src/HOL/Library/Formal_Power_Series.thy
author chaieb
Fri May 08 14:02:33 2009 +0100 (2009-05-08)
changeset 31073 4b44c4d08aa6
parent 31021 53642251a04f
child 31075 a9d6cf6de9a8
permissions -rw-r--r--
Generalized distributivity theorems of radicals over multiplication, division and inverses
chaieb@29687
     1
(*  Title:      Formal_Power_Series.thy
chaieb@29687
     2
    Author:     Amine Chaieb, University of Cambridge
chaieb@29687
     3
*)
chaieb@29687
     4
chaieb@29687
     5
header{* A formalization of formal power series *}
chaieb@29687
     6
chaieb@29687
     7
theory Formal_Power_Series
haftmann@30661
     8
imports Main Fact Parity
chaieb@29687
     9
begin
chaieb@29687
    10
huffman@29906
    11
subsection {* The type of formal power series*}
chaieb@29687
    12
huffman@29911
    13
typedef (open) 'a fps = "{f :: nat \<Rightarrow> 'a. True}"
huffman@29911
    14
  morphisms fps_nth Abs_fps
chaieb@29687
    15
  by simp
chaieb@29687
    16
huffman@29911
    17
notation fps_nth (infixl "$" 75)
huffman@29911
    18
huffman@29911
    19
lemma expand_fps_eq: "p = q \<longleftrightarrow> (\<forall>n. p $ n = q $ n)"
huffman@29911
    20
  by (simp add: fps_nth_inject [symmetric] expand_fun_eq)
huffman@29911
    21
huffman@29911
    22
lemma fps_ext: "(\<And>n. p $ n = q $ n) \<Longrightarrow> p = q"
huffman@29911
    23
  by (simp add: expand_fps_eq)
huffman@29911
    24
huffman@29911
    25
lemma fps_nth_Abs_fps [simp]: "Abs_fps f $ n = f n"
huffman@29911
    26
  by (simp add: Abs_fps_inverse)
huffman@29911
    27
chaieb@29687
    28
text{* Definition of the basic elements 0 and 1 and the basic operations of addition, negation and multiplication *}
chaieb@29687
    29
chaieb@29687
    30
instantiation fps :: (zero)  zero
chaieb@29687
    31
begin
chaieb@29687
    32
huffman@29911
    33
definition fps_zero_def:
huffman@29911
    34
  "0 = Abs_fps (\<lambda>n. 0)"
huffman@29911
    35
chaieb@29687
    36
instance ..
chaieb@29687
    37
end
chaieb@29687
    38
huffman@29911
    39
lemma fps_zero_nth [simp]: "0 $ n = 0"
huffman@29911
    40
  unfolding fps_zero_def by simp
huffman@29911
    41
chaieb@29687
    42
instantiation fps :: ("{one,zero}")  one
chaieb@29687
    43
begin
chaieb@29687
    44
huffman@29911
    45
definition fps_one_def:
huffman@29911
    46
  "1 = Abs_fps (\<lambda>n. if n = 0 then 1 else 0)"
huffman@29911
    47
chaieb@29687
    48
instance ..
chaieb@29687
    49
end
chaieb@29687
    50
huffman@30488
    51
lemma fps_one_nth [simp]: "1 $ n = (if n = 0 then 1 else 0)"
huffman@29911
    52
  unfolding fps_one_def by simp
huffman@29911
    53
chaieb@29687
    54
instantiation fps :: (plus)  plus
chaieb@29687
    55
begin
chaieb@29687
    56
huffman@29911
    57
definition fps_plus_def:
huffman@29911
    58
  "op + = (\<lambda>f g. Abs_fps (\<lambda>n. f $ n + g $ n))"
huffman@29911
    59
chaieb@29687
    60
instance ..
chaieb@29687
    61
end
chaieb@29687
    62
huffman@29911
    63
lemma fps_add_nth [simp]: "(f + g) $ n = f $ n + g $ n"
huffman@29911
    64
  unfolding fps_plus_def by simp
huffman@29911
    65
huffman@29911
    66
instantiation fps :: (minus) minus
chaieb@29687
    67
begin
chaieb@29687
    68
huffman@29911
    69
definition fps_minus_def:
huffman@29911
    70
  "op - = (\<lambda>f g. Abs_fps (\<lambda>n. f $ n - g $ n))"
huffman@29911
    71
chaieb@29687
    72
instance ..
chaieb@29687
    73
end
chaieb@29687
    74
huffman@29911
    75
lemma fps_sub_nth [simp]: "(f - g) $ n = f $ n - g $ n"
huffman@29911
    76
  unfolding fps_minus_def by simp
huffman@29911
    77
huffman@29911
    78
instantiation fps :: (uminus) uminus
chaieb@29687
    79
begin
chaieb@29687
    80
huffman@29911
    81
definition fps_uminus_def:
huffman@29911
    82
  "uminus = (\<lambda>f. Abs_fps (\<lambda>n. - (f $ n)))"
huffman@29911
    83
chaieb@29687
    84
instance ..
chaieb@29687
    85
end
chaieb@29687
    86
huffman@29911
    87
lemma fps_neg_nth [simp]: "(- f) $ n = - (f $ n)"
huffman@29911
    88
  unfolding fps_uminus_def by simp
huffman@29911
    89
chaieb@29687
    90
instantiation fps :: ("{comm_monoid_add, times}")  times
chaieb@29687
    91
begin
chaieb@29687
    92
huffman@29911
    93
definition fps_times_def:
huffman@29911
    94
  "op * = (\<lambda>f g. Abs_fps (\<lambda>n. \<Sum>i=0..n. f $ i * g $ (n - i)))"
huffman@29911
    95
chaieb@29687
    96
instance ..
chaieb@29687
    97
end
chaieb@29687
    98
huffman@29911
    99
lemma fps_mult_nth: "(f * g) $ n = (\<Sum>i=0..n. f$i * g$(n - i))"
huffman@29911
   100
  unfolding fps_times_def by simp
chaieb@29687
   101
huffman@29911
   102
declare atLeastAtMost_iff[presburger]
chaieb@29687
   103
declare Bex_def[presburger]
chaieb@29687
   104
declare Ball_def[presburger]
chaieb@29687
   105
huffman@29913
   106
lemma mult_delta_left:
huffman@29913
   107
  fixes x y :: "'a::mult_zero"
huffman@29913
   108
  shows "(if b then x else 0) * y = (if b then x * y else 0)"
huffman@29913
   109
  by simp
huffman@29913
   110
huffman@29913
   111
lemma mult_delta_right:
huffman@29913
   112
  fixes x y :: "'a::mult_zero"
huffman@29913
   113
  shows "x * (if b then y else 0) = (if b then x * y else 0)"
huffman@29913
   114
  by simp
huffman@29913
   115
chaieb@29687
   116
lemma cond_value_iff: "f (if b then x else y) = (if b then f x else f y)"
chaieb@29687
   117
  by auto
chaieb@29687
   118
lemma cond_application_beta: "(if b then f else g) x = (if b then f x else g x)"
chaieb@29687
   119
  by auto
chaieb@29687
   120
huffman@30488
   121
subsection{* Formal power series form a commutative ring with unity, if the range of sequences
chaieb@29687
   122
  they represent is a commutative ring with unity*}
chaieb@29687
   123
huffman@29911
   124
instance fps :: (semigroup_add) semigroup_add
chaieb@29687
   125
proof
chaieb@29687
   126
  fix a b c :: "'a fps" show "a + b + c = a + (b + c)"
huffman@29911
   127
    by (simp add: fps_ext add_assoc)
huffman@29911
   128
qed
huffman@29911
   129
huffman@29911
   130
instance fps :: (ab_semigroup_add) ab_semigroup_add
huffman@29911
   131
proof
huffman@29911
   132
  fix a b :: "'a fps" show "a + b = b + a"
huffman@29911
   133
    by (simp add: fps_ext add_commute)
chaieb@29687
   134
qed
chaieb@29687
   135
huffman@29911
   136
lemma fps_mult_assoc_lemma:
huffman@29911
   137
  fixes k :: nat and f :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 'a::comm_monoid_add"
huffman@29911
   138
  shows "(\<Sum>j=0..k. \<Sum>i=0..j. f i (j - i) (n - j)) =
huffman@29911
   139
         (\<Sum>j=0..k. \<Sum>i=0..k - j. f j i (n - j - i))"
huffman@29911
   140
proof (induct k)
huffman@29911
   141
  case 0 show ?case by simp
huffman@29911
   142
next
huffman@29911
   143
  case (Suc k) thus ?case
huffman@29911
   144
    by (simp add: Suc_diff_le setsum_addf add_assoc
huffman@29911
   145
             cong: strong_setsum_cong)
huffman@29911
   146
qed
chaieb@29687
   147
huffman@29911
   148
instance fps :: (semiring_0) semigroup_mult
chaieb@29687
   149
proof
chaieb@29687
   150
  fix a b c :: "'a fps"
huffman@29911
   151
  show "(a * b) * c = a * (b * c)"
huffman@29911
   152
  proof (rule fps_ext)
huffman@29911
   153
    fix n :: nat
huffman@29911
   154
    have "(\<Sum>j=0..n. \<Sum>i=0..j. a$i * b$(j - i) * c$(n - j)) =
huffman@29911
   155
          (\<Sum>j=0..n. \<Sum>i=0..n - j. a$j * b$i * c$(n - j - i))"
huffman@29911
   156
      by (rule fps_mult_assoc_lemma)
huffman@29911
   157
    thus "((a * b) * c) $ n = (a * (b * c)) $ n"
huffman@29911
   158
      by (simp add: fps_mult_nth setsum_right_distrib
huffman@29911
   159
                    setsum_left_distrib mult_assoc)
huffman@29911
   160
  qed
huffman@29911
   161
qed
huffman@29911
   162
huffman@29911
   163
lemma fps_mult_commute_lemma:
huffman@29911
   164
  fixes n :: nat and f :: "nat \<Rightarrow> nat \<Rightarrow> 'a::comm_monoid_add"
huffman@29911
   165
  shows "(\<Sum>i=0..n. f i (n - i)) = (\<Sum>i=0..n. f (n - i) i)"
huffman@29911
   166
proof (rule setsum_reindex_cong)
huffman@29911
   167
  show "inj_on (\<lambda>i. n - i) {0..n}"
huffman@29911
   168
    by (rule inj_onI) simp
huffman@29911
   169
  show "{0..n} = (\<lambda>i. n - i) ` {0..n}"
huffman@29911
   170
    by (auto, rule_tac x="n - x" in image_eqI, simp_all)
huffman@29911
   171
next
huffman@29911
   172
  fix i assume "i \<in> {0..n}"
huffman@29911
   173
  hence "n - (n - i) = i" by simp
huffman@29911
   174
  thus "f (n - i) i = f (n - i) (n - (n - i))" by simp
huffman@29911
   175
qed
huffman@29911
   176
huffman@29911
   177
instance fps :: (comm_semiring_0) ab_semigroup_mult
huffman@29911
   178
proof
huffman@29911
   179
  fix a b :: "'a fps"
huffman@29911
   180
  show "a * b = b * a"
huffman@29911
   181
  proof (rule fps_ext)
huffman@29911
   182
    fix n :: nat
huffman@29911
   183
    have "(\<Sum>i=0..n. a$i * b$(n - i)) = (\<Sum>i=0..n. a$(n - i) * b$i)"
huffman@29911
   184
      by (rule fps_mult_commute_lemma)
huffman@29911
   185
    thus "(a * b) $ n = (b * a) $ n"
huffman@29911
   186
      by (simp add: fps_mult_nth mult_commute)
chaieb@29687
   187
  qed
chaieb@29687
   188
qed
chaieb@29687
   189
huffman@29911
   190
instance fps :: (monoid_add) monoid_add
chaieb@29687
   191
proof
chaieb@29687
   192
  fix a :: "'a fps" show "0 + a = a "
huffman@29911
   193
    by (simp add: fps_ext)
chaieb@29687
   194
next
chaieb@29687
   195
  fix a :: "'a fps" show "a + 0 = a "
huffman@29911
   196
    by (simp add: fps_ext)
chaieb@29687
   197
qed
chaieb@29687
   198
huffman@29911
   199
instance fps :: (comm_monoid_add) comm_monoid_add
chaieb@29687
   200
proof
chaieb@29687
   201
  fix a :: "'a fps" show "0 + a = a "
huffman@29911
   202
    by (simp add: fps_ext)
chaieb@29687
   203
qed
chaieb@29687
   204
huffman@29911
   205
instance fps :: (semiring_1) monoid_mult
chaieb@29687
   206
proof
chaieb@29687
   207
  fix a :: "'a fps" show "1 * a = a"
huffman@29913
   208
    by (simp add: fps_ext fps_mult_nth mult_delta_left setsum_delta)
chaieb@29687
   209
next
huffman@29911
   210
  fix a :: "'a fps" show "a * 1 = a"
huffman@29913
   211
    by (simp add: fps_ext fps_mult_nth mult_delta_right setsum_delta')
chaieb@29687
   212
qed
chaieb@29687
   213
huffman@29911
   214
instance fps :: (cancel_semigroup_add) cancel_semigroup_add
huffman@29911
   215
proof
huffman@29911
   216
  fix a b c :: "'a fps"
huffman@29911
   217
  assume "a + b = a + c" then show "b = c"
huffman@29911
   218
    by (simp add: expand_fps_eq)
huffman@29911
   219
next
huffman@29911
   220
  fix a b c :: "'a fps"
huffman@29911
   221
  assume "b + a = c + a" then show "b = c"
huffman@29911
   222
    by (simp add: expand_fps_eq)
huffman@29911
   223
qed
chaieb@29687
   224
huffman@29911
   225
instance fps :: (cancel_ab_semigroup_add) cancel_ab_semigroup_add
huffman@29911
   226
proof
huffman@29911
   227
  fix a b c :: "'a fps"
huffman@29911
   228
  assume "a + b = a + c" then show "b = c"
huffman@29911
   229
    by (simp add: expand_fps_eq)
huffman@29911
   230
qed
chaieb@29687
   231
huffman@29911
   232
instance fps :: (cancel_comm_monoid_add) cancel_comm_monoid_add ..
huffman@29911
   233
huffman@29911
   234
instance fps :: (group_add) group_add
chaieb@29687
   235
proof
chaieb@29687
   236
  fix a :: "'a fps" show "- a + a = 0"
huffman@29911
   237
    by (simp add: fps_ext)
chaieb@29687
   238
next
chaieb@29687
   239
  fix a b :: "'a fps" show "a - b = a + - b"
huffman@29911
   240
    by (simp add: fps_ext diff_minus)
chaieb@29687
   241
qed
chaieb@29687
   242
huffman@29911
   243
instance fps :: (ab_group_add) ab_group_add
huffman@29911
   244
proof
huffman@29911
   245
  fix a :: "'a fps"
huffman@29911
   246
  show "- a + a = 0"
huffman@29911
   247
    by (simp add: fps_ext)
huffman@29911
   248
next
huffman@29911
   249
  fix a b :: "'a fps"
huffman@29911
   250
  show "a - b = a + - b"
huffman@29911
   251
    by (simp add: fps_ext)
huffman@29911
   252
qed
chaieb@29687
   253
huffman@29911
   254
instance fps :: (zero_neq_one) zero_neq_one
huffman@29911
   255
  by default (simp add: expand_fps_eq)
chaieb@29687
   256
huffman@29911
   257
instance fps :: (semiring_0) semiring
chaieb@29687
   258
proof
chaieb@29687
   259
  fix a b c :: "'a fps"
huffman@29911
   260
  show "(a + b) * c = a * c + b * c"
huffman@29911
   261
    by (simp add: expand_fps_eq fps_mult_nth left_distrib setsum_addf)
chaieb@29687
   262
next
chaieb@29687
   263
  fix a b c :: "'a fps"
huffman@29911
   264
  show "a * (b + c) = a * b + a * c"
huffman@29911
   265
    by (simp add: expand_fps_eq fps_mult_nth right_distrib setsum_addf)
chaieb@29687
   266
qed
chaieb@29687
   267
huffman@29911
   268
instance fps :: (semiring_0) semiring_0
chaieb@29687
   269
proof
huffman@29911
   270
  fix a:: "'a fps" show "0 * a = 0"
huffman@29911
   271
    by (simp add: fps_ext fps_mult_nth)
chaieb@29687
   272
next
huffman@29911
   273
  fix a:: "'a fps" show "a * 0 = 0"
huffman@29911
   274
    by (simp add: fps_ext fps_mult_nth)
chaieb@29687
   275
qed
huffman@29911
   276
huffman@29911
   277
instance fps :: (semiring_0_cancel) semiring_0_cancel ..
huffman@29911
   278
huffman@29906
   279
subsection {* Selection of the nth power of the implicit variable in the infinite sum*}
chaieb@29687
   280
chaieb@29687
   281
lemma fps_nonzero_nth: "f \<noteq> 0 \<longleftrightarrow> (\<exists> n. f $n \<noteq> 0)"
huffman@29911
   282
  by (simp add: expand_fps_eq)
chaieb@29687
   283
huffman@29911
   284
lemma fps_nonzero_nth_minimal:
huffman@29911
   285
  "f \<noteq> 0 \<longleftrightarrow> (\<exists>n. f $ n \<noteq> 0 \<and> (\<forall>m<n. f $ m = 0))"
huffman@29911
   286
proof
huffman@29911
   287
  let ?n = "LEAST n. f $ n \<noteq> 0"
huffman@29911
   288
  assume "f \<noteq> 0"
huffman@29911
   289
  then have "\<exists>n. f $ n \<noteq> 0"
huffman@29911
   290
    by (simp add: fps_nonzero_nth)
huffman@29911
   291
  then have "f $ ?n \<noteq> 0"
huffman@29911
   292
    by (rule LeastI_ex)
huffman@29911
   293
  moreover have "\<forall>m<?n. f $ m = 0"
huffman@29911
   294
    by (auto dest: not_less_Least)
huffman@29911
   295
  ultimately have "f $ ?n \<noteq> 0 \<and> (\<forall>m<?n. f $ m = 0)" ..
huffman@29911
   296
  then show "\<exists>n. f $ n \<noteq> 0 \<and> (\<forall>m<n. f $ m = 0)" ..
huffman@29911
   297
next
huffman@29911
   298
  assume "\<exists>n. f $ n \<noteq> 0 \<and> (\<forall>m<n. f $ m = 0)"
huffman@29911
   299
  then show "f \<noteq> 0" by (auto simp add: expand_fps_eq)
chaieb@29687
   300
qed
chaieb@29687
   301
chaieb@29687
   302
lemma fps_eq_iff: "f = g \<longleftrightarrow> (\<forall>n. f $ n = g $n)"
huffman@29911
   303
  by (rule expand_fps_eq)
chaieb@29687
   304
huffman@30488
   305
lemma fps_setsum_nth: "(setsum f S) $ n = setsum (\<lambda>k. (f k) $ n) S"
huffman@29911
   306
proof (cases "finite S")
huffman@29911
   307
  assume "\<not> finite S" then show ?thesis by simp
huffman@29911
   308
next
huffman@29911
   309
  assume "finite S"
huffman@29911
   310
  then show ?thesis by (induct set: finite) auto
chaieb@29687
   311
qed
chaieb@29687
   312
huffman@29906
   313
subsection{* Injection of the basic ring elements and multiplication by scalars *}
chaieb@29687
   314
huffman@29911
   315
definition
huffman@29911
   316
  "fps_const c = Abs_fps (\<lambda>n. if n = 0 then c else 0)"
huffman@29911
   317
huffman@29911
   318
lemma fps_nth_fps_const [simp]: "fps_const c $ n = (if n = 0 then c else 0)"
huffman@29911
   319
  unfolding fps_const_def by simp
huffman@29911
   320
huffman@29911
   321
lemma fps_const_0_eq_0 [simp]: "fps_const 0 = 0"
huffman@29911
   322
  by (simp add: fps_ext)
huffman@29911
   323
huffman@29911
   324
lemma fps_const_1_eq_1 [simp]: "fps_const 1 = 1"
huffman@29911
   325
  by (simp add: fps_ext)
huffman@29911
   326
huffman@29911
   327
lemma fps_const_neg [simp]: "- (fps_const (c::'a::ring)) = fps_const (- c)"
huffman@29911
   328
  by (simp add: fps_ext)
huffman@29911
   329
huffman@29911
   330
lemma fps_const_add [simp]: "fps_const (c::'a\<Colon>monoid_add) + fps_const d = fps_const (c + d)"
huffman@29911
   331
  by (simp add: fps_ext)
huffman@29911
   332
chaieb@29687
   333
lemma fps_const_mult[simp]: "fps_const (c::'a\<Colon>ring) * fps_const d = fps_const (c * d)"
huffman@29911
   334
  by (simp add: fps_eq_iff fps_mult_nth setsum_0')
chaieb@29687
   335
chaieb@29687
   336
lemma fps_const_add_left: "fps_const (c::'a\<Colon>monoid_add) + f = Abs_fps (\<lambda>n. if n = 0 then c + f$0 else f$n)"
huffman@29911
   337
  by (simp add: fps_ext)
huffman@29911
   338
chaieb@29687
   339
lemma fps_const_add_right: "f + fps_const (c::'a\<Colon>monoid_add) = Abs_fps (\<lambda>n. if n = 0 then f$0 + c else f$n)"
huffman@29911
   340
  by (simp add: fps_ext)
chaieb@29687
   341
chaieb@29687
   342
lemma fps_const_mult_left: "fps_const (c::'a\<Colon>semiring_0) * f = Abs_fps (\<lambda>n. c * f$n)"
huffman@29911
   343
  unfolding fps_eq_iff fps_mult_nth
huffman@29913
   344
  by (simp add: fps_const_def mult_delta_left setsum_delta)
huffman@29911
   345
chaieb@29687
   346
lemma fps_const_mult_right: "f * fps_const (c::'a\<Colon>semiring_0) = Abs_fps (\<lambda>n. f$n * c)"
huffman@29911
   347
  unfolding fps_eq_iff fps_mult_nth
huffman@29913
   348
  by (simp add: fps_const_def mult_delta_right setsum_delta')
chaieb@29687
   349
huffman@29911
   350
lemma fps_mult_left_const_nth [simp]: "(fps_const (c::'a::semiring_1) * f)$n = c* f$n"
huffman@29913
   351
  by (simp add: fps_mult_nth mult_delta_left setsum_delta)
chaieb@29687
   352
huffman@29911
   353
lemma fps_mult_right_const_nth [simp]: "(f * fps_const (c::'a::semiring_1))$n = f$n * c"
huffman@29913
   354
  by (simp add: fps_mult_nth mult_delta_right setsum_delta')
chaieb@29687
   355
huffman@29906
   356
subsection {* Formal power series form an integral domain*}
chaieb@29687
   357
huffman@29911
   358
instance fps :: (ring) ring ..
chaieb@29687
   359
huffman@29911
   360
instance fps :: (ring_1) ring_1
huffman@29911
   361
  by (intro_classes, auto simp add: diff_minus left_distrib)
chaieb@29687
   362
huffman@29911
   363
instance fps :: (comm_ring_1) comm_ring_1
huffman@29911
   364
  by (intro_classes, auto simp add: diff_minus left_distrib)
chaieb@29687
   365
huffman@29911
   366
instance fps :: (ring_no_zero_divisors) ring_no_zero_divisors
chaieb@29687
   367
proof
chaieb@29687
   368
  fix a b :: "'a fps"
chaieb@29687
   369
  assume a0: "a \<noteq> 0" and b0: "b \<noteq> 0"
chaieb@29687
   370
  then obtain i j where i: "a$i\<noteq>0" "\<forall>k<i. a$k=0"
chaieb@29687
   371
    and j: "b$j \<noteq>0" "\<forall>k<j. b$k =0" unfolding fps_nonzero_nth_minimal
chaieb@29687
   372
    by blast+
huffman@29911
   373
  have "(a * b) $ (i+j) = (\<Sum>k=0..i+j. a$k * b$(i+j-k))"
chaieb@29687
   374
    by (rule fps_mult_nth)
huffman@29911
   375
  also have "\<dots> = (a$i * b$(i+j-i)) + (\<Sum>k\<in>{0..i+j}-{i}. a$k * b$(i+j-k))"
huffman@29911
   376
    by (rule setsum_diff1') simp_all
huffman@29911
   377
  also have "(\<Sum>k\<in>{0..i+j}-{i}. a$k * b$(i+j-k)) = 0"
huffman@29911
   378
    proof (rule setsum_0' [rule_format])
huffman@29911
   379
      fix k assume "k \<in> {0..i+j} - {i}"
huffman@29911
   380
      then have "k < i \<or> i+j-k < j" by auto
huffman@29911
   381
      then show "a$k * b$(i+j-k) = 0" using i j by auto
huffman@29911
   382
    qed
huffman@29911
   383
  also have "a$i * b$(i+j-i) + 0 = a$i * b$j" by simp
huffman@29911
   384
  also have "a$i * b$j \<noteq> 0" using i j by simp
huffman@29911
   385
  finally have "(a*b) $ (i+j) \<noteq> 0" .
chaieb@29687
   386
  then show "a*b \<noteq> 0" unfolding fps_nonzero_nth by blast
chaieb@29687
   387
qed
chaieb@29687
   388
huffman@29911
   389
instance fps :: (idom) idom ..
chaieb@29687
   390
chaieb@30746
   391
instantiation fps :: (comm_ring_1) number_ring
chaieb@30746
   392
begin
chaieb@30746
   393
definition number_of_fps_def: "(number_of k::'a fps) = of_int k"
chaieb@30746
   394
chaieb@30746
   395
instance 
chaieb@30746
   396
by (intro_classes, rule number_of_fps_def)
chaieb@30746
   397
end
chaieb@30746
   398
huffman@29906
   399
subsection{* Inverses of formal power series *}
chaieb@29687
   400
chaieb@29687
   401
declare setsum_cong[fundef_cong]
chaieb@29687
   402
chaieb@29687
   403
chaieb@29687
   404
instantiation fps :: ("{comm_monoid_add,inverse, times, uminus}") inverse
chaieb@29687
   405
begin
chaieb@29687
   406
huffman@30488
   407
fun natfun_inverse:: "'a fps \<Rightarrow> nat \<Rightarrow> 'a" where
chaieb@29687
   408
  "natfun_inverse f 0 = inverse (f$0)"
huffman@30488
   409
| "natfun_inverse f n = - inverse (f$0) * setsum (\<lambda>i. f$i * natfun_inverse f (n - i)) {1..n}"
chaieb@29687
   410
huffman@30488
   411
definition fps_inverse_def:
chaieb@29687
   412
  "inverse f = (if f$0 = 0 then 0 else Abs_fps (natfun_inverse f))"
huffman@29911
   413
definition fps_divide_def: "divide = (\<lambda>(f::'a fps) g. f * inverse g)"
chaieb@29687
   414
instance ..
chaieb@29687
   415
end
chaieb@29687
   416
huffman@30488
   417
lemma fps_inverse_zero[simp]:
chaieb@29687
   418
  "inverse (0 :: 'a::{comm_monoid_add,inverse, times, uminus} fps) = 0"
huffman@29911
   419
  by (simp add: fps_ext fps_inverse_def)
chaieb@29687
   420
chaieb@29687
   421
lemma fps_inverse_one[simp]: "inverse (1 :: 'a::{division_ring,zero_neq_one} fps) = 1"
huffman@29911
   422
  apply (auto simp add: expand_fps_eq fps_inverse_def)
huffman@29911
   423
  by (case_tac n, auto)
chaieb@29687
   424
huffman@29911
   425
instance fps :: ("{comm_monoid_add,inverse, times, uminus}")  division_by_zero
huffman@29911
   426
  by default (rule fps_inverse_zero)
chaieb@29687
   427
chaieb@29687
   428
lemma inverse_mult_eq_1[intro]: assumes f0: "f$0 \<noteq> (0::'a::field)"
chaieb@29687
   429
  shows "inverse f * f = 1"
chaieb@29687
   430
proof-
chaieb@29687
   431
  have c: "inverse f * f = f * inverse f" by (simp add: mult_commute)
huffman@30488
   432
  from f0 have ifn: "\<And>n. inverse f $ n = natfun_inverse f n"
chaieb@29687
   433
    by (simp add: fps_inverse_def)
chaieb@29687
   434
  from f0 have th0: "(inverse f * f) $ 0 = 1"
huffman@29911
   435
    by (simp add: fps_mult_nth fps_inverse_def)
chaieb@29687
   436
  {fix n::nat assume np: "n >0 "
chaieb@29687
   437
    from np have eq: "{0..n} = {0} \<union> {1 .. n}" by auto
chaieb@29687
   438
    have d: "{0} \<inter> {1 .. n} = {}" by auto
chaieb@29687
   439
    have f: "finite {0::nat}" "finite {1..n}" by auto
huffman@30488
   440
    from f0 np have th0: "- (inverse f$n) =
chaieb@29687
   441
      (setsum (\<lambda>i. f$i * natfun_inverse f (n - i)) {1..n}) / (f$0)"
huffman@29911
   442
      by (cases n, simp, simp add: divide_inverse fps_inverse_def)
chaieb@29687
   443
    from th0[symmetric, unfolded nonzero_divide_eq_eq[OF f0]]
huffman@30488
   444
    have th1: "setsum (\<lambda>i. f$i * natfun_inverse f (n - i)) {1..n} =
huffman@30488
   445
      - (f$0) * (inverse f)$n"
chaieb@29687
   446
      by (simp add: ring_simps)
huffman@30488
   447
    have "(f * inverse f) $ n = (\<Sum>i = 0..n. f $i * natfun_inverse f (n - i))"
chaieb@29687
   448
      unfolding fps_mult_nth ifn ..
huffman@30488
   449
    also have "\<dots> = f$0 * natfun_inverse f n
chaieb@29687
   450
      + (\<Sum>i = 1..n. f$i * natfun_inverse f (n-i))"
chaieb@29687
   451
      unfolding setsum_Un_disjoint[OF f d, unfolded eq[symmetric]]
chaieb@29687
   452
      by simp
chaieb@29687
   453
    also have "\<dots> = 0" unfolding th1 ifn by simp
chaieb@29687
   454
    finally have "(inverse f * f)$n = 0" unfolding c . }
chaieb@29687
   455
  with th0 show ?thesis by (simp add: fps_eq_iff)
chaieb@29687
   456
qed
chaieb@29687
   457
chaieb@29687
   458
lemma fps_inverse_0_iff[simp]: "(inverse f)$0 = (0::'a::division_ring) \<longleftrightarrow> f$0 = 0"
huffman@29911
   459
  by (simp add: fps_inverse_def nonzero_imp_inverse_nonzero)
chaieb@29687
   460
chaieb@29687
   461
lemma fps_inverse_eq_0_iff[simp]: "inverse f = (0:: ('a::field) fps) \<longleftrightarrow> f $0 = 0"
chaieb@29687
   462
proof-
chaieb@29687
   463
  {assume "f$0 = 0" hence "inverse f = 0" by (simp add: fps_inverse_def)}
chaieb@29687
   464
  moreover
chaieb@29687
   465
  {assume h: "inverse f = 0" and c: "f $0 \<noteq> 0"
chaieb@29687
   466
    from inverse_mult_eq_1[OF c] h have False by simp}
chaieb@29687
   467
  ultimately show ?thesis by blast
chaieb@29687
   468
qed
chaieb@29687
   469
chaieb@29687
   470
lemma fps_inverse_idempotent[intro]: assumes f0: "f$0 \<noteq> (0::'a::field)"
chaieb@29687
   471
  shows "inverse (inverse f) = f"
chaieb@29687
   472
proof-
chaieb@29687
   473
  from f0 have if0: "inverse f $ 0 \<noteq> 0" by simp
huffman@30488
   474
  from inverse_mult_eq_1[OF f0] inverse_mult_eq_1[OF if0]
chaieb@29687
   475
  have th0: "inverse f * f = inverse f * inverse (inverse f)"   by (simp add: mult_ac)
chaieb@29687
   476
  then show ?thesis using f0 unfolding mult_cancel_left by simp
chaieb@29687
   477
qed
chaieb@29687
   478
huffman@30488
   479
lemma fps_inverse_unique: assumes f0: "f$0 \<noteq> (0::'a::field)" and fg: "f*g = 1"
chaieb@29687
   480
  shows "inverse f = g"
chaieb@29687
   481
proof-
chaieb@29687
   482
  from inverse_mult_eq_1[OF f0] fg
chaieb@29687
   483
  have th0: "inverse f * f = g * f" by (simp add: mult_ac)
chaieb@29687
   484
  then show ?thesis using f0  unfolding mult_cancel_right
huffman@29911
   485
    by (auto simp add: expand_fps_eq)
chaieb@29687
   486
qed
chaieb@29687
   487
huffman@30488
   488
lemma fps_inverse_gp: "inverse (Abs_fps(\<lambda>n. (1::'a::field)))
chaieb@29687
   489
  = Abs_fps (\<lambda>n. if n= 0 then 1 else if n=1 then - 1 else 0)"
chaieb@29687
   490
  apply (rule fps_inverse_unique)
chaieb@29687
   491
  apply simp
huffman@29911
   492
  apply (simp add: fps_eq_iff fps_mult_nth)
chaieb@29687
   493
proof(clarsimp)
chaieb@29687
   494
  fix n::nat assume n: "n > 0"
chaieb@29687
   495
  let ?f = "\<lambda>i. if n = i then (1\<Colon>'a) else if n - i = 1 then - 1 else 0"
chaieb@29687
   496
  let ?g = "\<lambda>i. if i = n then 1 else if i=n - 1 then - 1 else 0"
chaieb@29687
   497
  let ?h = "\<lambda>i. if i=n - 1 then - 1 else 0"
huffman@30488
   498
  have th1: "setsum ?f {0..n} = setsum ?g {0..n}"
chaieb@29687
   499
    by (rule setsum_cong2) auto
huffman@30488
   500
  have th2: "setsum ?g {0..n - 1} = setsum ?h {0..n - 1}"
chaieb@29687
   501
    using n apply - by (rule setsum_cong2) auto
chaieb@29687
   502
  have eq: "{0 .. n} = {0.. n - 1} \<union> {n}" by auto
huffman@30488
   503
  from n have d: "{0.. n - 1} \<inter> {n} = {}" by auto
chaieb@29687
   504
  have f: "finite {0.. n - 1}" "finite {n}" by auto
chaieb@29687
   505
  show "setsum ?f {0..n} = 0"
huffman@30488
   506
    unfolding th1
chaieb@29687
   507
    apply (simp add: setsum_Un_disjoint[OF f d, unfolded eq[symmetric]] del: One_nat_def)
chaieb@29687
   508
    unfolding th2
chaieb@29687
   509
    by(simp add: setsum_delta)
chaieb@29687
   510
qed
chaieb@29687
   511
huffman@29912
   512
subsection{* Formal Derivatives, and the MacLaurin theorem around 0*}
chaieb@29687
   513
chaieb@29687
   514
definition "fps_deriv f = Abs_fps (\<lambda>n. of_nat (n + 1) * f $ (n + 1))"
chaieb@29687
   515
chaieb@29687
   516
lemma fps_deriv_nth[simp]: "fps_deriv f $ n = of_nat (n +1) * f $ (n+1)" by (simp add: fps_deriv_def)
chaieb@29687
   517
chaieb@29687
   518
lemma fps_deriv_linear[simp]: "fps_deriv (fps_const (a::'a::comm_semiring_1) * f + fps_const b * g) = fps_const a * fps_deriv f + fps_const b * fps_deriv g"
chaieb@29687
   519
  unfolding fps_eq_iff fps_add_nth  fps_const_mult_left fps_deriv_nth by (simp add: ring_simps)
chaieb@29687
   520
huffman@30488
   521
lemma fps_deriv_mult[simp]:
chaieb@29687
   522
  fixes f :: "('a :: comm_ring_1) fps"
chaieb@29687
   523
  shows "fps_deriv (f * g) = f * fps_deriv g + fps_deriv f * g"
chaieb@29687
   524
proof-
chaieb@29687
   525
  let ?D = "fps_deriv"
chaieb@29687
   526
  {fix n::nat
chaieb@29687
   527
    let ?Zn = "{0 ..n}"
chaieb@29687
   528
    let ?Zn1 = "{0 .. n + 1}"
chaieb@29687
   529
    let ?f = "\<lambda>i. i + 1"
chaieb@29687
   530
    have fi: "inj_on ?f {0..n}" by (simp add: inj_on_def)
chaieb@29687
   531
    have eq: "{1.. n+1} = ?f ` {0..n}" by auto
chaieb@29687
   532
    let ?g = "\<lambda>i. of_nat (i+1) * g $ (i+1) * f $ (n - i) +
chaieb@29687
   533
        of_nat (i+1)* f $ (i+1) * g $ (n - i)"
chaieb@29687
   534
    let ?h = "\<lambda>i. of_nat i * g $ i * f $ ((n+1) - i) +
chaieb@29687
   535
        of_nat i* f $ i * g $ ((n + 1) - i)"
chaieb@29687
   536
    {fix k assume k: "k \<in> {0..n}"
chaieb@29687
   537
      have "?h (k + 1) = ?g k" using k by auto}
chaieb@29687
   538
    note th0 = this
chaieb@29687
   539
    have eq': "{0..n +1}- {1 .. n+1} = {0}" by auto
chaieb@29687
   540
    have s0: "setsum (\<lambda>i. of_nat i * f $ i * g $ (n + 1 - i)) ?Zn1 = setsum (\<lambda>i. of_nat (n + 1 - i) * f $ (n + 1 - i) * g $ i) ?Zn1"
chaieb@29687
   541
      apply (rule setsum_reindex_cong[where f="\<lambda>i. n + 1 - i"])
chaieb@29687
   542
      apply (simp add: inj_on_def Ball_def)
chaieb@29687
   543
      apply presburger
chaieb@29687
   544
      apply (rule set_ext)
chaieb@29687
   545
      apply (presburger add: image_iff)
chaieb@29687
   546
      by simp
chaieb@29687
   547
    have s1: "setsum (\<lambda>i. f $ i * g $ (n + 1 - i)) ?Zn1 = setsum (\<lambda>i. f $ (n + 1 - i) * g $ i) ?Zn1"
chaieb@29687
   548
      apply (rule setsum_reindex_cong[where f="\<lambda>i. n + 1 - i"])
chaieb@29687
   549
      apply (simp add: inj_on_def Ball_def)
chaieb@29687
   550
      apply presburger
chaieb@29687
   551
      apply (rule set_ext)
chaieb@29687
   552
      apply (presburger add: image_iff)
chaieb@29687
   553
      by simp
chaieb@29687
   554
    have "(f * ?D g + ?D f * g)$n = (?D g * f + ?D f * g)$n" by (simp only: mult_commute)
chaieb@29687
   555
    also have "\<dots> = (\<Sum>i = 0..n. ?g i)"
chaieb@29687
   556
      by (simp add: fps_mult_nth setsum_addf[symmetric])
chaieb@29687
   557
    also have "\<dots> = setsum ?h {1..n+1}"
chaieb@29687
   558
      using th0 setsum_reindex_cong[OF fi eq, of "?g" "?h"] by auto
chaieb@29687
   559
    also have "\<dots> = setsum ?h {0..n+1}"
chaieb@29687
   560
      apply (rule setsum_mono_zero_left)
chaieb@29687
   561
      apply simp
chaieb@29687
   562
      apply (simp add: subset_eq)
chaieb@29687
   563
      unfolding eq'
chaieb@29687
   564
      by simp
chaieb@29687
   565
    also have "\<dots> = (fps_deriv (f * g)) $ n"
chaieb@29687
   566
      apply (simp only: fps_deriv_nth fps_mult_nth setsum_addf)
chaieb@29687
   567
      unfolding s0 s1
chaieb@29687
   568
      unfolding setsum_addf[symmetric] setsum_right_distrib
chaieb@29687
   569
      apply (rule setsum_cong2)
chaieb@29687
   570
      by (auto simp add: of_nat_diff ring_simps)
chaieb@29687
   571
    finally have "(f * ?D g + ?D f * g) $ n = ?D (f*g) $ n" .}
huffman@30488
   572
  then show ?thesis unfolding fps_eq_iff by auto
chaieb@29687
   573
qed
chaieb@29687
   574
chaieb@29687
   575
lemma fps_deriv_neg[simp]: "fps_deriv (- (f:: ('a:: comm_ring_1) fps)) = - (fps_deriv f)"
huffman@29911
   576
  by (simp add: fps_eq_iff fps_deriv_def)
chaieb@29687
   577
lemma fps_deriv_add[simp]: "fps_deriv ((f:: ('a::comm_ring_1) fps) + g) = fps_deriv f + fps_deriv g"
chaieb@29687
   578
  using fps_deriv_linear[of 1 f 1 g] by simp
chaieb@29687
   579
chaieb@29687
   580
lemma fps_deriv_sub[simp]: "fps_deriv ((f:: ('a::comm_ring_1) fps) - g) = fps_deriv f - fps_deriv g"
huffman@30488
   581
  unfolding diff_minus by simp
chaieb@29687
   582
chaieb@29687
   583
lemma fps_deriv_const[simp]: "fps_deriv (fps_const c) = 0"
huffman@29911
   584
  by (simp add: fps_ext fps_deriv_def fps_const_def)
chaieb@29687
   585
chaieb@29687
   586
lemma fps_deriv_mult_const_left[simp]: "fps_deriv (fps_const (c::'a::comm_ring_1) * f) = fps_const c * fps_deriv f"
chaieb@29687
   587
  by simp
chaieb@29687
   588
chaieb@29687
   589
lemma fps_deriv_0[simp]: "fps_deriv 0 = 0"
chaieb@29687
   590
  by (simp add: fps_deriv_def fps_eq_iff)
chaieb@29687
   591
chaieb@29687
   592
lemma fps_deriv_1[simp]: "fps_deriv 1 = 0"
chaieb@29687
   593
  by (simp add: fps_deriv_def fps_eq_iff )
chaieb@29687
   594
chaieb@29687
   595
lemma fps_deriv_mult_const_right[simp]: "fps_deriv (f * fps_const (c::'a::comm_ring_1)) = fps_deriv f * fps_const c"
chaieb@29687
   596
  by simp
chaieb@29687
   597
chaieb@29687
   598
lemma fps_deriv_setsum: "fps_deriv (setsum f S) = setsum (\<lambda>i. fps_deriv (f i :: ('a::comm_ring_1) fps)) S"
chaieb@29687
   599
proof-
chaieb@29687
   600
  {assume "\<not> finite S" hence ?thesis by simp}
chaieb@29687
   601
  moreover
chaieb@29687
   602
  {assume fS: "finite S"
chaieb@29687
   603
    have ?thesis  by (induct rule: finite_induct[OF fS], simp_all)}
chaieb@29687
   604
  ultimately show ?thesis by blast
chaieb@29687
   605
qed
chaieb@29687
   606
chaieb@29687
   607
lemma fps_deriv_eq_0_iff[simp]: "fps_deriv f = 0 \<longleftrightarrow> (f = fps_const (f$0 :: 'a::{idom,semiring_char_0}))"
chaieb@29687
   608
proof-
chaieb@29687
   609
  {assume "f= fps_const (f$0)" hence "fps_deriv f = fps_deriv (fps_const (f$0))" by simp
chaieb@29687
   610
    hence "fps_deriv f = 0" by simp }
chaieb@29687
   611
  moreover
chaieb@29687
   612
  {assume z: "fps_deriv f = 0"
chaieb@29687
   613
    hence "\<forall>n. (fps_deriv f)$n = 0" by simp
chaieb@29687
   614
    hence "\<forall>n. f$(n+1) = 0" by (simp del: of_nat_Suc of_nat_add One_nat_def)
chaieb@29687
   615
    hence "f = fps_const (f$0)"
chaieb@29687
   616
      apply (clarsimp simp add: fps_eq_iff fps_const_def)
chaieb@29687
   617
      apply (erule_tac x="n - 1" in allE)
chaieb@29687
   618
      by simp}
chaieb@29687
   619
  ultimately show ?thesis by blast
chaieb@29687
   620
qed
chaieb@29687
   621
huffman@30488
   622
lemma fps_deriv_eq_iff:
chaieb@29687
   623
  fixes f:: "('a::{idom,semiring_char_0}) fps"
chaieb@29687
   624
  shows "fps_deriv f = fps_deriv g \<longleftrightarrow> (f = fps_const(f$0 - g$0) + g)"
chaieb@29687
   625
proof-
chaieb@29687
   626
  have "fps_deriv f = fps_deriv g \<longleftrightarrow> fps_deriv (f - g) = 0" by simp
chaieb@29687
   627
  also have "\<dots> \<longleftrightarrow> f - g = fps_const ((f-g)$0)" unfolding fps_deriv_eq_0_iff ..
chaieb@29687
   628
  finally show ?thesis by (simp add: ring_simps)
chaieb@29687
   629
qed
chaieb@29687
   630
chaieb@29687
   631
lemma fps_deriv_eq_iff_ex: "(fps_deriv f = fps_deriv g) \<longleftrightarrow> (\<exists>(c::'a::{idom,semiring_char_0}). f = fps_const c + g)"
chaieb@29687
   632
  apply auto unfolding fps_deriv_eq_iff by blast
huffman@30488
   633
chaieb@29687
   634
chaieb@29687
   635
fun fps_nth_deriv :: "nat \<Rightarrow> ('a::semiring_1) fps \<Rightarrow> 'a fps" where
chaieb@29687
   636
  "fps_nth_deriv 0 f = f"
chaieb@29687
   637
| "fps_nth_deriv (Suc n) f = fps_nth_deriv n (fps_deriv f)"
chaieb@29687
   638
chaieb@29687
   639
lemma fps_nth_deriv_commute: "fps_nth_deriv (Suc n) f = fps_deriv (fps_nth_deriv n f)"
chaieb@29687
   640
  by (induct n arbitrary: f, auto)
chaieb@29687
   641
chaieb@29687
   642
lemma fps_nth_deriv_linear[simp]: "fps_nth_deriv n (fps_const (a::'a::comm_semiring_1) * f + fps_const b * g) = fps_const a * fps_nth_deriv n f + fps_const b * fps_nth_deriv n g"
chaieb@29687
   643
  by (induct n arbitrary: f g, auto simp add: fps_nth_deriv_commute)
chaieb@29687
   644
chaieb@29687
   645
lemma fps_nth_deriv_neg[simp]: "fps_nth_deriv n (- (f:: ('a:: comm_ring_1) fps)) = - (fps_nth_deriv n f)"
chaieb@29687
   646
  by (induct n arbitrary: f, simp_all)
chaieb@29687
   647
chaieb@29687
   648
lemma fps_nth_deriv_add[simp]: "fps_nth_deriv n ((f:: ('a::comm_ring_1) fps) + g) = fps_nth_deriv n f + fps_nth_deriv n g"
chaieb@29687
   649
  using fps_nth_deriv_linear[of n 1 f 1 g] by simp
chaieb@29687
   650
chaieb@29687
   651
lemma fps_nth_deriv_sub[simp]: "fps_nth_deriv n ((f:: ('a::comm_ring_1) fps) - g) = fps_nth_deriv n f - fps_nth_deriv n g"
huffman@30488
   652
  unfolding diff_minus fps_nth_deriv_add by simp
chaieb@29687
   653
chaieb@29687
   654
lemma fps_nth_deriv_0[simp]: "fps_nth_deriv n 0 = 0"
chaieb@29687
   655
  by (induct n, simp_all )
chaieb@29687
   656
chaieb@29687
   657
lemma fps_nth_deriv_1[simp]: "fps_nth_deriv n 1 = (if n = 0 then 1 else 0)"
chaieb@29687
   658
  by (induct n, simp_all )
chaieb@29687
   659
chaieb@29687
   660
lemma fps_nth_deriv_const[simp]: "fps_nth_deriv n (fps_const c) = (if n = 0 then fps_const c else 0)"
chaieb@29687
   661
  by (cases n, simp_all)
chaieb@29687
   662
chaieb@29687
   663
lemma fps_nth_deriv_mult_const_left[simp]: "fps_nth_deriv n (fps_const (c::'a::comm_ring_1) * f) = fps_const c * fps_nth_deriv n f"
chaieb@29687
   664
  using fps_nth_deriv_linear[of n "c" f 0 0 ] by simp
chaieb@29687
   665
chaieb@29687
   666
lemma fps_nth_deriv_mult_const_right[simp]: "fps_nth_deriv n (f * fps_const (c::'a::comm_ring_1)) = fps_nth_deriv n f * fps_const c"
chaieb@29687
   667
  using fps_nth_deriv_linear[of n "c" f 0 0] by (simp add: mult_commute)
chaieb@29687
   668
chaieb@29687
   669
lemma fps_nth_deriv_setsum: "fps_nth_deriv n (setsum f S) = setsum (\<lambda>i. fps_nth_deriv n (f i :: ('a::comm_ring_1) fps)) S"
chaieb@29687
   670
proof-
chaieb@29687
   671
  {assume "\<not> finite S" hence ?thesis by simp}
chaieb@29687
   672
  moreover
chaieb@29687
   673
  {assume fS: "finite S"
chaieb@29687
   674
    have ?thesis  by (induct rule: finite_induct[OF fS], simp_all)}
chaieb@29687
   675
  ultimately show ?thesis by blast
chaieb@29687
   676
qed
chaieb@29687
   677
chaieb@29687
   678
lemma fps_deriv_maclauren_0: "(fps_nth_deriv k (f:: ('a::comm_semiring_1) fps)) $ 0 = of_nat (fact k) * f$(k)"
chaieb@29687
   679
  by (induct k arbitrary: f) (auto simp add: ring_simps of_nat_mult)
chaieb@29687
   680
huffman@29906
   681
subsection {* Powers*}
chaieb@29687
   682
chaieb@29687
   683
lemma fps_power_zeroth_eq_one: "a$0 =1 \<Longrightarrow> a^n $ 0 = (1::'a::semiring_1)"
haftmann@30960
   684
  by (induct n, auto simp add: expand_fps_eq fps_mult_nth)
chaieb@29687
   685
chaieb@29687
   686
lemma fps_power_first_eq: "(a:: 'a::comm_ring_1 fps)$0 =1 \<Longrightarrow> a^n $ 1 = of_nat n * a$1"
chaieb@29687
   687
proof(induct n)
haftmann@30960
   688
  case 0 thus ?case by simp
chaieb@29687
   689
next
chaieb@29687
   690
  case (Suc n)
chaieb@29687
   691
  note h = Suc.hyps[OF `a$0 = 1`]
huffman@30488
   692
  show ?case unfolding power_Suc fps_mult_nth
chaieb@29687
   693
    using h `a$0 = 1`  fps_power_zeroth_eq_one[OF `a$0=1`] by (simp add: ring_simps)
chaieb@29687
   694
qed
chaieb@29687
   695
chaieb@29687
   696
lemma startsby_one_power:"a $ 0 = (1::'a::comm_ring_1) \<Longrightarrow> a^n $ 0 = 1"
haftmann@30960
   697
  by (induct n, auto simp add: fps_mult_nth)
chaieb@29687
   698
chaieb@29687
   699
lemma startsby_zero_power:"a $0 = (0::'a::comm_ring_1) \<Longrightarrow> n > 0 \<Longrightarrow> a^n $0 = 0"
haftmann@30960
   700
  by (induct n, auto simp add: fps_mult_nth)
chaieb@29687
   701
haftmann@31021
   702
lemma startsby_power:"a $0 = (v::'a::{comm_ring_1}) \<Longrightarrow> a^n $0 = v^n"
haftmann@30960
   703
  by (induct n, auto simp add: fps_mult_nth power_Suc)
chaieb@29687
   704
chaieb@29687
   705
lemma startsby_zero_power_iff[simp]:
haftmann@31021
   706
  "a^n $0 = (0::'a::{idom}) \<longleftrightarrow> (n \<noteq> 0 \<and> a$0 = 0)"
chaieb@29687
   707
apply (rule iffI)
chaieb@29687
   708
apply (induct n, auto simp add: power_Suc fps_mult_nth)
chaieb@29687
   709
by (rule startsby_zero_power, simp_all)
chaieb@29687
   710
huffman@30488
   711
lemma startsby_zero_power_prefix:
chaieb@29687
   712
  assumes a0: "a $0 = (0::'a::idom)"
chaieb@29687
   713
  shows "\<forall>n < k. a ^ k $ n = 0"
huffman@30488
   714
  using a0
chaieb@29687
   715
proof(induct k rule: nat_less_induct)
chaieb@29687
   716
  fix k assume H: "\<forall>m<k. a $0 =  0 \<longrightarrow> (\<forall>n<m. a ^ m $ n = 0)" and a0: "a $0 = (0\<Colon>'a)"
chaieb@29687
   717
  let ?ths = "\<forall>m<k. a ^ k $ m = 0"
chaieb@29687
   718
  {assume "k = 0" then have ?ths by simp}
chaieb@29687
   719
  moreover
chaieb@29687
   720
  {fix l assume k: "k = Suc l"
chaieb@29687
   721
    {fix m assume mk: "m < k"
huffman@30488
   722
      {assume "m=0" hence "a^k $ m = 0" using startsby_zero_power[of a k] k a0
chaieb@29687
   723
	  by simp}
chaieb@29687
   724
      moreover
chaieb@29687
   725
      {assume m0: "m \<noteq> 0"
chaieb@29687
   726
	have "a ^k $ m = (a^l * a) $m" by (simp add: k power_Suc mult_commute)
chaieb@29687
   727
	also have "\<dots> = (\<Sum>i = 0..m. a ^ l $ i * a $ (m - i))" by (simp add: fps_mult_nth)
chaieb@29687
   728
	also have "\<dots> = 0" apply (rule setsum_0')
chaieb@29687
   729
	  apply auto
chaieb@29687
   730
	  apply (case_tac "aa = m")
chaieb@29687
   731
	  using a0
chaieb@29687
   732
	  apply simp
chaieb@29687
   733
	  apply (rule H[rule_format])
huffman@30488
   734
	  using a0 k mk by auto
chaieb@29687
   735
	finally have "a^k $ m = 0" .}
chaieb@29687
   736
    ultimately have "a^k $ m = 0" by blast}
chaieb@29687
   737
    hence ?ths by blast}
chaieb@29687
   738
  ultimately show ?ths by (cases k, auto)
chaieb@29687
   739
qed
chaieb@29687
   740
huffman@30488
   741
lemma startsby_zero_setsum_depends:
chaieb@29687
   742
  assumes a0: "a $0 = (0::'a::idom)" and kn: "n \<ge> k"
chaieb@29687
   743
  shows "setsum (\<lambda>i. (a ^ i)$k) {0 .. n} = setsum (\<lambda>i. (a ^ i)$k) {0 .. k}"
chaieb@29687
   744
  apply (rule setsum_mono_zero_right)
chaieb@29687
   745
  using kn apply auto
chaieb@29687
   746
  apply (rule startsby_zero_power_prefix[rule_format, OF a0])
chaieb@29687
   747
  by arith
chaieb@29687
   748
haftmann@31021
   749
lemma startsby_zero_power_nth_same: assumes a0: "a$0 = (0::'a::{idom})"
chaieb@29687
   750
  shows "a^n $ n = (a$1) ^ n"
chaieb@29687
   751
proof(induct n)
chaieb@29687
   752
  case 0 thus ?case by (simp add: power_0)
chaieb@29687
   753
next
chaieb@29687
   754
  case (Suc n)
chaieb@29687
   755
  have "a ^ Suc n $ (Suc n) = (a^n * a)$(Suc n)" by (simp add: ring_simps power_Suc)
chaieb@29687
   756
  also have "\<dots> = setsum (\<lambda>i. a^n$i * a $ (Suc n - i)) {0.. Suc n}" by (simp add: fps_mult_nth)
chaieb@29687
   757
  also have "\<dots> = setsum (\<lambda>i. a^n$i * a $ (Suc n - i)) {n .. Suc n}"
chaieb@29687
   758
    apply (rule setsum_mono_zero_right)
chaieb@29687
   759
    apply simp
chaieb@29687
   760
    apply clarsimp
chaieb@29687
   761
    apply clarsimp
chaieb@29687
   762
    apply (rule startsby_zero_power_prefix[rule_format, OF a0])
chaieb@29687
   763
    apply arith
chaieb@29687
   764
    done
chaieb@29687
   765
  also have "\<dots> = a^n $ n * a$1" using a0 by simp
chaieb@29687
   766
  finally show ?case using Suc.hyps by (simp add: power_Suc)
chaieb@29687
   767
qed
chaieb@29687
   768
chaieb@29687
   769
lemma fps_inverse_power:
haftmann@31021
   770
  fixes a :: "('a::{field}) fps"
chaieb@29687
   771
  shows "inverse (a^n) = inverse a ^ n"
chaieb@29687
   772
proof-
chaieb@29687
   773
  {assume a0: "a$0 = 0"
chaieb@29687
   774
    hence eq: "inverse a = 0" by (simp add: fps_inverse_def)
chaieb@29687
   775
    {assume "n = 0" hence ?thesis by simp}
chaieb@29687
   776
    moreover
chaieb@29687
   777
    {assume n: "n > 0"
huffman@30488
   778
      from startsby_zero_power[OF a0 n] eq a0 n have ?thesis
chaieb@29687
   779
	by (simp add: fps_inverse_def)}
chaieb@29687
   780
    ultimately have ?thesis by blast}
chaieb@29687
   781
  moreover
chaieb@29687
   782
  {assume a0: "a$0 \<noteq> 0"
chaieb@29687
   783
    have ?thesis
chaieb@29687
   784
      apply (rule fps_inverse_unique)
chaieb@29687
   785
      apply (simp add: a0)
chaieb@29687
   786
      unfolding power_mult_distrib[symmetric]
chaieb@29687
   787
      apply (rule ssubst[where t = "a * inverse a" and s= 1])
chaieb@29687
   788
      apply simp_all
chaieb@29687
   789
      apply (subst mult_commute)
chaieb@29687
   790
      by (rule inverse_mult_eq_1[OF a0])}
chaieb@29687
   791
  ultimately show ?thesis by blast
chaieb@29687
   792
qed
chaieb@29687
   793
chaieb@29687
   794
lemma fps_deriv_power: "fps_deriv (a ^ n) = fps_const (of_nat n :: 'a:: comm_ring_1) * fps_deriv a * a ^ (n - 1)"
chaieb@29687
   795
  apply (induct n, auto simp add: power_Suc ring_simps fps_const_add[symmetric] simp del: fps_const_add)
chaieb@29687
   796
  by (case_tac n, auto simp add: power_Suc ring_simps)
chaieb@29687
   797
huffman@30488
   798
lemma fps_inverse_deriv:
chaieb@29687
   799
  fixes a:: "('a :: field) fps"
chaieb@29687
   800
  assumes a0: "a$0 \<noteq> 0"
chaieb@29687
   801
  shows "fps_deriv (inverse a) = - fps_deriv a * inverse a ^ 2"
chaieb@29687
   802
proof-
chaieb@29687
   803
  from inverse_mult_eq_1[OF a0]
chaieb@29687
   804
  have "fps_deriv (inverse a * a) = 0" by simp
chaieb@29687
   805
  hence "inverse a * fps_deriv a + fps_deriv (inverse a) * a = 0" by simp
chaieb@29687
   806
  hence "inverse a * (inverse a * fps_deriv a + fps_deriv (inverse a) * a) = 0"  by simp
chaieb@29687
   807
  with inverse_mult_eq_1[OF a0]
chaieb@29687
   808
  have "inverse a ^ 2 * fps_deriv a + fps_deriv (inverse a) = 0"
chaieb@29687
   809
    unfolding power2_eq_square
chaieb@29687
   810
    apply (simp add: ring_simps)
chaieb@29687
   811
    by (simp add: mult_assoc[symmetric])
chaieb@29687
   812
  hence "inverse a ^ 2 * fps_deriv a + fps_deriv (inverse a) - fps_deriv a * inverse a ^ 2 = 0 - fps_deriv a * inverse a ^ 2"
chaieb@29687
   813
    by simp
chaieb@29687
   814
  then show "fps_deriv (inverse a) = - fps_deriv a * inverse a ^ 2" by (simp add: ring_simps)
chaieb@29687
   815
qed
chaieb@29687
   816
huffman@30488
   817
lemma fps_inverse_mult:
chaieb@29687
   818
  fixes a::"('a :: field) fps"
chaieb@29687
   819
  shows "inverse (a * b) = inverse a * inverse b"
chaieb@29687
   820
proof-
chaieb@29687
   821
  {assume a0: "a$0 = 0" hence ab0: "(a*b)$0 = 0" by (simp add: fps_mult_nth)
chaieb@29687
   822
    from a0 ab0 have th: "inverse a = 0" "inverse (a*b) = 0" by simp_all
chaieb@29687
   823
    have ?thesis unfolding th by simp}
chaieb@29687
   824
  moreover
chaieb@29687
   825
  {assume b0: "b$0 = 0" hence ab0: "(a*b)$0 = 0" by (simp add: fps_mult_nth)
chaieb@29687
   826
    from b0 ab0 have th: "inverse b = 0" "inverse (a*b) = 0" by simp_all
chaieb@29687
   827
    have ?thesis unfolding th by simp}
chaieb@29687
   828
  moreover
chaieb@29687
   829
  {assume a0: "a$0 \<noteq> 0" and b0: "b$0 \<noteq> 0"
chaieb@29687
   830
    from a0 b0 have ab0:"(a*b) $ 0 \<noteq> 0" by (simp  add: fps_mult_nth)
huffman@30488
   831
    from inverse_mult_eq_1[OF ab0]
chaieb@29687
   832
    have "inverse (a*b) * (a*b) * inverse a * inverse b = 1 * inverse a * inverse b" by simp
chaieb@29687
   833
    then have "inverse (a*b) * (inverse a * a) * (inverse b * b) = inverse a * inverse b"
chaieb@29687
   834
      by (simp add: ring_simps)
chaieb@29687
   835
    then have ?thesis using inverse_mult_eq_1[OF a0] inverse_mult_eq_1[OF b0] by simp}
chaieb@29687
   836
ultimately show ?thesis by blast
chaieb@29687
   837
qed
chaieb@29687
   838
huffman@30488
   839
lemma fps_inverse_deriv':
chaieb@29687
   840
  fixes a:: "('a :: field) fps"
chaieb@29687
   841
  assumes a0: "a$0 \<noteq> 0"
chaieb@29687
   842
  shows "fps_deriv (inverse a) = - fps_deriv a / a ^ 2"
chaieb@29687
   843
  using fps_inverse_deriv[OF a0]
chaieb@29687
   844
  unfolding power2_eq_square fps_divide_def
chaieb@29687
   845
    fps_inverse_mult by simp
chaieb@29687
   846
chaieb@29687
   847
lemma inverse_mult_eq_1': assumes f0: "f$0 \<noteq> (0::'a::field)"
chaieb@29687
   848
  shows "f * inverse f= 1"
chaieb@29687
   849
  by (metis mult_commute inverse_mult_eq_1 f0)
chaieb@29687
   850
chaieb@29687
   851
lemma fps_divide_deriv:   fixes a:: "('a :: field) fps"
chaieb@29687
   852
  assumes a0: "b$0 \<noteq> 0"
chaieb@29687
   853
  shows "fps_deriv (a / b) = (fps_deriv a * b - a * fps_deriv b) / b ^ 2"
chaieb@29687
   854
  using fps_inverse_deriv[OF a0]
chaieb@29687
   855
  by (simp add: fps_divide_def ring_simps power2_eq_square fps_inverse_mult inverse_mult_eq_1'[OF a0])
huffman@30488
   856
huffman@29906
   857
subsection{* The eXtractor series X*}
chaieb@29687
   858
haftmann@31021
   859
lemma minus_one_power_iff: "(- (1::'a :: {comm_ring_1})) ^ n = (if even n then 1 else - 1)"
chaieb@29687
   860
  by (induct n, auto)
chaieb@29687
   861
chaieb@29687
   862
definition "X = Abs_fps (\<lambda>n. if n = 1 then 1 else 0)"
chaieb@29687
   863
huffman@30488
   864
lemma fps_inverse_gp': "inverse (Abs_fps(\<lambda>n. (1::'a::field)))
chaieb@29687
   865
  = 1 - X"
huffman@29911
   866
  by (simp add: fps_inverse_gp fps_eq_iff X_def)
chaieb@29687
   867
chaieb@29687
   868
lemma X_mult_nth[simp]: "(X * (f :: ('a::semiring_1) fps)) $n = (if n = 0 then 0 else f $ (n - 1))"
chaieb@29687
   869
proof-
chaieb@29687
   870
  {assume n: "n \<noteq> 0"
chaieb@29687
   871
    have fN: "finite {0 .. n}" by simp
chaieb@29687
   872
    have "(X * f) $n = (\<Sum>i = 0..n. X $ i * f $ (n - i))" by (simp add: fps_mult_nth)
huffman@29913
   873
    also have "\<dots> = f $ (n - 1)"
huffman@29913
   874
      using n by (simp add: X_def mult_delta_left setsum_delta [OF fN])
chaieb@29687
   875
  finally have ?thesis using n by simp }
chaieb@29687
   876
  moreover
chaieb@29687
   877
  {assume n: "n=0" hence ?thesis by (simp add: fps_mult_nth X_def)}
chaieb@29687
   878
  ultimately show ?thesis by blast
chaieb@29687
   879
qed
chaieb@29687
   880
chaieb@29687
   881
lemma X_mult_right_nth[simp]: "((f :: ('a::comm_semiring_1) fps) * X) $n = (if n = 0 then 0 else f $ (n - 1))"
chaieb@29687
   882
  by (metis X_mult_nth mult_commute)
chaieb@29687
   883
chaieb@29687
   884
lemma X_power_iff: "X^k = Abs_fps (\<lambda>n. if n = k then (1::'a::comm_ring_1) else 0)"
chaieb@29687
   885
proof(induct k)
haftmann@30960
   886
  case 0 thus ?case by (simp add: X_def fps_eq_iff)
chaieb@29687
   887
next
chaieb@29687
   888
  case (Suc k)
huffman@30488
   889
  {fix m
chaieb@29687
   890
    have "(X^Suc k) $ m = (if m = 0 then (0::'a) else (X^k) $ (m - 1))"
chaieb@29687
   891
      by (simp add: power_Suc del: One_nat_def)
chaieb@29687
   892
    then     have "(X^Suc k) $ m = (if m = Suc k then (1::'a) else 0)"
chaieb@29687
   893
      using Suc.hyps by (auto cong del: if_weak_cong)}
chaieb@29687
   894
  then show ?case by (simp add: fps_eq_iff)
chaieb@29687
   895
qed
chaieb@29687
   896
chaieb@29687
   897
lemma X_power_mult_nth: "(X^k * (f :: ('a::comm_ring_1) fps)) $n = (if n < k then 0 else f $ (n - k))"
chaieb@29687
   898
  apply (induct k arbitrary: n)
chaieb@29687
   899
  apply (simp)
huffman@30488
   900
  unfolding power_Suc mult_assoc
chaieb@29687
   901
  by (case_tac n, auto)
chaieb@29687
   902
chaieb@29687
   903
lemma X_power_mult_right_nth: "((f :: ('a::comm_ring_1) fps) * X^k) $n = (if n < k then 0 else f $ (n - k))"
chaieb@29687
   904
  by (metis X_power_mult_nth mult_commute)
chaieb@29687
   905
lemma fps_deriv_X[simp]: "fps_deriv X = 1"
chaieb@29687
   906
  by (simp add: fps_deriv_def X_def fps_eq_iff)
chaieb@29687
   907
chaieb@29687
   908
lemma fps_nth_deriv_X[simp]: "fps_nth_deriv n X = (if n = 0 then X else if n=1 then 1 else 0)"
chaieb@29687
   909
  by (cases "n", simp_all)
chaieb@29687
   910
chaieb@29687
   911
lemma X_nth[simp]: "X$n = (if n = 1 then 1 else 0)" by (simp add: X_def)
chaieb@29687
   912
lemma X_power_nth[simp]: "(X^k) $n = (if n = k then 1 else (0::'a::comm_ring_1))"
chaieb@29687
   913
  by (simp add: X_power_iff)
chaieb@29687
   914
chaieb@29687
   915
lemma fps_inverse_X_plus1:
haftmann@31021
   916
  "inverse (1 + X) = Abs_fps (\<lambda>n. (- (1::'a::{field})) ^ n)" (is "_ = ?r")
chaieb@29687
   917
proof-
chaieb@29687
   918
  have eq: "(1 + X) * ?r = 1"
chaieb@29687
   919
    unfolding minus_one_power_iff
chaieb@29687
   920
    apply (auto simp add: ring_simps fps_eq_iff)
chaieb@29687
   921
    by presburger+
chaieb@29687
   922
  show ?thesis by (auto simp add: eq intro: fps_inverse_unique)
chaieb@29687
   923
qed
chaieb@29687
   924
huffman@30488
   925
huffman@29906
   926
subsection{* Integration *}
chaieb@29687
   927
definition "fps_integral a a0 = Abs_fps (\<lambda>n. if n = 0 then a0 else (a$(n - 1) / of_nat n))"
chaieb@29687
   928
chaieb@29687
   929
lemma fps_deriv_fps_integral: "fps_deriv (fps_integral a (a0 :: 'a :: {field, ring_char_0})) = a"
chaieb@29687
   930
  by (simp add: fps_integral_def fps_deriv_def fps_eq_iff field_simps del: of_nat_Suc)
chaieb@29687
   931
chaieb@29687
   932
lemma fps_integral_linear: "fps_integral (fps_const (a::'a::{field, ring_char_0}) * f + fps_const b * g) (a*a0 + b*b0) = fps_const a * fps_integral f a0 + fps_const b * fps_integral g b0" (is "?l = ?r")
chaieb@29687
   933
proof-
chaieb@29687
   934
  have "fps_deriv ?l = fps_deriv ?r" by (simp add: fps_deriv_fps_integral)
chaieb@29687
   935
  moreover have "?l$0 = ?r$0" by (simp add: fps_integral_def)
chaieb@29687
   936
  ultimately show ?thesis
chaieb@29687
   937
    unfolding fps_deriv_eq_iff by auto
chaieb@29687
   938
qed
huffman@30488
   939
huffman@29906
   940
subsection {* Composition of FPSs *}
chaieb@29687
   941
definition fps_compose :: "('a::semiring_1) fps \<Rightarrow> 'a fps \<Rightarrow> 'a fps" (infixl "oo" 55) where
chaieb@29687
   942
  fps_compose_def: "a oo b = Abs_fps (\<lambda>n. setsum (\<lambda>i. a$i * (b^i$n)) {0..n})"
chaieb@29687
   943
chaieb@29687
   944
lemma fps_compose_nth: "(a oo b)$n = setsum (\<lambda>i. a$i * (b^i$n)) {0..n}" by (simp add: fps_compose_def)
chaieb@29687
   945
chaieb@29687
   946
lemma fps_compose_X[simp]: "a oo X = (a :: ('a :: comm_ring_1) fps)"
huffman@29913
   947
  by (simp add: fps_ext fps_compose_def mult_delta_right setsum_delta')
huffman@30488
   948
huffman@30488
   949
lemma fps_const_compose[simp]:
chaieb@29687
   950
  "fps_const (a::'a::{comm_ring_1}) oo b = fps_const (a)"
huffman@29913
   951
  by (simp add: fps_eq_iff fps_compose_nth mult_delta_left setsum_delta)
chaieb@29687
   952
chaieb@29687
   953
lemma X_fps_compose_startby0[simp]: "a$0 = 0 \<Longrightarrow> X oo a = (a :: ('a :: comm_ring_1) fps)"
huffman@29913
   954
  by (simp add: fps_eq_iff fps_compose_def mult_delta_left setsum_delta
huffman@29913
   955
                power_Suc not_le)
chaieb@29687
   956
chaieb@29687
   957
huffman@29906
   958
subsection {* Rules from Herbert Wilf's Generatingfunctionology*}
chaieb@29687
   959
huffman@29906
   960
subsubsection {* Rule 1 *}
chaieb@29687
   961
  (* {a_{n+k}}_0^infty Corresponds to (f - setsum (\<lambda>i. a_i * x^i))/x^h, for h>0*)
chaieb@29687
   962
huffman@30488
   963
lemma fps_power_mult_eq_shift:
chaieb@30992
   964
  "X^Suc k * Abs_fps (\<lambda>n. a (n + Suc k)) = Abs_fps a - setsum (\<lambda>i. fps_const (a i :: 'a:: comm_ring_1) * X^i) {0 .. k}" (is "?lhs = ?rhs")
chaieb@29687
   965
proof-
chaieb@29687
   966
  {fix n:: nat
huffman@30488
   967
    have "?lhs $ n = (if n < Suc k then 0 else a n)"
chaieb@29687
   968
      unfolding X_power_mult_nth by auto
chaieb@29687
   969
    also have "\<dots> = ?rhs $ n"
chaieb@29687
   970
    proof(induct k)
chaieb@29687
   971
      case 0 thus ?case by (simp add: fps_setsum_nth power_Suc)
chaieb@29687
   972
    next
chaieb@29687
   973
      case (Suc k)
chaieb@29687
   974
      note th = Suc.hyps[symmetric]
chaieb@30992
   975
      have "(Abs_fps a - setsum (\<lambda>i. fps_const (a i :: 'a) * X^i) {0 .. Suc k})$n = (Abs_fps a - setsum (\<lambda>i. fps_const (a i :: 'a) * X^i) {0 .. k} - fps_const (a (Suc k)) * X^ Suc k) $ n" by (simp add: ring_simps)
chaieb@29687
   976
      also  have "\<dots> = (if n < Suc k then 0 else a n) - (fps_const (a (Suc k)) * X^ Suc k)$n"
huffman@30488
   977
	using th
chaieb@29687
   978
	unfolding fps_sub_nth by simp
chaieb@29687
   979
      also have "\<dots> = (if n < Suc (Suc k) then 0 else a n)"
chaieb@29687
   980
	unfolding X_power_mult_right_nth
chaieb@29687
   981
	apply (auto simp add: not_less fps_const_def)
chaieb@29687
   982
	apply (rule cong[of a a, OF refl])
chaieb@29687
   983
	by arith
chaieb@29687
   984
      finally show ?case by simp
chaieb@29687
   985
    qed
chaieb@29687
   986
    finally have "?lhs $ n = ?rhs $ n"  .}
chaieb@29687
   987
  then show ?thesis by (simp add: fps_eq_iff)
chaieb@29687
   988
qed
chaieb@29687
   989
huffman@29906
   990
subsubsection{* Rule 2*}
chaieb@29687
   991
chaieb@29687
   992
  (* We can not reach the form of Wilf, but still near to it using rewrite rules*)
huffman@30488
   993
  (* If f reprents {a_n} and P is a polynomial, then
chaieb@29687
   994
        P(xD) f represents {P(n) a_n}*)
chaieb@29687
   995
chaieb@29687
   996
definition "XD = op * X o fps_deriv"
chaieb@29687
   997
chaieb@29687
   998
lemma XD_add[simp]:"XD (a + b) = XD a + XD (b :: ('a::comm_ring_1) fps)"
chaieb@29687
   999
  by (simp add: XD_def ring_simps)
chaieb@29687
  1000
chaieb@29687
  1001
lemma XD_mult_const[simp]:"XD (fps_const (c::'a::comm_ring_1) * a) = fps_const c * XD a"
chaieb@29687
  1002
  by (simp add: XD_def ring_simps)
chaieb@29687
  1003
chaieb@29687
  1004
lemma XD_linear[simp]: "XD (fps_const c * a + fps_const d * b) = fps_const c * XD a + fps_const d * XD (b :: ('a::comm_ring_1) fps)"
chaieb@29687
  1005
  by simp
chaieb@29687
  1006
haftmann@30952
  1007
lemma XDN_linear:
haftmann@30971
  1008
  "(XD ^^ n) (fps_const c * a + fps_const d * b) = fps_const c * (XD ^^ n) a + fps_const d * (XD ^^ n) (b :: ('a::comm_ring_1) fps)"
chaieb@29687
  1009
  by (induct n, simp_all)
chaieb@29687
  1010
chaieb@29687
  1011
lemma fps_mult_X_deriv_shift: "X* fps_deriv a = Abs_fps (\<lambda>n. of_nat n* a$n)" by (simp add: fps_eq_iff)
chaieb@29687
  1012
chaieb@30994
  1013
haftmann@30952
  1014
lemma fps_mult_XD_shift:
haftmann@31021
  1015
  "(XD ^^ k) (a:: ('a::{comm_ring_1}) fps) = Abs_fps (\<lambda>n. (of_nat n ^ k) * a$n)"
haftmann@30952
  1016
  by (induct k arbitrary: a) (simp_all add: power_Suc XD_def fps_eq_iff ring_simps del: One_nat_def)
chaieb@29687
  1017
huffman@29906
  1018
subsubsection{* Rule 3 is trivial and is given by @{text fps_times_def}*}
huffman@29906
  1019
subsubsection{* Rule 5 --- summation and "division" by (1 - X)*}
chaieb@29687
  1020
chaieb@29687
  1021
lemma fps_divide_X_minus1_setsum_lemma:
chaieb@29687
  1022
  "a = ((1::('a::comm_ring_1) fps) - X) * Abs_fps (\<lambda>n. setsum (\<lambda>i. a $ i) {0..n})"
chaieb@29687
  1023
proof-
chaieb@29687
  1024
  let ?X = "X::('a::comm_ring_1) fps"
chaieb@29687
  1025
  let ?sa = "Abs_fps (\<lambda>n. setsum (\<lambda>i. a $ i) {0..n})"
chaieb@29687
  1026
  have th0: "\<And>i. (1 - (X::'a fps)) $ i = (if i = 0 then 1 else if i = 1 then - 1 else 0)" by simp
chaieb@29687
  1027
  {fix n:: nat
huffman@30488
  1028
    {assume "n=0" hence "a$n = ((1 - ?X) * ?sa) $ n"
chaieb@29687
  1029
	by (simp add: fps_mult_nth)}
chaieb@29687
  1030
    moreover
chaieb@29687
  1031
    {assume n0: "n \<noteq> 0"
chaieb@29687
  1032
      then have u: "{0} \<union> ({1} \<union> {2..n}) = {0..n}" "{1}\<union>{2..n} = {1..n}"
chaieb@29687
  1033
	"{0..n - 1}\<union>{n} = {0..n}"
chaieb@29687
  1034
	apply (simp_all add: expand_set_eq) by presburger+
huffman@30488
  1035
      have d: "{0} \<inter> ({1} \<union> {2..n}) = {}" "{1} \<inter> {2..n} = {}"
chaieb@29687
  1036
	"{0..n - 1}\<inter>{n} ={}" using n0
chaieb@29687
  1037
	by (simp_all add: expand_set_eq, presburger+)
huffman@30488
  1038
      have f: "finite {0}" "finite {1}" "finite {2 .. n}"
huffman@30488
  1039
	"finite {0 .. n - 1}" "finite {n}" by simp_all
chaieb@29687
  1040
    have "((1 - ?X) * ?sa) $ n = setsum (\<lambda>i. (1 - ?X)$ i * ?sa $ (n - i)) {0 .. n}"
chaieb@29687
  1041
      by (simp add: fps_mult_nth)
chaieb@29687
  1042
    also have "\<dots> = a$n" unfolding th0
chaieb@29687
  1043
      unfolding setsum_Un_disjoint[OF f(1) finite_UnI[OF f(2,3)] d(1), unfolded u(1)]
chaieb@29687
  1044
      unfolding setsum_Un_disjoint[OF f(2) f(3) d(2)]
chaieb@29687
  1045
      apply (simp)
chaieb@29687
  1046
      unfolding setsum_Un_disjoint[OF f(4,5) d(3), unfolded u(3)]
chaieb@29687
  1047
      by simp
chaieb@29687
  1048
    finally have "a$n = ((1 - ?X) * ?sa) $ n" by simp}
chaieb@29687
  1049
  ultimately have "a$n = ((1 - ?X) * ?sa) $ n" by blast}
huffman@30488
  1050
then show ?thesis
chaieb@29687
  1051
  unfolding fps_eq_iff by blast
chaieb@29687
  1052
qed
chaieb@29687
  1053
chaieb@29687
  1054
lemma fps_divide_X_minus1_setsum:
chaieb@29687
  1055
  "a /((1::('a::field) fps) - X)  = Abs_fps (\<lambda>n. setsum (\<lambda>i. a $ i) {0..n})"
chaieb@29687
  1056
proof-
chaieb@29687
  1057
  let ?X = "1 - (X::('a::field) fps)"
chaieb@29687
  1058
  have th0: "?X $ 0 \<noteq> 0" by simp
chaieb@29687
  1059
  have "a /?X = ?X *  Abs_fps (\<lambda>n\<Colon>nat. setsum (op $ a) {0..n}) * inverse ?X"
chaieb@29687
  1060
    using fps_divide_X_minus1_setsum_lemma[of a, symmetric] th0
chaieb@29687
  1061
    by (simp add: fps_divide_def mult_assoc)
chaieb@29687
  1062
  also have "\<dots> = (inverse ?X * ?X) * Abs_fps (\<lambda>n\<Colon>nat. setsum (op $ a) {0..n}) "
chaieb@29687
  1063
    by (simp add: mult_ac)
chaieb@29687
  1064
  finally show ?thesis by (simp add: inverse_mult_eq_1[OF th0])
chaieb@29687
  1065
qed
chaieb@29687
  1066
huffman@30488
  1067
subsubsection{* Rule 4 in its more general form: generalizes Rule 3 for an arbitrary
chaieb@29687
  1068
  finite product of FPS, also the relvant instance of powers of a FPS*}
chaieb@29687
  1069
chaieb@29687
  1070
definition "natpermute n k = {l:: nat list. length l = k \<and> foldl op + 0 l = n}"
chaieb@29687
  1071
chaieb@29687
  1072
lemma natlist_trivial_1: "natpermute n 1 = {[n]}"
chaieb@29687
  1073
  apply (auto simp add: natpermute_def)
chaieb@29687
  1074
  apply (case_tac x, auto)
chaieb@29687
  1075
  done
chaieb@29687
  1076
huffman@30488
  1077
lemma foldl_add_start0:
chaieb@29687
  1078
  "foldl op + x xs = x + foldl op + (0::nat) xs"
chaieb@29687
  1079
  apply (induct xs arbitrary: x)
chaieb@29687
  1080
  apply simp
chaieb@29687
  1081
  unfolding foldl.simps
chaieb@29687
  1082
  apply atomize
chaieb@29687
  1083
  apply (subgoal_tac "\<forall>x\<Colon>nat. foldl op + x xs = x + foldl op + (0\<Colon>nat) xs")
chaieb@29687
  1084
  apply (erule_tac x="x + a" in allE)
chaieb@29687
  1085
  apply (erule_tac x="a" in allE)
chaieb@29687
  1086
  apply simp
chaieb@29687
  1087
  apply assumption
chaieb@29687
  1088
  done
chaieb@29687
  1089
chaieb@29687
  1090
lemma foldl_add_append: "foldl op + (x::nat) (xs@ys) = foldl op + x xs + foldl op + 0 ys"
chaieb@29687
  1091
  apply (induct ys arbitrary: x xs)
chaieb@29687
  1092
  apply auto
chaieb@29687
  1093
  apply (subst (2) foldl_add_start0)
chaieb@29687
  1094
  apply simp
chaieb@29687
  1095
  apply (subst (2) foldl_add_start0)
chaieb@29687
  1096
  by simp
chaieb@29687
  1097
chaieb@29687
  1098
lemma foldl_add_setsum: "foldl op + (x::nat) xs = x + setsum (nth xs) {0..<length xs}"
chaieb@29687
  1099
proof(induct xs arbitrary: x)
chaieb@29687
  1100
  case Nil thus ?case by simp
chaieb@29687
  1101
next
chaieb@29687
  1102
  case (Cons a as x)
chaieb@29687
  1103
  have eq: "setsum (op ! (a#as)) {1..<length (a#as)} = setsum (op ! as) {0..<length as}"
chaieb@29687
  1104
    apply (rule setsum_reindex_cong [where f=Suc])
chaieb@29687
  1105
    by (simp_all add: inj_on_def)
chaieb@29687
  1106
  have f: "finite {0}" "finite {1 ..< length (a#as)}" by simp_all
chaieb@29687
  1107
  have d: "{0} \<inter> {1..<length (a#as)} = {}" by simp
chaieb@29687
  1108
  have seq: "{0} \<union> {1..<length(a#as)} = {0 ..<length (a#as)}" by auto
chaieb@29687
  1109
  have "foldl op + x (a#as) = x + foldl op + a as "
chaieb@29687
  1110
    apply (subst foldl_add_start0)    by simp
chaieb@29687
  1111
  also have "\<dots> = x + a + setsum (op ! as) {0..<length as}" unfolding Cons.hyps by simp
chaieb@29687
  1112
  also have "\<dots> = x + setsum (op ! (a#as)) {0..<length (a#as)}"
huffman@30488
  1113
    unfolding eq[symmetric]
chaieb@29687
  1114
    unfolding setsum_Un_disjoint[OF f d, unfolded seq]
chaieb@29687
  1115
    by simp
chaieb@29687
  1116
  finally show ?case  .
chaieb@29687
  1117
qed
chaieb@29687
  1118
chaieb@29687
  1119
chaieb@29687
  1120
lemma append_natpermute_less_eq:
chaieb@29687
  1121
  assumes h: "xs@ys \<in> natpermute n k" shows "foldl op + 0 xs \<le> n" and "foldl op + 0 ys \<le> n"
chaieb@29687
  1122
proof-
chaieb@29687
  1123
  {from h have "foldl op + 0 (xs@ ys) = n" by (simp add: natpermute_def)
chaieb@29687
  1124
    hence "foldl op + 0 xs + foldl op + 0 ys = n" unfolding foldl_add_append .}
chaieb@29687
  1125
  note th = this
chaieb@29687
  1126
  {from th show "foldl op + 0 xs \<le> n" by simp}
chaieb@29687
  1127
  {from th show "foldl op + 0 ys \<le> n" by simp}
chaieb@29687
  1128
qed
chaieb@29687
  1129
chaieb@29687
  1130
lemma natpermute_split:
chaieb@29687
  1131
  assumes mn: "h \<le> k"
chaieb@29687
  1132
  shows "natpermute n k = (\<Union>m \<in>{0..n}. {l1 @ l2 |l1 l2. l1 \<in> natpermute m h \<and> l2 \<in> natpermute (n - m) (k - h)})" (is "?L = ?R" is "?L = (\<Union>m \<in>{0..n}. ?S m)")
chaieb@29687
  1133
proof-
huffman@30488
  1134
  {fix l assume l: "l \<in> ?R"
chaieb@29687
  1135
    from l obtain m xs ys where h: "m \<in> {0..n}" and xs: "xs \<in> natpermute m h" and ys: "ys \<in> natpermute (n - m) (k - h)"  and leq: "l = xs@ys" by blast
chaieb@29687
  1136
    from xs have xs': "foldl op + 0 xs = m" by (simp add: natpermute_def)
chaieb@29687
  1137
    from ys have ys': "foldl op + 0 ys = n - m" by (simp add: natpermute_def)
huffman@30488
  1138
    have "l \<in> ?L" using leq xs ys h
chaieb@29687
  1139
      apply simp
chaieb@29687
  1140
      apply (clarsimp simp add: natpermute_def simp del: foldl_append)
chaieb@29687
  1141
      apply (simp add: foldl_add_append[unfolded foldl_append])
chaieb@29687
  1142
      unfolding xs' ys'
huffman@30488
  1143
      using mn xs ys
chaieb@29687
  1144
      unfolding natpermute_def by simp}
chaieb@29687
  1145
  moreover
chaieb@29687
  1146
  {fix l assume l: "l \<in> natpermute n k"
chaieb@29687
  1147
    let ?xs = "take h l"
chaieb@29687
  1148
    let ?ys = "drop h l"
chaieb@29687
  1149
    let ?m = "foldl op + 0 ?xs"
chaieb@29687
  1150
    from l have ls: "foldl op + 0 (?xs @ ?ys) = n" by (simp add: natpermute_def)
huffman@30488
  1151
    have xs: "?xs \<in> natpermute ?m h" using l mn by (simp add: natpermute_def)
chaieb@29687
  1152
    have ys: "?ys \<in> natpermute (n - ?m) (k - h)" using l mn ls[unfolded foldl_add_append]
chaieb@29687
  1153
      by (simp add: natpermute_def)
chaieb@29687
  1154
    from ls have m: "?m \<in> {0..n}"  unfolding foldl_add_append by simp
huffman@30488
  1155
    from xs ys ls have "l \<in> ?R"
chaieb@29687
  1156
      apply auto
chaieb@29687
  1157
      apply (rule bexI[where x = "?m"])
chaieb@29687
  1158
      apply (rule exI[where x = "?xs"])
chaieb@29687
  1159
      apply (rule exI[where x = "?ys"])
huffman@30488
  1160
      using ls l unfolding foldl_add_append
chaieb@29687
  1161
      by (auto simp add: natpermute_def)}
chaieb@29687
  1162
  ultimately show ?thesis by blast
chaieb@29687
  1163
qed
chaieb@29687
  1164
chaieb@29687
  1165
lemma natpermute_0: "natpermute n 0 = (if n = 0 then {[]} else {})"
chaieb@29687
  1166
  by (auto simp add: natpermute_def)
chaieb@29687
  1167
lemma natpermute_0'[simp]: "natpermute 0 k = (if k = 0 then {[]} else {replicate k 0})"
chaieb@29687
  1168
  apply (auto simp add: set_replicate_conv_if natpermute_def)
chaieb@29687
  1169
  apply (rule nth_equalityI)
chaieb@29687
  1170
  by simp_all
chaieb@29687
  1171
chaieb@29687
  1172
lemma natpermute_finite: "finite (natpermute n k)"
chaieb@29687
  1173
proof(induct k arbitrary: n)
huffman@30488
  1174
  case 0 thus ?case
chaieb@29687
  1175
    apply (subst natpermute_split[of 0 0, simplified])
chaieb@29687
  1176
    by (simp add: natpermute_0)
chaieb@29687
  1177
next
chaieb@29687
  1178
  case (Suc k)
chaieb@29687
  1179
  then show ?case unfolding natpermute_split[of k "Suc k", simplified]
chaieb@29687
  1180
    apply -
chaieb@29687
  1181
    apply (rule finite_UN_I)
chaieb@29687
  1182
    apply simp
chaieb@29687
  1183
    unfolding One_nat_def[symmetric] natlist_trivial_1
chaieb@29687
  1184
    apply simp
chaieb@29687
  1185
    unfolding image_Collect[symmetric]
chaieb@29687
  1186
    unfolding Collect_def mem_def
chaieb@29687
  1187
    apply (rule finite_imageI)
chaieb@29687
  1188
    apply blast
chaieb@29687
  1189
    done
chaieb@29687
  1190
qed
chaieb@29687
  1191
chaieb@29687
  1192
lemma natpermute_contain_maximal:
chaieb@29687
  1193
  "{xs \<in> natpermute n (k+1). n \<in> set xs} = UNION {0 .. k} (\<lambda>i. {(replicate (k+1) 0) [i:=n]})"
chaieb@29687
  1194
  (is "?A = ?B")
chaieb@29687
  1195
proof-
chaieb@29687
  1196
  {fix xs assume H: "xs \<in> natpermute n (k+1)" and n: "n \<in> set xs"
chaieb@29687
  1197
    from n obtain i where i: "i \<in> {0.. k}" "xs!i = n" using H
huffman@30488
  1198
      unfolding in_set_conv_nth by (auto simp add: less_Suc_eq_le natpermute_def)
chaieb@29687
  1199
    have eqs: "({0..k} - {i}) \<union> {i} = {0..k}" using i by auto
chaieb@29687
  1200
    have f: "finite({0..k} - {i})" "finite {i}" by auto
chaieb@29687
  1201
    have d: "({0..k} - {i}) \<inter> {i} = {}" using i by auto
chaieb@29687
  1202
    from H have "n = setsum (nth xs) {0..k}" apply (simp add: natpermute_def)
chaieb@29687
  1203
      unfolding foldl_add_setsum by (auto simp add: atLeastLessThanSuc_atLeastAtMost)
chaieb@29687
  1204
    also have "\<dots> = n + setsum (nth xs) ({0..k} - {i})"
chaieb@29687
  1205
      unfolding setsum_Un_disjoint[OF f d, unfolded eqs] using i by simp
chaieb@29687
  1206
    finally have zxs: "\<forall> j\<in> {0..k} - {i}. xs!j = 0" by auto
chaieb@29687
  1207
    from H have xsl: "length xs = k+1" by (simp add: natpermute_def)
chaieb@29687
  1208
    from i have i': "i < length (replicate (k+1) 0)"   "i < k+1"
chaieb@29687
  1209
      unfolding length_replicate  by arith+
chaieb@29687
  1210
    have "xs = replicate (k+1) 0 [i := n]"
chaieb@29687
  1211
      apply (rule nth_equalityI)
chaieb@29687
  1212
      unfolding xsl length_list_update length_replicate
chaieb@29687
  1213
      apply simp
chaieb@29687
  1214
      apply clarify
chaieb@29687
  1215
      unfolding nth_list_update[OF i'(1)]
chaieb@29687
  1216
      using i zxs
chaieb@29687
  1217
      by (case_tac "ia=i", auto simp del: replicate.simps)
chaieb@29687
  1218
    then have "xs \<in> ?B" using i by blast}
chaieb@29687
  1219
  moreover
chaieb@29687
  1220
  {fix i assume i: "i \<in> {0..k}"
chaieb@29687
  1221
    let ?xs = "replicate (k+1) 0 [i:=n]"
chaieb@29687
  1222
    have nxs: "n \<in> set ?xs"
chaieb@29687
  1223
      apply (rule set_update_memI) using i by simp
chaieb@29687
  1224
    have xsl: "length ?xs = k+1" by (simp only: length_replicate length_list_update)
chaieb@29687
  1225
    have "foldl op + 0 ?xs = setsum (nth ?xs) {0..<k+1}"
chaieb@29687
  1226
      unfolding foldl_add_setsum add_0 length_replicate length_list_update ..
chaieb@29687
  1227
    also have "\<dots> = setsum (\<lambda>j. if j = i then n else 0) {0..< k+1}"
chaieb@29687
  1228
      apply (rule setsum_cong2) by (simp del: replicate.simps)
chaieb@29687
  1229
    also have "\<dots> = n" using i by (simp add: setsum_delta)
huffman@30488
  1230
    finally
chaieb@29687
  1231
    have "?xs \<in> natpermute n (k+1)" using xsl unfolding natpermute_def Collect_def mem_def
chaieb@29687
  1232
      by blast
chaieb@29687
  1233
    then have "?xs \<in> ?A"  using nxs  by blast}
chaieb@29687
  1234
  ultimately show ?thesis by auto
chaieb@29687
  1235
qed
chaieb@29687
  1236
huffman@30488
  1237
    (* The general form *)
chaieb@29687
  1238
lemma fps_setprod_nth:
chaieb@29687
  1239
  fixes m :: nat and a :: "nat \<Rightarrow> ('a::comm_ring_1) fps"
chaieb@29687
  1240
  shows "(setprod a {0 .. m})$n = setsum (\<lambda>v. setprod (\<lambda>j. (a j) $ (v!j)) {0..m}) (natpermute n (m+1))"
chaieb@29687
  1241
  (is "?P m n")
chaieb@29687
  1242
proof(induct m arbitrary: n rule: nat_less_induct)
chaieb@29687
  1243
  fix m n assume H: "\<forall>m' < m. \<forall>n. ?P m' n"
chaieb@29687
  1244
  {assume m0: "m = 0"
chaieb@29687
  1245
    hence "?P m n" apply simp
chaieb@29687
  1246
      unfolding natlist_trivial_1[where n = n, unfolded One_nat_def] by simp}
chaieb@29687
  1247
  moreover
chaieb@29687
  1248
  {fix k assume k: "m = Suc k"
chaieb@29687
  1249
    have km: "k < m" using k by arith
chaieb@29687
  1250
    have u0: "{0 .. k} \<union> {m} = {0..m}" using k apply (simp add: expand_set_eq) by presburger
chaieb@29687
  1251
    have f0: "finite {0 .. k}" "finite {m}" by auto
chaieb@29687
  1252
    have d0: "{0 .. k} \<inter> {m} = {}" using k by auto
chaieb@29687
  1253
    have "(setprod a {0 .. m}) $ n = (setprod a {0 .. k} * a m) $ n"
chaieb@29687
  1254
      unfolding setprod_Un_disjoint[OF f0 d0, unfolded u0] by simp
chaieb@29687
  1255
    also have "\<dots> = (\<Sum>i = 0..n. (\<Sum>v\<in>natpermute i (k + 1). \<Prod>j\<in>{0..k}. a j $ v ! j) * a m $ (n - i))"
chaieb@29687
  1256
      unfolding fps_mult_nth H[rule_format, OF km] ..
chaieb@29687
  1257
    also have "\<dots> = (\<Sum>v\<in>natpermute n (m + 1). \<Prod>j\<in>{0..m}. a j $ v ! j)"
chaieb@29687
  1258
      apply (simp add: k)
chaieb@29687
  1259
      unfolding natpermute_split[of m "m + 1", simplified, of n, unfolded natlist_trivial_1[unfolded One_nat_def] k]
chaieb@29687
  1260
      apply (subst setsum_UN_disjoint)
huffman@30488
  1261
      apply simp
chaieb@29687
  1262
      apply simp
chaieb@29687
  1263
      unfolding image_Collect[symmetric]
chaieb@29687
  1264
      apply clarsimp
chaieb@29687
  1265
      apply (rule finite_imageI)
chaieb@29687
  1266
      apply (rule natpermute_finite)
chaieb@29687
  1267
      apply (clarsimp simp add: expand_set_eq)
chaieb@29687
  1268
      apply auto
chaieb@29687
  1269
      apply (rule setsum_cong2)
chaieb@29687
  1270
      unfolding setsum_left_distrib
chaieb@29687
  1271
      apply (rule sym)
chaieb@29687
  1272
      apply (rule_tac f="\<lambda>xs. xs @[n - x]" in  setsum_reindex_cong)
chaieb@29687
  1273
      apply (simp add: inj_on_def)
chaieb@29687
  1274
      apply auto
chaieb@29687
  1275
      unfolding setprod_Un_disjoint[OF f0 d0, unfolded u0, unfolded k]
chaieb@29687
  1276
      apply (clarsimp simp add: natpermute_def nth_append)
chaieb@29687
  1277
      done
chaieb@29687
  1278
    finally have "?P m n" .}
chaieb@29687
  1279
  ultimately show "?P m n " by (cases m, auto)
chaieb@29687
  1280
qed
chaieb@29687
  1281
chaieb@29687
  1282
text{* The special form for powers *}
chaieb@29687
  1283
lemma fps_power_nth_Suc:
chaieb@29687
  1284
  fixes m :: nat and a :: "('a::comm_ring_1) fps"
chaieb@29687
  1285
  shows "(a ^ Suc m)$n = setsum (\<lambda>v. setprod (\<lambda>j. a $ (v!j)) {0..m}) (natpermute n (m+1))"
chaieb@29687
  1286
proof-
chaieb@29687
  1287
  have f: "finite {0 ..m}" by simp
chaieb@29687
  1288
  have th0: "a^Suc m = setprod (\<lambda>i. a) {0..m}" unfolding setprod_constant[OF f, of a] by simp
chaieb@29687
  1289
  show ?thesis unfolding th0 fps_setprod_nth ..
chaieb@29687
  1290
qed
chaieb@29687
  1291
lemma fps_power_nth:
chaieb@29687
  1292
  fixes m :: nat and a :: "('a::comm_ring_1) fps"
chaieb@29687
  1293
  shows "(a ^m)$n = (if m=0 then 1$n else setsum (\<lambda>v. setprod (\<lambda>j. a $ (v!j)) {0..m - 1}) (natpermute n m))"
huffman@30273
  1294
  by (cases m, simp_all add: fps_power_nth_Suc del: power_Suc)
chaieb@29687
  1295
huffman@30488
  1296
lemma fps_nth_power_0:
haftmann@31021
  1297
  fixes m :: nat and a :: "('a::{comm_ring_1}) fps"
chaieb@29687
  1298
  shows "(a ^m)$0 = (a$0) ^ m"
chaieb@29687
  1299
proof-
chaieb@29687
  1300
  {assume "m=0" hence ?thesis by simp}
chaieb@29687
  1301
  moreover
chaieb@29687
  1302
  {fix n assume m: "m = Suc n"
chaieb@29687
  1303
    have c: "m = card {0..n}" using m by simp
chaieb@29687
  1304
   have "(a ^m)$0 = setprod (\<lambda>i. a$0) {0..n}"
nipkow@30837
  1305
     by (simp add: m fps_power_nth del: replicate.simps power_Suc)
chaieb@29687
  1306
   also have "\<dots> = (a$0) ^ m"
chaieb@29687
  1307
     unfolding c by (rule setprod_constant, simp)
chaieb@29687
  1308
   finally have ?thesis .}
chaieb@29687
  1309
 ultimately show ?thesis by (cases m, auto)
chaieb@29687
  1310
qed
chaieb@29687
  1311
huffman@30488
  1312
lemma fps_compose_inj_right:
haftmann@31021
  1313
  assumes a0: "a$0 = (0::'a::{idom})"
chaieb@29687
  1314
  and a1: "a$1 \<noteq> 0"
chaieb@29687
  1315
  shows "(b oo a = c oo a) \<longleftrightarrow> b = c" (is "?lhs \<longleftrightarrow>?rhs")
chaieb@29687
  1316
proof-
chaieb@29687
  1317
  {assume ?rhs then have "?lhs" by simp}
chaieb@29687
  1318
  moreover
chaieb@29687
  1319
  {assume h: ?lhs
huffman@30488
  1320
    {fix n have "b$n = c$n"
chaieb@29687
  1321
      proof(induct n rule: nat_less_induct)
chaieb@29687
  1322
	fix n assume H: "\<forall>m<n. b$m = c$m"
chaieb@29687
  1323
	{assume n0: "n=0"
chaieb@29687
  1324
	  from h have "(b oo a)$n = (c oo a)$n" by simp
chaieb@29687
  1325
	  hence "b$n = c$n" using n0 by (simp add: fps_compose_nth)}
chaieb@29687
  1326
	moreover
chaieb@29687
  1327
	{fix n1 assume n1: "n = Suc n1"
chaieb@29687
  1328
	  have f: "finite {0 .. n1}" "finite {n}" by simp_all
chaieb@29687
  1329
	  have eq: "{0 .. n1} \<union> {n} = {0 .. n}" using n1 by auto
chaieb@29687
  1330
	  have d: "{0 .. n1} \<inter> {n} = {}" using n1 by auto
chaieb@29687
  1331
	  have seq: "(\<Sum>i = 0..n1. b $ i * a ^ i $ n) = (\<Sum>i = 0..n1. c $ i * a ^ i $ n)"
chaieb@29687
  1332
	    apply (rule setsum_cong2)
chaieb@29687
  1333
	    using H n1 by auto
chaieb@29687
  1334
	  have th0: "(b oo a) $n = (\<Sum>i = 0..n1. c $ i * a ^ i $ n) + b$n * (a$1)^n"
chaieb@29687
  1335
	    unfolding fps_compose_nth setsum_Un_disjoint[OF f d, unfolded eq] seq
chaieb@29687
  1336
	    using startsby_zero_power_nth_same[OF a0]
chaieb@29687
  1337
	    by simp
chaieb@29687
  1338
	  have th1: "(c oo a) $n = (\<Sum>i = 0..n1. c $ i * a ^ i $ n) + c$n * (a$1)^n"
chaieb@29687
  1339
	    unfolding fps_compose_nth setsum_Un_disjoint[OF f d, unfolded eq]
chaieb@29687
  1340
	    using startsby_zero_power_nth_same[OF a0]
chaieb@29687
  1341
	    by simp
chaieb@29687
  1342
	  from h[unfolded fps_eq_iff, rule_format, of n] th0 th1 a1
chaieb@29687
  1343
	  have "b$n = c$n" by auto}
chaieb@29687
  1344
	ultimately show "b$n = c$n" by (cases n, auto)
chaieb@29687
  1345
      qed}
chaieb@29687
  1346
    then have ?rhs by (simp add: fps_eq_iff)}
chaieb@29687
  1347
  ultimately show ?thesis by blast
chaieb@29687
  1348
qed
chaieb@29687
  1349
chaieb@29687
  1350
huffman@29906
  1351
subsection {* Radicals *}
chaieb@29687
  1352
chaieb@29687
  1353
declare setprod_cong[fundef_cong]
haftmann@31021
  1354
function radical :: "(nat \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> ('a::{field}) fps \<Rightarrow> nat \<Rightarrow> 'a" where
chaieb@29687
  1355
  "radical r 0 a 0 = 1"
chaieb@29687
  1356
| "radical r 0 a (Suc n) = 0"
chaieb@29687
  1357
| "radical r (Suc k) a 0 = r (Suc k) (a$0)"
chaieb@29687
  1358
| "radical r (Suc k) a (Suc n) = (a$ Suc n - setsum (\<lambda>xs. setprod (\<lambda>j. radical r (Suc k) a (xs ! j)) {0..k}) {xs. xs \<in> natpermute (Suc n) (Suc k) \<and> Suc n \<notin> set xs}) / (of_nat (Suc k) * (radical r (Suc k) a 0)^k)"
chaieb@29687
  1359
by pat_completeness auto
chaieb@29687
  1360
chaieb@29687
  1361
termination radical
chaieb@29687
  1362
proof
chaieb@29687
  1363
  let ?R = "measure (\<lambda>(r, k, a, n). n)"
chaieb@29687
  1364
  {
chaieb@29687
  1365
    show "wf ?R" by auto}
chaieb@29687
  1366
  {fix r k a n xs i
chaieb@29687
  1367
    assume xs: "xs \<in> {xs \<in> natpermute (Suc n) (Suc k). Suc n \<notin> set xs}" and i: "i \<in> {0..k}"
chaieb@29687
  1368
    {assume c: "Suc n \<le> xs ! i"
chaieb@29687
  1369
      from xs i have "xs !i \<noteq> Suc n" by (auto simp add: in_set_conv_nth natpermute_def)
chaieb@29687
  1370
      with c have c': "Suc n < xs!i" by arith
chaieb@29687
  1371
      have fths: "finite {0 ..< i}" "finite {i}" "finite {i+1..<Suc k}" by simp_all
chaieb@29687
  1372
      have d: "{0 ..< i} \<inter> ({i} \<union> {i+1 ..< Suc k}) = {}" "{i} \<inter> {i+1..< Suc k} = {}" by auto
chaieb@29687
  1373
      have eqs: "{0..<Suc k} = {0 ..< i} \<union> ({i} \<union> {i+1 ..< Suc k})" using i by auto
chaieb@29687
  1374
      from xs have "Suc n = foldl op + 0 xs" by (simp add: natpermute_def)
chaieb@29687
  1375
      also have "\<dots> = setsum (nth xs) {0..<Suc k}" unfolding foldl_add_setsum using xs
chaieb@29687
  1376
	by (simp add: natpermute_def)
chaieb@29687
  1377
      also have "\<dots> = xs!i + setsum (nth xs) {0..<i} + setsum (nth xs) {i+1..<Suc k}"
chaieb@29687
  1378
	unfolding eqs  setsum_Un_disjoint[OF fths(1) finite_UnI[OF fths(2,3)] d(1)]
chaieb@29687
  1379
	unfolding setsum_Un_disjoint[OF fths(2) fths(3) d(2)]
chaieb@29687
  1380
	by simp
chaieb@29687
  1381
      finally have False using c' by simp}
huffman@30488
  1382
    then show "((r,Suc k,a,xs!i), r, Suc k, a, Suc n) \<in> ?R"
chaieb@29687
  1383
      apply auto by (metis not_less)}
huffman@30488
  1384
  {fix r k a n
chaieb@29687
  1385
    show "((r,Suc k, a, 0),r, Suc k, a, Suc n) \<in> ?R" by simp}
chaieb@29687
  1386
qed
chaieb@29687
  1387
chaieb@29687
  1388
definition "fps_radical r n a = Abs_fps (radical r n a)"
chaieb@29687
  1389
chaieb@29687
  1390
lemma fps_radical0[simp]: "fps_radical r 0 a = 1"
chaieb@29687
  1391
  apply (auto simp add: fps_eq_iff fps_radical_def)  by (case_tac n, auto)
chaieb@29687
  1392
chaieb@29687
  1393
lemma fps_radical_nth_0[simp]: "fps_radical r n a $ 0 = (if n=0 then 1 else r n (a$0))"
chaieb@29687
  1394
  by (cases n, simp_all add: fps_radical_def)
chaieb@29687
  1395
huffman@30488
  1396
lemma fps_radical_power_nth[simp]:
chaieb@29687
  1397
  assumes r: "(r k (a$0)) ^ k = a$0"
chaieb@29687
  1398
  shows "fps_radical r k a ^ k $ 0 = (if k = 0 then 1 else a$0)"
chaieb@29687
  1399
proof-
chaieb@29687
  1400
  {assume "k=0" hence ?thesis by simp }
chaieb@29687
  1401
  moreover
huffman@30488
  1402
  {fix h assume h: "k = Suc h"
chaieb@29687
  1403
    have fh: "finite {0..h}" by simp
chaieb@29687
  1404
    have eq1: "fps_radical r k a ^ k $ 0 = (\<Prod>j\<in>{0..h}. fps_radical r k a $ (replicate k 0) ! j)"
chaieb@29687
  1405
      unfolding fps_power_nth h by simp
chaieb@29687
  1406
    also have "\<dots> = (\<Prod>j\<in>{0..h}. r k (a$0))"
chaieb@29687
  1407
      apply (rule setprod_cong)
chaieb@29687
  1408
      apply simp
chaieb@29687
  1409
      using h
chaieb@29687
  1410
      apply (subgoal_tac "replicate k (0::nat) ! x = 0")
chaieb@29687
  1411
      by (auto intro: nth_replicate simp del: replicate.simps)
chaieb@29687
  1412
    also have "\<dots> = a$0"
chaieb@29687
  1413
      unfolding setprod_constant[OF fh] using r by (simp add: h)
chaieb@29687
  1414
    finally have ?thesis using h by simp}
chaieb@29687
  1415
  ultimately show ?thesis by (cases k, auto)
huffman@30488
  1416
qed
chaieb@29687
  1417
huffman@30488
  1418
lemma natpermute_max_card: assumes n0: "n\<noteq>0"
chaieb@29687
  1419
  shows "card {xs \<in> natpermute n (k+1). n \<in> set xs} = k+1"
chaieb@29687
  1420
  unfolding natpermute_contain_maximal
chaieb@29687
  1421
proof-
chaieb@29687
  1422
  let ?A= "\<lambda>i. {replicate (k + 1) 0[i := n]}"
chaieb@29687
  1423
  let ?K = "{0 ..k}"
chaieb@29687
  1424
  have fK: "finite ?K" by simp
chaieb@29687
  1425
  have fAK: "\<forall>i\<in>?K. finite (?A i)" by auto
chaieb@29687
  1426
  have d: "\<forall>i\<in> ?K. \<forall>j\<in> ?K. i \<noteq> j \<longrightarrow> {replicate (k + 1) 0[i := n]} \<inter> {replicate (k + 1) 0[j := n]} = {}"
chaieb@29687
  1427
  proof(clarify)
chaieb@29687
  1428
    fix i j assume i: "i \<in> ?K" and j: "j\<in> ?K" and ij: "i\<noteq>j"
chaieb@29687
  1429
    {assume eq: "replicate (k+1) 0 [i:=n] = replicate (k+1) 0 [j:= n]"
chaieb@29687
  1430
      have "(replicate (k+1) 0 [i:=n] ! i) = n" using i by (simp del: replicate.simps)
chaieb@29687
  1431
      moreover
chaieb@29687
  1432
      have "(replicate (k+1) 0 [j:=n] ! i) = 0" using i ij by (simp del: replicate.simps)
chaieb@29687
  1433
      ultimately have False using eq n0 by (simp del: replicate.simps)}
chaieb@29687
  1434
    then show "{replicate (k + 1) 0[i := n]} \<inter> {replicate (k + 1) 0[j := n]} = {}"
chaieb@29687
  1435
      by auto
chaieb@29687
  1436
  qed
huffman@30488
  1437
  from card_UN_disjoint[OF fK fAK d]
chaieb@29687
  1438
  show "card (\<Union>i\<in>{0..k}. {replicate (k + 1) 0[i := n]}) = k+1" by simp
chaieb@29687
  1439
qed
huffman@30488
  1440
huffman@30488
  1441
lemma power_radical:
haftmann@31021
  1442
  fixes a:: "'a ::{field, ring_char_0} fps"
chaieb@31073
  1443
  assumes a0: "a$0 \<noteq> 0"
chaieb@31073
  1444
  shows "(r (Suc k) (a$0)) ^ Suc k = a$0 \<longleftrightarrow> (fps_radical r (Suc k) a) ^ (Suc k) = a"
chaieb@31073
  1445
proof-
chaieb@31073
  1446
  let ?r = "fps_radical r (Suc k) a"
chaieb@31073
  1447
  {assume r0: "(r (Suc k) (a$0)) ^ Suc k = a$0"
chaieb@31073
  1448
    from a0 r0 have r00: "r (Suc k) (a$0) \<noteq> 0" by auto
chaieb@31073
  1449
    {fix z have "?r ^ Suc k $ z = a$z"
chaieb@31073
  1450
      proof(induct z rule: nat_less_induct)
chaieb@31073
  1451
	fix n assume H: "\<forall>m<n. ?r ^ Suc k $ m = a$m"
chaieb@31073
  1452
	{assume "n = 0" hence "?r ^ Suc k $ n = a $n"
chaieb@31073
  1453
	    using fps_radical_power_nth[of r "Suc k" a, OF r0] by simp}
chaieb@31073
  1454
	moreover
chaieb@31073
  1455
	{fix n1 assume n1: "n = Suc n1"
chaieb@31073
  1456
	  have fK: "finite {0..k}" by simp
chaieb@31073
  1457
	  have nz: "n \<noteq> 0" using n1 by arith
chaieb@31073
  1458
	  let ?Pnk = "natpermute n (k + 1)"
chaieb@31073
  1459
	  let ?Pnkn = "{xs \<in> ?Pnk. n \<in> set xs}"
chaieb@31073
  1460
	  let ?Pnknn = "{xs \<in> ?Pnk. n \<notin> set xs}"
chaieb@31073
  1461
	  have eq: "?Pnkn \<union> ?Pnknn = ?Pnk" by blast
chaieb@31073
  1462
	  have d: "?Pnkn \<inter> ?Pnknn = {}" by blast
chaieb@31073
  1463
	  have f: "finite ?Pnkn" "finite ?Pnknn"
chaieb@31073
  1464
	    using finite_Un[of ?Pnkn ?Pnknn, unfolded eq]
chaieb@31073
  1465
	    by (metis natpermute_finite)+
chaieb@31073
  1466
	  let ?f = "\<lambda>v. \<Prod>j\<in>{0..k}. ?r $ v ! j"
chaieb@31073
  1467
	  have "setsum ?f ?Pnkn = setsum (\<lambda>v. ?r $ n * r (Suc k) (a $ 0) ^ k) ?Pnkn"
chaieb@31073
  1468
	  proof(rule setsum_cong2)
chaieb@31073
  1469
	    fix v assume v: "v \<in> {xs \<in> natpermute n (k + 1). n \<in> set xs}"
chaieb@31073
  1470
	    let ?ths = "(\<Prod>j\<in>{0..k}. fps_radical r (Suc k) a $ v ! j) = fps_radical r (Suc k) a $ n * r (Suc k) (a $ 0) ^ k"
chaieb@31073
  1471
	  from v obtain i where i: "i \<in> {0..k}" "v = replicate (k+1) 0 [i:= n]"
chaieb@31073
  1472
	    unfolding natpermute_contain_maximal by auto
chaieb@31073
  1473
	  have "(\<Prod>j\<in>{0..k}. fps_radical r (Suc k) a $ v ! j) = (\<Prod>j\<in>{0..k}. if j = i then fps_radical r (Suc k) a $ n else r (Suc k) (a$0))"
chaieb@31073
  1474
	    apply (rule setprod_cong, simp)
chaieb@31073
  1475
	    using i r0 by (simp del: replicate.simps)
chaieb@31073
  1476
	  also have "\<dots> = (fps_radical r (Suc k) a $ n) * r (Suc k) (a$0) ^ k"
chaieb@31073
  1477
	    unfolding setprod_gen_delta[OF fK] using i r0 by simp
chaieb@31073
  1478
	  finally show ?ths .
chaieb@31073
  1479
	qed
chaieb@31073
  1480
	then have "setsum ?f ?Pnkn = of_nat (k+1) * ?r $ n * r (Suc k) (a $ 0) ^ k"
chaieb@31073
  1481
	  by (simp add: natpermute_max_card[OF nz, simplified])
chaieb@31073
  1482
	also have "\<dots> = a$n - setsum ?f ?Pnknn"
chaieb@31073
  1483
	  unfolding n1 using r00 a0 by (simp add: field_simps fps_radical_def del: of_nat_Suc )
chaieb@31073
  1484
	finally have fn: "setsum ?f ?Pnkn = a$n - setsum ?f ?Pnknn" .
chaieb@31073
  1485
	have "(?r ^ Suc k)$n = setsum ?f ?Pnkn + setsum ?f ?Pnknn"
chaieb@31073
  1486
	  unfolding fps_power_nth_Suc setsum_Un_disjoint[OF f d, unfolded eq] ..
chaieb@31073
  1487
	also have "\<dots> = a$n" unfolding fn by simp
chaieb@31073
  1488
	finally have "?r ^ Suc k $ n = a $n" .}
chaieb@31073
  1489
      ultimately  show "?r ^ Suc k $ n = a $n" by (cases n, auto)
chaieb@31073
  1490
    qed }
chaieb@31073
  1491
  then have ?thesis using r0 by (simp add: fps_eq_iff)}
chaieb@31073
  1492
moreover 
chaieb@31073
  1493
{ assume h: "(fps_radical r (Suc k) a) ^ (Suc k) = a"
chaieb@31073
  1494
  hence "((fps_radical r (Suc k) a) ^ (Suc k))$0 = a$0" by simp
chaieb@31073
  1495
  then have "(r (Suc k) (a$0)) ^ Suc k = a$0"
chaieb@31073
  1496
    unfolding fps_power_nth_Suc
chaieb@31073
  1497
    by (simp add: setprod_constant del: replicate.simps)}
chaieb@31073
  1498
ultimately show ?thesis by blast
chaieb@31073
  1499
qed
chaieb@31073
  1500
chaieb@31073
  1501
(*
chaieb@31073
  1502
lemma power_radical:
chaieb@31073
  1503
  fixes a:: "'a ::{field, ring_char_0} fps"
chaieb@29687
  1504
  assumes r0: "(r (Suc k) (a$0)) ^ Suc k = a$0" and a0: "a$0 \<noteq> 0"
huffman@30488
  1505
  shows "(fps_radical r (Suc k) a) ^ (Suc k) = a"
chaieb@29687
  1506
proof-
chaieb@29687
  1507
  let ?r = "fps_radical r (Suc k) a"
chaieb@29687
  1508
  from a0 r0 have r00: "r (Suc k) (a$0) \<noteq> 0" by auto
chaieb@29687
  1509
  {fix z have "?r ^ Suc k $ z = a$z"
chaieb@29687
  1510
    proof(induct z rule: nat_less_induct)
chaieb@29687
  1511
      fix n assume H: "\<forall>m<n. ?r ^ Suc k $ m = a$m"
chaieb@29687
  1512
      {assume "n = 0" hence "?r ^ Suc k $ n = a $n"
chaieb@29687
  1513
	  using fps_radical_power_nth[of r "Suc k" a, OF r0] by simp}
chaieb@29687
  1514
      moreover
chaieb@29687
  1515
      {fix n1 assume n1: "n = Suc n1"
chaieb@29687
  1516
	have fK: "finite {0..k}" by simp
chaieb@29687
  1517
	have nz: "n \<noteq> 0" using n1 by arith
chaieb@29687
  1518
	let ?Pnk = "natpermute n (k + 1)"
chaieb@29687
  1519
	let ?Pnkn = "{xs \<in> ?Pnk. n \<in> set xs}"
chaieb@29687
  1520
	let ?Pnknn = "{xs \<in> ?Pnk. n \<notin> set xs}"
chaieb@29687
  1521
	have eq: "?Pnkn \<union> ?Pnknn = ?Pnk" by blast
chaieb@29687
  1522
	have d: "?Pnkn \<inter> ?Pnknn = {}" by blast
huffman@30488
  1523
	have f: "finite ?Pnkn" "finite ?Pnknn"
chaieb@29687
  1524
	  using finite_Un[of ?Pnkn ?Pnknn, unfolded eq]
chaieb@29687
  1525
	  by (metis natpermute_finite)+
chaieb@29687
  1526
	let ?f = "\<lambda>v. \<Prod>j\<in>{0..k}. ?r $ v ! j"
huffman@30488
  1527
	have "setsum ?f ?Pnkn = setsum (\<lambda>v. ?r $ n * r (Suc k) (a $ 0) ^ k) ?Pnkn"
chaieb@29687
  1528
	proof(rule setsum_cong2)
chaieb@29687
  1529
	  fix v assume v: "v \<in> {xs \<in> natpermute n (k + 1). n \<in> set xs}"
chaieb@29687
  1530
	  let ?ths = "(\<Prod>j\<in>{0..k}. fps_radical r (Suc k) a $ v ! j) = fps_radical r (Suc k) a $ n * r (Suc k) (a $ 0) ^ k"
chaieb@29687
  1531
	  from v obtain i where i: "i \<in> {0..k}" "v = replicate (k+1) 0 [i:= n]"
chaieb@29687
  1532
	    unfolding natpermute_contain_maximal by auto
chaieb@29687
  1533
	  have "(\<Prod>j\<in>{0..k}. fps_radical r (Suc k) a $ v ! j) = (\<Prod>j\<in>{0..k}. if j = i then fps_radical r (Suc k) a $ n else r (Suc k) (a$0))"
chaieb@29687
  1534
	    apply (rule setprod_cong, simp)
chaieb@29687
  1535
	    using i r0 by (simp del: replicate.simps)
chaieb@29687
  1536
	  also have "\<dots> = (fps_radical r (Suc k) a $ n) * r (Suc k) (a$0) ^ k"
chaieb@29687
  1537
	    unfolding setprod_gen_delta[OF fK] using i r0 by simp
chaieb@29687
  1538
	  finally show ?ths .
chaieb@29687
  1539
	qed
huffman@30488
  1540
	then have "setsum ?f ?Pnkn = of_nat (k+1) * ?r $ n * r (Suc k) (a $ 0) ^ k"
huffman@30488
  1541
	  by (simp add: natpermute_max_card[OF nz, simplified])
chaieb@29687
  1542
	also have "\<dots> = a$n - setsum ?f ?Pnknn"
chaieb@29687
  1543
	  unfolding n1 using r00 a0 by (simp add: field_simps fps_radical_def del: of_nat_Suc )
chaieb@29687
  1544
	finally have fn: "setsum ?f ?Pnkn = a$n - setsum ?f ?Pnknn" .
huffman@30488
  1545
	have "(?r ^ Suc k)$n = setsum ?f ?Pnkn + setsum ?f ?Pnknn"
chaieb@29687
  1546
	  unfolding fps_power_nth_Suc setsum_Un_disjoint[OF f d, unfolded eq] ..
chaieb@29687
  1547
	also have "\<dots> = a$n" unfolding fn by simp
chaieb@29687
  1548
	finally have "?r ^ Suc k $ n = a $n" .}
chaieb@29687
  1549
      ultimately  show "?r ^ Suc k $ n = a $n" by (cases n, auto)
chaieb@29687
  1550
  qed }
chaieb@29687
  1551
  then show ?thesis by (simp add: fps_eq_iff)
chaieb@29687
  1552
qed
chaieb@29687
  1553
chaieb@31073
  1554
*)
chaieb@29687
  1555
lemma eq_divide_imp': assumes c0: "(c::'a::field) ~= 0" and eq: "a * c = b"
huffman@30488
  1556
  shows "a = b / c"
chaieb@29687
  1557
proof-
chaieb@29687
  1558
  from eq have "a * c * inverse c = b * inverse c" by simp
chaieb@29687
  1559
  hence "a * (inverse c * c) = b/c" by (simp only: field_simps divide_inverse)
chaieb@29687
  1560
  then show "a = b/c" unfolding  field_inverse[OF c0] by simp
chaieb@29687
  1561
qed
chaieb@29687
  1562
huffman@30488
  1563
lemma radical_unique:
huffman@30488
  1564
  assumes r0: "(r (Suc k) (b$0)) ^ Suc k = b$0"
haftmann@31021
  1565
  and a0: "r (Suc k) (b$0 ::'a::{field, ring_char_0}) = a$0" and b0: "b$0 \<noteq> 0"
chaieb@29687
  1566
  shows "a^(Suc k) = b \<longleftrightarrow> a = fps_radical r (Suc k) b"
chaieb@29687
  1567
proof-
chaieb@29687
  1568
  let ?r = "fps_radical r (Suc k) b"
chaieb@29687
  1569
  have r00: "r (Suc k) (b$0) \<noteq> 0" using b0 r0 by auto
chaieb@29687
  1570
  {assume H: "a = ?r"
chaieb@31073
  1571
    from H have "a^Suc k = b" using power_radical[OF b0, of r k, unfolded r0] by simp}
chaieb@29687
  1572
  moreover
chaieb@29687
  1573
  {assume H: "a^Suc k = b"
chaieb@29687
  1574
    have ceq: "card {0..k} = Suc k" by simp
chaieb@29687
  1575
    have fk: "finite {0..k}" by simp
chaieb@29687
  1576
    from a0 have a0r0: "a$0 = ?r$0" by simp
chaieb@29687
  1577
    {fix n have "a $ n = ?r $ n"
chaieb@29687
  1578
      proof(induct n rule: nat_less_induct)
chaieb@29687
  1579
	fix n assume h: "\<forall>m<n. a$m = ?r $m"
chaieb@29687
  1580
	{assume "n = 0" hence "a$n = ?r $n" using a0 by simp }
chaieb@29687
  1581
	moreover
chaieb@29687
  1582
	{fix n1 assume n1: "n = Suc n1"
chaieb@29687
  1583
	  have fK: "finite {0..k}" by simp
chaieb@29687
  1584
	have nz: "n \<noteq> 0" using n1 by arith
chaieb@29687
  1585
	let ?Pnk = "natpermute n (Suc k)"
chaieb@29687
  1586
	let ?Pnkn = "{xs \<in> ?Pnk. n \<in> set xs}"
chaieb@29687
  1587
	let ?Pnknn = "{xs \<in> ?Pnk. n \<notin> set xs}"
chaieb@29687
  1588
	have eq: "?Pnkn \<union> ?Pnknn = ?Pnk" by blast
chaieb@29687
  1589
	have d: "?Pnkn \<inter> ?Pnknn = {}" by blast
huffman@30488
  1590
	have f: "finite ?Pnkn" "finite ?Pnknn"
chaieb@29687
  1591
	  using finite_Un[of ?Pnkn ?Pnknn, unfolded eq]
chaieb@29687
  1592
	  by (metis natpermute_finite)+
chaieb@29687
  1593
	let ?f = "\<lambda>v. \<Prod>j\<in>{0..k}. ?r $ v ! j"
chaieb@29687
  1594
	let ?g = "\<lambda>v. \<Prod>j\<in>{0..k}. a $ v ! j"
huffman@30488
  1595
	have "setsum ?g ?Pnkn = setsum (\<lambda>v. a $ n * (?r$0)^k) ?Pnkn"
chaieb@29687
  1596
	proof(rule setsum_cong2)
chaieb@29687
  1597
	  fix v assume v: "v \<in> {xs \<in> natpermute n (Suc k). n \<in> set xs}"
chaieb@29687
  1598
	  let ?ths = "(\<Prod>j\<in>{0..k}. a $ v ! j) = a $ n * (?r$0)^k"
chaieb@29687
  1599
	  from v obtain i where i: "i \<in> {0..k}" "v = replicate (k+1) 0 [i:= n]"
chaieb@29687
  1600
	    unfolding Suc_plus1 natpermute_contain_maximal by (auto simp del: replicate.simps)
chaieb@29687
  1601
	  have "(\<Prod>j\<in>{0..k}. a $ v ! j) = (\<Prod>j\<in>{0..k}. if j = i then a $ n else r (Suc k) (b$0))"
chaieb@29687
  1602
	    apply (rule setprod_cong, simp)
chaieb@29687
  1603
	    using i a0 by (simp del: replicate.simps)
chaieb@29687
  1604
	  also have "\<dots> = a $ n * (?r $ 0)^k"
chaieb@29687
  1605
	    unfolding  setprod_gen_delta[OF fK] using i by simp
chaieb@29687
  1606
	  finally show ?ths .
chaieb@29687
  1607
	qed
huffman@30488
  1608
	then have th0: "setsum ?g ?Pnkn = of_nat (k+1) * a $ n * (?r $ 0)^k"
chaieb@29687
  1609
	  by (simp add: natpermute_max_card[OF nz, simplified])
chaieb@29687
  1610
	have th1: "setsum ?g ?Pnknn = setsum ?f ?Pnknn"
chaieb@29687
  1611
	proof (rule setsum_cong2, rule setprod_cong, simp)
chaieb@29687
  1612
	  fix xs i assume xs: "xs \<in> ?Pnknn" and i: "i \<in> {0..k}"
chaieb@29687
  1613
	  {assume c: "n \<le> xs ! i"
chaieb@29687
  1614
	    from xs i have "xs !i \<noteq> n" by (auto simp add: in_set_conv_nth natpermute_def)
chaieb@29687
  1615
	    with c have c': "n < xs!i" by arith
chaieb@29687
  1616
	    have fths: "finite {0 ..< i}" "finite {i}" "finite {i+1..<Suc k}" by simp_all
chaieb@29687
  1617
	    have d: "{0 ..< i} \<inter> ({i} \<union> {i+1 ..< Suc k}) = {}" "{i} \<inter> {i+1..< Suc k} = {}" by auto
chaieb@29687
  1618
	    have eqs: "{0..<Suc k} = {0 ..< i} \<union> ({i} \<union> {i+1 ..< Suc k})" using i by auto
chaieb@29687
  1619
	    from xs have "n = foldl op + 0 xs" by (simp add: natpermute_def)
chaieb@29687
  1620
	    also have "\<dots> = setsum (nth xs) {0..<Suc k}" unfolding foldl_add_setsum using xs
chaieb@29687
  1621
	      by (simp add: natpermute_def)
chaieb@29687
  1622
	    also have "\<dots> = xs!i + setsum (nth xs) {0..<i} + setsum (nth xs) {i+1..<Suc k}"
chaieb@29687
  1623
	      unfolding eqs  setsum_Un_disjoint[OF fths(1) finite_UnI[OF fths(2,3)] d(1)]
chaieb@29687
  1624
	      unfolding setsum_Un_disjoint[OF fths(2) fths(3) d(2)]
chaieb@29687
  1625
	      by simp
chaieb@29687
  1626
	    finally have False using c' by simp}
chaieb@29687
  1627
	  then have thn: "xs!i < n" by arith
huffman@30488
  1628
	  from h[rule_format, OF thn]
chaieb@29687
  1629
	  show "a$(xs !i) = ?r$(xs!i)" .
chaieb@29687
  1630
	qed
chaieb@29687
  1631
	have th00: "\<And>(x::'a). of_nat (Suc k) * (x * inverse (of_nat (Suc k))) = x"
chaieb@29687
  1632
	  by (simp add: field_simps del: of_nat_Suc)
chaieb@29687
  1633
	from H have "b$n = a^Suc k $ n" by (simp add: fps_eq_iff)
chaieb@29687
  1634
	also have "a ^ Suc k$n = setsum ?g ?Pnkn + setsum ?g ?Pnknn"
huffman@30488
  1635
	  unfolding fps_power_nth_Suc
huffman@30488
  1636
	  using setsum_Un_disjoint[OF f d, unfolded Suc_plus1[symmetric],
chaieb@29687
  1637
	    unfolded eq, of ?g] by simp
chaieb@29687
  1638
	also have "\<dots> = of_nat (k+1) * a $ n * (?r $ 0)^k + setsum ?f ?Pnknn" unfolding th0 th1 ..
chaieb@29687
  1639
	finally have "of_nat (k+1) * a $ n * (?r $ 0)^k = b$n - setsum ?f ?Pnknn" by simp
chaieb@29687
  1640
	then have "a$n = (b$n - setsum ?f ?Pnknn) / (of_nat (k+1) * (?r $ 0)^k)"
huffman@30488
  1641
	  apply -
chaieb@29687
  1642
	  apply (rule eq_divide_imp')
chaieb@29687
  1643
	  using r00
chaieb@29687
  1644
	  apply (simp del: of_nat_Suc)
chaieb@29687
  1645
	  by (simp add: mult_ac)
chaieb@29687
  1646
	then have "a$n = ?r $n"
chaieb@29687
  1647
	  apply (simp del: of_nat_Suc)
chaieb@29687
  1648
	  unfolding fps_radical_def n1
huffman@29911
  1649
	  by (simp add: field_simps n1 th00 del: of_nat_Suc)}
chaieb@29687
  1650
	ultimately show "a$n = ?r $ n" by (cases n, auto)
chaieb@29687
  1651
      qed}
chaieb@29687
  1652
    then have "a = ?r" by (simp add: fps_eq_iff)}
chaieb@29687
  1653
  ultimately show ?thesis by blast
chaieb@29687
  1654
qed
chaieb@29687
  1655
chaieb@29687
  1656
huffman@30488
  1657
lemma radical_power:
huffman@30488
  1658
  assumes r0: "r (Suc k) ((a$0) ^ Suc k) = a$0"
haftmann@31021
  1659
  and a0: "(a$0 ::'a::{field, ring_char_0}) \<noteq> 0"
chaieb@29687
  1660
  shows "(fps_radical r (Suc k) (a ^ Suc k)) = a"
chaieb@29687
  1661
proof-
chaieb@29687
  1662
  let ?ak = "a^ Suc k"
huffman@30273
  1663
  have ak0: "?ak $ 0 = (a$0) ^ Suc k" by (simp add: fps_nth_power_0 del: power_Suc)
chaieb@29687
  1664
  from r0 have th0: "r (Suc k) (a ^ Suc k $ 0) ^ Suc k = a ^ Suc k $ 0" using ak0 by auto
chaieb@29687
  1665
  from r0 ak0 have th1: "r (Suc k) (a ^ Suc k $ 0) = a $ 0" by auto
chaieb@29687
  1666
  from ak0 a0 have ak00: "?ak $ 0 \<noteq>0 " by auto
chaieb@29687
  1667
  from radical_unique[of r k ?ak a, OF th0 th1 ak00] show ?thesis by metis
chaieb@29687
  1668
qed
chaieb@29687
  1669
huffman@30488
  1670
lemma fps_deriv_radical:
haftmann@31021
  1671
  fixes a:: "'a ::{field, ring_char_0} fps"
chaieb@29687
  1672
  assumes r0: "(r (Suc k) (a$0)) ^ Suc k = a$0" and a0: "a$0 \<noteq> 0"
chaieb@29687
  1673
  shows "fps_deriv (fps_radical r (Suc k) a) = fps_deriv a / (fps_const (of_nat (Suc k)) * (fps_radical r (Suc k) a) ^ k)"
chaieb@29687
  1674
proof-
chaieb@29687
  1675
  let ?r= "fps_radical r (Suc k) a"
chaieb@29687
  1676
  let ?w = "(fps_const (of_nat (Suc k)) * ?r ^ k)"
chaieb@29687
  1677
  from a0 r0 have r0': "r (Suc k) (a$0) \<noteq> 0" by auto
chaieb@29687
  1678
  from r0' have w0: "?w $ 0 \<noteq> 0" by (simp del: of_nat_Suc)
chaieb@29687
  1679
  note th0 = inverse_mult_eq_1[OF w0]
chaieb@29687
  1680
  let ?iw = "inverse ?w"
chaieb@31073
  1681
  from iffD1[OF power_radical[of a r], OF a0 r0]
chaieb@29687
  1682
  have "fps_deriv (?r ^ Suc k) = fps_deriv a" by simp
chaieb@29687
  1683
  hence "fps_deriv ?r * ?w = fps_deriv a"
huffman@30273
  1684
    by (simp add: fps_deriv_power mult_ac del: power_Suc)
chaieb@29687
  1685
  hence "?iw * fps_deriv ?r * ?w = ?iw * fps_deriv a" by simp
chaieb@29687
  1686
  hence "fps_deriv ?r * (?iw * ?w) = fps_deriv a / ?w"
chaieb@29687
  1687
    by (simp add: fps_divide_def)
huffman@30488
  1688
  then show ?thesis unfolding th0 by simp
chaieb@29687
  1689
qed
chaieb@29687
  1690
huffman@30488
  1691
lemma radical_mult_distrib:
haftmann@31021
  1692
  fixes a:: "'a ::{field, ring_char_0} fps"
huffman@30488
  1693
  assumes
chaieb@31073
  1694
  k: "k > 0"
chaieb@31073
  1695
  and ra0: "r k (a $ 0) ^ k = a $ 0"
chaieb@31073
  1696
  and rb0: "r k (b $ 0) ^ k = b $ 0"
chaieb@31073
  1697
  and a0: "a$0 \<noteq> 0"
chaieb@31073
  1698
  and b0: "b$0 \<noteq> 0"
chaieb@31073
  1699
  shows "r k ((a * b) $ 0) = r k (a $ 0) * r k (b $ 0) \<longleftrightarrow> fps_radical r (k) (a*b) = fps_radical r (k) a * fps_radical r (k) (b)"
chaieb@31073
  1700
proof-
chaieb@31073
  1701
  {assume  r0': "r k ((a * b) $ 0) = r k (a $ 0) * r k (b $ 0)"
chaieb@31073
  1702
  from r0' have r0: "(r (k) ((a*b)$0)) ^ k = (a*b)$0"
chaieb@31073
  1703
    by (simp add: fps_mult_nth ra0 rb0 power_mult_distrib)
chaieb@31073
  1704
  {assume "k=0" hence ?thesis using r0' by simp}
chaieb@31073
  1705
  moreover
chaieb@31073
  1706
  {fix h assume k: "k = Suc h"
chaieb@31073
  1707
  let ?ra = "fps_radical r (Suc h) a"
chaieb@31073
  1708
  let ?rb = "fps_radical r (Suc h) b"
chaieb@31073
  1709
  have th0: "r (Suc h) ((a * b) $ 0) = (fps_radical r (Suc h) a * fps_radical r (Suc h) b) $ 0"
chaieb@31073
  1710
    using r0' k by (simp add: fps_mult_nth)
chaieb@31073
  1711
  have ab0: "(a*b) $ 0 \<noteq> 0" using a0 b0 by (simp add: fps_mult_nth)
chaieb@31073
  1712
  from radical_unique[of r h "a*b" "fps_radical r (Suc h) a * fps_radical r (Suc h) b", OF r0[unfolded k] th0 ab0, symmetric]
chaieb@31073
  1713
    iffD1[OF power_radical[of _ r], OF a0 ra0[unfolded k]] iffD1[OF power_radical[of _ r], OF b0 rb0[unfolded k]] k r0'
chaieb@31073
  1714
  have ?thesis by (auto simp add: power_mult_distrib simp del: power_Suc)}
chaieb@31073
  1715
ultimately have ?thesis by (cases k, auto)}
chaieb@31073
  1716
moreover
chaieb@31073
  1717
{assume h: "fps_radical r k (a*b) = fps_radical r k a * fps_radical r k b"
chaieb@31073
  1718
  hence "(fps_radical r k (a*b))$0 = (fps_radical r k a * fps_radical r k b)$0" by simp
chaieb@31073
  1719
  then have "r k ((a * b) $ 0) = r k (a $ 0) * r k (b $ 0)"
chaieb@31073
  1720
    using k by (simp add: fps_mult_nth)}
chaieb@31073
  1721
ultimately show ?thesis by blast
chaieb@31073
  1722
qed
chaieb@31073
  1723
chaieb@31073
  1724
(*
chaieb@31073
  1725
lemma radical_mult_distrib:
chaieb@31073
  1726
  fixes a:: "'a ::{field, ring_char_0} fps"
chaieb@31073
  1727
  assumes
chaieb@31073
  1728
  ra0: "r k (a $ 0) ^ k = a $ 0"
chaieb@31073
  1729
  and rb0: "r k (b $ 0) ^ k = b $ 0"
chaieb@31073
  1730
  and r0': "r k ((a * b) $ 0) = r k (a $ 0) * r k (b $ 0)"
chaieb@29687
  1731
  and a0: "a$0 \<noteq> 0"
chaieb@29687
  1732
  and b0: "b$0 \<noteq> 0"
chaieb@29687
  1733
  shows "fps_radical r (k) (a*b) = fps_radical r (k) a * fps_radical r (k) (b)"
chaieb@29687
  1734
proof-
chaieb@29687
  1735
  from r0' have r0: "(r (k) ((a*b)$0)) ^ k = (a*b)$0"
chaieb@29687
  1736
    by (simp add: fps_mult_nth ra0 rb0 power_mult_distrib)
chaieb@29687
  1737
  {assume "k=0" hence ?thesis by simp}
chaieb@29687
  1738
  moreover
chaieb@29687
  1739
  {fix h assume k: "k = Suc h"
chaieb@29687
  1740
  let ?ra = "fps_radical r (Suc h) a"
chaieb@29687
  1741
  let ?rb = "fps_radical r (Suc h) b"
huffman@30488
  1742
  have th0: "r (Suc h) ((a * b) $ 0) = (fps_radical r (Suc h) a * fps_radical r (Suc h) b) $ 0"
chaieb@29687
  1743
    using r0' k by (simp add: fps_mult_nth)
chaieb@29687
  1744
  have ab0: "(a*b) $ 0 \<noteq> 0" using a0 b0 by (simp add: fps_mult_nth)
huffman@30488
  1745
  from radical_unique[of r h "a*b" "fps_radical r (Suc h) a * fps_radical r (Suc h) b", OF r0[unfolded k] th0 ab0, symmetric]
chaieb@29687
  1746
    power_radical[of r, OF ra0[unfolded k] a0] power_radical[of r, OF rb0[unfolded k] b0] k
huffman@30273
  1747
  have ?thesis by (auto simp add: power_mult_distrib simp del: power_Suc)}
chaieb@29687
  1748
ultimately show ?thesis by (cases k, auto)
chaieb@29687
  1749
qed
chaieb@31073
  1750
*)
chaieb@29687
  1751
chaieb@31073
  1752
lemma fps_divide_1[simp]: "(a:: ('a::field) fps) / 1 = a"
chaieb@29687
  1753
  by (simp add: fps_divide_def)
chaieb@29687
  1754
chaieb@29687
  1755
lemma radical_divide:
haftmann@31021
  1756
  fixes a:: "'a ::{field, ring_char_0} fps"
huffman@30488
  1757
  assumes
chaieb@31073
  1758
  kp: "k>0"
chaieb@31073
  1759
  and ra0: "(r k (a $ 0)) ^ k = a $ 0"
chaieb@31073
  1760
  and rb0: "(r k (b $ 0)) ^ k = b $ 0"
chaieb@31073
  1761
  and r1: "(r k 1)^k = 1"
huffman@30488
  1762
  and a0: "a$0 \<noteq> 0"
chaieb@29687
  1763
  and b0: "b$0 \<noteq> 0"
chaieb@31073
  1764
  shows "r k ((a $ 0) / (b$0)) = r k (a$0) / r k (b $ 0) \<longleftrightarrow> fps_radical r k (a/b) = fps_radical r k a / fps_radical r k b" (is "?lhs = ?rhs")
chaieb@29687
  1765
proof-
chaieb@31073
  1766
  let ?r = "fps_radical r k"
chaieb@31073
  1767
  from kp obtain h where k: "k = Suc h" by (cases k, auto)
chaieb@31073
  1768
  have ra0': "r k (a$0) \<noteq> 0" using a0 ra0 k by auto
chaieb@31073
  1769
  have rb0': "r k (b$0) \<noteq> 0" using b0 rb0 k by auto
huffman@30488
  1770
chaieb@31073
  1771
  {assume ?rhs
chaieb@31073
  1772
    then have "?r (a/b) $ 0 = (?r a / ?r b)$0" by simp
chaieb@31073
  1773
    then have ?lhs using k a0 b0 rb0' 
chaieb@31073
  1774
      by (simp add: fps_divide_def fps_mult_nth fps_inverse_def divide_inverse) }
chaieb@31073
  1775
  moreover
chaieb@31073
  1776
  {assume h: ?lhs
chaieb@31073
  1777
    from a0 b0 have ab0[simp]: "(a/b)$0 = a$0 / b$0" 
chaieb@31073
  1778
      by (simp add: fps_divide_def fps_mult_nth divide_inverse fps_inverse_def)
chaieb@31073
  1779
    have th0: "r k ((a/b)$0) ^ k = (a/b)$0"
chaieb@31073
  1780
      by (simp add: h nonzero_power_divide[OF rb0'] ra0 rb0 del: k)
chaieb@31073
  1781
    from a0 b0 ra0' rb0' kp h 
chaieb@31073
  1782
    have th1: "r k ((a / b) $ 0) = (fps_radical r k a / fps_radical r k b) $ 0"
chaieb@31073
  1783
      by (simp add: fps_divide_def fps_mult_nth fps_inverse_def divide_inverse del: k)
chaieb@31073
  1784
    from a0 b0 ra0' rb0' kp have ab0': "(a / b) $ 0 \<noteq> 0"
chaieb@31073
  1785
      by (simp add: fps_divide_def fps_mult_nth fps_inverse_def nonzero_imp_inverse_nonzero)
chaieb@31073
  1786
    note tha[simp] = iffD1[OF power_radical[where r=r and k=h], OF a0 ra0[unfolded k], unfolded k[symmetric]]
chaieb@31073
  1787
    note thb[simp] = iffD1[OF power_radical[where r=r and k=h], OF b0 rb0[unfolded k], unfolded k[symmetric]]
chaieb@31073
  1788
    have th2: "(?r a / ?r b)^k = a/b"
chaieb@31073
  1789
      by (simp add: fps_divide_def power_mult_distrib fps_inverse_power[symmetric])
chaieb@31073
  1790
    from iffD1[OF radical_unique[where r=r and a="?r a / ?r b" and b="a/b" and k=h], symmetric, unfolded k[symmetric], OF th0 th1 ab0' th2] have ?rhs .}
chaieb@31073
  1791
  ultimately show ?thesis by blast
chaieb@29687
  1792
qed
chaieb@29687
  1793
chaieb@31073
  1794
lemma radical_inverse:
chaieb@31073
  1795
  fixes a:: "'a ::{field, ring_char_0} fps"
chaieb@31073
  1796
  assumes
chaieb@31073
  1797
  k: "k>0"
chaieb@31073
  1798
  and ra0: "r k (a $ 0) ^ k = a $ 0"
chaieb@31073
  1799
  and r1: "(r k 1)^k = 1"
chaieb@31073
  1800
  and a0: "a$0 \<noteq> 0"
chaieb@31073
  1801
  shows "r k (inverse (a $ 0)) = r k 1 / (r k (a $ 0)) \<longleftrightarrow> fps_radical r k (inverse a) = fps_radical r k 1 / fps_radical r k a"
chaieb@31073
  1802
  using radical_divide[where k=k and r=r and a=1 and b=a, OF k ] ra0 r1 a0
chaieb@31073
  1803
  by (simp add: divide_inverse fps_divide_def)
chaieb@31073
  1804
huffman@29906
  1805
subsection{* Derivative of composition *}
chaieb@29687
  1806
huffman@30488
  1807
lemma fps_compose_deriv:
chaieb@29687
  1808
  fixes a:: "('a::idom) fps"
chaieb@29687
  1809
  assumes b0: "b$0 = 0"
chaieb@29687
  1810
  shows "fps_deriv (a oo b) = ((fps_deriv a) oo b) * (fps_deriv b)"
chaieb@29687
  1811
proof-
chaieb@29687
  1812
  {fix n
chaieb@29687
  1813
    have "(fps_deriv (a oo b))$n = setsum (\<lambda>i. a $ i * (fps_deriv (b^i))$n) {0.. Suc n}"
chaieb@29687
  1814
      by (simp add: fps_compose_def ring_simps setsum_right_distrib del: of_nat_Suc)
chaieb@29687
  1815
    also have "\<dots> = setsum (\<lambda>i. a$i * ((fps_const (of_nat i)) * (fps_deriv b * (b^(i - 1))))$n) {0.. Suc n}"
chaieb@29687
  1816
      by (simp add: ring_simps fps_deriv_power del: fps_mult_left_const_nth of_nat_Suc)
chaieb@29687
  1817
  also have "\<dots> = setsum (\<lambda>i. of_nat i * a$i * (((b^(i - 1)) * fps_deriv b))$n) {0.. Suc n}"
chaieb@29687
  1818
    unfolding fps_mult_left_const_nth  by (simp add: ring_simps)
chaieb@29687
  1819
  also have "\<dots> = setsum (\<lambda>i. of_nat i * a$i * (setsum (\<lambda>j. (b^ (i - 1))$j * (fps_deriv b)$(n - j)) {0..n})) {0.. Suc n}"
chaieb@29687
  1820
    unfolding fps_mult_nth ..
chaieb@29687
  1821
  also have "\<dots> = setsum (\<lambda>i. of_nat i * a$i * (setsum (\<lambda>j. (b^ (i - 1))$j * (fps_deriv b)$(n - j)) {0..n})) {1.. Suc n}"
chaieb@29687
  1822
    apply (rule setsum_mono_zero_right)
huffman@29913
  1823
    apply (auto simp add: mult_delta_left setsum_delta not_le)
huffman@29913
  1824
    done
chaieb@29687
  1825
  also have "\<dots> = setsum (\<lambda>i. of_nat (i + 1) * a$(i+1) * (setsum (\<lambda>j. (b^ i)$j * of_nat (n - j + 1) * b$(n - j + 1)) {0..n})) {0.. n}"
chaieb@29687
  1826
    unfolding fps_deriv_nth
chaieb@29687
  1827
    apply (rule setsum_reindex_cong[where f="Suc"])
chaieb@29687
  1828
    by (auto simp add: mult_assoc)
chaieb@29687
  1829
  finally have th0: "(fps_deriv (a oo b))$n = setsum (\<lambda>i. of_nat (i + 1) * a$(i+1) * (setsum (\<lambda>j. (b^ i)$j * of_nat (n - j + 1) * b$(n - j + 1)) {0..n})) {0.. n}" .
huffman@30488
  1830
chaieb@29687
  1831
  have "(((fps_deriv a) oo b) * (fps_deriv b))$n = setsum (\<lambda>i. (fps_deriv b)$ (n - i) * ((fps_deriv a) oo b)$i) {0..n}"
chaieb@29687
  1832
    unfolding fps_mult_nth by (simp add: mult_ac)
chaieb@29687
  1833
  also have "\<dots> = setsum (\<lambda>i. setsum (\<lambda>j. of_nat (n - i +1) * b$(n - i + 1) * of_nat (j + 1) * a$(j+1) * (b^j)$i) {0..n}) {0..n}"
chaieb@29687
  1834
    unfolding fps_deriv_nth fps_compose_nth setsum_right_distrib mult_assoc
chaieb@29687
  1835
    apply (rule setsum_cong2)
chaieb@29687
  1836
    apply (rule setsum_mono_zero_left)
chaieb@29687
  1837
    apply (simp_all add: subset_eq)
chaieb@29687
  1838
    apply clarify
chaieb@29687
  1839
    apply (subgoal_tac "b^i$x = 0")
chaieb@29687
  1840
    apply simp
chaieb@29687
  1841
    apply (rule startsby_zero_power_prefix[OF b0, rule_format])
chaieb@29687
  1842
    by simp
chaieb@29687
  1843
  also have "\<dots> = setsum (\<lambda>i. of_nat (i + 1) * a$(i+1) * (setsum (\<lambda>j. (b^ i)$j * of_nat (n - j + 1) * b$(n - j + 1)) {0..n})) {0.. n}"
chaieb@29687
  1844
    unfolding setsum_right_distrib
chaieb@29687
  1845
    apply (subst setsum_commute)
chaieb@29687
  1846
    by ((rule setsum_cong2)+) simp
chaieb@29687
  1847
  finally have "(fps_deriv (a oo b))$n = (((fps_deriv a) oo b) * (fps_deriv b)) $n"
chaieb@29687
  1848
    unfolding th0 by simp}
chaieb@29687
  1849
then show ?thesis by (simp add: fps_eq_iff)
chaieb@29687
  1850
qed
chaieb@29687
  1851
chaieb@29687
  1852
lemma fps_mult_X_plus_1_nth:
chaieb@29687
  1853
  "((1+X)*a) $n = (if n = 0 then (a$n :: 'a::comm_ring_1) else a$n + a$(n - 1))"
chaieb@29687
  1854
proof-
chaieb@29687
  1855
  {assume "n = 0" hence ?thesis by (simp add: fps_mult_nth )}
chaieb@29687
  1856
  moreover
chaieb@29687
  1857
  {fix m assume m: "n = Suc m"
chaieb@29687
  1858
    have "((1+X)*a) $n = setsum (\<lambda>i. (1+X)$i * a$(n-i)) {0..n}"
chaieb@29687
  1859
      by (simp add: fps_mult_nth)
chaieb@29687
  1860
    also have "\<dots> = setsum (\<lambda>i. (1+X)$i * a$(n-i)) {0.. 1}"
chaieb@29687
  1861
      unfolding m
chaieb@29687
  1862
      apply (rule setsum_mono_zero_right)
chaieb@29687
  1863
      by (auto simp add: )
chaieb@29687
  1864
    also have "\<dots> = (if n = 0 then (a$n :: 'a::comm_ring_1) else a$n + a$(n - 1))"
chaieb@29687
  1865
      unfolding m
chaieb@29687
  1866
      by (simp add: )
chaieb@29687
  1867
    finally have ?thesis .}
chaieb@29687
  1868
  ultimately show ?thesis by (cases n, auto)
chaieb@29687
  1869
qed
chaieb@29687
  1870
huffman@29906
  1871
subsection{* Finite FPS (i.e. polynomials) and X *}
chaieb@29687
  1872
lemma fps_poly_sum_X:
huffman@30488
  1873
  assumes z: "\<forall>i > n. a$i = (0::'a::comm_ring_1)"
chaieb@29687
  1874
  shows "a = setsum (\<lambda>i. fps_const (a$i) * X^i) {0..n}" (is "a = ?r")
chaieb@29687
  1875
proof-
chaieb@29687
  1876
  {fix i
huffman@30488
  1877
    have "a$i = ?r$i"
chaieb@29687
  1878
      unfolding fps_setsum_nth fps_mult_left_const_nth X_power_nth
huffman@29913
  1879
      by (simp add: mult_delta_right setsum_delta' z)
huffman@29913
  1880
  }
chaieb@29687
  1881
  then show ?thesis unfolding fps_eq_iff by blast
chaieb@29687
  1882
qed
chaieb@29687
  1883
huffman@29906
  1884
subsection{* Compositional inverses *}
chaieb@29687
  1885
chaieb@29687
  1886
haftmann@31021
  1887
fun compinv :: "'a fps \<Rightarrow> nat \<Rightarrow> 'a::{field}" where
chaieb@29687
  1888
  "compinv a 0 = X$0"
chaieb@29687
  1889
| "compinv a (Suc n) = (X$ Suc n - setsum (\<lambda>i. (compinv a i) * (a^i)$Suc n) {0 .. n}) / (a$1) ^ Suc n"
chaieb@29687
  1890
chaieb@29687
  1891
definition "fps_inv a = Abs_fps (compinv a)"
chaieb@29687
  1892
chaieb@29687
  1893
lemma fps_inv: assumes a0: "a$0 = 0" and a1: "a$1 \<noteq> 0"
chaieb@29687
  1894
  shows "fps_inv a oo a = X"
chaieb@29687
  1895
proof-
chaieb@29687
  1896
  let ?i = "fps_inv a oo a"
chaieb@29687
  1897
  {fix n
huffman@30488
  1898
    have "?i $n = X$n"
chaieb@29687
  1899
    proof(induct n rule: nat_less_induct)
chaieb@29687
  1900
      fix n assume h: "\<forall>m<n. ?i$m = X$m"
huffman@30488
  1901
      {assume "n=0" hence "?i $n = X$n" using a0
chaieb@29687
  1902
	  by (simp add: fps_compose_nth fps_inv_def)}
chaieb@29687
  1903
      moreover
chaieb@29687
  1904
      {fix n1 assume n1: "n = Suc n1"
chaieb@29687
  1905
	have "?i $ n = setsum (\<lambda>i. (fps_inv a $ i) * (a^i)$n) {0 .. n1} + fps_inv a $ Suc n1 * (a $ 1)^ Suc n1"
huffman@30273
  1906
	  by (simp add: fps_compose_nth n1 startsby_zero_power_nth_same[OF a0]
huffman@30273
  1907
                   del: power_Suc)
chaieb@29687
  1908
	also have "\<dots> = setsum (\<lambda>i. (fps_inv a $ i) * (a^i)$n) {0 .. n1} + (X$ Suc n1 - setsum (\<lambda>i. (fps_inv a $ i) * (a^i)$n) {0 .. n1})"
huffman@29911
  1909
	  using a0 a1 n1 by (simp add: fps_inv_def)
huffman@30488
  1910
	also have "\<dots> = X$n" using n1 by simp
chaieb@29687
  1911
	finally have "?i $ n = X$n" .}
chaieb@29687
  1912
      ultimately show "?i $ n = X$n" by (cases n, auto)
chaieb@29687
  1913
    qed}
chaieb@29687
  1914
  then show ?thesis by (simp add: fps_eq_iff)
chaieb@29687
  1915
qed
chaieb@29687
  1916
chaieb@29687
  1917
haftmann@31021
  1918
fun gcompinv :: "'a fps \<Rightarrow> 'a fps \<Rightarrow> nat \<Rightarrow> 'a::{field}" where
chaieb@29687
  1919
  "gcompinv b a 0 = b$0"
chaieb@29687
  1920
| "gcompinv b a (Suc n) = (b$ Suc n - setsum (\<lambda>i. (gcompinv b a i) * (a^i)$Suc n) {0 .. n}) / (a$1) ^ Suc n"
chaieb@29687
  1921
chaieb@29687
  1922
definition "fps_ginv b a = Abs_fps (gcompinv b a)"
chaieb@29687
  1923
chaieb@29687
  1924
lemma fps_ginv: assumes a0: "a$0 = 0" and a1: "a$1 \<noteq> 0"
chaieb@29687
  1925
  shows "fps_ginv b a oo a = b"
chaieb@29687
  1926
proof-
chaieb@29687
  1927
  let ?i = "fps_ginv b a oo a"
chaieb@29687
  1928
  {fix n
huffman@30488
  1929
    have "?i $n = b$n"
chaieb@29687
  1930
    proof(induct n rule: nat_less_induct)
chaieb@29687
  1931
      fix n assume h: "\<forall>m<n. ?i$m = b$m"
huffman@30488
  1932
      {assume "n=0" hence "?i $n = b$n" using a0
chaieb@29687
  1933
	  by (simp add: fps_compose_nth fps_ginv_def)}
chaieb@29687
  1934
      moreover
chaieb@29687
  1935
      {fix n1 assume n1: "n = Suc n1"
chaieb@29687
  1936
	have "?i $ n = setsum (\<lambda>i. (fps_ginv b a $ i) * (a^i)$n) {0 .. n1} + fps_ginv b a $ Suc n1 * (a $ 1)^ Suc n1"
huffman@30273
  1937
	  by (simp add: fps_compose_nth n1 startsby_zero_power_nth_same[OF a0]
huffman@30273
  1938
                   del: power_Suc)
chaieb@29687
  1939
	also have "\<dots> = setsum (\<lambda>i. (fps_ginv b a $ i) * (a^i)$n) {0 .. n1} + (b$ Suc n1 - setsum (\<lambda>i. (fps_ginv b a $ i) * (a^i)$n) {0 .. n1})"
huffman@29911
  1940
	  using a0 a1 n1 by (simp add: fps_ginv_def)
huffman@30488
  1941
	also have "\<dots> = b$n" using n1 by simp
chaieb@29687
  1942
	finally have "?i $ n = b$n" .}
chaieb@29687
  1943
      ultimately show "?i $ n = b$n" by (cases n, auto)
chaieb@29687
  1944
    qed}
chaieb@29687
  1945
  then show ?thesis by (simp add: fps_eq_iff)
chaieb@29687
  1946
qed
chaieb@29687
  1947
chaieb@29687
  1948
lemma fps_inv_ginv: "fps_inv = fps_ginv X"
chaieb@29687
  1949
  apply (auto simp add: expand_fun_eq fps_eq_iff fps_inv_def fps_ginv_def)
chaieb@29687
  1950
  apply (induct_tac n rule: nat_less_induct, auto)
chaieb@29687
  1951
  apply (case_tac na)
chaieb@29687
  1952
  apply simp
chaieb@29687
  1953
  apply simp
chaieb@29687
  1954
  done
chaieb@29687
  1955
chaieb@29687
  1956
lemma fps_compose_1[simp]: "1 oo a = 1"
haftmann@30960
  1957
  by (simp add: fps_eq_iff fps_compose_nth mult_delta_left setsum_delta)
chaieb@29687
  1958
chaieb@29687
  1959
lemma fps_compose_0[simp]: "0 oo a = 0"
huffman@29913
  1960
  by (simp add: fps_eq_iff fps_compose_nth)
chaieb@29687
  1961
chaieb@29687
  1962
lemma fps_compose_0_right[simp]: "a oo 0 = fps_const (a$0)"
haftmann@30960
  1963
  by (auto simp add: fps_eq_iff fps_compose_nth power_0_left setsum_0')
chaieb@29687
  1964
chaieb@29687
  1965
lemma fps_compose_add_distrib: "(a + b) oo c = (a oo c) + (b oo c)"
haftmann@30960
  1966
  by (simp add: fps_eq_iff fps_compose_nth ring_simps setsum_addf)
chaieb@29687
  1967
chaieb@29687
  1968
lemma fps_compose_setsum_distrib: "(setsum f S) oo a = setsum (\<lambda>i. f i oo a) S"
chaieb@29687
  1969
proof-
chaieb@29687
  1970
  {assume "\<not> finite S" hence ?thesis by simp}
chaieb@29687
  1971
  moreover
chaieb@29687
  1972
  {assume fS: "finite S"
chaieb@29687
  1973
    have ?thesis
chaieb@29687
  1974
    proof(rule finite_induct[OF fS])
chaieb@29687
  1975
      show "setsum f {} oo a = (\<Sum>i\<in>{}. f i oo a)" by simp
chaieb@29687
  1976
    next
chaieb@29687
  1977
      fix x F assume fF: "finite F" and xF: "x \<notin> F" and h: "setsum f F oo a = setsum (\<lambda>i. f i oo a) F"
chaieb@29687
  1978
      show "setsum f (insert x F) oo a  = setsum (\<lambda>i. f i oo a) (insert x F)"
chaieb@29687
  1979
	using fF xF h by (simp add: fps_compose_add_distrib)
chaieb@29687
  1980
    qed}
huffman@30488
  1981
  ultimately show ?thesis by blast
chaieb@29687
  1982
qed
chaieb@29687
  1983
huffman@30488
  1984
lemma convolution_eq:
chaieb@29687
  1985
  "setsum (%i. a (i :: nat) * b (n - i)) {0 .. n} = setsum (%(i,j). a i * b j) {(i,j). i <= n \<and> j \<le> n \<and> i + j = n}"
chaieb@29687
  1986
  apply (rule setsum_reindex_cong[where f=fst])
chaieb@29687
  1987
  apply (clarsimp simp add: inj_on_def)
chaieb@29687
  1988
  apply (auto simp add: expand_set_eq image_iff)
chaieb@29687
  1989
  apply (rule_tac x= "x" in exI)
chaieb@29687
  1990
  apply clarsimp
chaieb@29687
  1991
  apply (rule_tac x="n - x" in exI)
chaieb@29687
  1992
  apply arith
chaieb@29687
  1993
  done
chaieb@29687
  1994
chaieb@29687
  1995
lemma product_composition_lemma:
chaieb@29687
  1996
  assumes c0: "c$0 = (0::'a::idom)" and d0: "d$0 = 0"
chaieb@29687
  1997
  shows "((a oo c) * (b oo d))$n = setsum (%(k,m). a$k * b$m * (c^k * d^m) $ n) {(k,m). k + m \<le> n}" (is "?l = ?r")
chaieb@29687
  1998
proof-
chaieb@29687
  1999
  let ?S = "{(k\<Colon>nat, m\<Colon>nat). k + m \<le> n}"
huffman@30488
  2000
  have s: "?S \<subseteq> {0..n} <*> {0..n}" by (auto simp add: subset_eq)
huffman@30488
  2001
  have f: "finite {(k\<Colon>nat, m\<Colon>nat). k + m \<le> n}"
chaieb@29687
  2002
    apply (rule finite_subset[OF s])
chaieb@29687
  2003
    by auto
chaieb@29687
  2004
  have "?r =  setsum (%i. setsum (%(k,m). a$k * (c^k)$i * b$m * (d^m) $ (n - i)) {(k,m). k + m \<le> n}) {0..n}"
chaieb@29687
  2005
    apply (simp add: fps_mult_nth setsum_right_distrib)
chaieb@29687
  2006
    apply (subst setsum_commute)
chaieb@29687
  2007
    apply (rule setsum_cong2)
chaieb@29687
  2008
    by (auto simp add: ring_simps)
huffman@30488
  2009
  also have "\<dots> = ?l"
chaieb@29687
  2010
    apply (simp add: fps_mult_nth fps_compose_nth setsum_product)
chaieb@29687
  2011
    apply (rule setsum_cong2)
chaieb@29687
  2012
    apply (simp add: setsum_cartesian_product mult_assoc)
chaieb@29687
  2013
    apply (rule setsum_mono_zero_right[OF f])
chaieb@29687
  2014
    apply (simp add: subset_eq) apply presburger
chaieb@29687
  2015
    apply clarsimp
chaieb@29687
  2016
    apply (rule ccontr)
chaieb@29687
  2017
    apply (clarsimp simp add: not_le)
chaieb@29687
  2018
    apply (case_tac "x < aa")
chaieb@29687
  2019
    apply simp
chaieb@29687
  2020
    apply (frule_tac startsby_zero_power_prefix[rule_format, OF c0])
chaieb@29687
  2021
    apply blast
chaieb@29687
  2022
    apply simp
chaieb@29687
  2023
    apply (frule_tac startsby_zero_power_prefix[rule_format, OF d0])
chaieb@29687
  2024
    apply blast
chaieb@29687
  2025
    done
chaieb@29687
  2026
  finally show ?thesis by simp
chaieb@29687
  2027
qed
chaieb@29687
  2028
chaieb@29687
  2029
lemma product_composition_lemma':
chaieb@29687
  2030
  assumes c0: "c$0 = (0::'a::idom)" and d0: "d$0 = 0"
chaieb@29687
  2031
  shows "((a oo c) * (b oo d))$n = setsum (%k. setsum (%m. a$k * b$m * (c^k * d^m) $ n) {0..n}) {0..n}" (is "?l = ?r")
chaieb@29687
  2032
  unfolding product_composition_lemma[OF c0 d0]
chaieb@29687
  2033
  unfolding setsum_cartesian_product
chaieb@29687
  2034
  apply (rule setsum_mono_zero_left)
chaieb@29687
  2035
  apply simp
chaieb@29687
  2036
  apply (clarsimp simp add: subset_eq)
chaieb@29687
  2037
  apply clarsimp
chaieb@29687
  2038
  apply (rule ccontr)
chaieb@29687
  2039
  apply (subgoal_tac "(c^aa * d^ba) $ n = 0")
chaieb@29687
  2040
  apply simp
chaieb@29687
  2041
  unfolding fps_mult_nth
chaieb@29687
  2042
  apply (rule setsum_0')
chaieb@29687
  2043
  apply (clarsimp simp add: not_le)
chaieb@29687
  2044
  apply (case_tac "aaa < aa")
chaieb@29687
  2045
  apply (rule startsby_zero_power_prefix[OF c0, rule_format])
chaieb@29687
  2046
  apply simp
chaieb@29687
  2047
  apply (subgoal_tac "n - aaa < ba")
chaieb@29687
  2048
  apply (frule_tac k = "ba" in startsby_zero_power_prefix[OF d0, rule_format])
chaieb@29687
  2049
  apply simp
chaieb@29687
  2050
  apply arith
chaieb@29687
  2051
  done
huffman@30488
  2052
chaieb@29687
  2053
huffman@30488
  2054
lemma setsum_pair_less_iff:
chaieb@29687
  2055
  "setsum (%((k::nat),m). a k * b m * c (k + m)) {(k,m). k + m \<le> n} = setsum (%s. setsum (%i. a i * b (s - i) * c s) {0..s}) {0..n}" (is "?l = ?r")
chaieb@29687
  2056
proof-
chaieb@29687
  2057
  let ?KM=  "{(k,m). k + m \<le> n}"
chaieb@29687
  2058
  let ?f = "%s. UNION {(0::nat)..s} (%i. {(i,s - i)})"
chaieb@29687
  2059
  have th0: "?KM = UNION {0..n} ?f"
chaieb@29687
  2060
    apply (simp add: expand_set_eq)
huffman@29911
  2061
    apply arith (* FIXME: VERY slow! *)
chaieb@29687
  2062
    done
chaieb@29687
  2063
  show "?l = ?r "
chaieb@29687
  2064
    unfolding th0
chaieb@29687
  2065
    apply (subst setsum_UN_disjoint)
chaieb@29687
  2066
    apply auto
chaieb@29687
  2067
    apply (subst setsum_UN_disjoint)
chaieb@29687
  2068
    apply auto
chaieb@29687
  2069
    done
chaieb@29687
  2070
qed
chaieb@29687
  2071
chaieb@29687
  2072
lemma fps_compose_mult_distrib_lemma:
chaieb@29687
  2073
  assumes c0: "c$0 = (0::'a::idom)"
chaieb@29687
  2074
  shows "((a oo c) * (b oo c))$n = setsum (%s. setsum (%i. a$i * b$(s - i) * (c^s) $ n) {0..s}) {0..n}" (is "?l = ?r")
chaieb@29687
  2075
  unfolding product_composition_lemma[OF c0 c0] power_add[symmetric]
chaieb@29687
  2076
  unfolding setsum_pair_less_iff[where a = "%k. a$k" and b="%m. b$m" and c="%s. (c ^ s)$n" and n = n] ..
chaieb@29687
  2077
chaieb@29687
  2078
huffman@30488
  2079
lemma fps_compose_mult_distrib:
chaieb@29687
  2080
  assumes c0: "c$0 = (0::'a::idom)"
chaieb@29687
  2081
  shows "(a * b) oo c = (a oo c) * (b oo c)" (is "?l = ?r")
chaieb@29687
  2082
  apply (simp add: fps_eq_iff fps_compose_mult_distrib_lemma[OF c0])
chaieb@29687
  2083
  by (simp add: fps_compose_nth fps_mult_nth setsum_left_distrib)
huffman@30488
  2084
lemma fps_compose_setprod_distrib:
chaieb@29687
  2085
  assumes c0: "c$0 = (0::'a::idom)"
chaieb@29687
  2086
  shows "(setprod a S) oo c = setprod (%k. a k oo c) S" (is "?l = ?r")
chaieb@29687
  2087
  apply (cases "finite S")
chaieb@29687
  2088
  apply simp_all
chaieb@29687
  2089
  apply (induct S rule: finite_induct)
chaieb@29687
  2090
  apply simp
chaieb@29687
  2091
  apply (simp add: fps_compose_mult_distrib[OF c0])
chaieb@29687
  2092
  done
chaieb@29687
  2093
chaieb@29687
  2094
lemma fps_compose_power:   assumes c0: "c$0 = (0::'a::idom)"
chaieb@29687
  2095
  shows "(a oo c)^n = a^n oo c" (is "?l = ?r")
chaieb@29687
  2096
proof-
chaieb@29687
  2097
  {assume "n=0" then have ?thesis by simp}
chaieb@29687
  2098
  moreover
chaieb@29687
  2099
  {fix m assume m: "n = Suc m"
chaieb@29687
  2100
    have th0: "a^n = setprod (%k. a) {0..m}" "(a oo c) ^ n = setprod (%k. a oo c) {0..m}"
chaieb@29687
  2101
      by (simp_all add: setprod_constant m)
chaieb@29687
  2102
    then have ?thesis
chaieb@29687
  2103
      by (simp add: fps_compose_setprod_distrib[OF c0])}
chaieb@29687
  2104
  ultimately show ?thesis by (cases n, auto)
chaieb@29687
  2105
qed
chaieb@29687
  2106
chaieb@29687
  2107
lemma fps_const_mult_apply_left:
chaieb@29687
  2108
  "fps_const c * (a oo b) = (fps_const c * a) oo b"
chaieb@29687
  2109
  by (simp add: fps_eq_iff fps_compose_nth setsum_right_distrib mult_assoc)
chaieb@29687
  2110
chaieb@29687
  2111
lemma fps_const_mult_apply_right:
chaieb@29687
  2112
  "(a oo b) * fps_const (c::'a::comm_semiring_1) = (fps_const c * a) oo b"
chaieb@29687
  2113
  by (auto simp add: fps_const_mult_apply_left mult_commute)
chaieb@29687
  2114
huffman@30488
  2115
lemma fps_compose_assoc:
chaieb@29687
  2116
  assumes c0: "c$0 = (0::'a::idom)" and b0: "b$0 = 0"
chaieb@29687
  2117
  shows "a oo (b oo c) = a oo b oo c" (is "?l = ?r")
chaieb@29687
  2118
proof-
chaieb@29687
  2119
  {fix n
chaieb@29687
  2120
    have "?l$n = (setsum (\<lambda>i. (fps_const (a$i) * b^i) oo c) {0..n})$n"
chaieb@29687
  2121
      by (simp add: fps_compose_nth fps_compose_power[OF c0] fps_const_mult_apply_left setsum_right_distrib mult_assoc fps_setsum_nth)
chaieb@29687
  2122
    also have "\<dots> = ((setsum (\<lambda>i. fps_const (a$i) * b^i) {0..n}) oo c)$n"
chaieb@29687
  2123
      by (simp add: fps_compose_setsum_distrib)
chaieb@29687
  2124
    also have "\<dots> = ?r$n"
chaieb@29687
  2125
      apply (simp add: fps_compose_nth fps_setsum_nth setsum_left_distrib mult_assoc)
chaieb@29687
  2126
      apply (rule setsum_cong2)
chaieb@29687
  2127
      apply (rule setsum_mono_zero_right)
chaieb@29687
  2128
      apply (auto simp add: not_le)
chaieb@29687
  2129
      by (erule startsby_zero_power_prefix[OF b0, rule_format])
chaieb@29687
  2130
    finally have "?l$n = ?r$n" .}
chaieb@29687
  2131
  then show ?thesis by (simp add: fps_eq_iff)
chaieb@29687
  2132
qed
chaieb@29687
  2133
chaieb@29687
  2134
chaieb@29687
  2135
lemma fps_X_power_compose:
chaieb@29687
  2136
  assumes a0: "a$0=0" shows "X^k oo a = (a::('a::idom fps))^k" (is "?l = ?r")
chaieb@29687
  2137
proof-
chaieb@29687
  2138
  {assume "k=0" hence ?thesis by simp}
chaieb@29687
  2139
  moreover
chaieb@29687
  2140
  {fix h assume h: "k = Suc h"
chaieb@29687
  2141
    {fix n
huffman@30488
  2142
      {assume kn: "k>n" hence "?l $ n = ?r $n" using a0 startsby_zero_power_prefix[OF a0] h
huffman@30273
  2143
	  by (simp add: fps_compose_nth del: power_Suc)}
chaieb@29687
  2144
      moreover
chaieb@29687
  2145
      {assume kn: "k \<le> n"
huffman@29913
  2146
	hence "?l$n = ?r$n"
huffman@29913
  2147
          by (simp add: fps_compose_nth mult_delta_left setsum_delta)}
chaieb@29687
  2148
      moreover have "k >n \<or> k\<le> n"  by arith
chaieb@29687
  2149
      ultimately have "?l$n = ?r$n"  by blast}
chaieb@29687
  2150
    then have ?thesis unfolding fps_eq_iff by blast}
chaieb@29687
  2151
  ultimately show ?thesis by (cases k, auto)
chaieb@29687
  2152
qed
chaieb@29687
  2153
chaieb@29687
  2154
lemma fps_inv_right: assumes a0: "a$0 = 0" and a1: "a$1 \<noteq> 0"
chaieb@29687
  2155
  shows "a oo fps_inv a = X"
chaieb@29687
  2156
proof-
chaieb@29687
  2157
  let ?ia = "fps_inv a"
chaieb@29687
  2158
  let ?iaa = "a oo fps_inv a"
chaieb@29687
  2159
  have th0: "?ia $ 0 = 0" by (simp add: fps_inv_def)
huffman@30488
  2160
  have th1: "?iaa $ 0 = 0" using a0 a1
chaieb@29687
  2161
    by (simp add: fps_inv_def fps_compose_nth)
chaieb@29687
  2162
  have th2: "X$0 = 0" by simp
chaieb@29687
  2163
  from fps_inv[OF a0 a1] have "a oo (fps_inv a oo a) = a oo X" by simp
chaieb@29687
  2164
  then have "(a oo fps_inv a) oo a = X oo a"
chaieb@29687
  2165
    by (simp add: fps_compose_assoc[OF a0 th0] X_fps_compose_startby0[OF a0])
chaieb@29687
  2166
  with fps_compose_inj_right[OF a0 a1]
huffman@30488
  2167
  show ?thesis by simp
chaieb@29687
  2168
qed
chaieb@29687
  2169
chaieb@29687
  2170
lemma fps_inv_deriv:
haftmann@31021
  2171
  assumes a0:"a$0 = (0::'a::{field})" and a1: "a$1 \<noteq> 0"
chaieb@29687
  2172
  shows "fps_deriv (fps_inv a) = inverse (fps_deriv a oo fps_inv a)"
chaieb@29687
  2173
proof-
chaieb@29687
  2174
  let ?ia = "fps_inv a"
chaieb@29687
  2175
  let ?d = "fps_deriv a oo ?ia"
chaieb@29687
  2176
  let ?dia = "fps_deriv ?ia"
chaieb@29687
  2177
  have ia0: "?ia$0 = 0" by (simp add: fps_inv_def)
chaieb@29687
  2178
  have th0: "?d$0 \<noteq> 0" using a1 by (simp add: fps_compose_nth fps_deriv_nth)
chaieb@29687
  2179
  from fps_inv_right[OF a0 a1] have "?d * ?dia = 1"
chaieb@29687
  2180
    by (simp add: fps_compose_deriv[OF ia0, of a, symmetric] )
chaieb@29687
  2181
  hence "inverse ?d * ?d * ?dia = inverse ?d * 1" by simp
chaieb@29687
  2182
  with inverse_mult_eq_1[OF th0]
chaieb@29687
  2183
  show "?dia = inverse ?d" by simp
chaieb@29687
  2184
qed
chaieb@29687
  2185
huffman@29906
  2186
subsection{* Elementary series *}
chaieb@29687
  2187
huffman@29906
  2188
subsubsection{* Exponential series *}
huffman@30488
  2189
definition "E x = Abs_fps (\<lambda>n. x^n / of_nat (fact n))"
chaieb@29687
  2190
haftmann@31021
  2191
lemma E_deriv[simp]: "fps_deriv (E a) = fps_const (a::'a::{field, ring_char_0}) * E a" (is "?l = ?r")
chaieb@29687
  2192
proof-
chaieb@29687
  2193
  {fix n
chaieb@29687
  2194
    have "?l$n = ?r $ n"
huffman@30273
  2195
  apply (auto simp add: E_def field_simps power_Suc[symmetric]simp del: fact_Suc of_nat_Suc power_Suc)
chaieb@29687
  2196
  by (simp add: of_nat_mult ring_simps)}
chaieb@29687
  2197
then show ?thesis by (simp add: fps_eq_iff)
chaieb@29687
  2198
qed
chaieb@29687
  2199
huffman@30488
  2200
lemma E_unique_ODE:
haftmann@31021
  2201
  "fps_deriv a = fps_const c * a \<longleftrightarrow> a = fps_const (a$0) * E (c :: 'a::{field, ring_char_0})"
chaieb@29687
  2202
  (is "?lhs \<longleftrightarrow> ?rhs")
chaieb@29687
  2203
proof-
chaieb@29687
  2204
  {assume d: ?lhs
huffman@30488
  2205
  from d have th: "\<And>n. a $ Suc n = c * a$n / of_nat (Suc n)"
chaieb@29687
  2206
    by (simp add: fps_deriv_def fps_eq_iff field_simps del: of_nat_Suc)
chaieb@29687
  2207
  {fix n have "a$n = a$0 * c ^ n/ (of_nat (fact n))"
chaieb@29687
  2208
      apply (induct n)
chaieb@29687
  2209
      apply simp
huffman@30488
  2210
      unfolding th
chaieb@29687
  2211
      using fact_gt_zero
chaieb@29687
  2212
      apply (simp add: field_simps del: of_nat_Suc fact.simps)
chaieb@29687
  2213
      apply (drule sym)
chaieb@29687
  2214
      by (simp add: ring_simps of_nat_mult power_Suc)}
chaieb@29687
  2215
  note th' = this
huffman@30488
  2216
  have ?rhs
chaieb@29687
  2217
    by (auto simp add: fps_eq_iff fps_const_mult_left E_def intro : th')}
chaieb@29687
  2218
moreover
chaieb@29687
  2219
{assume h: ?rhs
huffman@30488
  2220
  have ?lhs
chaieb@29687
  2221
    apply (subst h)
chaieb@29687
  2222
    apply simp
chaieb@29687
  2223
    apply (simp only: h[symmetric])
chaieb@29687
  2224
  by simp}
chaieb@29687
  2225
ultimately show ?thesis by blast
chaieb@29687
  2226
qed
chaieb@29687
  2227
haftmann@31021
  2228
lemma E_add_mult: "E (a + b) = E (a::'a::{ring_char_0, field}) * E b" (is "?l = ?r")
chaieb@29687
  2229
proof-
chaieb@29687
  2230
  have "fps_deriv (?r) = fps_const (a+b) * ?r"
chaieb@29687
  2231
    by (simp add: fps_const_add[symmetric] ring_simps del: fps_const_add)
chaieb@29687
  2232
  then have "?r = ?l" apply (simp only: E_unique_ODE)
chaieb@29687
  2233
    by (simp add: fps_mult_nth E_def)
chaieb@29687
  2234
  then show ?thesis ..
chaieb@29687
  2235
qed
chaieb@29687
  2236
chaieb@29687
  2237
lemma E_nth[simp]: "E a $ n = a^n / of_nat (fact n)"
chaieb@29687
  2238
  by (simp add: E_def)
chaieb@29687
  2239
haftmann@31021
  2240
lemma E0[simp]: "E (0::'a::{field}) = 1"
chaieb@29687
  2241
  by (simp add: fps_eq_iff power_0_left)
chaieb@29687
  2242
haftmann@31021
  2243
lemma E_neg: "E (- a) = inverse (E (a::'a::{ring_char_0, field}))"
chaieb@29687
  2244
proof-
chaieb@29687
  2245
  from E_add_mult[of a "- a"] have th0: "E a * E (- a) = 1"
chaieb@29687
  2246
    by (simp )
chaieb@29687
  2247
  have th1: "E a $ 0 \<noteq> 0" by simp
chaieb@29687
  2248
  from fps_inverse_unique[OF th1 th0] show ?thesis by simp
chaieb@29687
  2249
qed
chaieb@29687
  2250
haftmann@31021
  2251
lemma E_nth_deriv[simp]: "fps_nth_deriv n (E (a::'a::{field, ring_char_0})) = (fps_const a)^n * (E a)"
chaieb@29687
  2252
  by (induct n, auto simp add: power_Suc)
chaieb@29687
  2253
chaieb@29687
  2254
lemma fps_compose_uminus: "- (a::'a::ring_1 fps) oo c = - (a oo c)"
chaieb@29687
  2255
  by (simp add: fps_eq_iff fps_compose_nth ring_simps setsum_negf[symmetric])
chaieb@29687
  2256
huffman@30488
  2257
lemma fps_compose_sub_distrib:
chaieb@29687
  2258
  shows "(a - b) oo (c::'a::ring_1 fps) = (a oo c) - (b oo c)"
chaieb@29687
  2259
  unfolding diff_minus fps_compose_uminus fps_compose_add_distrib ..
chaieb@29687
  2260
chaieb@29687
  2261
lemma X_fps_compose:"X oo a = Abs_fps (\<lambda>n. if n = 0 then (0::'a::comm_ring_1) else a$n)"
huffman@29913
  2262
  by (simp add: fps_eq_iff fps_compose_nth mult_delta_left setsum_delta power_Suc)
chaieb@29687
  2263
haftmann@31021
  2264
lemma X_compose_E[simp]: "X oo E (a::'a::{field}) = E a - 1"
chaieb@29687
  2265
  by (simp add: fps_eq_iff X_fps_compose)
chaieb@29687
  2266
huffman@30488
  2267
lemma LE_compose:
huffman@30488
  2268
  assumes a: "a\<noteq>0"
chaieb@29687
  2269
  shows "fps_inv (E a - 1) oo (E a - 1) = X"
chaieb@29687
  2270
  and "(E a - 1) oo fps_inv (E a - 1) = X"
chaieb@29687
  2271
proof-
chaieb@29687
  2272
  let ?b = "E a - 1"
chaieb@29687
  2273
  have b0: "?b $ 0 = 0" by simp
chaieb@29687
  2274
  have b1: "?b $ 1 \<noteq> 0" by (simp add: a)
chaieb@29687
  2275
  from fps_inv[OF b0 b1] show "fps_inv (E a - 1) oo (E a - 1) = X" .
chaieb@29687
  2276
  from fps_inv_right[OF b0 b1] show "(E a - 1) oo fps_inv (E a - 1) = X" .
chaieb@29687
  2277
qed
chaieb@29687
  2278
chaieb@29687
  2279
huffman@30488
  2280
lemma fps_const_inverse:
chaieb@29687
  2281
  "inverse (fps_const (a::'a::{field, division_by_zero})) = fps_const (inverse a)"
chaieb@29687
  2282
  apply (auto simp add: fps_eq_iff fps_inverse_def) by (case_tac "n", auto)
chaieb@29687
  2283
chaieb@29687
  2284
huffman@30488
  2285
lemma inverse_one_plus_X:
haftmann@31021
  2286
  "inverse (1 + X) = Abs_fps (\<lambda>n. (- 1 ::'a::{field})^n)"
chaieb@29687
  2287
  (is "inverse ?l = ?r")
chaieb@29687
  2288
proof-
chaieb@29687
  2289
  have th: "?l * ?r = 1"
chaieb@29687
  2290
    apply (auto simp add: ring_simps fps_eq_iff X_mult_nth  minus_one_power_iff)
chaieb@29687
  2291
    apply presburger+
chaieb@29687
  2292
    done
chaieb@29687
  2293
  have th': "?l $ 0 \<noteq> 0" by (simp add: )
chaieb@29687
  2294
  from fps_inverse_unique[OF th' th] show ?thesis .
chaieb@29687
  2295
qed
chaieb@29687
  2296
haftmann@31021
  2297
lemma E_power_mult: "(E (c::'a::{field,ring_char_0}))^n = E (of_nat n * c)"
chaieb@29687
  2298
  by (induct n, auto simp add: ring_simps E_add_mult power_Suc)
chaieb@29687
  2299
huffman@30488
  2300
subsubsection{* Logarithmic series *}
haftmann@31021
  2301
definition "(L::'a::{field, ring_char_0} fps)
chaieb@29687
  2302
  = Abs_fps (\<lambda>n. (- 1) ^ Suc n / of_nat n)"
chaieb@29687
  2303
chaieb@29687
  2304
lemma fps_deriv_L: "fps_deriv L = inverse (1 + X)"
chaieb@29687
  2305
  unfolding inverse_one_plus_X
chaieb@29687
  2306
  by (simp add: L_def fps_eq_iff power_Suc del: of_nat_Suc)
chaieb@29687
  2307
chaieb@29687
  2308
lemma L_nth: "L $ n = (- 1) ^ Suc n / of_nat n"
chaieb@29687
  2309
  by (simp add: L_def)
chaieb@29687
  2310
chaieb@29687
  2311
lemma L_E_inv:
haftmann@31021
  2312
  assumes a: "a\<noteq> (0::'a::{field,division_by_zero,ring_char_0})"
chaieb@29687
  2313
  shows "L = fps_const a * fps_inv (E a - 1)" (is "?l = ?r")
chaieb@29687
  2314
proof-
chaieb@29687
  2315
  let ?b = "E a - 1"
chaieb@29687
  2316
  have b0: "?b $ 0 = 0" by simp
chaieb@29687
  2317
  have b1: "?b $ 1 \<noteq> 0" by (simp add: a)
chaieb@29687
  2318
  have "fps_deriv (E a - 1) oo fps_inv (E a - 1) = (fps_const a * (E a - 1) + fps_const a) oo fps_inv (E a - 1)"
chaieb@29687
  2319
    by (simp add: ring_simps)
chaieb@29687
  2320
  also have "\<dots> = fps_const a * (X + 1)" apply (simp add: fps_compose_add_distrib fps_const_mult_apply_left[symmetric] fps_inv_right[OF b0 b1])
chaieb@29687
  2321
    by (simp add: ring_simps)
chaieb@29687
  2322
  finally have eq: "fps_deriv (E a - 1) oo fps_inv (E a - 1) = fps_const a * (X + 1)" .
chaieb@29687
  2323
  from fps_inv_deriv[OF b0 b1, unfolded eq]
chaieb@29687
  2324
  have "fps_deriv (fps_inv ?b) = fps_const (inverse a) / (X + 1)"
chaieb@29687
  2325
    by (simp add: fps_const_inverse eq fps_divide_def fps_inverse_mult)
chaieb@29687
  2326
  hence "fps_deriv (fps_const a * fps_inv ?b) = inverse (X + 1)"
chaieb@29687
  2327
    using a by (simp add: fps_divide_def field_simps)
huffman@30488
  2328
  hence "fps_deriv ?l = fps_deriv ?r"
chaieb@29687
  2329
    by (simp add: fps_deriv_L add_commute)
chaieb@29687
  2330
  then show ?thesis unfolding fps_deriv_eq_iff
chaieb@29687
  2331
    by (simp add: L_nth fps_inv_def)
chaieb@29687
  2332
qed
chaieb@29687
  2333
huffman@29906
  2334
subsubsection{* Formal trigonometric functions  *}
chaieb@29687
  2335
haftmann@31021
  2336
definition "fps_sin (c::'a::{field, ring_char_0}) =
chaieb@29687
  2337
  Abs_fps (\<lambda>n. if even n then 0 else (- 1) ^((n - 1) div 2) * c^n /(of_nat (fact n)))"
chaieb@29687
  2338
haftmann@31021
  2339
definition "fps_cos (c::'a::{field, ring_char_0}) = Abs_fps (\<lambda>n. if even n then (- 1) ^ (n div 2) * c^n / (of_nat (fact n)) else 0)"
chaieb@29687
  2340
huffman@30488
  2341
lemma fps_sin_deriv:
chaieb@29687
  2342
  "fps_deriv (fps_sin c) = fps_const c * fps_cos c"
chaieb@29687
  2343
  (is "?lhs = ?rhs")
chaieb@29687
  2344
proof-
chaieb@29687
  2345
  {fix n::nat
chaieb@29687
  2346
    {assume en: "even n"
chaieb@29687
  2347
      have "?lhs$n = of_nat (n+1) * (fps_sin c $ (n+1))" by simp
huffman@30488
  2348
      also have "\<dots> = of_nat (n+1) * ((- 1)^(n div 2) * c^Suc n / of_nat (fact (Suc n)))"
chaieb@29687
  2349
	using en by (simp add: fps_sin_def)
chaieb@29687
  2350
      also have "\<dots> = (- 1)^(n div 2) * c^Suc n * (of_nat (n+1) / (of_nat (Suc n) * of_nat (fact n)))"
chaieb@29687
  2351
	unfolding fact_Suc of_nat_mult
chaieb@29687
  2352
	by (simp add: field_simps del: of_nat_add of_nat_Suc)
chaieb@29687
  2353
      also have "\<dots> = (- 1)^(n div 2) *c^Suc n / of_nat (fact n)"
chaieb@29687
  2354
	by (simp add: field_simps del: of_nat_add of_nat_Suc)
huffman@30488
  2355
      finally have "?lhs $n = ?rhs$n" using en
chaieb@29687
  2356
	by (simp add: fps_cos_def ring_simps power_Suc )}
huffman@30488
  2357
    then have "?lhs $ n = ?rhs $ n"
chaieb@29687
  2358
      by (cases "even n", simp_all add: fps_deriv_def fps_sin_def fps_cos_def) }
chaieb@29687
  2359
  then show ?thesis by (auto simp add: fps_eq_iff)
chaieb@29687
  2360
qed
chaieb@29687
  2361
huffman@30488
  2362
lemma fps_cos_deriv:
chaieb@29687
  2363
  "fps_deriv (fps_cos c) = fps_const (- c)* (fps_sin c)"
chaieb@29687
  2364
  (is "?lhs = ?rhs")
chaieb@29687
  2365
proof-
chaieb@29687
  2366
  have th0: "\<And>n. - ((- 1::'a) ^ n) = (- 1)^Suc n" by (simp add: power_Suc)
huffman@29911
  2367
  have th1: "\<And>n. odd n\<Longrightarrow> Suc ((n - 1) div 2) = Suc n div 2" by presburger (* FIXME: VERY slow! *)
chaieb@29687
  2368
  {fix n::nat
chaieb@29687
  2369
    {assume en: "odd n"
chaieb@29687
  2370
      from en have n0: "n \<noteq>0 " by presburger
chaieb@29687
  2371
      have "?lhs$n = of_nat (n+1) * (fps_cos c $ (n+1))" by simp
huffman@30488
  2372
      also have "\<dots> = of_nat (n+1) * ((- 1)^((n + 1) div 2) * c^Suc n / of_nat (fact (Suc n)))"
chaieb@29687
  2373
	using en by (simp add: fps_cos_def)
chaieb@29687
  2374
      also have "\<dots> = (- 1)^((n + 1) div 2)*c^Suc n * (of_nat (n+1) / (of_nat (Suc n) * of_nat (fact n)))"
chaieb@29687
  2375
	unfolding fact_Suc of_nat_mult
chaieb@29687
  2376
	by (simp add: field_simps del: of_nat_add of_nat_Suc)
chaieb@29687
  2377
      also have "\<dots> = (- 1)^((n + 1) div 2) * c^Suc n / of_nat (fact n)"
chaieb@29687
  2378
	by (simp add: field_simps del: of_nat_add of_nat_Suc)
chaieb@29687
  2379
      also have "\<dots> = (- ((- 1)^((n - 1) div 2))) * c^Suc n / of_nat (fact n)"
chaieb@29687
  2380
	unfolding th0 unfolding th1[OF en] by simp
huffman@30488
  2381
      finally have "?lhs $n = ?rhs$n" using en
huffman@29911
  2382
	by (simp add: fps_sin_def ring_simps power_Suc)}
huffman@30488
  2383
    then have "?lhs $ n = ?rhs $ n"
huffman@30488
  2384
      by (cases "even n", simp_all add: fps_deriv_def fps_sin_def
huffman@29911
  2385
	fps_cos_def) }
chaieb@29687
  2386
  then show ?thesis by (auto simp add: fps_eq_iff)
chaieb@29687
  2387
qed
chaieb@29687
  2388
chaieb@29687
  2389
lemma fps_sin_cos_sum_of_squares:
chaieb@29687
  2390
  "fps_cos c ^ 2 + fps_sin c ^ 2 = 1" (is "?lhs = 1")
chaieb@29687
  2391
proof-
chaieb@29687
  2392
  have "fps_deriv ?lhs = 0"
chaieb@29687
  2393
    apply (simp add:  fps_deriv_power fps_sin_deriv fps_cos_deriv power_Suc)
haftmann@30960
  2394
    by (simp add: ring_simps fps_const_neg[symmetric] del: fps_const_neg)
chaieb@29687
  2395
  then have "?lhs = fps_const (?lhs $ 0)"
chaieb@29687
  2396
    unfolding fps_deriv_eq_0_iff .
chaieb@29687
  2397
  also have "\<dots> = 1"
haftmann@30960
  2398
    by (auto simp add: fps_eq_iff numeral_2_eq_2 fps_mult_nth fps_cos_def fps_sin_def)
chaieb@29687
  2399
  finally show ?thesis .
chaieb@29687
  2400
qed
chaieb@29687
  2401
chaieb@29687
  2402
definition "fps_tan c = fps_sin c / fps_cos c"
chaieb@29687
  2403
chaieb@29687
  2404
lemma fps_tan_deriv: "fps_deriv(fps_tan c) = fps_const c/ (fps_cos c ^ 2)"
chaieb@29687
  2405
proof-
chaieb@29687
  2406
  have th0: "fps_cos c $ 0 \<noteq> 0" by (simp add: fps_cos_def)
huffman@30488
  2407
  show ?thesis
chaieb@29687
  2408
    using fps_sin_cos_sum_of_squares[of c]
chaieb@29687
  2409
    apply (simp add: fps_tan_def fps_divide_deriv[OF th0] fps_sin_deriv fps_cos_deriv add: fps_const_neg[symmetric] ring_simps power2_eq_square del: fps_const_neg)
chaieb@29687
  2410
    unfolding right_distrib[symmetric]
chaieb@29687
  2411
    by simp
chaieb@29687
  2412
qed
huffman@29911
  2413
huffman@29911
  2414
end