src/HOL/Tools/Sledgehammer/clausifier.ML
author haftmann
Sat Aug 28 16:14:32 2010 +0200 (2010-08-28)
changeset 38864 4abe644fcea5
parent 38795 848be46708dc
child 39036 dff91b90d74c
permissions -rw-r--r--
formerly unnamed infix equality now named HOL.eq
blanchet@37574
     1
(*  Title:      HOL/Tools/Sledgehammer/clausifier.ML
blanchet@38027
     2
    Author:     Jia Meng, Cambridge University Computer Laboratory and NICTA
blanchet@36393
     3
    Author:     Jasmin Blanchette, TU Muenchen
paulson@15347
     4
wenzelm@20461
     5
Transformation of axiom rules (elim/intro/etc) into CNF forms.
paulson@15347
     6
*)
paulson@15347
     7
blanchet@37574
     8
signature CLAUSIFIER =
wenzelm@21505
     9
sig
blanchet@38632
    10
  val extensionalize_theorem : thm -> thm
blanchet@38001
    11
  val introduce_combinators_in_cterm : cterm -> thm
blanchet@38028
    12
  val introduce_combinators_in_theorem : thm -> thm
blanchet@38016
    13
  val cnf_axiom: theory -> thm -> thm list
wenzelm@21505
    14
end;
mengj@19196
    15
blanchet@37574
    16
structure Clausifier : CLAUSIFIER =
paulson@15997
    17
struct
paulson@15347
    18
paulson@15997
    19
(**** Transformation of Elimination Rules into First-Order Formulas****)
paulson@15347
    20
wenzelm@29064
    21
val cfalse = cterm_of @{theory HOL} HOLogic.false_const;
wenzelm@29064
    22
val ctp_false = cterm_of @{theory HOL} (HOLogic.mk_Trueprop HOLogic.false_const);
wenzelm@20461
    23
blanchet@38001
    24
(* Converts an elim-rule into an equivalent theorem that does not have the
blanchet@38001
    25
   predicate variable. Leaves other theorems unchanged. We simply instantiate
blanchet@38001
    26
   the conclusion variable to False. (Cf. "transform_elim_term" in
blanchet@38652
    27
   "Sledgehammer_Util".) *)
blanchet@38001
    28
fun transform_elim_theorem th =
paulson@21430
    29
  case concl_of th of    (*conclusion variable*)
blanchet@35963
    30
       @{const Trueprop} $ (v as Var (_, @{typ bool})) =>
wenzelm@29064
    31
           Thm.instantiate ([], [(cterm_of @{theory HOL} v, cfalse)]) th
blanchet@35963
    32
    | v as Var(_, @{typ prop}) =>
wenzelm@29064
    33
           Thm.instantiate ([], [(cterm_of @{theory HOL} v, ctp_false)]) th
blanchet@38001
    34
    | _ => th
paulson@15997
    35
paulson@24742
    36
(*To enforce single-threading*)
paulson@24742
    37
exception Clausify_failure of theory;
wenzelm@20461
    38
wenzelm@28544
    39
paulson@16009
    40
(**** SKOLEMIZATION BY INFERENCE (lcp) ****)
paulson@16009
    41
blanchet@37410
    42
fun mk_skolem_id t =
blanchet@37436
    43
  let val T = fastype_of t in
blanchet@37496
    44
    Const (@{const_name skolem_id}, T --> T) $ t
blanchet@37436
    45
  end
blanchet@37410
    46
blanchet@37617
    47
fun beta_eta_under_lambdas (Abs (s, T, t')) =
blanchet@37617
    48
    Abs (s, T, beta_eta_under_lambdas t')
blanchet@37617
    49
  | beta_eta_under_lambdas t = Envir.beta_eta_contract t
blanchet@37512
    50
paulson@18141
    51
(*Traverse a theorem, accumulating Skolem function definitions.*)
blanchet@37617
    52
fun assume_skolem_funs th =
blanchet@37399
    53
  let
blanchet@37617
    54
    fun dec_sko (Const (@{const_name Ex}, _) $ (body as Abs (s', T, p))) rhss =
blanchet@37399
    55
        (*Existential: declare a Skolem function, then insert into body and continue*)
blanchet@37399
    56
        let
blanchet@37617
    57
          val args = OldTerm.term_frees body
blanchet@37399
    58
          val Ts = map type_of args
blanchet@38280
    59
          val cT = Ts ---> T
blanchet@37500
    60
          (* Forms a lambda-abstraction over the formal parameters *)
blanchet@37500
    61
          val rhs =
blanchet@37500
    62
            list_abs_free (map dest_Free args,
blanchet@37617
    63
                           HOLogic.choice_const T $ beta_eta_under_lambdas body)
blanchet@37518
    64
            |> mk_skolem_id
blanchet@37518
    65
          val comb = list_comb (rhs, args)
blanchet@37617
    66
        in dec_sko (subst_bound (comb, p)) (rhs :: rhss) end
blanchet@37617
    67
      | dec_sko (Const (@{const_name All},_) $ Abs (a, T, p)) rhss =
blanchet@37399
    68
        (*Universal quant: insert a free variable into body and continue*)
blanchet@37399
    69
        let val fname = Name.variant (OldTerm.add_term_names (p,[])) a
blanchet@37617
    70
        in dec_sko (subst_bound (Free(fname,T), p)) rhss end
haftmann@38795
    71
      | dec_sko (@{const HOL.conj} $ p $ q) rhss = rhss |> dec_sko p |> dec_sko q
haftmann@38795
    72
      | dec_sko (@{const HOL.disj} $ p $ q) rhss = rhss |> dec_sko p |> dec_sko q
blanchet@37617
    73
      | dec_sko (@{const Trueprop} $ p) rhss = dec_sko p rhss
blanchet@37617
    74
      | dec_sko _ rhss = rhss
paulson@20419
    75
  in  dec_sko (prop_of th) []  end;
paulson@20419
    76
paulson@20419
    77
paulson@24827
    78
(**** REPLACING ABSTRACTIONS BY COMBINATORS ****)
paulson@20419
    79
blanchet@37540
    80
val fun_cong_all = @{thm expand_fun_eq [THEN iffD1]}
paulson@20419
    81
blanchet@38001
    82
(* Removes the lambdas from an equation of the form "t = (%x. u)".
blanchet@38608
    83
   (Cf. "extensionalize_term" in "Sledgehammer_Translate".) *)
blanchet@38000
    84
fun extensionalize_theorem th =
blanchet@37540
    85
  case prop_of th of
haftmann@38864
    86
    _ $ (Const (@{const_name HOL.eq}, Type (_, [Type (@{type_name fun}, _), _]))
blanchet@38000
    87
         $ _ $ Abs (s, _, _)) => extensionalize_theorem (th RS fun_cong_all)
blanchet@37540
    88
  | _ => th
paulson@20419
    89
blanchet@37416
    90
fun is_quasi_lambda_free (Const (@{const_name skolem_id}, _) $ _) = true
blanchet@37416
    91
  | is_quasi_lambda_free (t1 $ t2) =
blanchet@37416
    92
    is_quasi_lambda_free t1 andalso is_quasi_lambda_free t2
blanchet@37416
    93
  | is_quasi_lambda_free (Abs _) = false
blanchet@37416
    94
  | is_quasi_lambda_free _ = true
wenzelm@20461
    95
wenzelm@32010
    96
val [f_B,g_B] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_B}));
wenzelm@32010
    97
val [g_C,f_C] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_C}));
wenzelm@32010
    98
val [f_S,g_S] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_S}));
paulson@20863
    99
blanchet@38282
   100
(* FIXME: Requires more use of cterm constructors. *)
paulson@24827
   101
fun abstract ct =
wenzelm@28544
   102
  let
wenzelm@28544
   103
      val thy = theory_of_cterm ct
paulson@25256
   104
      val Abs(x,_,body) = term_of ct
blanchet@35963
   105
      val Type(@{type_name fun}, [xT,bodyT]) = typ_of (ctyp_of_term ct)
blanchet@38005
   106
      val cxT = ctyp_of thy xT
blanchet@38005
   107
      val cbodyT = ctyp_of thy bodyT
blanchet@38005
   108
      fun makeK () =
blanchet@38005
   109
        instantiate' [SOME cxT, SOME cbodyT] [SOME (cterm_of thy body)]
blanchet@38005
   110
                     @{thm abs_K}
paulson@24827
   111
  in
paulson@24827
   112
      case body of
paulson@24827
   113
          Const _ => makeK()
paulson@24827
   114
        | Free _ => makeK()
paulson@24827
   115
        | Var _ => makeK()  (*though Var isn't expected*)
wenzelm@27184
   116
        | Bound 0 => instantiate' [SOME cxT] [] @{thm abs_I} (*identity: I*)
paulson@24827
   117
        | rator$rand =>
wenzelm@27184
   118
            if loose_bvar1 (rator,0) then (*C or S*)
wenzelm@27179
   119
               if loose_bvar1 (rand,0) then (*S*)
wenzelm@27179
   120
                 let val crator = cterm_of thy (Abs(x,xT,rator))
wenzelm@27179
   121
                     val crand = cterm_of thy (Abs(x,xT,rand))
wenzelm@27184
   122
                     val abs_S' = cterm_instantiate [(f_S,crator),(g_S,crand)] @{thm abs_S}
wenzelm@27184
   123
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_S')
wenzelm@27179
   124
                 in
wenzelm@27179
   125
                   Thm.transitive abs_S' (Conv.binop_conv abstract rhs)
wenzelm@27179
   126
                 end
wenzelm@27179
   127
               else (*C*)
wenzelm@27179
   128
                 let val crator = cterm_of thy (Abs(x,xT,rator))
wenzelm@27184
   129
                     val abs_C' = cterm_instantiate [(f_C,crator),(g_C,cterm_of thy rand)] @{thm abs_C}
wenzelm@27184
   130
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_C')
wenzelm@27179
   131
                 in
wenzelm@27179
   132
                   Thm.transitive abs_C' (Conv.fun_conv (Conv.arg_conv abstract) rhs)
wenzelm@27179
   133
                 end
wenzelm@27184
   134
            else if loose_bvar1 (rand,0) then (*B or eta*)
wenzelm@36945
   135
               if rand = Bound 0 then Thm.eta_conversion ct
wenzelm@27179
   136
               else (*B*)
wenzelm@27179
   137
                 let val crand = cterm_of thy (Abs(x,xT,rand))
wenzelm@27179
   138
                     val crator = cterm_of thy rator
wenzelm@27184
   139
                     val abs_B' = cterm_instantiate [(f_B,crator),(g_B,crand)] @{thm abs_B}
wenzelm@27184
   140
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_B')
blanchet@37349
   141
                 in Thm.transitive abs_B' (Conv.arg_conv abstract rhs) end
wenzelm@27179
   142
            else makeK()
blanchet@37349
   143
        | _ => raise Fail "abstract: Bad term"
paulson@24827
   144
  end;
paulson@20863
   145
blanchet@37349
   146
(* Traverse a theorem, remplacing lambda-abstractions with combinators. *)
blanchet@38001
   147
fun introduce_combinators_in_cterm ct =
blanchet@37416
   148
  if is_quasi_lambda_free (term_of ct) then
blanchet@37349
   149
    Thm.reflexive ct
blanchet@37349
   150
  else case term_of ct of
blanchet@37349
   151
    Abs _ =>
blanchet@37349
   152
    let
blanchet@37349
   153
      val (cv, cta) = Thm.dest_abs NONE ct
blanchet@37349
   154
      val (v, _) = dest_Free (term_of cv)
blanchet@38001
   155
      val u_th = introduce_combinators_in_cterm cta
blanchet@37349
   156
      val cu = Thm.rhs_of u_th
blanchet@37349
   157
      val comb_eq = abstract (Thm.cabs cv cu)
blanchet@37349
   158
    in Thm.transitive (Thm.abstract_rule v cv u_th) comb_eq end
blanchet@37349
   159
  | _ $ _ =>
blanchet@37349
   160
    let val (ct1, ct2) = Thm.dest_comb ct in
blanchet@38001
   161
        Thm.combination (introduce_combinators_in_cterm ct1)
blanchet@38001
   162
                        (introduce_combinators_in_cterm ct2)
blanchet@37349
   163
    end
blanchet@37349
   164
blanchet@38001
   165
fun introduce_combinators_in_theorem th =
blanchet@37416
   166
  if is_quasi_lambda_free (prop_of th) then
blanchet@37349
   167
    th
paulson@24827
   168
  else
blanchet@37349
   169
    let
blanchet@37349
   170
      val th = Drule.eta_contraction_rule th
blanchet@38001
   171
      val eqth = introduce_combinators_in_cterm (cprop_of th)
blanchet@37349
   172
    in Thm.equal_elim eqth th end
blanchet@37349
   173
    handle THM (msg, _, _) =>
blanchet@37349
   174
           (warning ("Error in the combinator translation of " ^
blanchet@37349
   175
                     Display.string_of_thm_without_context th ^
blanchet@37349
   176
                     "\nException message: " ^ msg ^ ".");
blanchet@37349
   177
            (* A type variable of sort "{}" will make abstraction fail. *)
blanchet@37349
   178
            TrueI)
paulson@16009
   179
paulson@16009
   180
(*cterms are used throughout for efficiency*)
blanchet@38280
   181
val cTrueprop = cterm_of @{theory HOL} HOLogic.Trueprop;
paulson@16009
   182
paulson@16009
   183
(*Given an abstraction over n variables, replace the bound variables by free
paulson@16009
   184
  ones. Return the body, along with the list of free variables.*)
wenzelm@20461
   185
fun c_variant_abs_multi (ct0, vars) =
paulson@16009
   186
      let val (cv,ct) = Thm.dest_abs NONE ct0
paulson@16009
   187
      in  c_variant_abs_multi (ct, cv::vars)  end
paulson@16009
   188
      handle CTERM _ => (ct0, rev vars);
paulson@16009
   189
blanchet@37617
   190
val skolem_id_def_raw = @{thms skolem_id_def_raw}
blanchet@37617
   191
blanchet@37617
   192
(* Given the definition of a Skolem function, return a theorem to replace
blanchet@37617
   193
   an existential formula by a use of that function.
paulson@18141
   194
   Example: "EX x. x : A & x ~: B ==> sko A B : A & sko A B ~: B"  [.] *)
blanchet@38016
   195
fun skolem_theorem_of_def thy rhs0 =
blanchet@37399
   196
  let
blanchet@38280
   197
    val rhs = rhs0 |> Type.legacy_freeze_thaw |> #1 |> cterm_of thy
blanchet@37617
   198
    val rhs' = rhs |> Thm.dest_comb |> snd
blanchet@37617
   199
    val (ch, frees) = c_variant_abs_multi (rhs', [])
blanchet@37617
   200
    val (hilbert, cabs) = ch |> Thm.dest_comb |>> term_of
blanchet@37617
   201
    val T =
blanchet@37617
   202
      case hilbert of
blanchet@37617
   203
        Const (@{const_name Eps}, Type (@{type_name fun}, [_, T])) => T
blanchet@37617
   204
      | _ => raise TERM ("skolem_theorem_of_def: expected \"Eps\"", [hilbert])
blanchet@38280
   205
    val cex = cterm_of thy (HOLogic.exists_const T)
blanchet@37617
   206
    val ex_tm = Thm.capply cTrueprop (Thm.capply cex cabs)
blanchet@37629
   207
    val conc =
blanchet@37617
   208
      Drule.list_comb (rhs, frees)
blanchet@37617
   209
      |> Drule.beta_conv cabs |> Thm.capply cTrueprop
blanchet@37617
   210
    fun tacf [prem] =
blanchet@38016
   211
      rewrite_goals_tac skolem_id_def_raw
blanchet@38016
   212
      THEN rtac ((prem |> rewrite_rule skolem_id_def_raw) RS @{thm someI_ex}) 1
blanchet@37617
   213
  in
blanchet@37629
   214
    Goal.prove_internal [ex_tm] conc tacf
blanchet@37629
   215
    |> forall_intr_list frees
blanchet@37629
   216
    |> Thm.forall_elim_vars 0  (*Introduce Vars, but don't discharge defs.*)
blanchet@37629
   217
    |> Thm.varifyT_global
blanchet@37617
   218
  end
paulson@24742
   219
blanchet@37995
   220
(* Converts an Isabelle theorem (intro, elim or simp format, even higher-order)
blanchet@37995
   221
   into NNF. *)
paulson@24937
   222
fun to_nnf th ctxt0 =
blanchet@38608
   223
  let
blanchet@38608
   224
    val th1 = th |> transform_elim_theorem |> zero_var_indexes
blanchet@38608
   225
    val ((_, [th2]), ctxt) = Variable.import true [th1] ctxt0
blanchet@38608
   226
    val th3 = th2 |> Conv.fconv_rule Object_Logic.atomize
blanchet@38608
   227
                  |> extensionalize_theorem
blanchet@38608
   228
                  |> Meson.make_nnf ctxt
blanchet@38608
   229
  in (th3, ctxt) end
paulson@16009
   230
blanchet@38278
   231
(* Convert a theorem to CNF, with Skolem functions as additional premises. *)
blanchet@38278
   232
fun cnf_axiom thy th =
blanchet@37626
   233
  let
blanchet@37626
   234
    val ctxt0 = Variable.global_thm_context th
blanchet@37626
   235
    val (nnfth, ctxt) = to_nnf th ctxt0
blanchet@38016
   236
    val sko_ths = map (skolem_theorem_of_def thy)
blanchet@37628
   237
                      (assume_skolem_funs nnfth)
blanchet@37626
   238
    val (cnfs, ctxt) = Meson.make_cnf sko_ths nnfth ctxt
blanchet@37626
   239
  in
blanchet@38001
   240
    cnfs |> map introduce_combinators_in_theorem
blanchet@37626
   241
         |> Variable.export ctxt ctxt0
blanchet@37626
   242
         |> Meson.finish_cnf
blanchet@37626
   243
         |> map Thm.close_derivation
blanchet@37626
   244
  end
blanchet@37626
   245
  handle THM _ => []
wenzelm@27184
   246
wenzelm@20461
   247
end;