convergent_prod f"
eberlm@66277
   415
  using assms unfolding abs_convergent_prod_def by (rule convergent_prod_offset)
eberlm@66277
   416
lp15@68424
   417
lp15@68361
   418
lemma raw_has_prod_ignore_initial_segment:
lp15@68361
   419
  fixes f :: "nat \<Rightarrow> 'a :: real_normed_field"
lp15@68361
   420
  assumes "raw_has_prod f M p" "N \<ge> M"
lp15@68361
   421
  obtains q where  "raw_has_prod f N q"
eberlm@66277
   422
proof -
lp15@68361
   423
  have p: "(\<lambda>n. \<Prod>k\<le>n. f (k + M)) \<longlonglongrightarrow> p" and "p \<noteq> 0" 
lp15@68361
   424
    using assms by (auto simp: raw_has_prod_def)
lp15@68361
   425
  then have nz: "\<And>n. n \<ge> M \<Longrightarrow> f n \<noteq> 0"
lp15@68361
   426
    using assms by (auto simp: raw_has_prod_eq_0)
lp15@68361
   427
  define C where "C = (\<Prod>k<N-M. f (k + M))"
eberlm@66277
   428
  from nz have [simp]: "C \<noteq> 0" 
eberlm@66277
   429
    by (auto simp: C_def)
eberlm@66277
   430
lp15@68361
   431
  from p have "(\<lambda>i. \<Prod>k\<le>i + (N-M). f (k + M)) \<longlonglongrightarrow> p" 
eberlm@66277
   432
    by (rule LIMSEQ_ignore_initial_segment)
lp15@68361
   433
  also have "(\<lambda>i. \<Prod>k\<le>i + (N-M). f (k + M)) = (\<lambda>n. C * (\<Prod>k\<le>n. f (k + N)))"
eberlm@66277
   434
  proof (rule ext, goal_cases)
eberlm@66277
   435
    case (1 n)
lp15@68361
   436
    have "{..n+(N-M)} = {..<(N-M)} \<union> {(N-M)..n+(N-M)}" by auto
lp15@68361
   437
    also have "(\<Prod>k\<in>\<dots>. f (k + M)) = C * (\<Prod>k=(N-M)..n+(N-M). f (k + M))"
eberlm@66277
   438
      unfolding C_def by (rule prod.union_disjoint) auto
lp15@68361
   439
    also have "(\<Prod>k=(N-M)..n+(N-M). f (k + M)) = (\<Prod>k\<le>n. f (k + (N-M) + M))"
lp15@68361
   440
      by (intro ext prod.reindex_bij_witness[of _ "\<lambda>k. k + (N-M)" "\<lambda>k. k - (N-M)"]) auto
lp15@68361
   441
    finally show ?case
lp15@68361
   442
      using \<open>N \<ge> M\<close> by (simp add: add_ac)
eberlm@66277
   443
  qed
lp15@68361
   444
  finally have "(\<lambda>n. C * (\<Prod>k\<le>n. f (k + N)) / C) \<longlonglongrightarrow> p / C"
eberlm@66277
   445
    by (intro tendsto_divide tendsto_const) auto
lp15@68361
   446
  hence "(\<lambda>n. \<Prod>k\<le>n. f (k + N)) \<longlonglongrightarrow> p / C" by simp
lp15@68361
   447
  moreover from \<open>p \<noteq> 0\<close> have "p / C \<noteq> 0" by simp
lp15@68361
   448
  ultimately show ?thesis
lp15@68361
   449
    using raw_has_prod_def that by blast 
eberlm@66277
   450
qed
eberlm@66277
   451
eberlm@68651
   452
corollary%unimportant convergent_prod_ignore_initial_segment:
lp15@68361
   453
  fixes f :: "nat \<Rightarrow> 'a :: real_normed_field"
lp15@68361
   454
  assumes "convergent_prod f"
lp15@68361
   455
  shows   "convergent_prod (\<lambda>n. f (n + m))"
lp15@68361
   456
  using assms
lp15@68361
   457
  unfolding convergent_prod_def 
lp15@68361
   458
  apply clarify
lp15@68361
   459
  apply (erule_tac N="M+m" in raw_has_prod_ignore_initial_segment)
lp15@68361
   460
  apply (auto simp add: raw_has_prod_def add_ac)
lp15@68361
   461
  done
lp15@68361
   462
eberlm@68651
   463
corollary%unimportant convergent_prod_ignore_nonzero_segment:
lp15@68136
   464
  fixes f :: "nat \<Rightarrow> 'a :: real_normed_field"
lp15@68136
   465
  assumes f: "convergent_prod f" and nz: "\<And>i. i \<ge> M \<Longrightarrow> f i \<noteq> 0"
lp15@68361
   466
  shows "\<exists>p. raw_has_prod f M p"
lp15@68136
   467
  using convergent_prod_ignore_initial_segment [OF f]
lp15@68136
   468
  by (metis convergent_LIMSEQ_iff convergent_prod_iff_convergent le_add_same_cancel2 nz prod_defs(1) zero_order(1))
lp15@68136
   469
eberlm@68651
   470
corollary%unimportant abs_convergent_prod_ignore_initial_segment:
eberlm@66277
   471
  assumes "abs_convergent_prod f"
eberlm@66277
   472
  shows   "abs_convergent_prod (\<lambda>n. f (n + m))"
eberlm@66277
   473
  using assms unfolding abs_convergent_prod_def 
eberlm@66277
   474
  by (rule convergent_prod_ignore_initial_segment)
eberlm@66277
   475
eberlm@68651
   476
subsection\<open>More elementary properties\<close>
eberlm@68651
   477
eberlm@68651
   478
theorem abs_convergent_prod_imp_convergent_prod:
eberlm@66277
   479
  fixes f :: "nat \<Rightarrow> 'a :: {real_normed_div_algebra,complete_space,comm_ring_1}"
eberlm@66277
   480
  assumes "abs_convergent_prod f"
eberlm@66277
   481
  shows   "convergent_prod f"
eberlm@66277
   482
proof -
eberlm@66277
   483
  from assms have "eventually (\<lambda>n. f n \<noteq> 0) sequentially"
eberlm@66277
   484
    by (rule abs_convergent_prod_imp_ev_nonzero)
eberlm@66277
   485
  then obtain N where N: "f n \<noteq> 0" if "n \<ge> N" for n 
eberlm@66277
   486
    by (auto simp: eventually_at_top_linorder)
eberlm@66277
   487
  let ?P = "\<lambda>n. \<Prod>i\<le>n. f (i + N)" and ?Q = "\<lambda>n. \<Prod>i\<le>n. 1 + norm (f (i + N) - 1)"
eberlm@66277
   488
eberlm@66277
   489
  have "Cauchy ?P"
eberlm@66277
   490
  proof (rule CauchyI', goal_cases)
eberlm@66277
   491
    case (1 \<epsilon>)
eberlm@66277
   492
    from assms have "abs_convergent_prod (\<lambda>n. f (n + N))"
eberlm@66277
   493
      by (rule abs_convergent_prod_ignore_initial_segment)
eberlm@66277
   494
    hence "Cauchy ?Q"
eberlm@66277
   495
      unfolding abs_convergent_prod_def
eberlm@66277
   496
      by (intro convergent_Cauchy convergent_prod_imp_convergent)
eberlm@66277
   497
    from CauchyD[OF this 1] obtain M where M: "norm (?Q m - ?Q n) < \<epsilon>" if "m \<ge> M" "n \<ge> M" for m n
eberlm@66277
   498
      by blast
eberlm@66277
   499
    show ?case
eberlm@66277
   500
    proof (rule exI[of _ M], safe, goal_cases)
eberlm@66277
   501
      case (1 m n)
eberlm@66277
   502
      have "dist (?P m) (?P n) = norm (?P n - ?P m)"
eberlm@66277
   503
        by (simp add: dist_norm norm_minus_commute)
eberlm@66277
   504
      also from 1 have "{..n} = {..m} \<union> {m<..n}" by auto
eberlm@66277
   505
      hence "norm (?P n - ?P m) = norm (?P m * (\<Prod>k\<in>{m<..n}. f (k + N)) - ?P m)"
eberlm@66277
   506
        by (subst prod.union_disjoint [symmetric]) (auto simp: algebra_simps)
eberlm@66277
   507
      also have "\<dots> = norm (?P m * ((\<Prod>k\<in>{m<..n}. f (k + N)) - 1))"
eberlm@66277
   508
        by (simp add: algebra_simps)
eberlm@66277
   509
      also have "\<dots> = (\<Prod>k\<le>m. norm (f (k + N))) * norm ((\<Prod>k\<in>{m<..n}. f (k + N)) - 1)"
eberlm@66277
   510
        by (simp add: norm_mult prod_norm)
eberlm@66277
   511
      also have "\<dots> \<le> ?Q m * ((\<Prod>k\<in>{m<..n}. 1 + norm (f (k + N) - 1)) - 1)"
eberlm@66277
   512
        using norm_prod_minus1_le_prod_minus1[of "\<lambda>k. f (k + N) - 1" "{m<..n}"]
eberlm@66277
   513
              norm_triangle_ineq[of 1 "f k - 1" for k]
eberlm@66277
   514
        by (intro mult_mono prod_mono ballI conjI norm_prod_minus1_le_prod_minus1 prod_nonneg) auto
eberlm@66277
   515
      also have "\<dots> = ?Q m * (\<Prod>k\<in>{m<..n}. 1 + norm (f (k + N) - 1)) - ?Q m"
eberlm@66277
   516
        by (simp add: algebra_simps)
eberlm@66277
   517
      also have "?Q m * (\<Prod>k\<in>{m<..n}. 1 + norm (f (k + N) - 1)) = 
eberlm@66277
   518
                   (\<Prod>k\<in>{..m}\<union>{m<..n}. 1 + norm (f (k + N) - 1))"
eberlm@66277
   519
        by (rule prod.union_disjoint [symmetric]) auto
eberlm@66277
   520
      also from 1 have "{..m}\<union>{m<..n} = {..n}" by auto
eberlm@66277
   521
      also have "?Q n - ?Q m \<le> norm (?Q n - ?Q m)" by simp
eberlm@66277
   522
      also from 1 have "\<dots> < \<epsilon>" by (intro M) auto
eberlm@66277
   523
      finally show ?case .
eberlm@66277
   524
    qed
eberlm@66277
   525
  qed
eberlm@66277
   526
  hence conv: "convergent ?P" by (rule Cauchy_convergent)
eberlm@66277
   527
  then obtain L where L: "?P \<longlonglongrightarrow> L"
eberlm@66277
   528
    by (auto simp: convergent_def)
eberlm@66277
   529
eberlm@66277
   530
  have "L \<noteq> 0"
eberlm@66277
   531
  proof
eberlm@66277
   532
    assume [simp]: "L = 0"
eberlm@66277
   533
    from tendsto_norm[OF L] have limit: "(\<lambda>n. \<Prod>k\<le>n. norm (f (k + N))) \<longlonglongrightarrow> 0" 
eberlm@66277
   534
      by (simp add: prod_norm)
eberlm@66277
   535
eberlm@66277
   536
    from assms have "(\<lambda>n. f (n + N)) \<longlonglongrightarrow> 1"
eberlm@66277
   537
      by (intro abs_convergent_prod_imp_LIMSEQ abs_convergent_prod_ignore_initial_segment)
eberlm@66277
   538
    hence "eventually (\<lambda>n. norm (f (n + N) - 1) < 1) sequentially"
eberlm@66277
   539
      by (auto simp: tendsto_iff dist_norm)
eberlm@66277
   540
    then obtain M0 where M0: "norm (f (n + N) - 1) < 1" if "n \<ge> M0" for n
eberlm@66277
   541
      by (auto simp: eventually_at_top_linorder)
eberlm@66277
   542
eberlm@66277
   543
    {
eberlm@66277
   544
      fix M assume M: "M \<ge> M0"
eberlm@66277
   545
      with M0 have M: "norm (f (n + N) - 1) < 1" if "n \<ge> M" for n using that by simp
eberlm@66277
   546
eberlm@66277
   547
      have "(\<lambda>n. \<Prod>k\<le>n. 1 - norm (f (k+M+N) - 1)) \<longlonglongrightarrow> 0"
eberlm@66277
   548
      proof (rule tendsto_sandwich)
eberlm@66277
   549
        show "eventually (\<lambda>n. (\<Prod>k\<le>n. 1 - norm (f (k+M+N) - 1)) \<ge> 0) sequentially"
eberlm@66277
   550
          using M by (intro always_eventually prod_nonneg allI ballI) (auto intro: less_imp_le)
eberlm@66277
   551
        have "norm (1::'a) - norm (f (i + M + N) - 1) \<le> norm (f (i + M + N))" for i
eberlm@66277
   552
          using norm_triangle_ineq3[of "f (i + M + N)" 1] by simp
eberlm@66277
   553
        thus "eventually (\<lambda>n. (\<Prod>k\<le>n. 1 - norm (f (k+M+N) - 1)) \<le> (\<Prod>k\<le>n. norm (f (k+M+N)))) at_top"
eberlm@66277
   554
          using M by (intro always_eventually allI prod_mono ballI conjI) (auto intro: less_imp_le)
eberlm@66277
   555
        
eberlm@66277
   556
        define C where "C = (\<Prod>k<M. norm (f (k + N)))"
eberlm@66277
   557
        from N have [simp]: "C \<noteq> 0" by (auto simp: C_def)
eberlm@66277
   558
        from L have "(\<lambda>n. norm (\<Prod>k\<le>n+M. f (k + N))) \<longlonglongrightarrow> 0"
eberlm@66277
   559
          by (intro LIMSEQ_ignore_initial_segment) (simp add: tendsto_norm_zero_iff)
eberlm@66277
   560
        also have "(\<lambda>n. norm (\<Prod>k\<le>n+M. f (k + N))) = (\<lambda>n. C * (\<Prod>k\<le>n. norm (f (k + M + N))))"
eberlm@66277
   561
        proof (rule ext, goal_cases)
eberlm@66277
   562
          case (1 n)
eberlm@66277
   563
          have "{..n+M} = {..<M} \<union> {M..n+M}" by auto
eberlm@66277
   564
          also have "norm (\<Prod>k\<in>\<dots>. f (k + N)) = C * norm (\<Prod>k=M..n+M. f (k + N))"
eberlm@66277
   565
            unfolding C_def by (subst prod.union_disjoint) (auto simp: norm_mult prod_norm)
eberlm@66277
   566
          also have "(\<Prod>k=M..n+M. f (k + N)) = (\<Prod>k\<le>n. f (k + N + M))"
eberlm@66277
   567
            by (intro prod.reindex_bij_witness[of _ "\<lambda>i. i + M" "\<lambda>i. i - M"]) auto
eberlm@66277
   568
          finally show ?case by (simp add: add_ac prod_norm)
eberlm@66277
   569
        qed
eberlm@66277
   570
        finally have "(\<lambda>n. C * (\<Prod>k\<le>n. norm (f (k + M + N))) / C) \<longlonglongrightarrow> 0 / C"
eberlm@66277
   571
          by (intro tendsto_divide tendsto_const) auto
eberlm@66277
   572
        thus "(\<lambda>n. \<Prod>k\<le>n. norm (f (k + M + N))) \<longlonglongrightarrow> 0" by simp
eberlm@66277
   573
      qed simp_all
eberlm@66277
   574
eberlm@66277
   575
      have "1 - (\<Sum>i. norm (f (i + M + N) - 1)) \<le> 0"
eberlm@66277
   576
      proof (rule tendsto_le)
eberlm@66277
   577
        show "eventually (\<lambda>n. 1 - (\<Sum>k\<le>n. norm (f (k+M+N) - 1)) \<le> 
eberlm@66277
   578
                                (\<Prod>k\<le>n. 1 - norm (f (k+M+N) - 1))) at_top"
nipkow@69529
   579
          using M by (intro always_eventually allI Weierstrass_prod_ineq) (auto intro: less_imp_le)
eberlm@66277
   580
        show "(\<lambda>n. \<Prod>k\<le>n. 1 - norm (f (k+M+N) - 1)) \<longlonglongrightarrow> 0" by fact
eberlm@66277
   581
        show "(\<lambda>n. 1 - (\<Sum>k\<le>n. norm (f (k + M + N) - 1)))
eberlm@66277
   582
                  \<longlonglongrightarrow> 1 - (\<Sum>i. norm (f (i + M + N) - 1))"
eberlm@66277
   583
          by (intro tendsto_intros summable_LIMSEQ' summable_ignore_initial_segment 
eberlm@66277
   584
                abs_convergent_prod_imp_summable assms)
eberlm@66277
   585
      qed simp_all
eberlm@66277
   586
      hence "(\<Sum>i. norm (f (i + M + N) - 1)) \<ge> 1" by simp
eberlm@66277
   587
      also have "\<dots> + (\<Sum>i<M. norm (f (i + N) - 1)) = (\<Sum>i. norm (f (i + N) - 1))"
eberlm@66277
   588
        by (intro suminf_split_initial_segment [symmetric] summable_ignore_initial_segment
eberlm@66277
   589
              abs_convergent_prod_imp_summable assms)
eberlm@66277
   590
      finally have "1 + (\<Sum>i<M. norm (f (i + N) - 1)) \<le> (\<Sum>i. norm (f (i + N) - 1))" by simp
eberlm@66277
   591
    } note * = this
eberlm@66277
   592
eberlm@66277
   593
    have "1 + (\<Sum>i. norm (f (i + N) - 1)) \<le> (\<Sum>i. norm (f (i + N) - 1))"
eberlm@66277
   594
    proof (rule tendsto_le)
eberlm@66277
   595
      show "(\<lambda>M. 1 + (\<Sum>i<M. norm (f (i + N) - 1))) \<longlonglongrightarrow> 1 + (\<Sum>i. norm (f (i + N) - 1))"
eberlm@66277
   596
        by (intro tendsto_intros summable_LIMSEQ summable_ignore_initial_segment 
eberlm@66277
   597
                abs_convergent_prod_imp_summable assms)
eberlm@66277
   598
      show "eventually (\<lambda>M. 1 + (\<Sum>i<M. norm (f (i + N) - 1)) \<le> (\<Sum>i. norm (f (i + N) - 1))) at_top"
eberlm@66277
   599
        using eventually_ge_at_top[of M0] by eventually_elim (use * in auto)
eberlm@66277
   600
    qed simp_all
eberlm@66277
   601
    thus False by simp
eberlm@66277
   602
  qed
lp15@68064
   603
  with L show ?thesis by (auto simp: prod_defs)
lp15@68064
   604
qed
lp15@68064
   605
lp15@68361
   606
lemma raw_has_prod_cases:
lp15@68064
   607
  fixes f :: "nat \<Rightarrow> 'a :: {idom,topological_semigroup_mult,t2_space}"
lp15@68361
   608
  assumes "raw_has_prod f M p"
lp15@68361
   609
  obtains i where "i<M" "f i = 0" | p where "raw_has_prod f 0 p"
lp15@68136
   610
proof -
lp15@68136
   611
  have "(\<lambda>n. \<Prod>i\<le>n. f (i + M)) \<longlonglongrightarrow> p" "p \<noteq> 0"
lp15@68361
   612
    using assms unfolding raw_has_prod_def by blast+
lp15@68064
   613
  then have "(\<lambda>n. prod f {..<M} * (\<Prod>i\<le>n. f (i + M))) \<longlonglongrightarrow> prod f {..<M} * p"
lp15@68064
   614
    by (metis tendsto_mult_left)
lp15@68064
   615
  moreover have "prod f {..<M} * (\<Prod>i\<le>n. f (i + M)) = prod f {..n+M}" for n
lp15@68064
   616
  proof -
lp15@68064
   617
    have "{..n+M} = {..<M} \<union> {M..n+M}"
lp15@68064
   618
      by auto
lp15@68064
   619
    then have "prod f {..n+M} = prod f {..<M} * prod f {M..n+M}"
lp15@68064
   620
      by simp (subst prod.union_disjoint; force)
lp15@68138
   621
    also have "\<dots> = prod f {..<M} * (\<Prod>i\<le>n. f (i + M))"
lp15@68064
   622
      by (metis (mono_tags, lifting) add.left_neutral atMost_atLeast0 prod_shift_bounds_cl_nat_ivl)
lp15@68064
   623
    finally show ?thesis by metis
lp15@68064
   624
  qed
lp15@68064
   625
  ultimately have "(\<lambda>n. prod f {..n}) \<longlonglongrightarrow> prod f {..<M} * p"
lp15@68064
   626
    by (auto intro: LIMSEQ_offset [where k=M])
lp15@68361
   627
  then have "raw_has_prod f 0 (prod f {..<M} * p)" if "\<forall>i<M. f i \<noteq> 0"
lp15@68361
   628
    using \<open>p \<noteq> 0\<close> assms that by (auto simp: raw_has_prod_def)
lp15@68136
   629
  then show thesis
lp15@68136
   630
    using that by blast
lp15@68064
   631
qed
lp15@68064
   632
lp15@68136
   633
corollary convergent_prod_offset_0:
lp15@68136
   634
  fixes f :: "nat \<Rightarrow> 'a :: {idom,topological_semigroup_mult,t2_space}"
lp15@68136
   635
  assumes "convergent_prod f" "\<And>i. f i \<noteq> 0"
lp15@68361
   636
  shows "\<exists>p. raw_has_prod f 0 p"
lp15@68361
   637
  using assms convergent_prod_def raw_has_prod_cases by blast
lp15@68136
   638
lp15@68064
   639
lemma prodinf_eq_lim:
lp15@68064
   640
  fixes f :: "nat \<Rightarrow> 'a :: {idom,topological_semigroup_mult,t2_space}"
lp15@68064
   641
  assumes "convergent_prod f" "\<And>i. f i \<noteq> 0"
lp15@68064
   642
  shows "prodinf f = lim (\<lambda>n. \<Prod>i\<le>n. f i)"
lp15@68064
   643
  using assms convergent_prod_offset_0 [OF assms]
lp15@68064
   644
  by (simp add: prod_defs lim_def) (metis (no_types) assms(1) convergent_prod_to_zero_iff)
lp15@68064
   645
lp15@68064
   646
lemma has_prod_one[simp, intro]: "(\<lambda>n. 1) has_prod 1"
lp15@68064
   647
  unfolding prod_defs by auto
lp15@68064
   648
lp15@68064
   649
lemma convergent_prod_one[simp, intro]: "convergent_prod (\<lambda>n. 1)"
lp15@68064
   650
  unfolding prod_defs by auto
lp15@68064
   651
lp15@68064
   652
lemma prodinf_cong: "(\<And>n. f n = g n) \<Longrightarrow> prodinf f = prodinf g"
lp15@68064
   653
  by presburger
lp15@68064
   654
lp15@68064
   655
lemma convergent_prod_cong:
lp15@68064
   656
  fixes f g :: "nat \<Rightarrow> 'a::{field,topological_semigroup_mult,t2_space}"
lp15@68064
   657
  assumes ev: "eventually (\<lambda>x. f x = g x) sequentially" and f: "\<And>i. f i \<noteq> 0" and g: "\<And>i. g i \<noteq> 0"
lp15@68064
   658
  shows "convergent_prod f = convergent_prod g"
lp15@68064
   659
proof -
lp15@68064
   660
  from assms obtain N where N: "\<forall>n\<ge>N. f n = g n"
lp15@68064
   661
    by (auto simp: eventually_at_top_linorder)
lp15@68064
   662
  define C where "C = (\<Prod>k<N. f k / g k)"
lp15@68064
   663
  with g have "C \<noteq> 0"
lp15@68064
   664
    by (simp add: f)
lp15@68064
   665
  have *: "eventually (\<lambda>n. prod f {..n} = C * prod g {..n}) sequentially"
lp15@68064
   666
    using eventually_ge_at_top[of N]
lp15@68064
   667
  proof eventually_elim
lp15@68064
   668
    case (elim n)
lp15@68064
   669
    then have "{..n} = {..<N} \<union> {N..n}"
lp15@68064
   670
      by auto
lp15@68138
   671
    also have "prod f \<dots> = prod f {..<N} * prod f {N..n}"
lp15@68064
   672
      by (intro prod.union_disjoint) auto
lp15@68064
   673
    also from N have "prod f {N..n} = prod g {N..n}"
lp15@68064
   674
      by (intro prod.cong) simp_all
lp15@68064
   675
    also have "prod f {..<N} * prod g {N..n} = C * (prod g {..<N} * prod g {N..n})"
lp15@68064
   676
      unfolding C_def by (simp add: g prod_dividef)
lp15@68064
   677
    also have "prod g {..<N} * prod g {N..n} = prod g ({..<N} \<union> {N..n})"
lp15@68064
   678
      by (intro prod.union_disjoint [symmetric]) auto
lp15@68064
   679
    also from elim have "{..<N} \<union> {N..n} = {..n}"
lp15@68064
   680
      by auto                                                                    
lp15@68064
   681
    finally show "prod f {..n} = C * prod g {..n}" .
lp15@68064
   682
  qed
lp15@68064
   683
  then have cong: "convergent (\<lambda>n. prod f {..n}) = convergent (\<lambda>n. C * prod g {..n})"
lp15@68064
   684
    by (rule convergent_cong)
lp15@68064
   685
  show ?thesis
lp15@68064
   686
  proof
lp15@68064
   687
    assume cf: "convergent_prod f"
lp15@68064
   688
    then have "\<not> (\<lambda>n. prod g {..n}) \<longlonglongrightarrow> 0"
lp15@68064
   689
      using tendsto_mult_left * convergent_prod_to_zero_iff f filterlim_cong by fastforce
lp15@68064
   690
    then show "convergent_prod g"
lp15@68064
   691
      by (metis convergent_mult_const_iff \<open>C \<noteq> 0\<close> cong cf convergent_LIMSEQ_iff convergent_prod_iff_convergent convergent_prod_imp_convergent g)
lp15@68064
   692
  next
lp15@68064
   693
    assume cg: "convergent_prod g"
lp15@68064
   694
    have "\<exists>a. C * a \<noteq> 0 \<and> (\<lambda>n. prod g {..n}) \<longlonglongrightarrow> a"
lp15@68064
   695
      by (metis (no_types) \<open>C \<noteq> 0\<close> cg convergent_prod_iff_nz_lim divide_eq_0_iff g nonzero_mult_div_cancel_right)
lp15@68064
   696
    then show "convergent_prod f"
lp15@68064
   697
      using "*" tendsto_mult_left filterlim_cong
lp15@68064
   698
      by (fastforce simp add: convergent_prod_iff_nz_lim f)
lp15@68064
   699
  qed
eberlm@66277
   700
qed
eberlm@66277
   701
lp15@68071
   702
lemma has_prod_finite:
lp15@68361
   703
  fixes f :: "nat \<Rightarrow> 'a::{semidom,t2_space}"
lp15@68071
   704
  assumes [simp]: "finite N"
lp15@68071
   705
    and f: "\<And>n. n \<notin> N \<Longrightarrow> f n = 1"
lp15@68071
   706
  shows "f has_prod (\<Prod>n\<in>N. f n)"
lp15@68071
   707
proof -
lp15@68071
   708
  have eq: "prod f {..n + Suc (Max N)} = prod f N" for n
lp15@68071
   709
  proof (rule prod.mono_neutral_right)
lp15@68071
   710
    show "N \<subseteq> {..n + Suc (Max N)}"
lp15@68138
   711
      by (auto simp: le_Suc_eq trans_le_add2)
lp15@68071
   712
    show "\<forall>i\<in>{..n + Suc (Max N)} - N. f i = 1"
lp15@68071
   713
      using f by blast
lp15@68071
   714
  qed auto
lp15@68071
   715
  show ?thesis
lp15@68071
   716
  proof (cases "\<forall>n\<in>N. f n \<noteq> 0")
lp15@68071
   717
    case True
lp15@68071
   718
    then have "prod f N \<noteq> 0"
lp15@68071
   719
      by simp
lp15@68071
   720
    moreover have "(\<lambda>n. prod f {..n}) \<longlonglongrightarrow> prod f N"
lp15@68071
   721
      by (rule LIMSEQ_offset[of _ "Suc (Max N)"]) (simp add: eq atLeast0LessThan del: add_Suc_right)
lp15@68071
   722
    ultimately show ?thesis
lp15@68361
   723
      by (simp add: raw_has_prod_def has_prod_def)
lp15@68071
   724
  next
lp15@68071
   725
    case False
lp15@68071
   726
    then obtain k where "k \<in> N" "f k = 0"
lp15@68071
   727
      by auto
lp15@68071
   728
    let ?Z = "{n \<in> N. f n = 0}"
lp15@68071
   729
    have maxge: "Max ?Z \<ge> n" if "f n = 0" for n
lp15@68071
   730
      using Max_ge [of ?Z] \<open>finite N\<close> \<open>f n = 0\<close>
lp15@68071
   731
      by (metis (mono_tags) Collect_mem_eq f finite_Collect_conjI mem_Collect_eq zero_neq_one)
lp15@68071
   732
    let ?q = "prod f {Suc (Max ?Z)..Max N}"
lp15@68071
   733
    have [simp]: "?q \<noteq> 0"
lp15@68071
   734
      using maxge Suc_n_not_le_n le_trans by force
lp15@68076
   735
    have eq: "(\<Prod>i\<le>n + Max N. f (Suc (i + Max ?Z))) = ?q" for n
lp15@68076
   736
    proof -
lp15@68076
   737
      have "(\<Prod>i\<le>n + Max N. f (Suc (i + Max ?Z))) = prod f {Suc (Max ?Z)..n + Max N + Suc (Max ?Z)}" 
lp15@68076
   738
      proof (rule prod.reindex_cong [where l = "\<lambda>i. i + Suc (Max ?Z)", THEN sym])
lp15@68076
   739
        show "{Suc (Max ?Z)..n + Max N + Suc (Max ?Z)} = (\<lambda>i. i + Suc (Max ?Z)) ` {..n + Max N}"
lp15@68076
   740
          using le_Suc_ex by fastforce
lp15@68076
   741
      qed (auto simp: inj_on_def)
lp15@68138
   742
      also have "\<dots> = ?q"
lp15@68076
   743
        by (rule prod.mono_neutral_right)
lp15@68076
   744
           (use Max.coboundedI [OF \<open>finite N\<close>] f in \<open>force+\<close>)
lp15@68076
   745
      finally show ?thesis .
lp15@68076
   746
    qed
lp15@68361
   747
    have q: "raw_has_prod f (Suc (Max ?Z)) ?q"
lp15@68361
   748
    proof (simp add: raw_has_prod_def)
lp15@68076
   749
      show "(\<lambda>n. \<Prod>i\<le>n. f (Suc (i + Max ?Z))) \<longlonglongrightarrow> ?q"
lp15@68076
   750
        by (rule LIMSEQ_offset[of _ "(Max N)"]) (simp add: eq)
lp15@68076
   751
    qed
lp15@68071
   752
    show ?thesis
lp15@68071
   753
      unfolding has_prod_def
lp15@68071
   754
    proof (intro disjI2 exI conjI)      
lp15@68071
   755
      show "prod f N = 0"
lp15@68071
   756
        using \<open>f k = 0\<close> \<open>k \<in> N\<close> \<open>finite N\<close> prod_zero by blast
lp15@68071
   757
      show "f (Max ?Z) = 0"
lp15@68071
   758
        using Max_in [of ?Z] \<open>finite N\<close> \<open>f k = 0\<close> \<open>k \<in> N\<close> by auto
lp15@68071
   759
    qed (use q in auto)
lp15@68071
   760
  qed
lp15@68071
   761
qed
lp15@68071
   762
eberlm@68651
   763
corollary%unimportant has_prod_0:
lp15@68361
   764
  fixes f :: "nat \<Rightarrow> 'a::{semidom,t2_space}"
lp15@68071
   765
  assumes "\<And>n. f n = 1"
lp15@68071
   766
  shows "f has_prod 1"
lp15@68071
   767
  by (simp add: assms has_prod_cong)
lp15@68071
   768
lp15@68361
   769
lemma prodinf_zero[simp]: "prodinf (\<lambda>n. 1::'a::real_normed_field) = 1"
lp15@68361
   770
  using has_prod_unique by force
lp15@68361
   771
lp15@68071
   772
lemma convergent_prod_finite:
lp15@68071
   773
  fixes f :: "nat \<Rightarrow> 'a::{idom,t2_space}"
lp15@68071
   774
  assumes "finite N" "\<And>n. n \<notin> N \<Longrightarrow> f n = 1"
lp15@68071
   775
  shows "convergent_prod f"
lp15@68071
   776
proof -
lp15@68361
   777
  have "\<exists>n p. raw_has_prod f n p"
lp15@68071
   778
    using assms has_prod_def has_prod_finite by blast
lp15@68071
   779
  then show ?thesis
lp15@68071
   780
    by (simp add: convergent_prod_def)
lp15@68071
   781
qed
lp15@68071
   782
lp15@68127
   783
lemma has_prod_If_finite_set:
lp15@68127
   784
  fixes f :: "nat \<Rightarrow> 'a::{idom,t2_space}"
lp15@68127
   785
  shows "finite A \<Longrightarrow> (\<lambda>r. if r \<in> A then f r else 1) has_prod (\<Prod>r\<in>A. f r)"
lp15@68127
   786
  using has_prod_finite[of A "(\<lambda>r. if r \<in> A then f r else 1)"]
lp15@68127
   787
  by simp
lp15@68127
   788
lp15@68127
   789
lemma has_prod_If_finite:
lp15@68127
   790
  fixes f :: "nat \<Rightarrow> 'a::{idom,t2_space}"
lp15@68127
   791
  shows "finite {r. P r} \<Longrightarrow> (\<lambda>r. if P r then f r else 1) has_prod (\<Prod>r | P r. f r)"
lp15@68127
   792
  using has_prod_If_finite_set[of "{r. P r}"] by simp
lp15@68127
   793
lp15@68127
   794
lemma convergent_prod_If_finite_set[simp, intro]:
lp15@68127
   795
  fixes f :: "nat \<Rightarrow> 'a::{idom,t2_space}"
lp15@68127
   796
  shows "finite A \<Longrightarrow> convergent_prod (\<lambda>r. if r \<in> A then f r else 1)"
lp15@68127
   797
  by (simp add: convergent_prod_finite)
lp15@68127
   798
lp15@68127
   799
lemma convergent_prod_If_finite[simp, intro]:
lp15@68127
   800
  fixes f :: "nat \<Rightarrow> 'a::{idom,t2_space}"
lp15@68127
   801
  shows "finite {r. P r} \<Longrightarrow> convergent_prod (\<lambda>r. if P r then f r else 1)"
lp15@68127
   802
  using convergent_prod_def has_prod_If_finite has_prod_def by fastforce
lp15@68127
   803
lp15@68127
   804
lemma has_prod_single:
lp15@68127
   805
  fixes f :: "nat \<Rightarrow> 'a::{idom,t2_space}"
lp15@68127
   806
  shows "(\<lambda>r. if r = i then f r else 1) has_prod f i"
lp15@68127
   807
  using has_prod_If_finite[of "\<lambda>r. r = i"] by simp
lp15@68127
   808
lp15@68136
   809
context
lp15@68136
   810
  fixes f :: "nat \<Rightarrow> 'a :: real_normed_field"
lp15@68136
   811
begin
lp15@68136
   812
lp15@68136
   813
lemma convergent_prod_imp_has_prod: 
lp15@68136
   814
  assumes "convergent_prod f"
lp15@68136
   815
  shows "\<exists>p. f has_prod p"
lp15@68136
   816
proof -
lp15@68361
   817
  obtain M p where p: "raw_has_prod f M p"
lp15@68136
   818
    using assms convergent_prod_def by blast
lp15@68136
   819
  then have "p \<noteq> 0"
lp15@68361
   820
    using raw_has_prod_nonzero by blast
lp15@68136
   821
  with p have fnz: "f i \<noteq> 0" if "i \<ge> M" for i
lp15@68361
   822
    using raw_has_prod_eq_0 that by blast
lp15@68136
   823
  define C where "C = (\<Prod>n<M. f n)"
lp15@68136
   824
  show ?thesis
lp15@68136
   825
  proof (cases "\<forall>n\<le>M. f n \<noteq> 0")
lp15@68136
   826
    case True
lp15@68136
   827
    then have "C \<noteq> 0"
lp15@68136
   828
      by (simp add: C_def)
lp15@68136
   829
    then show ?thesis
lp15@68136
   830
      by (meson True assms convergent_prod_offset_0 fnz has_prod_def nat_le_linear)
lp15@68136
   831
  next
lp15@68136
   832
    case False
lp15@68136
   833
    let ?N = "GREATEST n. f n = 0"
lp15@68136
   834
    have 0: "f ?N = 0"
lp15@68136
   835
      using fnz False
lp15@68136
   836
      by (metis (mono_tags, lifting) GreatestI_ex_nat nat_le_linear)
lp15@68136
   837
    have "f i \<noteq> 0" if "i > ?N" for i
lp15@68136
   838
      by (metis (mono_tags, lifting) Greatest_le_nat fnz leD linear that)
lp15@68361
   839
    then have "\<exists>p. raw_has_prod f (Suc ?N) p"
lp15@68136
   840
      using assms by (auto simp: intro!: convergent_prod_ignore_nonzero_segment)
lp15@68136
   841
    then show ?thesis
lp15@68136
   842
      unfolding has_prod_def using 0 by blast
lp15@68136
   843
  qed
lp15@68136
   844
qed
lp15@68136
   845
lp15@68136
   846
lemma convergent_prod_has_prod [intro]:
lp15@68136
   847
  shows "convergent_prod f \<Longrightarrow> f has_prod (prodinf f)"
lp15@68136
   848
  unfolding prodinf_def
lp15@68136
   849
  by (metis convergent_prod_imp_has_prod has_prod_unique theI')
lp15@68136
   850
lp15@68136
   851
lemma convergent_prod_LIMSEQ:
lp15@68136
   852
  shows "convergent_prod f \<Longrightarrow> (\<lambda>n. \<Prod>i\<le>n. f i) \<longlonglongrightarrow> prodinf f"
lp15@68136
   853
  by (metis convergent_LIMSEQ_iff convergent_prod_has_prod convergent_prod_imp_convergent 
lp15@68361
   854
      convergent_prod_to_zero_iff raw_has_prod_eq_0 has_prod_def prodinf_eq_lim zero_le)
lp15@68136
   855
eberlm@68651
   856
theorem has_prod_iff: "f has_prod x \<longleftrightarrow> convergent_prod f \<and> prodinf f = x"
lp15@68136
   857
proof
lp15@68136
   858
  assume "f has_prod x"
lp15@68136
   859
  then show "convergent_prod f \<and> prodinf f = x"
lp15@68136
   860
    apply safe
lp15@68136
   861
    using convergent_prod_def has_prod_def apply blast
lp15@68136
   862
    using has_prod_unique by blast
lp15@68136
   863
qed auto
lp15@68136
   864
lp15@68136
   865
lemma convergent_prod_has_prod_iff: "convergent_prod f \<longleftrightarrow> f has_prod prodinf f"
lp15@68136
   866
  by (auto simp: has_prod_iff convergent_prod_has_prod)
lp15@68136
   867
lp15@68136
   868
lemma prodinf_finite:
lp15@68136
   869
  assumes N: "finite N"
lp15@68136
   870
    and f: "\<And>n. n \<notin> N \<Longrightarrow> f n = 1"
lp15@68136
   871
  shows "prodinf f = (\<Prod>n\<in>N. f n)"
lp15@68136
   872
  using has_prod_finite[OF assms, THEN has_prod_unique] by simp
lp15@68127
   873
eberlm@66277
   874
end
lp15@68136
   875
eberlm@68651
   876
subsection%unimportant \<open>Infinite products on ordered topological monoids\<close>
lp15@68361
   877
lp15@68361
   878
lemma LIMSEQ_prod_0: 
lp15@68361
   879
  fixes f :: "nat \<Rightarrow> 'a::{semidom,topological_space}"
lp15@68361
   880
  assumes "f i = 0"
lp15@68361
   881
  shows "(\<lambda>n. prod f {..n}) \<longlonglongrightarrow> 0"
lp15@68361
   882
proof (subst tendsto_cong)
lp15@68361
   883
  show "\<forall>\<^sub>F n in sequentially. prod f {..n} = 0"
lp15@68361
   884
  proof
lp15@68361
   885
    show "prod f {..n} = 0" if "n \<ge> i" for n
lp15@68361
   886
      using that assms by auto
lp15@68361
   887
  qed
lp15@68361
   888
qed auto
lp15@68361
   889
lp15@68361
   890
lemma LIMSEQ_prod_nonneg: 
lp15@68361
   891
  fixes f :: "nat \<Rightarrow> 'a::{linordered_semidom,linorder_topology}"
lp15@68361
   892
  assumes 0: "\<And>n. 0 \<le> f n" and a: "(\<lambda>n. prod f {..n}) \<longlonglongrightarrow> a"
lp15@68361
   893
  shows "a \<ge> 0"
lp15@68361
   894
  by (simp add: "0" prod_nonneg LIMSEQ_le_const [OF a])
lp15@68361
   895
lp15@68361
   896
lp15@68361
   897
context
lp15@68361
   898
  fixes f :: "nat \<Rightarrow> 'a::{linordered_semidom,linorder_topology}"
lp15@68361
   899
begin
lp15@68361
   900
lp15@68361
   901
lemma has_prod_le:
lp15@68361
   902
  assumes f: "f has_prod a" and g: "g has_prod b" and le: "\<And>n. 0 \<le> f n \<and> f n \<le> g n"
lp15@68361
   903
  shows "a \<le> b"
lp15@68361
   904
proof (cases "a=0 \<or> b=0")
lp15@68361
   905
  case True
lp15@68361
   906
  then show ?thesis
lp15@68361
   907
  proof
lp15@68361
   908
    assume [simp]: "a=0"
lp15@68361
   909
    have "b \<ge> 0"
lp15@68361
   910
    proof (rule LIMSEQ_prod_nonneg)
lp15@68361
   911
      show "(\<lambda>n. prod g {..n}) \<longlonglongrightarrow> b"
lp15@68361
   912
        using g by (auto simp: has_prod_def raw_has_prod_def LIMSEQ_prod_0)
lp15@68361
   913
    qed (use le order_trans in auto)
lp15@68361
   914
    then show ?thesis
lp15@68361
   915
      by auto
lp15@68361
   916
  next
lp15@68361
   917
    assume [simp]: "b=0"
lp15@68361
   918
    then obtain i where "g i = 0"    
lp15@68361
   919
      using g by (auto simp: prod_defs)
lp15@68361
   920
    then have "f i = 0"
lp15@68361
   921
      using antisym le by force
lp15@68361
   922
    then have "a=0"
lp15@68361
   923
      using f by (auto simp: prod_defs LIMSEQ_prod_0 LIMSEQ_unique)
lp15@68361
   924
    then show ?thesis
lp15@68361
   925
      by auto
lp15@68361
   926
  qed
lp15@68361
   927
next
lp15@68361
   928
  case False
lp15@68361
   929
  then show ?thesis
lp15@68361
   930
    using assms
lp15@68361
   931
    unfolding has_prod_def raw_has_prod_def
lp15@68361
   932
    by (force simp: LIMSEQ_prod_0 intro!: LIMSEQ_le prod_mono)
lp15@68361
   933
qed
lp15@68361
   934
lp15@68361
   935
lemma prodinf_le: 
lp15@68361
   936
  assumes f: "f has_prod a" and g: "g has_prod b" and le: "\<And>n. 0 \<le> f n \<and> f n \<le> g n"
lp15@68361
   937
  shows "prodinf f \<le> prodinf g"
lp15@68361
   938
  using has_prod_le [OF assms] has_prod_unique f g  by blast
lp15@68361
   939
lp15@68136
   940
end
lp15@68361
   941
lp15@68361
   942
lp15@68361
   943
lemma prod_le_prodinf: 
lp15@68361
   944
  fixes f :: "nat \<Rightarrow> 'a::{linordered_idom,linorder_topology}"
lp15@68361
   945
  assumes "f has_prod a" "\<And>i. 0 \<le> f i" "\<And>i. i\<ge>n \<Longrightarrow> 1 \<le> f i"
lp15@68361
   946
  shows "prod f {..<n} \<le> prodinf f"
lp15@68361
   947
  by(rule has_prod_le[OF has_prod_If_finite_set]) (use assms has_prod_unique in auto)
lp15@68361
   948
lp15@68361
   949
lemma prodinf_nonneg:
lp15@68361
   950
  fixes f :: "nat \<Rightarrow> 'a::{linordered_idom,linorder_topology}"
lp15@68361
   951
  assumes "f has_prod a" "\<And>i. 1 \<le> f i" 
lp15@68361
   952
  shows "1 \<le> prodinf f"
lp15@68361
   953
  using prod_le_prodinf[of f a 0] assms
lp15@68361
   954
  by (metis order_trans prod_ge_1 zero_le_one)
lp15@68361
   955
lp15@68361
   956
lemma prodinf_le_const:
lp15@68361
   957
  fixes f :: "nat \<Rightarrow> real"
lp15@68361
   958
  assumes "convergent_prod f" "\<And>n. prod f {..<n} \<le> x" 
lp15@68361
   959
  shows "prodinf f \<le> x"
lp15@68361
   960
  by (metis lessThan_Suc_atMost assms convergent_prod_LIMSEQ LIMSEQ_le_const2)
lp15@68361
   961
lp15@68361
   962
lemma prodinf_eq_one_iff: 
lp15@68361
   963
  fixes f :: "nat \<Rightarrow> real"
lp15@68361
   964
  assumes f: "convergent_prod f" and ge1: "\<And>n. 1 \<le> f n"
lp15@68361
   965
  shows "prodinf f = 1 \<longleftrightarrow> (\<forall>n. f n = 1)"
lp15@68361
   966
proof
lp15@68361
   967
  assume "prodinf f = 1" 
lp15@68361
   968
  then have "(\<lambda>n. \<Prod>i<n. f i) \<longlonglongrightarrow> 1"
lp15@68361
   969
    using convergent_prod_LIMSEQ[of f] assms by (simp add: LIMSEQ_lessThan_iff_atMost)
lp15@68361
   970
  then have "\<And>i. (\<Prod>n\<in>{i}. f n) \<le> 1"
lp15@68361
   971
  proof (rule LIMSEQ_le_const)
lp15@68361
   972
    have "1 \<le> prod f n" for n
lp15@68361
   973
      by (simp add: ge1 prod_ge_1)
lp15@68361
   974
    have "prod f {..<n} = 1" for n
lp15@68361
   975
      by (metis \<open>\<And>n. 1 \<le> prod f n\<close> \<open>prodinf f = 1\<close> antisym f convergent_prod_has_prod ge1 order_trans prod_le_prodinf zero_le_one)
lp15@68361
   976
    then have "(\<Prod>n\<in>{i}. f n) \<le> prod f {..<n}" if "n \<ge> Suc i" for i n
lp15@68361
   977
      by (metis mult.left_neutral order_refl prod.cong prod.neutral_const prod_lessThan_Suc)
lp15@68361
   978
    then show "\<exists>N. \<forall>n\<ge>N. (\<Prod>n\<in>{i}. f n) \<le> prod f {..<n}" for i
lp15@68361
   979
      by blast      
lp15@68361
   980
  qed
lp15@68361
   981
  with ge1 show "\<forall>n. f n = 1"
lp15@68361
   982
    by (auto intro!: antisym)
lp15@68361
   983
qed (metis prodinf_zero fun_eq_iff)
lp15@68361
   984
lp15@68361
   985
lemma prodinf_pos_iff:
lp15@68361
   986
  fixes f :: "nat \<Rightarrow> real"
lp15@68361
   987
  assumes "convergent_prod f" "\<And>n. 1 \<le> f n"
lp15@68361
   988
  shows "1 < prodinf f \<longleftrightarrow> (\<exists>i. 1 < f i)"
lp15@68361
   989
  using prod_le_prodinf[of f 1] prodinf_eq_one_iff
lp15@68361
   990
  by (metis convergent_prod_has_prod assms less_le prodinf_nonneg)
lp15@68361
   991
lp15@68361
   992
lemma less_1_prodinf2:
lp15@68361
   993
  fixes f :: "nat \<Rightarrow> real"
lp15@68361
   994
  assumes "convergent_prod f" "\<And>n. 1 \<le> f n" "1 < f i"
lp15@68361
   995
  shows "1 < prodinf f"
lp15@68361
   996
proof -
lp15@68361
   997
  have "1 < (\<Prod>n<Suc i. f n)"
lp15@68361
   998
    using assms  by (intro less_1_prod2[where i=i]) auto
lp15@68361
   999
  also have "\<dots> \<le> prodinf f"
lp15@68361
  1000
    by (intro prod_le_prodinf) (use assms order_trans zero_le_one in \<open>blast+\<close>)
lp15@68361
  1001
  finally show ?thesis .
lp15@68361
  1002
qed
lp15@68361
  1003
lp15@68361
  1004
lemma less_1_prodinf:
lp15@68361
  1005
  fixes f :: "nat \<Rightarrow> real"
lp15@68361
  1006
  shows "\<lbrakk>convergent_prod f; \<And>n. 1 < f n\<rbrakk> \<Longrightarrow> 1 < prodinf f"
lp15@68361
  1007
  by (intro less_1_prodinf2[where i=1]) (auto intro: less_imp_le)
lp15@68361
  1008
lp15@68361
  1009
lemma prodinf_nonzero:
lp15@68361
  1010
  fixes f :: "nat \<Rightarrow> 'a :: {idom,topological_semigroup_mult,t2_space}"
lp15@68361
  1011
  assumes "convergent_prod f" "\<And>i. f i \<noteq> 0"
lp15@68361
  1012
  shows "prodinf f \<noteq> 0"
lp15@68361
  1013
  by (metis assms convergent_prod_offset_0 has_prod_unique raw_has_prod_def has_prod_def)
lp15@68361
  1014
lp15@68361
  1015
lemma less_0_prodinf:
lp15@68361
  1016
  fixes f :: "nat \<Rightarrow> real"
lp15@68361
  1017
  assumes f: "convergent_prod f" and 0: "\<And>i. f i > 0"
lp15@68361
  1018
  shows "0 < prodinf f"
lp15@68361
  1019
proof -
lp15@68361
  1020
  have "prodinf f \<noteq> 0"
lp15@68361
  1021
    by (metis assms less_irrefl prodinf_nonzero)
lp15@68361
  1022
  moreover have "0 < (\<Prod>n<i. f n)" for i
lp15@68361
  1023
    by (simp add: 0 prod_pos)
lp15@68361
  1024
  then have "prodinf f \<ge> 0"
lp15@68361
  1025
    using convergent_prod_LIMSEQ [OF f] LIMSEQ_prod_nonneg 0 less_le by blast
lp15@68361
  1026
  ultimately show ?thesis
lp15@68361
  1027
    by auto
lp15@68361
  1028
qed
lp15@68361
  1029
lp15@68361
  1030
lemma prod_less_prodinf2:
lp15@68361
  1031
  fixes f :: "nat \<Rightarrow> real"
lp15@68361
  1032
  assumes f: "convergent_prod f" and 1: "\<And>m. m\<ge>n \<Longrightarrow> 1 \<le> f m" and 0: "\<And>m. 0 < f m" and i: "n \<le> i" "1 < f i"
lp15@68361
  1033
  shows "prod f {..<n} < prodinf f"
lp15@68361
  1034
proof -
lp15@68361
  1035
  have "prod f {..<n} \<le> prod f {..<i}"
lp15@68361
  1036
    by (rule prod_mono2) (use assms less_le in auto)
lp15@68361
  1037
  then have "prod f {..<n} < f i * prod f {..<i}"
lp15@68361
  1038
    using mult_less_le_imp_less[of 1 "f i" "prod f {..<n}" "prod f {..<i}"] assms
lp15@68361
  1039
    by (simp add: prod_pos)
lp15@68361
  1040
  moreover have "prod f {..<Suc i} \<le> prodinf f"
lp15@68361
  1041
    using prod_le_prodinf[of f _ "Suc i"]
lp15@68361
  1042
    by (meson "0" "1" Suc_leD convergent_prod_has_prod f \<open>n \<le> i\<close> le_trans less_eq_real_def)
lp15@68361
  1043
  ultimately show ?thesis
lp15@68361
  1044
    by (metis le_less_trans mult.commute not_le prod_lessThan_Suc)
lp15@68361
  1045
qed
lp15@68361
  1046
lp15@68361
  1047
lemma prod_less_prodinf:
lp15@68361
  1048
  fixes f :: "nat \<Rightarrow> real"
lp15@68361
  1049
  assumes f: "convergent_prod f" and 1: "\<And>m. m\<ge>n \<Longrightarrow> 1 < f m" and 0: "\<And>m. 0 < f m" 
lp15@68361
  1050
  shows "prod f {..<n} < prodinf f"
lp15@68361
  1051
  by (meson "0" "1" f le_less prod_less_prodinf2)
lp15@68361
  1052
lp15@68361
  1053
lemma raw_has_prodI_bounded:
lp15@68361
  1054
  fixes f :: "nat \<Rightarrow> real"
lp15@68361
  1055
  assumes pos: "\<And>n. 1 \<le> f n"
lp15@68361
  1056
    and le: "\<And>n. (\<Prod>i<n. f i) \<le> x"
lp15@68361
  1057
  shows "\<exists>p. raw_has_prod f 0 p"
lp15@68361
  1058
  unfolding raw_has_prod_def add_0_right
lp15@68361
  1059
proof (rule exI LIMSEQ_incseq_SUP conjI)+
lp15@68361
  1060
  show "bdd_above (range (\<lambda>n. prod f {..n}))"
lp15@68361
  1061
    by (metis bdd_aboveI2 le lessThan_Suc_atMost)
lp15@68361
  1062
  then have "(SUP i. prod f {..i}) > 0"
lp15@68361
  1063
    by (metis UNIV_I cSUP_upper less_le_trans pos prod_pos zero_less_one)
lp15@68361
  1064
  then show "(SUP i. prod f {..i}) \<noteq> 0"
lp15@68361
  1065
    by auto
lp15@68361
  1066
  show "incseq (\<lambda>n. prod f {..n})"
lp15@68361
  1067
    using pos order_trans [OF zero_le_one] by (auto simp: mono_def intro!: prod_mono2)
lp15@68361
  1068
qed
lp15@68361
  1069
lp15@68361
  1070
lemma convergent_prodI_nonneg_bounded:
lp15@68361
  1071
  fixes f :: "nat \<Rightarrow> real"
lp15@68361
  1072
  assumes "\<And>n. 1 \<le> f n" "\<And>n. (\<Prod>i<n. f i) \<le> x"
lp15@68361
  1073
  shows "convergent_prod f"
lp15@68361
  1074
  using convergent_prod_def raw_has_prodI_bounded [OF assms] by blast
lp15@68361
  1075
lp15@68361
  1076
eberlm@68651
  1077
subsection%unimportant \<open>Infinite products on topological spaces\<close>
lp15@68361
  1078
lp15@68361
  1079
context
lp15@68361
  1080
  fixes f g :: "nat \<Rightarrow> 'a::{t2_space,topological_semigroup_mult,idom}"
lp15@68361
  1081
begin
lp15@68361
  1082
lp15@68361
  1083
lemma raw_has_prod_mult: "\<lbrakk>raw_has_prod f M a; raw_has_prod g M b\<rbrakk> \<Longrightarrow> raw_has_prod (\<lambda>n. f n * g n) M (a * b)"
lp15@68361
  1084
  by (force simp add: prod.distrib tendsto_mult raw_has_prod_def)
lp15@68361
  1085
lp15@68361
  1086
lemma has_prod_mult_nz: "\<lbrakk>f has_prod a; g has_prod b; a \<noteq> 0; b \<noteq> 0\<rbrakk> \<Longrightarrow> (\<lambda>n. f n * g n) has_prod (a * b)"
lp15@68361
  1087
  by (simp add: raw_has_prod_mult has_prod_def)
lp15@68361
  1088
lp15@68361
  1089
end
lp15@68361
  1090
lp15@68361
  1091
lp15@68361
  1092
context
lp15@68361
  1093
  fixes f g :: "nat \<Rightarrow> 'a::real_normed_field"
lp15@68361
  1094
begin
lp15@68361
  1095
lp15@68361
  1096
lemma has_prod_mult:
lp15@68361
  1097
  assumes f: "f has_prod a" and g: "g has_prod b"
lp15@68361
  1098
  shows "(\<lambda>n. f n * g n) has_prod (a * b)"
lp15@68361
  1099
  using f [unfolded has_prod_def]
lp15@68361
  1100
proof (elim disjE exE conjE)
lp15@68361
  1101
  assume f0: "raw_has_prod f 0 a"
lp15@68361
  1102
  show ?thesis
lp15@68361
  1103
    using g [unfolded has_prod_def]
lp15@68361
  1104
  proof (elim disjE exE conjE)
lp15@68361
  1105
    assume g0: "raw_has_prod g 0 b"
lp15@68361
  1106
    with f0 show ?thesis
lp15@68361
  1107
      by (force simp add: has_prod_def prod.distrib tendsto_mult raw_has_prod_def)
lp15@68361
  1108
  next
lp15@68361
  1109
    fix j q
lp15@68361
  1110
    assume "b = 0" and "g j = 0" and q: "raw_has_prod g (Suc j) q"
lp15@68361
  1111
    obtain p where p: "raw_has_prod f (Suc j) p"
lp15@68361
  1112
      using f0 raw_has_prod_ignore_initial_segment by blast
lp15@68361
  1113
    then have "Ex (raw_has_prod (\<lambda>n. f n * g n) (Suc j))"
lp15@68361
  1114
      using q raw_has_prod_mult by blast
lp15@68361
  1115
    then show ?thesis
lp15@68361
  1116
      using \<open>b = 0\<close> \<open>g j = 0\<close> has_prod_0_iff by fastforce
lp15@68361
  1117
  qed
lp15@68361
  1118
next
lp15@68361
  1119
  fix i p
lp15@68361
  1120
  assume "a = 0" and "f i = 0" and p: "raw_has_prod f (Suc i) p"
lp15@68361
  1121
  show ?thesis
lp15@68361
  1122
    using g [unfolded has_prod_def]
lp15@68361
  1123
  proof (elim disjE exE conjE)
lp15@68361
  1124
    assume g0: "raw_has_prod g 0 b"
lp15@68361
  1125
    obtain q where q: "raw_has_prod g (Suc i) q"
lp15@68361
  1126
      using g0 raw_has_prod_ignore_initial_segment by blast
lp15@68361
  1127
    then have "Ex (raw_has_prod (\<lambda>n. f n * g n) (Suc i))"
lp15@68361
  1128
      using raw_has_prod_mult p by blast
lp15@68361
  1129
    then show ?thesis
lp15@68361
  1130
      using \<open>a = 0\<close> \<open>f i = 0\<close> has_prod_0_iff by fastforce
lp15@68361
  1131
  next
lp15@68361
  1132
    fix j q
lp15@68361
  1133
    assume "b = 0" and "g j = 0" and q: "raw_has_prod g (Suc j) q"
lp15@68361
  1134
    obtain p' where p': "raw_has_prod f (Suc (max i j)) p'"
lp15@68361
  1135
      by (metis raw_has_prod_ignore_initial_segment max_Suc_Suc max_def p)
lp15@68361
  1136
    moreover
lp15@68361
  1137
    obtain q' where q': "raw_has_prod g (Suc (max i j)) q'"
lp15@68361
  1138
      by (metis raw_has_prod_ignore_initial_segment max.cobounded2 max_Suc_Suc q)
lp15@68361
  1139
    ultimately show ?thesis
lp15@68361
  1140
      using \<open>b = 0\<close> by (simp add: has_prod_def) (metis \<open>f i = 0\<close> \<open>g j = 0\<close> raw_has_prod_mult max_def)
lp15@68361
  1141
  qed
lp15@68361
  1142
qed
lp15@68361
  1143
lp15@68361
  1144
lemma convergent_prod_mult:
lp15@68361
  1145
  assumes f: "convergent_prod f" and g: "convergent_prod g"
lp15@68361
  1146
  shows "convergent_prod (\<lambda>n. f n * g n)"
lp15@68361
  1147
  unfolding convergent_prod_def
lp15@68361
  1148
proof -
lp15@68361
  1149
  obtain M p N q where p: "raw_has_prod f M p" and q: "raw_has_prod g N q"
lp15@68361
  1150
    using convergent_prod_def f g by blast+
lp15@68361
  1151
  then obtain p' q' where p': "raw_has_prod f (max M N) p'" and q': "raw_has_prod g (max M N) q'"
lp15@68361
  1152
    by (meson raw_has_prod_ignore_initial_segment max.cobounded1 max.cobounded2)
lp15@68361
  1153
  then show "\<exists>M p. raw_has_prod (\<lambda>n. f n * g n) M p"
lp15@68361
  1154
    using raw_has_prod_mult by blast
lp15@68361
  1155
qed
lp15@68361
  1156
lp15@68361
  1157
lemma prodinf_mult: "convergent_prod f \<Longrightarrow> convergent_prod g \<Longrightarrow> prodinf f * prodinf g = (\<Prod>n. f n * g n)"
lp15@68361
  1158
  by (intro has_prod_unique has_prod_mult convergent_prod_has_prod)
lp15@68361
  1159
lp15@68361
  1160
end
lp15@68361
  1161
lp15@68361
  1162
context
lp15@68361
  1163
  fixes f :: "'i \<Rightarrow> nat \<Rightarrow> 'a::real_normed_field"
lp15@68361
  1164
    and I :: "'i set"
lp15@68361
  1165
begin
lp15@68361
  1166
lp15@68361
  1167
lemma has_prod_prod: "(\<And>i. i \<in> I \<Longrightarrow> (f i) has_prod (x i)) \<Longrightarrow> (\<lambda>n. \<Prod>i\<in>I. f i n) has_prod (\<Prod>i\<in>I. x i)"
lp15@68361
  1168
  by (induct I rule: infinite_finite_induct) (auto intro!: has_prod_mult)
lp15@68361
  1169
lp15@68361
  1170
lemma prodinf_prod: "(\<And>i. i \<in> I \<Longrightarrow> convergent_prod (f i)) \<Longrightarrow> (\<Prod>n. \<Prod>i\<in>I. f i n) = (\<Prod>i\<in>I. \<Prod>n. f i n)"
lp15@68361
  1171
  using has_prod_unique[OF has_prod_prod, OF convergent_prod_has_prod] by simp
lp15@68361
  1172
lp15@68361
  1173
lemma convergent_prod_prod: "(\<And>i. i \<in> I \<Longrightarrow> convergent_prod (f i)) \<Longrightarrow> convergent_prod (\<lambda>n. \<Prod>i\<in>I. f i n)"
lp15@68361
  1174
  using convergent_prod_has_prod_iff has_prod_prod prodinf_prod by force
lp15@68361
  1175
lp15@68361
  1176
end
lp15@68361
  1177
eberlm@68651
  1178
subsection%unimportant \<open>Infinite summability on real normed fields\<close>
lp15@68361
  1179
lp15@68361
  1180
context
lp15@68361
  1181
  fixes f :: "nat \<Rightarrow> 'a::real_normed_field"
lp15@68361
  1182
begin
lp15@68361
  1183
lp15@68361
  1184
lemma raw_has_prod_Suc_iff: "raw_has_prod f M (a * f M) \<longleftrightarrow> raw_has_prod (\<lambda>n. f (Suc n)) M a \<and> f M \<noteq> 0"
lp15@68361
  1185
proof -
lp15@68361
  1186
  have "raw_has_prod f M (a * f M) \<longleftrightarrow> (\<lambda>i. \<Prod>j\<le>Suc i. f (j+M)) \<longlonglongrightarrow> a * f M \<and> a * f M \<noteq> 0"
lp15@68361
  1187
    by (subst LIMSEQ_Suc_iff) (simp add: raw_has_prod_def)
lp15@68361
  1188
  also have "\<dots> \<longleftrightarrow> (\<lambda>i. (\<Prod>j\<le>i. f (Suc j + M)) * f M) \<longlonglongrightarrow> a * f M \<and> a * f M \<noteq> 0"
lp15@68361
  1189
    by (simp add: ac_simps atMost_Suc_eq_insert_0 image_Suc_atMost prod_atLeast1_atMost_eq lessThan_Suc_atMost)
lp15@68361
  1190
  also have "\<dots> \<longleftrightarrow> raw_has_prod (\<lambda>n. f (Suc n)) M a \<and> f M \<noteq> 0"
lp15@68361
  1191
  proof safe
lp15@68361
  1192
    assume tends: "(\<lambda>i. (\<Prod>j\<le>i. f (Suc j + M)) * f M) \<longlonglongrightarrow> a * f M" and 0: "a * f M \<noteq> 0"
lp15@68361
  1193
    with tendsto_divide[OF tends tendsto_const, of "f M"]    
lp15@68361
  1194
    show "raw_has_prod (\<lambda>n. f (Suc n)) M a"
lp15@68361
  1195
      by (simp add: raw_has_prod_def)
lp15@68361
  1196
  qed (auto intro: tendsto_mult_right simp:  raw_has_prod_def)
lp15@68361
  1197
  finally show ?thesis .
lp15@68361
  1198
qed
lp15@68361
  1199
lp15@68361
  1200
lemma has_prod_Suc_iff:
lp15@68361
  1201
  assumes "f 0 \<noteq> 0" shows "(\<lambda>n. f (Suc n)) has_prod a \<longleftrightarrow> f has_prod (a * f 0)"
lp15@68361
  1202
proof (cases "a = 0")
lp15@68361
  1203
  case True
lp15@68361
  1204
  then show ?thesis
lp15@68361
  1205
  proof (simp add: has_prod_def, safe)
lp15@68361
  1206
    fix i x
lp15@68361
  1207
    assume "f (Suc i) = 0" and "raw_has_prod (\<lambda>n. f (Suc n)) (Suc i) x"
lp15@68361
  1208
    then obtain y where "raw_has_prod f (Suc (Suc i)) y"
lp15@68361
  1209
      by (metis (no_types) raw_has_prod_eq_0 Suc_n_not_le_n raw_has_prod_Suc_iff raw_has_prod_ignore_initial_segment raw_has_prod_nonzero linear)
lp15@68361
  1210
    then show "\<exists>i. f i = 0 \<and> Ex (raw_has_prod f (Suc i))"
lp15@68361
  1211
      using \<open>f (Suc i) = 0\<close> by blast
lp15@68361
  1212
  next
lp15@68361
  1213
    fix i x
lp15@68361
  1214
    assume "f i = 0" and x: "raw_has_prod f (Suc i) x"
lp15@68361
  1215
    then obtain j where j: "i = Suc j"
lp15@68361
  1216
      by (metis assms not0_implies_Suc)
lp15@68361
  1217
    moreover have "\<exists> y. raw_has_prod (\<lambda>n. f (Suc n)) i y"
lp15@68361
  1218
      using x by (auto simp: raw_has_prod_def)
lp15@68361
  1219
    then show "\<exists>i. f (Suc i) = 0 \<and> Ex (raw_has_prod (\<lambda>n. f (Suc n)) (Suc i))"
lp15@68361
  1220
      using \<open>f i = 0\<close> j by blast
lp15@68361
  1221
  qed
lp15@68361
  1222
next
lp15@68361
  1223
  case False
lp15@68361
  1224
  then show ?thesis
lp15@68361
  1225
    by (auto simp: has_prod_def raw_has_prod_Suc_iff assms)
lp15@68361
  1226
qed
lp15@68361
  1227
lp15@68361
  1228
lemma convergent_prod_Suc_iff:
lp15@68452
  1229
  shows "convergent_prod (\<lambda>n. f (Suc n)) = convergent_prod f"
lp15@68361
  1230
proof
lp15@68361
  1231
  assume "convergent_prod f"
lp15@68452
  1232
  then obtain M L where M_nz:"\<forall>n\<ge>M. f n \<noteq> 0" and 
lp15@68452
  1233
        M_L:"(\<lambda>n. \<Prod>i\<le>n. f (i + M)) \<longlonglongrightarrow> L" and "L \<noteq> 0" 
lp15@68452
  1234
    unfolding convergent_prod_altdef by auto
lp15@68452
  1235
  have "(\<lambda>n. \<Prod>i\<le>n. f (Suc (i + M))) \<longlonglongrightarrow> L / f M"
lp15@68452
  1236
  proof -
lp15@68452
  1237
    have "(\<lambda>n. \<Prod>i\<in>{0..Suc n}. f (i + M)) \<longlonglongrightarrow> L"
lp15@68452
  1238
      using M_L 
lp15@68452
  1239
      apply (subst (asm) LIMSEQ_Suc_iff[symmetric]) 
lp15@68452
  1240
      using atLeast0AtMost by auto
lp15@68452
  1241
    then have "(\<lambda>n. f M * (\<Prod>i\<in>{0..n}. f (Suc (i + M)))) \<longlonglongrightarrow> L"
lp15@68452
  1242
      apply (subst (asm) prod.atLeast0_atMost_Suc_shift)
lp15@68452
  1243
      by simp
lp15@68452
  1244
    then have "(\<lambda>n. (\<Prod>i\<in>{0..n}. f (Suc (i + M)))) \<longlonglongrightarrow> L/f M"
lp15@68452
  1245
      apply (drule_tac tendsto_divide)
lp15@68452
  1246
      using M_nz[rule_format,of M,simplified] by auto
lp15@68452
  1247
    then show ?thesis unfolding atLeast0AtMost .
lp15@68452
  1248
  qed
lp15@68452
  1249
  then show "convergent_prod (\<lambda>n. f (Suc n))" unfolding convergent_prod_altdef
lp15@68452
  1250
    apply (rule_tac exI[where x=M])
lp15@68452
  1251
    apply (rule_tac exI[where x="L/f M"])
lp15@68452
  1252
    using M_nz \<open>L\<noteq>0\<close> by auto
lp15@68361
  1253
next
lp15@68361
  1254
  assume "convergent_prod (\<lambda>n. f (Suc n))"
lp15@68452
  1255
  then obtain M where "\<exists>L. (\<forall>n\<ge>M. f (Suc n) \<noteq> 0) \<and> (\<lambda>n. \<Prod>i\<le>n. f (Suc (i + M))) \<longlonglongrightarrow> L \<and> L \<noteq> 0"
lp15@68452
  1256
    unfolding convergent_prod_altdef by auto
lp15@68452
  1257
  then show "convergent_prod f" unfolding convergent_prod_altdef
lp15@68452
  1258
    apply (rule_tac exI[where x="Suc M"])
lp15@68452
  1259
    using Suc_le_D by auto
lp15@68361
  1260
qed
lp15@68361
  1261
lp15@68361
  1262
lemma raw_has_prod_inverse: 
lp15@68361
  1263
  assumes "raw_has_prod f M a" shows "raw_has_prod (\<lambda>n. inverse (f n)) M (inverse a)"
lp15@68361
  1264
  using assms unfolding raw_has_prod_def by (auto dest: tendsto_inverse simp: prod_inversef [symmetric])
lp15@68361
  1265
lp15@68361
  1266
lemma has_prod_inverse: 
lp15@68361
  1267
  assumes "f has_prod a" shows "(\<lambda>n. inverse (f n)) has_prod (inverse a)"
lp15@68361
  1268
using assms raw_has_prod_inverse unfolding has_prod_def by auto 
lp15@68361
  1269
lp15@68361
  1270
lemma convergent_prod_inverse:
lp15@68361
  1271
  assumes "convergent_prod f" 
lp15@68361
  1272
  shows "convergent_prod (\<lambda>n. inverse (f n))"
lp15@68361
  1273
  using assms unfolding convergent_prod_def  by (blast intro: raw_has_prod_inverse elim: )
lp15@68361
  1274
lp15@68361
  1275
end
lp15@68361
  1276
lp15@68424
  1277
context 
lp15@68361
  1278
  fixes f :: "nat \<Rightarrow> 'a::real_normed_field"
lp15@68361
  1279
begin
lp15@68361
  1280
lp15@68361
  1281
lemma raw_has_prod_Suc_iff': "raw_has_prod f M a \<longleftrightarrow> raw_has_prod (\<lambda>n. f (Suc n)) M (a / f M) \<and> f M \<noteq> 0"
lp15@68361
  1282
  by (metis raw_has_prod_eq_0 add.commute add.left_neutral raw_has_prod_Suc_iff raw_has_prod_nonzero le_add1 nonzero_mult_div_cancel_right times_divide_eq_left)
lp15@68361
  1283
lp15@68361
  1284
lemma has_prod_divide: "f has_prod a \<Longrightarrow> g has_prod b \<Longrightarrow> (\<lambda>n. f n / g n) has_prod (a / b)"
lp15@68361
  1285
  unfolding divide_inverse by (intro has_prod_inverse has_prod_mult)
lp15@68361
  1286
lp15@68361
  1287
lemma convergent_prod_divide:
lp15@68361
  1288
  assumes f: "convergent_prod f" and g: "convergent_prod g"
lp15@68361
  1289
  shows "convergent_prod (\<lambda>n. f n / g n)"
lp15@68361
  1290
  using f g has_prod_divide has_prod_iff by blast
lp15@68361
  1291
lp15@68361
  1292
lemma prodinf_divide: "convergent_prod f \<Longrightarrow> convergent_prod g \<Longrightarrow> prodinf f / prodinf g = (\<Prod>n. f n / g n)"
lp15@68361
  1293
  by (intro has_prod_unique has_prod_divide convergent_prod_has_prod)
lp15@68361
  1294
lp15@68361
  1295
lemma prodinf_inverse: "convergent_prod f \<Longrightarrow> (\<Prod>n. inverse (f n)) = inverse (\<Prod>n. f n)"
lp15@68361
  1296
  by (intro has_prod_unique [symmetric] has_prod_inverse convergent_prod_has_prod)
lp15@68361
  1297
lp15@68452
  1298
lemma has_prod_Suc_imp: 
lp15@68452
  1299
  assumes "(\<lambda>n. f (Suc n)) has_prod a"
lp15@68452
  1300
  shows "f has_prod (a * f 0)"
lp15@68452
  1301
proof -
lp15@68452
  1302
  have "f has_prod (a * f 0)" when "raw_has_prod (\<lambda>n. f (Suc n)) 0 a" 
lp15@68452
  1303
    apply (cases "f 0=0")
lp15@68452
  1304
    using that unfolding has_prod_def raw_has_prod_Suc 
lp15@68452
  1305
    by (auto simp add: raw_has_prod_Suc_iff)
lp15@68452
  1306
  moreover have "f has_prod (a * f 0)" when 
lp15@68452
  1307
    "(\<exists>i q. a = 0 \<and> f (Suc i) = 0 \<and> raw_has_prod (\<lambda>n. f (Suc n)) (Suc i) q)" 
lp15@68452
  1308
  proof -
lp15@68452
  1309
    from that 
lp15@68452
  1310
    obtain i q where "a = 0" "f (Suc i) = 0" "raw_has_prod (\<lambda>n. f (Suc n)) (Suc i) q"
lp15@68452
  1311
      by auto
lp15@68452
  1312
    then show ?thesis unfolding has_prod_def 
lp15@68452
  1313
      by (auto intro!:exI[where x="Suc i"] simp:raw_has_prod_Suc)
lp15@68452
  1314
  qed
lp15@68452
  1315
  ultimately show "f has_prod (a * f 0)" using assms unfolding has_prod_def by auto
lp15@68452
  1316
qed
lp15@68452
  1317
lp15@68361
  1318
lemma has_prod_iff_shift: 
lp15@68361
  1319
  assumes "\<And>i. i < n \<Longrightarrow> f i \<noteq> 0"
lp15@68361
  1320
  shows "(\<lambda>i. f (i + n)) has_prod a \<longleftrightarrow> f has_prod (a * (\<Prod>i<n. f i))"
lp15@68361
  1321
  using assms
lp15@68361
  1322
proof (induct n arbitrary: a)
lp15@68361
  1323
  case 0
lp15@68361
  1324
  then show ?case by simp
lp15@68361
  1325
next
lp15@68361
  1326
  case (Suc n)
lp15@68361
  1327
  then have "(\<lambda>i. f (Suc i + n)) has_prod a \<longleftrightarrow> (\<lambda>i. f (i + n)) has_prod (a * f n)"
lp15@68361
  1328
    by (subst has_prod_Suc_iff) auto
lp15@68361
  1329
  with Suc show ?case
lp15@68361
  1330
    by (simp add: ac_simps)
lp15@68361
  1331
qed
lp15@68361
  1332
eberlm@68651
  1333
corollary%unimportant has_prod_iff_shift':
lp15@68361
  1334
  assumes "\<And>i. i < n \<Longrightarrow> f i \<noteq> 0"
lp15@68361
  1335
  shows "(\<lambda>i. f (i + n)) has_prod (a / (\<Prod>i<n. f i)) \<longleftrightarrow> f has_prod a"
lp15@68361
  1336
  by (simp add: assms has_prod_iff_shift)
lp15@68361
  1337
lp15@68361
  1338
lemma has_prod_one_iff_shift:
lp15@68361
  1339
  assumes "\<And>i. i < n \<Longrightarrow> f i = 1"
lp15@68361
  1340
  shows "(\<lambda>i. f (i+n)) has_prod a \<longleftrightarrow> (\<lambda>i. f i) has_prod a"
lp15@68361
  1341
  by (simp add: assms has_prod_iff_shift)
lp15@68361
  1342
lp15@68361
  1343
lemma convergent_prod_iff_shift:
lp15@68361
  1344
  shows "convergent_prod (\<lambda>i. f (i + n)) \<longleftrightarrow> convergent_prod f"
lp15@68361
  1345
  apply safe
lp15@68361
  1346
  using convergent_prod_offset apply blast
lp15@68361
  1347
  using convergent_prod_ignore_initial_segment convergent_prod_def by blast
lp15@68361
  1348
lp15@68361
  1349
lemma has_prod_split_initial_segment:
lp15@68361
  1350
  assumes "f has_prod a" "\<And>i. i < n \<Longrightarrow> f i \<noteq> 0"
lp15@68361
  1351
  shows "(\<lambda>i. f (i + n)) has_prod (a / (\<Prod>i<n. f i))"
lp15@68361
  1352
  using assms has_prod_iff_shift' by blast
lp15@68361
  1353
lp15@68361
  1354
lemma prodinf_divide_initial_segment:
lp15@68361
  1355
  assumes "convergent_prod f" "\<And>i. i < n \<Longrightarrow> f i \<noteq> 0"
lp15@68361
  1356
  shows "(\<Prod>i. f (i + n)) = (\<Prod>i. f i) / (\<Prod>i<n. f i)"
lp15@68361
  1357
  by (rule has_prod_unique[symmetric]) (auto simp: assms has_prod_iff_shift)
lp15@68361
  1358
lp15@68361
  1359
lemma prodinf_split_initial_segment:
lp15@68361
  1360
  assumes "convergent_prod f" "\<And>i. i < n \<Longrightarrow> f i \<noteq> 0"
lp15@68361
  1361
  shows "prodinf f = (\<Prod>i. f (i + n)) * (\<Prod>i<n. f i)"
lp15@68361
  1362
  by (auto simp add: assms prodinf_divide_initial_segment)
lp15@68361
  1363
lp15@68361
  1364
lemma prodinf_split_head:
lp15@68361
  1365
  assumes "convergent_prod f" "f 0 \<noteq> 0"
lp15@68361
  1366
  shows "(\<Prod>n. f (Suc n)) = prodinf f / f 0"
lp15@68361
  1367
  using prodinf_split_initial_segment[of 1] assms by simp
lp15@68361
  1368
lp15@68361
  1369
end
lp15@68361
  1370
lp15@68424
  1371
context 
lp15@68361
  1372
  fixes f :: "nat \<Rightarrow> 'a::real_normed_field"
lp15@68361
  1373
begin
lp15@68361
  1374
lp15@68361
  1375
lemma convergent_prod_inverse_iff: "convergent_prod (\<lambda>n. inverse (f n)) \<longleftrightarrow> convergent_prod f"
lp15@68361
  1376
  by (auto dest: convergent_prod_inverse)
lp15@68361
  1377
lp15@68361
  1378
lemma convergent_prod_const_iff:
lp15@68361
  1379
  fixes c :: "'a :: {real_normed_field}"
lp15@68361
  1380
  shows "convergent_prod (\<lambda>_. c) \<longleftrightarrow> c = 1"
lp15@68361
  1381
proof
lp15@68361
  1382
  assume "convergent_prod (\<lambda>_. c)"
lp15@68361
  1383
  then show "c = 1"
lp15@68361
  1384
    using convergent_prod_imp_LIMSEQ LIMSEQ_unique by blast 
lp15@68361
  1385
next
lp15@68361
  1386
  assume "c = 1"
lp15@68361
  1387
  then show "convergent_prod (\<lambda>_. c)"
lp15@68361
  1388
    by auto
lp15@68361
  1389
qed
lp15@68361
  1390
lp15@68361
  1391
lemma has_prod_power: "f has_prod a \<Longrightarrow> (\<lambda>i. f i ^ n) has_prod (a ^ n)"
lp15@68361
  1392
  by (induction n) (auto simp: has_prod_mult)
lp15@68361
  1393
lp15@68361
  1394
lemma convergent_prod_power: "convergent_prod f \<Longrightarrow> convergent_prod (\<lambda>i. f i ^ n)"
lp15@68361
  1395
  by (induction n) (auto simp: convergent_prod_mult)
lp15@68361
  1396
lp15@68361
  1397
lemma prodinf_power: "convergent_prod f \<Longrightarrow> prodinf (\<lambda>i. f i ^ n) = prodinf f ^ n"
lp15@68361
  1398
  by (metis has_prod_unique convergent_prod_imp_has_prod has_prod_power)
lp15@68361
  1399
lp15@68361
  1400
end
lp15@68361
  1401
lp15@68424
  1402
lp15@68424
  1403
subsection\<open>Exponentials and logarithms\<close>
lp15@68424
  1404
lp15@68424
  1405
context 
lp15@68424
  1406
  fixes f :: "nat \<Rightarrow> 'a::{real_normed_field,banach}"
lp15@68424
  1407
begin
lp15@68424
  1408
lp15@68424
  1409
lemma sums_imp_has_prod_exp: 
lp15@68424
  1410
  assumes "f sums s"
lp15@68424
  1411
  shows "raw_has_prod (\<lambda>i. exp (f i)) 0 (exp s)"
lp15@68424
  1412
  using assms continuous_on_exp [of UNIV "\<lambda>x::'a. x"]
lp15@68424
  1413
  using continuous_on_tendsto_compose [of UNIV exp "(\<lambda>n. sum f {..n})" s]
lp15@68424
  1414
  by (simp add: prod_defs sums_def_le exp_sum)
lp15@68424
  1415
lp15@68424
  1416
lemma convergent_prod_exp: 
lp15@68424
  1417
  assumes "summable f"
lp15@68424
  1418
  shows "convergent_prod (\<lambda>i. exp (f i))"
lp15@68424
  1419
  using sums_imp_has_prod_exp assms unfolding summable_def convergent_prod_def  by blast
lp15@68424
  1420
lp15@68424
  1421
lemma prodinf_exp: 
lp15@68424
  1422
  assumes "summable f"
lp15@68424
  1423
  shows "prodinf (\<lambda>i. exp (f i)) = exp (suminf f)"
lp15@68424
  1424
proof -
lp15@68424
  1425
  have "f sums suminf f"
lp15@68424
  1426
    using assms by blast
lp15@68424
  1427
  then have "(\<lambda>i. exp (f i)) has_prod exp (suminf f)"
lp15@68424
  1428
    by (simp add: has_prod_def sums_imp_has_prod_exp)
lp15@68424
  1429
  then show ?thesis
lp15@68424
  1430
    by (rule has_prod_unique [symmetric])
lp15@68424
  1431
qed
lp15@68424
  1432
lp15@68361
  1433
end
lp15@68424
  1434
eberlm@68651
  1435
theorem convergent_prod_iff_summable_real:
lp15@68585
  1436
  fixes a :: "nat \<Rightarrow> real"
lp15@68585
  1437
  assumes "\<And>n. a n > 0"
lp15@68585
  1438
  shows "convergent_prod (\<lambda>k. 1 + a k) \<longleftrightarrow> summable a" (is "?lhs = ?rhs")
lp15@68585
  1439
proof
lp15@68585
  1440
  assume ?lhs
lp15@68585
  1441
  then obtain p where "raw_has_prod (\<lambda>k. 1 + a k) 0 p"
lp15@68585
  1442
    by (metis assms add_less_same_cancel2 convergent_prod_offset_0 not_one_less_zero)
lp15@68585
  1443
  then have to_p: "(\<lambda>n. \<Prod>k\<le>n. 1 + a k) \<longlonglongrightarrow> p"
lp15@68585
  1444
    by (auto simp: raw_has_prod_def)
lp15@68585
  1445
  moreover have le: "(\<Sum>k\<le>n. a k) \<le> (\<Prod>k\<le>n. 1 + a k)" for n
lp15@68585
  1446
    by (rule sum_le_prod) (use assms less_le in force)
lp15@68585
  1447
  have "(\<Prod>k\<le>n. 1 + a k) \<le> p" for n
lp15@68585
  1448
  proof (rule incseq_le [OF _ to_p])
lp15@68585
  1449
    show "incseq (\<lambda>n. \<Prod>k\<le>n. 1 + a k)"
lp15@68585
  1450
      using assms by (auto simp: mono_def order.strict_implies_order intro!: prod_mono2)
lp15@68585
  1451
  qed
lp15@68585
  1452
  with le have "(\<Sum>k\<le>n. a k) \<le> p" for n
lp15@68585
  1453
    by (metis order_trans)
lp15@68585
  1454
  with assms bounded_imp_summable show ?rhs
lp15@68585
  1455
    by (metis not_less order.asym)
lp15@68585
  1456
next
lp15@68585
  1457
  assume R: ?rhs
lp15@68585
  1458
  have "(\<Prod>k\<le>n. 1 + a k) \<le> exp (suminf a)" for n
lp15@68585
  1459
  proof -
lp15@68585
  1460
    have "(\<Prod>k\<le>n. 1 + a k) \<le> exp (\<Sum>k\<le>n. a k)" for n
lp15@68585
  1461
      by (rule prod_le_exp_sum) (use assms less_le in force)
lp15@68585
  1462
    moreover have "exp (\<Sum>k\<le>n. a k) \<le> exp (suminf a)" for n
lp15@68585
  1463
      unfolding exp_le_cancel_iff
lp15@68585
  1464
      by (meson sum_le_suminf R assms finite_atMost less_eq_real_def)
lp15@68585
  1465
    ultimately show ?thesis
lp15@68585
  1466
      by (meson order_trans)
lp15@68585
  1467
  qed
lp15@68585
  1468
  then obtain L where L: "(\<lambda>n. \<Prod>k\<le>n. 1 + a k) \<longlonglongrightarrow> L"
lp15@68585
  1469
    by (metis assms bounded_imp_convergent_prod convergent_prod_iff_nz_lim le_add_same_cancel1 le_add_same_cancel2 less_le not_le zero_le_one)
lp15@68585
  1470
  moreover have "L \<noteq> 0"
lp15@68585
  1471
  proof
lp15@68585
  1472
    assume "L = 0"
lp15@68585
  1473
    with L have "(\<lambda>n. \<Prod>k\<le>n. 1 + a k) \<longlonglongrightarrow> 0"
lp15@68585
  1474
      by simp
lp15@68585
  1475
    moreover have "(\<Prod>k\<le>n. 1 + a k) > 1" for n
lp15@68585
  1476
      by (simp add: assms less_1_prod)
lp15@68585
  1477
    ultimately show False
lp15@68585
  1478
      by (meson Lim_bounded2 not_one_le_zero less_imp_le)
lp15@68585
  1479
  qed
lp15@68585
  1480
  ultimately show ?lhs
lp15@68585
  1481
    using assms convergent_prod_iff_nz_lim
lp15@68585
  1482
    by (metis add_less_same_cancel1 less_le not_le zero_less_one)
lp15@68585
  1483
qed
lp15@68585
  1484
lp15@68452
  1485
lemma exp_suminf_prodinf_real:
lp15@68452
  1486
  fixes f :: "nat \<Rightarrow> real"
lp15@68452
  1487
  assumes ge0:"\<And>n. f n \<ge> 0" and ac: "abs_convergent_prod (\<lambda>n. exp (f n))"
lp15@68452
  1488
  shows "prodinf (\<lambda>i. exp (f i)) = exp (suminf f)"
lp15@68452
  1489
proof -
lp15@68517
  1490
  have "summable f"
lp15@68452
  1491
    using ac unfolding abs_convergent_prod_conv_summable
lp15@68452
  1492
  proof (elim summable_comparison_test')
lp15@68452
  1493
    fix n
lp15@68517
  1494
    have "\<bar>f n\<bar> = f n"
lp15@68517
  1495
      by (simp add: ge0)
lp15@68517
  1496
    also have "\<dots> \<le> exp (f n) - 1"
lp15@68517
  1497
      by (metis diff_diff_add exp_ge_add_one_self ge_iff_diff_ge_0)
lp15@68517
  1498
    finally show "norm (f n) \<le> norm (exp (f n) - 1)"
lp15@68517
  1499
      by simp
lp15@68452
  1500
  qed
lp15@68452
  1501
  then show ?thesis
lp15@68452
  1502
    by (simp add: prodinf_exp)
lp15@68452
  1503
qed
lp15@68452
  1504
lp15@68424
  1505
lemma has_prod_imp_sums_ln_real: 
lp15@68424
  1506
  fixes f :: "nat \<Rightarrow> real"
lp15@68424
  1507
  assumes "raw_has_prod f 0 p" and 0: "\<And>x. f x > 0"
lp15@68424
  1508
  shows "(\<lambda>i. ln (f i)) sums (ln p)"
lp15@68424
  1509
proof -
lp15@68424
  1510
  have "p > 0"
lp15@68424
  1511
    using assms unfolding prod_defs by (metis LIMSEQ_prod_nonneg less_eq_real_def)
lp15@68424
  1512
  then show ?thesis
lp15@68424
  1513
  using assms continuous_on_ln [of "{0<..}" "\<lambda>x. x"]
lp15@68424
  1514
  using continuous_on_tendsto_compose [of "{0<..}" ln "(\<lambda>n. prod f {..n})" p]
lp15@68424
  1515
  by (auto simp: prod_defs sums_def_le ln_prod order_tendstoD)
lp15@68424
  1516
qed
lp15@68424
  1517
lp15@68424
  1518
lemma summable_ln_real: 
lp15@68424
  1519
  fixes f :: "nat \<Rightarrow> real"
lp15@68424
  1520
  assumes f: "convergent_prod f" and 0: "\<And>x. f x > 0"
lp15@68424
  1521
  shows "summable (\<lambda>i. ln (f i))"
lp15@68424
  1522
proof -
lp15@68424
  1523
  obtain M p where "raw_has_prod f M p"
lp15@68424
  1524
    using f convergent_prod_def by blast
lp15@68424
  1525
  then consider i where "i<M" "f i = 0" | p where "raw_has_prod f 0 p"
lp15@68424
  1526
    using raw_has_prod_cases by blast
lp15@68424
  1527
  then show ?thesis
lp15@68424
  1528
  proof cases
lp15@68424
  1529
    case 1
lp15@68424
  1530
    with 0 show ?thesis
lp15@68424
  1531
      by (metis less_irrefl)
lp15@68424
  1532
  next
lp15@68424
  1533
    case 2
lp15@68424
  1534
    then show ?thesis
lp15@68424
  1535
      using "0" has_prod_imp_sums_ln_real summable_def by blast
lp15@68424
  1536
  qed
lp15@68424
  1537
qed
lp15@68424
  1538
lp15@68424
  1539
lemma suminf_ln_real: 
lp15@68424
  1540
  fixes f :: "nat \<Rightarrow> real"
lp15@68424
  1541
  assumes f: "convergent_prod f" and 0: "\<And>x. f x > 0"
lp15@68424
  1542
  shows "suminf (\<lambda>i. ln (f i)) = ln (prodinf f)"
lp15@68424
  1543
proof -
lp15@68424
  1544
  have "f has_prod prodinf f"
lp15@68424
  1545
    by (simp add: f has_prod_iff)
lp15@68424
  1546
  then have "raw_has_prod f 0 (prodinf f)"
lp15@68424
  1547
    by (metis "0" has_prod_def less_irrefl)
lp15@68424
  1548
  then have "(\<lambda>i. ln (f i)) sums ln (prodinf f)"
lp15@68424
  1549
    using "0" has_prod_imp_sums_ln_real by blast
lp15@68424
  1550
  then show ?thesis
lp15@68424
  1551
    by (rule sums_unique [symmetric])
lp15@68424
  1552
qed
lp15@68424
  1553
lp15@68424
  1554
lemma prodinf_exp_real: 
lp15@68424
  1555
  fixes f :: "nat \<Rightarrow> real"
lp15@68424
  1556
  assumes f: "convergent_prod f" and 0: "\<And>x. f x > 0"
lp15@68424
  1557
  shows "prodinf f = exp (suminf (\<lambda>i. ln (f i)))"
lp15@68424
  1558
  by (simp add: "0" f less_0_prodinf suminf_ln_real)
lp15@68424
  1559
lp15@68424
  1560
eberlm@68651
  1561
theorem Ln_prodinf_complex:
lp15@68585
  1562
  fixes z :: "nat \<Rightarrow> complex"
lp15@68585
  1563
  assumes z: "\<And>j. z j \<noteq> 0" and \<xi>: "\<xi> \<noteq> 0"
lp15@68585
  1564
  shows "((\<lambda>n. \<Prod>j\<le>n. z j) \<longlonglongrightarrow> \<xi>) \<longleftrightarrow> (\<exists>k. (\<lambda>n. (\<Sum>j\<le>n. Ln (z j))) \<longlonglongrightarrow> Ln \<xi> + of_int k * (of_real(2*pi) * \<i>))" (is "?lhs = ?rhs")
lp15@68585
  1565
proof
lp15@68585
  1566
  assume L: ?lhs
lp15@68585
  1567
  have pnz: "(\<Prod>j\<le>n. z j) \<noteq> 0" for n
lp15@68585
  1568
    using z by auto
lp15@68585
  1569
  define \<Theta> where "\<Theta> \<equiv> Arg \<xi> + 2*pi"
lp15@68585
  1570
  then have "\<Theta> > pi"
lp15@68585
  1571
    using Arg_def mpi_less_Im_Ln by fastforce
lp15@68585
  1572
  have \<xi>_eq: "\<xi> = cmod \<xi> * exp (\<i> * \<Theta>)"
lp15@68585
  1573
    using Arg_def Arg_eq \<xi> unfolding \<Theta>_def by (simp add: algebra_simps exp_add)
lp15@68585
  1574
  define \<theta> where "\<theta> \<equiv> \<lambda>n. THE t. is_Arg (\<Prod>j\<le>n. z j) t \<and> t \<in> {\<Theta>-pi<..\<Theta>+pi}"
lp15@68585
  1575
  have uniq: "\<exists>!s. is_Arg (\<Prod>j\<le>n. z j) s \<and> s \<in> {\<Theta>-pi<..\<Theta>+pi}" for n
lp15@68585
  1576
    using Argument_exists_unique [OF pnz] by metis
lp15@68585
  1577
  have \<theta>: "is_Arg (\<Prod>j\<le>n. z j) (\<theta> n)" and \<theta>_interval: "\<theta> n \<in> {\<Theta>-pi<..\<Theta>+pi}" for n
lp15@68585
  1578
    unfolding \<theta>_def
lp15@68585
  1579
    using theI' [OF uniq] by metis+
lp15@68585
  1580
  have \<theta>_pos: "\<And>j. \<theta> j > 0"
lp15@68585
  1581
    using \<theta>_interval \<open>\<Theta> > pi\<close> by simp (meson diff_gt_0_iff_gt less_trans)
lp15@68585
  1582
  have "(\<Prod>j\<le>n. z j) = cmod (\<Prod>j\<le>n. z j) * exp (\<i> * \<theta> n)" for n
lp15@68585
  1583
    using \<theta> by (auto simp: is_Arg_def)
lp15@68585
  1584
  then have eq: "(\<lambda>n. \<Prod>j\<le>n. z j) = (\<lambda>n. cmod (\<Prod>j\<le>n. z j) * exp (\<i> * \<theta> n))"
lp15@68585
  1585
    by simp
lp15@68585
  1586
  then have "(\<lambda>n. (cmod (\<Prod>j\<le>n. z j)) * exp (\<i> * (\<theta> n))) \<longlonglongrightarrow> \<xi>"
lp15@68585
  1587
    using L by force
lp15@68585
  1588
  then obtain k where k: "(\<lambda>j. \<theta> j - of_int (k j) * (2 * pi)) \<longlonglongrightarrow> \<Theta>"
lp15@68585
  1589
    using L by (subst (asm) \<xi>_eq) (auto simp add: eq z \<xi> polar_convergence)
lp15@68585
  1590
  moreover have "\<forall>\<^sub>F n in sequentially. k n = 0"
lp15@68585
  1591
  proof -
lp15@68585
  1592
    have *: "kj = 0" if "dist (vj - real_of_int kj * 2) V < 1" "vj \<in> {V - 1<..V + 1}" for kj vj V
lp15@68585
  1593
      using that  by (auto simp: dist_norm)
lp15@68585
  1594
    have "\<forall>\<^sub>F j in sequentially. dist (\<theta> j - of_int (k j) * (2 * pi)) \<Theta> < pi"
lp15@68585
  1595
      using tendstoD [OF k] pi_gt_zero by blast
lp15@68585
  1596
    then show ?thesis
lp15@68585
  1597
    proof (rule eventually_mono)
lp15@68585
  1598
      fix j
lp15@68585
  1599
      assume d: "dist (\<theta> j - real_of_int (k j) * (2 * pi)) \<Theta> < pi"
lp15@68585
  1600
      show "k j = 0"
lp15@68585
  1601
        by (rule * [of "\<theta> j/pi" _ "\<Theta>/pi"])
lp15@68585
  1602
           (use \<theta>_interval [of j] d in \<open>simp_all add: divide_simps dist_norm\<close>)
lp15@68585
  1603
    qed
lp15@68585
  1604
  qed
lp15@68585
  1605
  ultimately have \<theta>to\<Theta>: "\<theta> \<longlonglongrightarrow> \<Theta>"
lp15@68585
  1606
    apply (simp only: tendsto_def)
lp15@68585
  1607
    apply (erule all_forward imp_forward asm_rl)+
lp15@68585
  1608
    apply (drule (1) eventually_conj)
lp15@68585
  1609
    apply (auto elim: eventually_mono)
lp15@68585
  1610
    done
lp15@68585
  1611
  then have to0: "(\<lambda>n. \<bar>\<theta> (Suc n) - \<theta> n\<bar>) \<longlonglongrightarrow> 0"
lp15@68585
  1612
    by (metis (full_types) diff_self filterlim_sequentially_Suc tendsto_diff tendsto_rabs_zero)
lp15@68585
  1613
  have "\<exists>k. Im (\<Sum>j\<le>n. Ln (z j)) - of_int k * (2*pi) = \<theta> n" for n
lp15@68585
  1614
  proof (rule is_Arg_exp_diff_2pi)
lp15@68585
  1615
    show "is_Arg (exp (\<Sum>j\<le>n. Ln (z j))) (\<theta> n)"
lp15@68585
  1616
      using pnz \<theta> by (simp add: is_Arg_def exp_sum prod_norm)
lp15@68585
  1617
  qed
lp15@68585
  1618
  then have "\<exists>k. (\<Sum>j\<le>n. Im (Ln (z j))) = \<theta> n + of_int k * (2*pi)" for n
lp15@68585
  1619
    by (simp add: algebra_simps)
lp15@68585
  1620
  then obtain k where k: "\<And>n. (\<Sum>j\<le>n. Im (Ln (z j))) = \<theta> n + of_int (k n) * (2*pi)"
lp15@68585
  1621
    by metis
lp15@68585
  1622
  obtain K where "\<forall>\<^sub>F n in sequentially. k n = K"
lp15@68585
  1623
  proof -
lp15@68585
  1624
    have k_le: "(2*pi) * \<bar>k (Suc n) - k n\<bar> \<le> \<bar>\<theta> (Suc n) - \<theta> n\<bar> + \<bar>Im (Ln (z (Suc n)))\<bar>" for n
lp15@68585
  1625
    proof -
lp15@68585
  1626
      have "(\<Sum>j\<le>Suc n. Im (Ln (z j))) - (\<Sum>j\<le>n. Im (Ln (z j))) = Im (Ln (z (Suc n)))"
lp15@68585
  1627
        by simp
lp15@68585
  1628
      then show ?thesis
lp15@68585
  1629
        using k [of "Suc n"] k [of n] by (auto simp: abs_if algebra_simps)
lp15@68585
  1630
    qed
lp15@68585
  1631
    have "z \<longlonglongrightarrow> 1"
lp15@68585
  1632
      using L \<xi> convergent_prod_iff_nz_lim z by (blast intro: convergent_prod_imp_LIMSEQ)
lp15@68585
  1633
    with z have "(\<lambda>n. Ln (z n)) \<longlonglongrightarrow> Ln 1"
lp15@68585
  1634
      using isCont_tendsto_compose [OF continuous_at_Ln] nonpos_Reals_one_I by blast
lp15@68585
  1635
    then have "(\<lambda>n. Ln (z n)) \<longlonglongrightarrow> 0"
lp15@68585
  1636
      by simp
lp15@68585
  1637
    then have "(\<lambda>n. \<bar>Im (Ln (z (Suc n)))\<bar>) \<longlonglongrightarrow> 0"
lp15@68585
  1638
      by (metis LIMSEQ_unique \<open>z \<longlonglongrightarrow> 1\<close> continuous_at_Ln filterlim_sequentially_Suc isCont_tendsto_compose nonpos_Reals_one_I tendsto_Im tendsto_rabs_zero_iff zero_complex.simps(2))
lp15@68585
  1639
    then have "\<forall>\<^sub>F n in sequentially. \<bar>Im (Ln (z (Suc n)))\<bar> < 1"
lp15@68585
  1640
      by (simp add: order_tendsto_iff)
lp15@68585
  1641
    moreover have "\<forall>\<^sub>F n in sequentially. \<bar>\<theta> (Suc n) - \<theta> n\<bar> < 1"
lp15@68585
  1642
      using to0 by (simp add: order_tendsto_iff)
lp15@68585
  1643
    ultimately have "\<forall>\<^sub>F n in sequentially. (2*pi) * \<bar>k (Suc n) - k n\<bar> < 1 + 1" 
lp15@68585
  1644
    proof (rule eventually_elim2) 
lp15@68585
  1645
      fix n 
lp15@68585
  1646
      assume "\<bar>Im (Ln (z (Suc n)))\<bar> < 1" and "\<bar>\<theta> (Suc n) - \<theta> n\<bar> < 1"
lp15@68585
  1647
      with k_le [of n] show "2 * pi * real_of_int \<bar>k (Suc n) - k n\<bar> < 1 + 1"
lp15@68585
  1648
        by linarith
lp15@68585
  1649
    qed
lp15@68585
  1650
    then have "\<forall>\<^sub>F n in sequentially. real_of_int\<bar>k (Suc n) - k n\<bar> < 1" 
lp15@68585
  1651
    proof (rule eventually_mono)
lp15@68585
  1652
      fix n :: "nat"
lp15@68585
  1653
      assume "2 * pi * \<bar>k (Suc n) - k n\<bar> < 1 + 1"
lp15@68585
  1654
      then have "\<bar>k (Suc n) - k n\<bar> < 2 / (2*pi)"
lp15@68585
  1655
        by (simp add: field_simps)
lp15@68585
  1656
      also have "... < 1"
lp15@68585
  1657
        using pi_ge_two by auto
lp15@68585
  1658
      finally show "real_of_int \<bar>k (Suc n) - k n\<bar> < 1" .
lp15@68585
  1659
    qed
lp15@68585
  1660
  then obtain N where N: "\<And>n. n\<ge>N \<Longrightarrow> \<bar>k (Suc n) - k n\<bar> = 0"
lp15@68585
  1661
    using eventually_sequentially less_irrefl of_int_abs by fastforce
lp15@68585
  1662
  have "k (N+i) = k N" for i
lp15@68585
  1663
  proof (induction i)
lp15@68585
  1664
    case (Suc i)
lp15@68585
  1665
    with N [of "N+i"] show ?case
lp15@68585
  1666
      by auto
lp15@68585
  1667
  qed simp
lp15@68585
  1668
  then have "\<And>n. n\<ge>N \<Longrightarrow> k n = k N"
lp15@68585
  1669
    using le_Suc_ex by auto
lp15@68585
  1670
  then show ?thesis
lp15@68585
  1671
    by (force simp add: eventually_sequentially intro: that)
lp15@68585
  1672
  qed
lp15@68585
  1673
  with \<theta>to\<Theta> have "(\<lambda>n. (\<Sum>j\<le>n. Im (Ln (z j)))) \<longlonglongrightarrow> \<Theta> + of_int K * (2*pi)"
lp15@68585
  1674
    by (simp add: k tendsto_add tendsto_mult Lim_eventually)
lp15@68585
  1675
  moreover have "(\<lambda>n. (\<Sum>k\<le>n. Re (Ln (z k)))) \<longlonglongrightarrow> Re (Ln \<xi>)"
lp15@68585
  1676
    using assms continuous_imp_tendsto [OF isCont_ln tendsto_norm [OF L]]
lp15@68585
  1677
    by (simp add: o_def flip: prod_norm ln_prod)
lp15@68585
  1678
  ultimately show ?rhs
lp15@68585
  1679
    by (rule_tac x="K+1" in exI) (auto simp: tendsto_complex_iff \<Theta>_def Arg_def assms algebra_simps)
lp15@68585
  1680
next
lp15@68585
  1681
  assume ?rhs
lp15@68585
  1682
  then obtain r where r: "(\<lambda>n. (\<Sum>k\<le>n. Ln (z k))) \<longlonglongrightarrow> Ln \<xi> + of_int r * (of_real(2*pi) * \<i>)" ..
lp15@68585
  1683
  have "(\<lambda>n. exp (\<Sum>k\<le>n. Ln (z k))) \<longlonglongrightarrow> \<xi>"
lp15@68585
  1684
    using assms continuous_imp_tendsto [OF isCont_exp r] exp_integer_2pi [of r]
lp15@68585
  1685
    by (simp add: o_def exp_add algebra_simps)
lp15@68585
  1686
  moreover have "exp (\<Sum>k\<le>n. Ln (z k)) = (\<Prod>k\<le>n. z k)" for n
lp15@68585
  1687
    by (simp add: exp_sum add_eq_0_iff assms)
lp15@68585
  1688
  ultimately show ?lhs
lp15@68585
  1689
    by auto
lp15@68585
  1690
qed
lp15@68585
  1691
lp15@68585
  1692
text\<open>Prop 17.2 of Bak and Newman, Complex Analysis, p.242\<close>
lp15@68585
  1693
proposition convergent_prod_iff_summable_complex:
lp15@68585
  1694
  fixes z :: "nat \<Rightarrow> complex"
lp15@68585
  1695
  assumes "\<And>k. z k \<noteq> 0"
lp15@68585
  1696
  shows "convergent_prod (\<lambda>k. z k) \<longleftrightarrow> summable (\<lambda>k. Ln (z k))" (is "?lhs = ?rhs")
lp15@68585
  1697
proof
lp15@68585
  1698
  assume ?lhs
lp15@68585
  1699
  then obtain p where p: "(\<lambda>n. \<Prod>k\<le>n. z k) \<longlonglongrightarrow> p" and "p \<noteq> 0"
lp15@68585
  1700
    using convergent_prod_LIMSEQ prodinf_nonzero add_eq_0_iff assms by fastforce
lp15@68585
  1701
  then show ?rhs
lp15@68585
  1702
    using Ln_prodinf_complex assms
lp15@68585
  1703
    by (auto simp: prodinf_nonzero summable_def sums_def_le)
lp15@68585
  1704
next
lp15@68585
  1705
  assume R: ?rhs
lp15@68585
  1706
  have "(\<Prod>k\<le>n. z k) = exp (\<Sum>k\<le>n. Ln (z k))" for n
lp15@68585
  1707
    by (simp add: exp_sum add_eq_0_iff assms)
lp15@68585
  1708
  then have "(\<lambda>n. \<Prod>k\<le>n. z k) \<longlonglongrightarrow> exp (suminf (\<lambda>k. Ln (z k)))"
lp15@68585
  1709
    using continuous_imp_tendsto [OF isCont_exp summable_LIMSEQ' [OF R]] by (simp add: o_def)
lp15@68585
  1710
  then show ?lhs
lp15@68585
  1711
    by (subst convergent_prod_iff_convergent) (auto simp: convergent_def tendsto_Lim assms add_eq_0_iff)
lp15@68585
  1712
qed
lp15@68585
  1713
lp15@68586
  1714
text\<open>Prop 17.3 of Bak and Newman, Complex Analysis\<close>
lp15@68586
  1715
proposition summable_imp_convergent_prod_complex:
lp15@68586
  1716
  fixes z :: "nat \<Rightarrow> complex"
lp15@68586
  1717
  assumes z: "summable (\<lambda>k. norm (z k))" and non0: "\<And>k. z k \<noteq> -1"
lp15@68586
  1718
  shows "convergent_prod (\<lambda>k. 1 + z k)" 
lp15@68586
  1719
proof -
lp15@68586
  1720
  note if_cong [cong] power_Suc [simp del]
lp15@68586
  1721
  obtain N where N: "\<And>k. k\<ge>N \<Longrightarrow> norm (z k) < 1/2"
lp15@68586
  1722
    using summable_LIMSEQ_zero [OF z]
lp15@68586
  1723
    by (metis diff_zero dist_norm half_gt_zero_iff less_numeral_extra(1) lim_sequentially tendsto_norm_zero_iff)
lp15@68586
  1724
  have "norm (Ln (1 + z k)) \<le> 2 * norm (z k)" if "k \<ge> N" for k
lp15@68586
  1725
  proof (cases "z k = 0")
lp15@68586
  1726
    case False
lp15@68586
  1727
    let ?f = "\<lambda>i. cmod ((- 1) ^ i * z k ^ i / of_nat (Suc i))"
lp15@68586
  1728
    have normf: "norm (?f n) \<le> (1 / 2) ^ n" for n
lp15@68586
  1729
    proof -
lp15@68586
  1730
      have "norm (?f n) = cmod (z k) ^ n / cmod (1 + of_nat n)"
lp15@68586
  1731
        by (auto simp: norm_divide norm_mult norm_power)
lp15@68586
  1732
      also have "\<dots> \<le> cmod (z k) ^ n"
lp15@68586
  1733
        by (auto simp: divide_simps mult_le_cancel_left1 in_Reals_norm)
lp15@68586
  1734
      also have "\<dots> \<le> (1 / 2) ^ n"
lp15@68586
  1735
        using N [OF that] by (simp add: power_mono)
lp15@68586
  1736
      finally show "norm (?f n) \<le> (1 / 2) ^ n" .
lp15@68586
  1737
    qed
lp15@68586
  1738
    have summablef: "summable ?f"
lp15@68586
  1739
      by (intro normf summable_comparison_test' [OF summable_geometric [of "1/2"]]) auto
lp15@68586
  1740
    have "(\<lambda>n. (- 1) ^ Suc n / of_nat n * z k ^ n) sums Ln (1 + z k)"
lp15@68586
  1741
      using Ln_series [of "z k"] N that by fastforce
lp15@68586
  1742
    then have *: "(\<lambda>i. z k * (((- 1) ^ i * z k ^ i) / (Suc i))) sums Ln (1 + z k)"
lp15@68586
  1743
      using sums_split_initial_segment [where n= 1]  by (force simp: power_Suc mult_ac)
lp15@68586
  1744
    then have "norm (Ln (1 + z k)) = norm (suminf (\<lambda>i. z k * (((- 1) ^ i * z k ^ i) / (Suc i))))"
lp15@68586
  1745
      using sums_unique by force
lp15@68586
  1746
    also have "\<dots> = norm (z k * suminf (\<lambda>i. ((- 1) ^ i * z k ^ i) / (Suc i)))"
lp15@68586
  1747
      apply (subst suminf_mult)
lp15@68586
  1748
      using * False
lp15@68586
  1749
      by (auto simp: sums_summable intro: summable_mult_D [of "z k"])
lp15@68586
  1750
    also have "\<dots> = norm (z k) * norm (suminf (\<lambda>i. ((- 1) ^ i * z k ^ i) / (Suc i)))"
lp15@68586
  1751
      by (simp add: norm_mult)
lp15@68586
  1752
    also have "\<dots> \<le> norm (z k) * suminf (\<lambda>i. norm (((- 1) ^ i * z k ^ i) / (Suc i)))"
lp15@68586
  1753
      by (intro mult_left_mono summable_norm summablef) auto
lp15@68586
  1754
    also have "\<dots> \<le> norm (z k) * suminf (\<lambda>i. (1/2) ^ i)"
lp15@68586
  1755
      by (intro mult_left_mono suminf_le) (use summable_geometric [of "1/2"] summablef normf in auto)
lp15@68586
  1756
    also have "\<dots> \<le> norm (z k) * 2"
lp15@68586
  1757
      using suminf_geometric [of "1/2::real"] by simp
lp15@68586
  1758
    finally show ?thesis
lp15@68586
  1759
      by (simp add: mult_ac)
lp15@68586
  1760
  qed simp
lp15@68586
  1761
  then have "summable (\<lambda>k. Ln (1 + z k))"
lp15@68586
  1762
    by (metis summable_comparison_test summable_mult z)
lp15@68586
  1763
  with non0 show ?thesis
lp15@68586
  1764
    by (simp add: add_eq_0_iff convergent_prod_iff_summable_complex)
lp15@68586
  1765
qed
lp15@68586
  1766
lp15@68616
  1767
lemma summable_Ln_complex:
lp15@68616
  1768
  fixes z :: "nat \<Rightarrow> complex"
lp15@68616
  1769
  assumes "convergent_prod z" "\<And>k. z k \<noteq> 0"
lp15@68616
  1770
  shows "summable (\<lambda>k. Ln (z k))"
lp15@68616
  1771
  using convergent_prod_def assms convergent_prod_iff_summable_complex by blast
lp15@68616
  1772
lp15@68586
  1773
eberlm@68651
  1774
subsection%unimportant \<open>Embeddings from the reals into some complete real normed field\<close>
lp15@68424
  1775
lp15@68426
  1776
lemma tendsto_eq_of_real_lim:
lp15@68424
  1777
  assumes "(\<lambda>n. of_real (f n) :: 'a::{complete_space,real_normed_field}) \<longlonglongrightarrow> q"
lp15@68424
  1778
  shows "q = of_real (lim f)"
lp15@68424
  1779
proof -
lp15@68424
  1780
  have "convergent (\<lambda>n. of_real (f n) :: 'a)"
lp15@68424
  1781
    using assms convergent_def by blast 
lp15@68424
  1782
  then have "convergent f"
lp15@68424
  1783
    unfolding convergent_def
lp15@68424
  1784
    by (simp add: convergent_eq_Cauchy Cauchy_def)
lp15@68424
  1785
  then show ?thesis
lp15@68424
  1786
    by (metis LIMSEQ_unique assms convergentD sequentially_bot tendsto_Lim tendsto_of_real)
lp15@68424
  1787
qed
lp15@68424
  1788
lp15@68426
  1789
lemma tendsto_eq_of_real:
lp15@68424
  1790
  assumes "(\<lambda>n. of_real (f n) :: 'a::{complete_space,real_normed_field}) \<longlonglongrightarrow> q"
lp15@68424
  1791
  obtains r where "q = of_real r"
lp15@68426
  1792
  using tendsto_eq_of_real_lim assms by blast
lp15@68424
  1793
lp15@68424
  1794
lemma has_prod_of_real_iff:
lp15@68424
  1795
  "(\<lambda>n. of_real (f n) :: 'a::{complete_space,real_normed_field}) has_prod of_real c \<longleftrightarrow> f has_prod c"
lp15@68424
  1796
  (is "?lhs = ?rhs")
lp15@68424
  1797
proof
lp15@68424
  1798
  assume ?lhs
lp15@68424
  1799
  then show ?rhs
lp15@68424
  1800
    apply (auto simp: prod_defs LIMSEQ_prod_0 tendsto_of_real_iff simp flip: of_real_prod)
lp15@68426
  1801
    using tendsto_eq_of_real
lp15@68424
  1802
    by (metis of_real_0 tendsto_of_real_iff)
lp15@68424
  1803
next
lp15@68424
  1804
  assume ?rhs
lp15@68424
  1805
  with tendsto_of_real_iff show ?lhs
lp15@68424
  1806
    by (fastforce simp: prod_defs simp flip: of_real_prod)
lp15@68424
  1807
qed
lp15@68424
  1808
lp15@68424
  1809
end