clasohm@1465
|
1 |
(* Title: HOL/simpdata.ML
|
clasohm@923
|
2 |
ID: $Id$
|
clasohm@1465
|
3 |
Author: Tobias Nipkow
|
clasohm@923
|
4 |
Copyright 1991 University of Cambridge
|
clasohm@923
|
5 |
|
oheimb@5304
|
6 |
Instantiation of the generic simplifier for HOL.
|
clasohm@923
|
7 |
*)
|
clasohm@923
|
8 |
|
wenzelm@12281
|
9 |
(* legacy ML bindings *)
|
paulson@3904
|
10 |
|
wenzelm@12281
|
11 |
val Eq_FalseI = thm "Eq_FalseI";
|
wenzelm@12281
|
12 |
val Eq_TrueI = thm "Eq_TrueI";
|
wenzelm@12281
|
13 |
val all_conj_distrib = thm "all_conj_distrib";
|
wenzelm@12281
|
14 |
val all_simps = thms "all_simps";
|
wenzelm@12281
|
15 |
val cases_simp = thm "cases_simp";
|
wenzelm@12281
|
16 |
val conj_assoc = thm "conj_assoc";
|
wenzelm@12281
|
17 |
val conj_comms = thms "conj_comms";
|
wenzelm@12281
|
18 |
val conj_commute = thm "conj_commute";
|
wenzelm@12281
|
19 |
val conj_cong = thm "conj_cong";
|
wenzelm@12281
|
20 |
val conj_disj_distribL = thm "conj_disj_distribL";
|
wenzelm@12281
|
21 |
val conj_disj_distribR = thm "conj_disj_distribR";
|
wenzelm@12281
|
22 |
val conj_left_commute = thm "conj_left_commute";
|
wenzelm@12281
|
23 |
val de_Morgan_conj = thm "de_Morgan_conj";
|
wenzelm@12281
|
24 |
val de_Morgan_disj = thm "de_Morgan_disj";
|
wenzelm@12281
|
25 |
val disj_assoc = thm "disj_assoc";
|
wenzelm@12281
|
26 |
val disj_comms = thms "disj_comms";
|
wenzelm@12281
|
27 |
val disj_commute = thm "disj_commute";
|
wenzelm@12281
|
28 |
val disj_cong = thm "disj_cong";
|
wenzelm@12281
|
29 |
val disj_conj_distribL = thm "disj_conj_distribL";
|
wenzelm@12281
|
30 |
val disj_conj_distribR = thm "disj_conj_distribR";
|
wenzelm@12281
|
31 |
val disj_left_commute = thm "disj_left_commute";
|
wenzelm@12281
|
32 |
val disj_not1 = thm "disj_not1";
|
wenzelm@12281
|
33 |
val disj_not2 = thm "disj_not2";
|
wenzelm@12281
|
34 |
val eq_ac = thms "eq_ac";
|
wenzelm@12281
|
35 |
val eq_assoc = thm "eq_assoc";
|
wenzelm@12281
|
36 |
val eq_commute = thm "eq_commute";
|
wenzelm@12281
|
37 |
val eq_left_commute = thm "eq_left_commute";
|
wenzelm@12281
|
38 |
val eq_sym_conv = thm "eq_sym_conv";
|
wenzelm@12281
|
39 |
val eta_contract_eq = thm "eta_contract_eq";
|
wenzelm@12281
|
40 |
val ex_disj_distrib = thm "ex_disj_distrib";
|
wenzelm@12281
|
41 |
val ex_simps = thms "ex_simps";
|
wenzelm@12281
|
42 |
val if_False = thm "if_False";
|
wenzelm@12281
|
43 |
val if_P = thm "if_P";
|
wenzelm@12281
|
44 |
val if_True = thm "if_True";
|
wenzelm@12281
|
45 |
val if_bool_eq_conj = thm "if_bool_eq_conj";
|
wenzelm@12281
|
46 |
val if_bool_eq_disj = thm "if_bool_eq_disj";
|
wenzelm@12281
|
47 |
val if_cancel = thm "if_cancel";
|
wenzelm@12281
|
48 |
val if_def2 = thm "if_def2";
|
wenzelm@12281
|
49 |
val if_eq_cancel = thm "if_eq_cancel";
|
wenzelm@12281
|
50 |
val if_not_P = thm "if_not_P";
|
wenzelm@12281
|
51 |
val if_splits = thms "if_splits";
|
wenzelm@12281
|
52 |
val iff_conv_conj_imp = thm "iff_conv_conj_imp";
|
wenzelm@12281
|
53 |
val imp_all = thm "imp_all";
|
wenzelm@12281
|
54 |
val imp_cong = thm "imp_cong";
|
wenzelm@12281
|
55 |
val imp_conjL = thm "imp_conjL";
|
wenzelm@12281
|
56 |
val imp_conjR = thm "imp_conjR";
|
wenzelm@12281
|
57 |
val imp_conv_disj = thm "imp_conv_disj";
|
wenzelm@12281
|
58 |
val imp_disj1 = thm "imp_disj1";
|
wenzelm@12281
|
59 |
val imp_disj2 = thm "imp_disj2";
|
wenzelm@12281
|
60 |
val imp_disjL = thm "imp_disjL";
|
wenzelm@12281
|
61 |
val imp_disj_not1 = thm "imp_disj_not1";
|
wenzelm@12281
|
62 |
val imp_disj_not2 = thm "imp_disj_not2";
|
wenzelm@12281
|
63 |
val imp_ex = thm "imp_ex";
|
wenzelm@12281
|
64 |
val meta_eq_to_obj_eq = thm "meta_eq_to_obj_eq";
|
wenzelm@12281
|
65 |
val neq_commute = thm "neq_commute";
|
wenzelm@12281
|
66 |
val not_all = thm "not_all";
|
wenzelm@12281
|
67 |
val not_ex = thm "not_ex";
|
wenzelm@12281
|
68 |
val not_iff = thm "not_iff";
|
wenzelm@12281
|
69 |
val not_imp = thm "not_imp";
|
wenzelm@12281
|
70 |
val not_not = thm "not_not";
|
wenzelm@12281
|
71 |
val rev_conj_cong = thm "rev_conj_cong";
|
berghofe@16633
|
72 |
val simp_impliesE = thm "simp_impliesI";
|
berghofe@16633
|
73 |
val simp_impliesI = thm "simp_impliesI";
|
berghofe@16633
|
74 |
val simp_implies_cong = thm "simp_implies_cong";
|
berghofe@16633
|
75 |
val simp_implies_def = thm "simp_implies_def";
|
wenzelm@12281
|
76 |
val simp_thms = thms "simp_thms";
|
wenzelm@12281
|
77 |
val split_if = thm "split_if";
|
wenzelm@12281
|
78 |
val split_if_asm = thm "split_if_asm";
|
paulson@14749
|
79 |
val atomize_not = thm"atomize_not";
|
nipkow@2134
|
80 |
|
nipkow@11232
|
81 |
local
|
nipkow@11232
|
82 |
val uncurry = prove_goal (the_context()) "P --> Q --> R ==> P & Q --> R"
|
nipkow@11232
|
83 |
(fn prems => [cut_facts_tac prems 1, Blast_tac 1]);
|
nipkow@11232
|
84 |
|
nipkow@11232
|
85 |
val iff_allI = allI RS
|
nipkow@11232
|
86 |
prove_goal (the_context()) "!x. P x = Q x ==> (!x. P x) = (!x. Q x)"
|
nipkow@11232
|
87 |
(fn prems => [cut_facts_tac prems 1, Blast_tac 1])
|
nipkow@12524
|
88 |
val iff_exI = allI RS
|
nipkow@12524
|
89 |
prove_goal (the_context()) "!x. P x = Q x ==> (? x. P x) = (? x. Q x)"
|
nipkow@12524
|
90 |
(fn prems => [cut_facts_tac prems 1, Blast_tac 1])
|
nipkow@12524
|
91 |
|
nipkow@12524
|
92 |
val all_comm = prove_goal (the_context()) "(!x y. P x y) = (!y x. P x y)"
|
nipkow@12524
|
93 |
(fn _ => [Blast_tac 1])
|
nipkow@12524
|
94 |
val ex_comm = prove_goal (the_context()) "(? x y. P x y) = (? y x. P x y)"
|
nipkow@12524
|
95 |
(fn _ => [Blast_tac 1])
|
nipkow@11232
|
96 |
in
|
paulson@4351
|
97 |
|
paulson@4351
|
98 |
(*** make simplification procedures for quantifier elimination ***)
|
paulson@4351
|
99 |
|
wenzelm@9851
|
100 |
structure Quantifier1 = Quantifier1Fun
|
wenzelm@9851
|
101 |
(struct
|
paulson@4351
|
102 |
(*abstract syntax*)
|
skalberg@15531
|
103 |
fun dest_eq((c as Const("op =",_)) $ s $ t) = SOME(c,s,t)
|
skalberg@15531
|
104 |
| dest_eq _ = NONE;
|
skalberg@15531
|
105 |
fun dest_conj((c as Const("op &",_)) $ s $ t) = SOME(c,s,t)
|
skalberg@15531
|
106 |
| dest_conj _ = NONE;
|
skalberg@15531
|
107 |
fun dest_imp((c as Const("op -->",_)) $ s $ t) = SOME(c,s,t)
|
skalberg@15531
|
108 |
| dest_imp _ = NONE;
|
paulson@4351
|
109 |
val conj = HOLogic.conj
|
paulson@4351
|
110 |
val imp = HOLogic.imp
|
paulson@4351
|
111 |
(*rules*)
|
paulson@4351
|
112 |
val iff_reflection = eq_reflection
|
paulson@4351
|
113 |
val iffI = iffI
|
nipkow@12524
|
114 |
val iff_trans = trans
|
paulson@4351
|
115 |
val conjI= conjI
|
paulson@4351
|
116 |
val conjE= conjE
|
paulson@4351
|
117 |
val impI = impI
|
paulson@4351
|
118 |
val mp = mp
|
nipkow@11232
|
119 |
val uncurry = uncurry
|
paulson@4351
|
120 |
val exI = exI
|
paulson@4351
|
121 |
val exE = exE
|
nipkow@11232
|
122 |
val iff_allI = iff_allI
|
nipkow@12524
|
123 |
val iff_exI = iff_exI
|
nipkow@12524
|
124 |
val all_comm = all_comm
|
nipkow@12524
|
125 |
val ex_comm = ex_comm
|
paulson@4351
|
126 |
end);
|
paulson@4351
|
127 |
|
nipkow@11232
|
128 |
end;
|
nipkow@11232
|
129 |
|
wenzelm@13462
|
130 |
val defEX_regroup =
|
wenzelm@13462
|
131 |
Simplifier.simproc (Theory.sign_of (the_context ()))
|
wenzelm@13462
|
132 |
"defined EX" ["EX x. P x"] Quantifier1.rearrange_ex;
|
wenzelm@13462
|
133 |
|
wenzelm@13462
|
134 |
val defALL_regroup =
|
wenzelm@13462
|
135 |
Simplifier.simproc (Theory.sign_of (the_context ()))
|
wenzelm@13462
|
136 |
"defined ALL" ["ALL x. P x"] Quantifier1.rearrange_all;
|
paulson@3913
|
137 |
|
nipkow@17778
|
138 |
|
nipkow@17778
|
139 |
(*** simproc for proving "(y = x) == False" from prmise "~(x = y)" ***)
|
nipkow@17778
|
140 |
|
nipkow@17778
|
141 |
val use_neq_simproc = ref true;
|
nipkow@17778
|
142 |
|
nipkow@17778
|
143 |
local
|
nipkow@17778
|
144 |
|
nipkow@17778
|
145 |
val neq_to_EQ_False = thm "not_sym" RS Eq_FalseI;
|
nipkow@17778
|
146 |
|
nipkow@17778
|
147 |
fun neq_prover sg ss (eq $ lhs $ rhs) =
|
nipkow@17778
|
148 |
let
|
nipkow@17778
|
149 |
fun test thm = (case #prop(rep_thm thm) of
|
nipkow@17778
|
150 |
_ $ (Not $ (eq' $ l' $ r')) =>
|
nipkow@17778
|
151 |
Not = HOLogic.Not andalso eq' = eq andalso
|
nipkow@17778
|
152 |
r' aconv lhs andalso l' aconv rhs
|
nipkow@17778
|
153 |
| _ => false)
|
nipkow@17778
|
154 |
in
|
nipkow@17778
|
155 |
if !use_neq_simproc then
|
nipkow@17778
|
156 |
case Library.find_first test (prems_of_ss ss) of NONE => NONE
|
nipkow@17778
|
157 |
| SOME thm => SOME (thm RS neq_to_EQ_False)
|
nipkow@17778
|
158 |
else NONE
|
nipkow@17778
|
159 |
end
|
nipkow@17778
|
160 |
|
nipkow@17778
|
161 |
in
|
nipkow@17778
|
162 |
|
nipkow@17778
|
163 |
val neq_simproc =
|
nipkow@17778
|
164 |
Simplifier.simproc (the_context ()) "neq_simproc" ["x = y"] neq_prover;
|
nipkow@17778
|
165 |
|
nipkow@17778
|
166 |
end;
|
nipkow@17778
|
167 |
|
nipkow@17778
|
168 |
|
nipkow@17778
|
169 |
|
nipkow@17778
|
170 |
|
schirmer@15423
|
171 |
(*** Simproc for Let ***)
|
schirmer@15423
|
172 |
|
schirmer@15423
|
173 |
val use_let_simproc = ref true;
|
schirmer@15423
|
174 |
|
schirmer@15423
|
175 |
local
|
schirmer@15423
|
176 |
val Let_folded = thm "Let_folded";
|
schirmer@15423
|
177 |
val Let_unfold = thm "Let_unfold";
|
schirmer@15423
|
178 |
|
schirmer@15423
|
179 |
val f_Let_unfold =
|
schirmer@15423
|
180 |
let val [(_$(f$_)$_)] = prems_of Let_unfold in cterm_of (sign_of (the_context ())) f end
|
schirmer@15423
|
181 |
val f_Let_folded =
|
schirmer@15423
|
182 |
let val [(_$(f$_)$_)] = prems_of Let_folded in cterm_of (sign_of (the_context ())) f end;
|
schirmer@15423
|
183 |
val g_Let_folded =
|
schirmer@15423
|
184 |
let val [(_$_$(g$_))] = prems_of Let_folded in cterm_of (sign_of (the_context ())) g end;
|
schirmer@15423
|
185 |
in
|
schirmer@15423
|
186 |
val let_simproc =
|
schirmer@15423
|
187 |
Simplifier.simproc (Theory.sign_of (the_context ())) "let_simp" ["Let x f"]
|
schirmer@15423
|
188 |
(fn sg => fn ss => fn t =>
|
schirmer@15423
|
189 |
(case t of (Const ("Let",_)$x$f) => (* x and f are already in normal form *)
|
skalberg@15531
|
190 |
if not (!use_let_simproc) then NONE
|
schirmer@15423
|
191 |
else if is_Free x orelse is_Bound x orelse is_Const x
|
skalberg@15531
|
192 |
then SOME Let_def
|
schirmer@15423
|
193 |
else
|
schirmer@15423
|
194 |
let
|
schirmer@15423
|
195 |
val n = case f of (Abs (x,_,_)) => x | _ => "x";
|
schirmer@15423
|
196 |
val cx = cterm_of sg x;
|
schirmer@15423
|
197 |
val {T=xT,...} = rep_cterm cx;
|
schirmer@15423
|
198 |
val cf = cterm_of sg f;
|
schirmer@15423
|
199 |
val fx_g = Simplifier.rewrite ss (Thm.capply cf cx);
|
schirmer@15423
|
200 |
val (_$_$g) = prop_of fx_g;
|
schirmer@15423
|
201 |
val g' = abstract_over (x,g);
|
schirmer@15423
|
202 |
in (if (g aconv g')
|
schirmer@15423
|
203 |
then
|
schirmer@15423
|
204 |
let
|
schirmer@15423
|
205 |
val rl = cterm_instantiate [(f_Let_unfold,cf)] Let_unfold;
|
skalberg@15531
|
206 |
in SOME (rl OF [fx_g]) end
|
wenzelm@18176
|
207 |
else if Term.betapply (f,x) aconv g then NONE (*avoid identity conversion*)
|
schirmer@15423
|
208 |
else let
|
schirmer@15423
|
209 |
val abs_g'= Abs (n,xT,g');
|
schirmer@15423
|
210 |
val g'x = abs_g'$x;
|
schirmer@15423
|
211 |
val g_g'x = symmetric (beta_conversion false (cterm_of sg g'x));
|
schirmer@15423
|
212 |
val rl = cterm_instantiate
|
schirmer@15423
|
213 |
[(f_Let_folded,cterm_of sg f),
|
schirmer@15423
|
214 |
(g_Let_folded,cterm_of sg abs_g')]
|
schirmer@15423
|
215 |
Let_folded;
|
skalberg@15531
|
216 |
in SOME (rl OF [transitive fx_g g_g'x]) end)
|
schirmer@15423
|
217 |
end
|
skalberg@15531
|
218 |
| _ => NONE))
|
schirmer@15423
|
219 |
end
|
paulson@4351
|
220 |
|
paulson@4351
|
221 |
(*** Case splitting ***)
|
paulson@3913
|
222 |
|
wenzelm@12278
|
223 |
(*Make meta-equalities. The operator below is Trueprop*)
|
wenzelm@12278
|
224 |
|
berghofe@13600
|
225 |
fun mk_meta_eq r = r RS eq_reflection;
|
wenzelm@12278
|
226 |
fun safe_mk_meta_eq r = mk_meta_eq r handle Thm.THM _ => r;
|
wenzelm@12278
|
227 |
|
wenzelm@12278
|
228 |
fun mk_eq th = case concl_of th of
|
wenzelm@12278
|
229 |
Const("==",_)$_$_ => th
|
wenzelm@12278
|
230 |
| _$(Const("op =",_)$_$_) => mk_meta_eq th
|
berghofe@13600
|
231 |
| _$(Const("Not",_)$_) => th RS Eq_FalseI
|
berghofe@13600
|
232 |
| _ => th RS Eq_TrueI;
|
nipkow@13568
|
233 |
(* Expects Trueprop(.) if not == *)
|
wenzelm@12278
|
234 |
|
wenzelm@12278
|
235 |
fun mk_eq_True r =
|
skalberg@15531
|
236 |
SOME (r RS meta_eq_to_obj_eq RS Eq_TrueI) handle Thm.THM _ => NONE;
|
wenzelm@12278
|
237 |
|
berghofe@16633
|
238 |
(* Produce theorems of the form
|
berghofe@16633
|
239 |
(P1 =simp=> ... =simp=> Pn => x == y) ==> (P1 =simp=> ... =simp=> Pn => x = y)
|
berghofe@16633
|
240 |
*)
|
berghofe@16633
|
241 |
fun lift_meta_eq_to_obj_eq i st =
|
berghofe@16633
|
242 |
let
|
berghofe@16633
|
243 |
val {sign, ...} = rep_thm st;
|
wenzelm@17197
|
244 |
fun count_imp (Const ("HOL.simp_implies", _) $ P $ Q) = 1 + count_imp Q
|
berghofe@16633
|
245 |
| count_imp _ = 0;
|
berghofe@16633
|
246 |
val j = count_imp (Logic.strip_assums_concl (List.nth (prems_of st, i - 1)))
|
berghofe@16633
|
247 |
in if j = 0 then meta_eq_to_obj_eq
|
berghofe@16633
|
248 |
else
|
berghofe@16633
|
249 |
let
|
berghofe@16633
|
250 |
val Ps = map (fn k => Free ("P" ^ string_of_int k, propT)) (1 upto j);
|
berghofe@16633
|
251 |
fun mk_simp_implies Q = foldr (fn (R, S) =>
|
wenzelm@17197
|
252 |
Const ("HOL.simp_implies", propT --> propT --> propT) $ R $ S) Q Ps
|
berghofe@16633
|
253 |
val aT = TFree ("'a", HOLogic.typeS);
|
berghofe@16633
|
254 |
val x = Free ("x", aT);
|
berghofe@16633
|
255 |
val y = Free ("y", aT)
|
wenzelm@17985
|
256 |
in standard (Goal.prove (Thm.theory_of_thm st) []
|
wenzelm@17985
|
257 |
[mk_simp_implies (Logic.mk_equals (x, y))]
|
wenzelm@17985
|
258 |
(mk_simp_implies (HOLogic.mk_Trueprop (HOLogic.mk_eq (x, y))))
|
wenzelm@17985
|
259 |
(fn prems => EVERY
|
wenzelm@17985
|
260 |
[rewrite_goals_tac [simp_implies_def],
|
wenzelm@17985
|
261 |
REPEAT (ares_tac (meta_eq_to_obj_eq :: map (rewrite_rule [simp_implies_def]) prems) 1)]))
|
berghofe@16633
|
262 |
end
|
berghofe@16633
|
263 |
end;
|
wenzelm@17985
|
264 |
|
wenzelm@12278
|
265 |
(*Congruence rules for = (instead of ==)*)
|
berghofe@16633
|
266 |
fun mk_meta_cong rl = zero_var_indexes
|
berghofe@16633
|
267 |
(let val rl' = Seq.hd (TRYALL (fn i => fn st =>
|
berghofe@16633
|
268 |
rtac (lift_meta_eq_to_obj_eq i st) i st) rl)
|
berghofe@16633
|
269 |
in mk_meta_eq rl' handle THM _ =>
|
berghofe@16633
|
270 |
if Logic.is_equals (concl_of rl') then rl'
|
berghofe@16633
|
271 |
else error "Conclusion of congruence rules must be =-equality"
|
berghofe@16633
|
272 |
end);
|
wenzelm@12278
|
273 |
|
wenzelm@12278
|
274 |
(* Elimination of True from asumptions: *)
|
wenzelm@12278
|
275 |
|
wenzelm@12278
|
276 |
local fun rd s = read_cterm (sign_of (the_context())) (s, propT);
|
wenzelm@12278
|
277 |
in val True_implies_equals = standard' (equal_intr
|
wenzelm@12278
|
278 |
(implies_intr_hyps (implies_elim (assume (rd "True ==> PROP P")) TrueI))
|
wenzelm@12278
|
279 |
(implies_intr_hyps (implies_intr (rd "True") (assume (rd "PROP P")))));
|
wenzelm@12278
|
280 |
end;
|
wenzelm@12278
|
281 |
|
wenzelm@12278
|
282 |
|
oheimb@5304
|
283 |
structure SplitterData =
|
oheimb@5304
|
284 |
struct
|
oheimb@5304
|
285 |
structure Simplifier = Simplifier
|
oheimb@5552
|
286 |
val mk_eq = mk_eq
|
oheimb@5304
|
287 |
val meta_eq_to_iff = meta_eq_to_obj_eq
|
oheimb@5304
|
288 |
val iffD = iffD2
|
oheimb@5304
|
289 |
val disjE = disjE
|
oheimb@5304
|
290 |
val conjE = conjE
|
oheimb@5304
|
291 |
val exE = exE
|
paulson@10231
|
292 |
val contrapos = contrapos_nn
|
paulson@10231
|
293 |
val contrapos2 = contrapos_pp
|
oheimb@5304
|
294 |
val notnotD = notnotD
|
oheimb@5304
|
295 |
end;
|
nipkow@4681
|
296 |
|
oheimb@5304
|
297 |
structure Splitter = SplitterFun(SplitterData);
|
oheimb@2263
|
298 |
|
oheimb@5304
|
299 |
val split_tac = Splitter.split_tac;
|
oheimb@5304
|
300 |
val split_inside_tac = Splitter.split_inside_tac;
|
oheimb@5304
|
301 |
val split_asm_tac = Splitter.split_asm_tac;
|
oheimb@5307
|
302 |
val op addsplits = Splitter.addsplits;
|
oheimb@5307
|
303 |
val op delsplits = Splitter.delsplits;
|
oheimb@5304
|
304 |
val Addsplits = Splitter.Addsplits;
|
oheimb@5304
|
305 |
val Delsplits = Splitter.Delsplits;
|
oheimb@4718
|
306 |
|
nipkow@2134
|
307 |
val mksimps_pairs =
|
nipkow@2134
|
308 |
[("op -->", [mp]), ("op &", [conjunct1,conjunct2]),
|
nipkow@2134
|
309 |
("All", [spec]), ("True", []), ("False", []),
|
paulson@16587
|
310 |
("HOL.If", [if_bool_eq_conj RS iffD1])];
|
nipkow@1758
|
311 |
|
nipkow@13568
|
312 |
(*
|
oheimb@5304
|
313 |
val mk_atomize: (string * thm list) list -> thm -> thm list
|
nipkow@13568
|
314 |
looks too specific to move it somewhere else
|
oheimb@5304
|
315 |
*)
|
oheimb@5304
|
316 |
fun mk_atomize pairs =
|
oheimb@5304
|
317 |
let fun atoms th =
|
oheimb@5304
|
318 |
(case concl_of th of
|
oheimb@5304
|
319 |
Const("Trueprop",_) $ p =>
|
oheimb@5304
|
320 |
(case head_of p of
|
oheimb@5304
|
321 |
Const(a,_) =>
|
haftmann@17325
|
322 |
(case AList.lookup (op =) pairs a of
|
skalberg@15570
|
323 |
SOME(rls) => List.concat (map atoms ([th] RL rls))
|
skalberg@15531
|
324 |
| NONE => [th])
|
oheimb@5304
|
325 |
| _ => [th])
|
oheimb@5304
|
326 |
| _ => [th])
|
oheimb@5304
|
327 |
in atoms end;
|
oheimb@5304
|
328 |
|
berghofe@11624
|
329 |
fun mksimps pairs =
|
skalberg@15570
|
330 |
(List.mapPartial (try mk_eq) o mk_atomize pairs o gen_all);
|
oheimb@5304
|
331 |
|
nipkow@7570
|
332 |
fun unsafe_solver_tac prems =
|
berghofe@16633
|
333 |
(fn i => REPEAT_DETERM (match_tac [simp_impliesI] i)) THEN'
|
nipkow@7570
|
334 |
FIRST'[resolve_tac(reflexive_thm::TrueI::refl::prems), atac, etac FalseE];
|
nipkow@7570
|
335 |
val unsafe_solver = mk_solver "HOL unsafe" unsafe_solver_tac;
|
nipkow@7570
|
336 |
|
oheimb@2636
|
337 |
(*No premature instantiation of variables during simplification*)
|
nipkow@7570
|
338 |
fun safe_solver_tac prems =
|
berghofe@16633
|
339 |
(fn i => REPEAT_DETERM (match_tac [simp_impliesI] i)) THEN'
|
nipkow@7570
|
340 |
FIRST'[match_tac(reflexive_thm::TrueI::refl::prems),
|
nipkow@7570
|
341 |
eq_assume_tac, ematch_tac [FalseE]];
|
nipkow@7570
|
342 |
val safe_solver = mk_solver "HOL safe" safe_solver_tac;
|
oheimb@2443
|
343 |
|
wenzelm@9713
|
344 |
val HOL_basic_ss =
|
wenzelm@17892
|
345 |
Simplifier.theory_context (the_context ()) empty_ss
|
wenzelm@17892
|
346 |
setsubgoaler asm_simp_tac
|
wenzelm@9713
|
347 |
setSSolver safe_solver
|
wenzelm@9713
|
348 |
setSolver unsafe_solver
|
wenzelm@9713
|
349 |
setmksimps (mksimps mksimps_pairs)
|
wenzelm@9713
|
350 |
setmkeqTrue mk_eq_True
|
wenzelm@9713
|
351 |
setmkcong mk_meta_cong;
|
oheimb@2443
|
352 |
|
wenzelm@18324
|
353 |
fun unfold_tac ths =
|
wenzelm@18324
|
354 |
let val ss0 = Simplifier.clear_ss HOL_basic_ss addsimps ths
|
wenzelm@18324
|
355 |
in fn ss => ALLGOALS (full_simp_tac (Simplifier.inherit_context ss ss0)) end;
|
wenzelm@17003
|
356 |
|
nipkow@13568
|
357 |
(*In general it seems wrong to add distributive laws by default: they
|
nipkow@13568
|
358 |
might cause exponential blow-up. But imp_disjL has been in for a while
|
nipkow@13568
|
359 |
and cannot be removed without affecting existing proofs. Moreover,
|
nipkow@13568
|
360 |
rewriting by "(P|Q --> R) = ((P-->R)&(Q-->R))" might be justified on the
|
nipkow@13568
|
361 |
grounds that it allows simplification of R in the two cases.*)
|
nipkow@13568
|
362 |
|
wenzelm@9713
|
363 |
val HOL_ss =
|
wenzelm@9713
|
364 |
HOL_basic_ss addsimps
|
paulson@3446
|
365 |
([triv_forall_equality, (* prunes params *)
|
nipkow@3654
|
366 |
True_implies_equals, (* prune asms `True' *)
|
oheimb@4718
|
367 |
if_True, if_False, if_cancel, if_eq_cancel,
|
oheimb@5304
|
368 |
imp_disjL, conj_assoc, disj_assoc,
|
paulson@3904
|
369 |
de_Morgan_conj, de_Morgan_disj, imp_disj1, imp_disj2, not_imp,
|
paulson@11451
|
370 |
disj_not1, not_all, not_ex, cases_simp,
|
paulson@14430
|
371 |
thm "the_eq_trivial", the_sym_eq_trivial]
|
paulson@3446
|
372 |
@ ex_simps @ all_simps @ simp_thms)
|
nipkow@17778
|
373 |
addsimprocs [defALL_regroup,defEX_regroup,neq_simproc,let_simproc]
|
berghofe@16633
|
374 |
addcongs [imp_cong, simp_implies_cong]
|
nipkow@4830
|
375 |
addsplits [split_if];
|
paulson@2082
|
376 |
|
wenzelm@11034
|
377 |
fun hol_simplify rews = Simplifier.full_simplify (HOL_basic_ss addsimps rews);
|
wenzelm@11034
|
378 |
|
wenzelm@11034
|
379 |
|
paulson@6293
|
380 |
(*Simplifies x assuming c and y assuming ~c*)
|
paulson@6293
|
381 |
val prems = Goalw [if_def]
|
paulson@6293
|
382 |
"[| b=c; c ==> x=u; ~c ==> y=v |] ==> \
|
paulson@6293
|
383 |
\ (if b then x else y) = (if c then u else v)";
|
paulson@6293
|
384 |
by (asm_simp_tac (HOL_ss addsimps prems) 1);
|
paulson@6293
|
385 |
qed "if_cong";
|
paulson@6293
|
386 |
|
paulson@7127
|
387 |
(*Prevents simplification of x and y: faster and allows the execution
|
paulson@7127
|
388 |
of functional programs. NOW THE DEFAULT.*)
|
paulson@7031
|
389 |
Goal "b=c ==> (if b then x else y) = (if c then x else y)";
|
paulson@7031
|
390 |
by (etac arg_cong 1);
|
paulson@7031
|
391 |
qed "if_weak_cong";
|
paulson@6293
|
392 |
|
paulson@6293
|
393 |
(*Prevents simplification of t: much faster*)
|
paulson@7031
|
394 |
Goal "a = b ==> (let x=a in t(x)) = (let x=b in t(x))";
|
paulson@7031
|
395 |
by (etac arg_cong 1);
|
paulson@7031
|
396 |
qed "let_weak_cong";
|
paulson@6293
|
397 |
|
paulson@12975
|
398 |
(*To tidy up the result of a simproc. Only the RHS will be simplified.*)
|
paulson@12975
|
399 |
Goal "u = u' ==> (t==u) == (t==u')";
|
paulson@12975
|
400 |
by (asm_simp_tac HOL_ss 1);
|
paulson@12975
|
401 |
qed "eq_cong2";
|
paulson@12975
|
402 |
|
paulson@7031
|
403 |
Goal "f(if c then x else y) = (if c then f x else f y)";
|
paulson@7031
|
404 |
by (simp_tac (HOL_ss setloop (split_tac [split_if])) 1);
|
paulson@7031
|
405 |
qed "if_distrib";
|
nipkow@1655
|
406 |
|
paulson@4327
|
407 |
(*For expand_case_tac*)
|
paulson@7584
|
408 |
val prems = Goal "[| P ==> Q(True); ~P ==> Q(False) |] ==> Q(P)";
|
paulson@2948
|
409 |
by (case_tac "P" 1);
|
paulson@2948
|
410 |
by (ALLGOALS (asm_simp_tac (HOL_ss addsimps prems)));
|
paulson@7584
|
411 |
qed "expand_case";
|
paulson@2948
|
412 |
|
paulson@4327
|
413 |
(*Used in Auth proofs. Typically P contains Vars that become instantiated
|
paulson@4327
|
414 |
during unification.*)
|
paulson@2948
|
415 |
fun expand_case_tac P i =
|
paulson@2948
|
416 |
res_inst_tac [("P",P)] expand_case i THEN
|
wenzelm@9713
|
417 |
Simp_tac (i+1) THEN
|
paulson@2948
|
418 |
Simp_tac i;
|
paulson@2948
|
419 |
|
paulson@7584
|
420 |
(*This lemma restricts the effect of the rewrite rule u=v to the left-hand
|
paulson@7584
|
421 |
side of an equality. Used in {Integ,Real}/simproc.ML*)
|
paulson@7584
|
422 |
Goal "x=y ==> (x=z) = (y=z)";
|
paulson@7584
|
423 |
by (asm_simp_tac HOL_ss 1);
|
paulson@7584
|
424 |
qed "restrict_to_left";
|
paulson@2948
|
425 |
|
wenzelm@7357
|
426 |
(* default simpset *)
|
wenzelm@9713
|
427 |
val simpsetup =
|
wenzelm@18708
|
428 |
(fn thy => (change_simpset_of thy (fn _ => HOL_ss addcongs [if_weak_cong]); thy));
|
berghofe@3615
|
429 |
|
oheimb@4652
|
430 |
|
wenzelm@5219
|
431 |
(*** integration of simplifier with classical reasoner ***)
|
oheimb@2636
|
432 |
|
wenzelm@5219
|
433 |
structure Clasimp = ClasimpFun
|
wenzelm@8473
|
434 |
(structure Simplifier = Simplifier and Splitter = Splitter
|
wenzelm@9851
|
435 |
and Classical = Classical and Blast = Blast
|
wenzelm@18529
|
436 |
val iffD1 = iffD1 val iffD2 = iffD2 val notE = notE);
|
oheimb@4652
|
437 |
open Clasimp;
|
oheimb@2636
|
438 |
|
oheimb@2636
|
439 |
val HOL_css = (HOL_cs, HOL_ss);
|
nipkow@5975
|
440 |
|
nipkow@5975
|
441 |
|
wenzelm@8641
|
442 |
|
nipkow@5975
|
443 |
(*** A general refutation procedure ***)
|
wenzelm@9713
|
444 |
|
nipkow@5975
|
445 |
(* Parameters:
|
nipkow@5975
|
446 |
|
nipkow@5975
|
447 |
test: term -> bool
|
nipkow@5975
|
448 |
tests if a term is at all relevant to the refutation proof;
|
nipkow@5975
|
449 |
if not, then it can be discarded. Can improve performance,
|
nipkow@5975
|
450 |
esp. if disjunctions can be discarded (no case distinction needed!).
|
nipkow@5975
|
451 |
|
nipkow@5975
|
452 |
prep_tac: int -> tactic
|
nipkow@5975
|
453 |
A preparation tactic to be applied to the goal once all relevant premises
|
nipkow@5975
|
454 |
have been moved to the conclusion.
|
nipkow@5975
|
455 |
|
nipkow@5975
|
456 |
ref_tac: int -> tactic
|
nipkow@5975
|
457 |
the actual refutation tactic. Should be able to deal with goals
|
nipkow@5975
|
458 |
[| A1; ...; An |] ==> False
|
wenzelm@9876
|
459 |
where the Ai are atomic, i.e. no top-level &, | or EX
|
nipkow@5975
|
460 |
*)
|
nipkow@5975
|
461 |
|
nipkow@15184
|
462 |
local
|
nipkow@15184
|
463 |
val nnf_simpset =
|
wenzelm@17892
|
464 |
empty_ss setmkeqTrue mk_eq_True
|
wenzelm@17892
|
465 |
setmksimps (mksimps mksimps_pairs)
|
wenzelm@17892
|
466 |
addsimps [imp_conv_disj,iff_conv_conj_imp,de_Morgan_disj,de_Morgan_conj,
|
wenzelm@17892
|
467 |
not_all,not_ex,not_not];
|
wenzelm@17892
|
468 |
fun prem_nnf_tac i st =
|
wenzelm@17892
|
469 |
full_simp_tac (Simplifier.theory_context (Thm.theory_of_thm st) nnf_simpset) i st;
|
nipkow@15184
|
470 |
in
|
nipkow@15184
|
471 |
fun refute_tac test prep_tac ref_tac =
|
nipkow@15184
|
472 |
let val refute_prems_tac =
|
nipkow@12475
|
473 |
REPEAT_DETERM
|
nipkow@12475
|
474 |
(eresolve_tac [conjE, exE] 1 ORELSE
|
nipkow@5975
|
475 |
filter_prems_tac test 1 ORELSE
|
paulson@6301
|
476 |
etac disjE 1) THEN
|
nipkow@11200
|
477 |
((etac notE 1 THEN eq_assume_tac 1) ORELSE
|
nipkow@11200
|
478 |
ref_tac 1);
|
nipkow@5975
|
479 |
in EVERY'[TRY o filter_prems_tac test,
|
nipkow@12475
|
480 |
REPEAT_DETERM o etac rev_mp, prep_tac, rtac ccontr, prem_nnf_tac,
|
nipkow@5975
|
481 |
SELECT_GOAL (DEPTH_SOLVE refute_prems_tac)]
|
nipkow@5975
|
482 |
end;
|
wenzelm@17003
|
483 |
end;
|