src/HOL/ex/Groebner_Examples.thy
author haftmann
Wed Mar 12 19:38:14 2008 +0100 (2008-03-12)
changeset 26265 4b63b9e9b10d
parent 25255 66ee31849d13
child 26317 01a98fd72eae
permissions -rw-r--r--
separated Random.thy from Quickcheck.thy
wenzelm@23273
     1
(*  Title:      HOL/ex/Groebner_Examples.thy
wenzelm@23273
     2
    ID:         $Id$
wenzelm@23273
     3
    Author:     Amine Chaieb, TU Muenchen
wenzelm@23273
     4
*)
wenzelm@23273
     5
wenzelm@23273
     6
header {* Groebner Basis Examples *}
wenzelm@23273
     7
wenzelm@23273
     8
theory Groebner_Examples
chaieb@25255
     9
imports Groebner_Basis
wenzelm@23273
    10
begin
wenzelm@23273
    11
wenzelm@23273
    12
subsection {* Basic examples *}
wenzelm@23273
    13
wenzelm@23273
    14
lemma "3 ^ 3 == (?X::'a::{number_ring,recpower})"
wenzelm@23273
    15
  by sring_norm
wenzelm@23273
    16
wenzelm@23273
    17
lemma "(x - (-2))^5 == ?X::int"
wenzelm@23273
    18
  by sring_norm
wenzelm@23273
    19
wenzelm@23273
    20
lemma "(x - (-2))^5  * (y - 78) ^ 8 == ?X::int"
wenzelm@23273
    21
  by sring_norm
wenzelm@23273
    22
wenzelm@23273
    23
lemma "((-3) ^ (Suc (Suc (Suc 0)))) == (X::'a::{number_ring,recpower})"
wenzelm@23273
    24
  apply (simp only: power_Suc power_0)
wenzelm@23273
    25
  apply (simp only: comp_arith)
wenzelm@23273
    26
  oops
wenzelm@23273
    27
wenzelm@23273
    28
lemma "((x::int) + y)^3 - 1 = (x - z)^2 - 10 \<Longrightarrow> x = z + 3 \<Longrightarrow> x = - y"
wenzelm@23273
    29
  by algebra
wenzelm@23273
    30
wenzelm@23273
    31
lemma "(4::nat) + 4 = 3 + 5"
wenzelm@23273
    32
  by algebra
wenzelm@23273
    33
wenzelm@23273
    34
lemma "(4::int) + 0 = 4"
wenzelm@23273
    35
  apply algebra?
wenzelm@23273
    36
  by simp
wenzelm@23273
    37
wenzelm@23273
    38
lemma
wenzelm@23273
    39
  assumes "a * x^2 + b * x + c = (0::int)" and "d * x^2 + e * x + f = 0"
wenzelm@23273
    40
  shows "d^2*c^2 - 2*d*c*a*f + a^2*f^2 - e*d*b*c - e*b*a*f + a*e^2*c + f*d*b^2 = 0"
wenzelm@23273
    41
  using assms by algebra
wenzelm@23273
    42
wenzelm@23273
    43
lemma "(x::int)^3  - x^2  - 5*x - 3 = 0 \<longleftrightarrow> (x = 3 \<or> x = -1)"
wenzelm@23273
    44
  by algebra
wenzelm@23273
    45
wenzelm@23273
    46
theorem "x* (x\<twosuperior> - x  - 5) - 3 = (0::int) \<longleftrightarrow> (x = 3 \<or> x = -1)"
wenzelm@23273
    47
  by algebra
wenzelm@23273
    48
wenzelm@23581
    49
lemma
wenzelm@23581
    50
  fixes x::"'a::{idom,recpower,number_ring}"
wenzelm@23581
    51
  shows "x^2*y = x^2 & x*y^2 = y^2 \<longleftrightarrow>  x=1 & y=1 | x=0 & y=0"
wenzelm@23581
    52
  by algebra
wenzelm@23273
    53
wenzelm@23273
    54
subsection {* Lemmas for Lagrange's theorem *}
wenzelm@23273
    55
wenzelm@23273
    56
definition
wenzelm@23273
    57
  sq :: "'a::times => 'a" where
wenzelm@23273
    58
  "sq x == x*x"
wenzelm@23273
    59
wenzelm@23273
    60
lemma
wenzelm@23273
    61
  fixes x1 :: "'a::{idom,recpower,number_ring}"
wenzelm@23273
    62
  shows
wenzelm@23273
    63
  "(sq x1 + sq x2 + sq x3 + sq x4) * (sq y1 + sq y2 + sq y3 + sq y4) =
wenzelm@23273
    64
    sq (x1*y1 - x2*y2 - x3*y3 - x4*y4)  +
wenzelm@23273
    65
    sq (x1*y2 + x2*y1 + x3*y4 - x4*y3)  +
wenzelm@23273
    66
    sq (x1*y3 - x2*y4 + x3*y1 + x4*y2)  +
wenzelm@23273
    67
    sq (x1*y4 + x2*y3 - x3*y2 + x4*y1)"
chaieb@23338
    68
  by (algebra add: sq_def)
wenzelm@23273
    69
wenzelm@23273
    70
lemma
wenzelm@23273
    71
  fixes p1 :: "'a::{idom,recpower,number_ring}"
wenzelm@23273
    72
  shows
wenzelm@23273
    73
  "(sq p1 + sq q1 + sq r1 + sq s1 + sq t1 + sq u1 + sq v1 + sq w1) *
wenzelm@23273
    74
   (sq p2 + sq q2 + sq r2 + sq s2 + sq t2 + sq u2 + sq v2 + sq w2)
wenzelm@23273
    75
    = sq (p1*p2 - q1*q2 - r1*r2 - s1*s2 - t1*t2 - u1*u2 - v1*v2 - w1*w2) +
wenzelm@23273
    76
      sq (p1*q2 + q1*p2 + r1*s2 - s1*r2 + t1*u2 - u1*t2 - v1*w2 + w1*v2) +
wenzelm@23273
    77
      sq (p1*r2 - q1*s2 + r1*p2 + s1*q2 + t1*v2 + u1*w2 - v1*t2 - w1*u2) +
wenzelm@23273
    78
      sq (p1*s2 + q1*r2 - r1*q2 + s1*p2 + t1*w2 - u1*v2 + v1*u2 - w1*t2) +
wenzelm@23273
    79
      sq (p1*t2 - q1*u2 - r1*v2 - s1*w2 + t1*p2 + u1*q2 + v1*r2 + w1*s2) +
wenzelm@23273
    80
      sq (p1*u2 + q1*t2 - r1*w2 + s1*v2 - t1*q2 + u1*p2 - v1*s2 + w1*r2) +
wenzelm@23273
    81
      sq (p1*v2 + q1*w2 + r1*t2 - s1*u2 - t1*r2 + u1*s2 + v1*p2 - w1*q2) +
wenzelm@23273
    82
      sq (p1*w2 - q1*v2 + r1*u2 + s1*t2 - t1*s2 - u1*r2 + v1*q2 + w1*p2)"
chaieb@23338
    83
  by (algebra add: sq_def)
wenzelm@23273
    84
wenzelm@23273
    85
wenzelm@23273
    86
subsection {* Colinearity is invariant by rotation *}
wenzelm@23273
    87
wenzelm@23273
    88
types point = "int \<times> int"
wenzelm@23273
    89
wenzelm@23273
    90
definition collinear ::"point \<Rightarrow> point \<Rightarrow> point \<Rightarrow> bool" where
wenzelm@23273
    91
  "collinear \<equiv> \<lambda>(Ax,Ay) (Bx,By) (Cx,Cy).
wenzelm@23273
    92
    ((Ax - Bx) * (By - Cy) = (Ay - By) * (Bx - Cx))"
wenzelm@23273
    93
wenzelm@23273
    94
lemma collinear_inv_rotation:
wenzelm@23273
    95
  assumes "collinear (Ax, Ay) (Bx, By) (Cx, Cy)" and "c\<twosuperior> + s\<twosuperior> = 1"
wenzelm@23273
    96
  shows "collinear (Ax * c - Ay * s, Ay * c + Ax * s)
wenzelm@23273
    97
    (Bx * c - By * s, By * c + Bx * s) (Cx * c - Cy * s, Cy * c + Cx * s)"
chaieb@23338
    98
  using assms 
chaieb@23338
    99
  by (algebra add: collinear_def split_def fst_conv snd_conv)
wenzelm@23273
   100
chaieb@25255
   101
lemma "EX (d::int). a*y - a*x = n*d \<Longrightarrow> EX u v. a*u + n*v = 1 \<Longrightarrow> EX e. y - x = n*e"
chaieb@25255
   102
  apply algebra
chaieb@25255
   103
  done
chaieb@25255
   104
wenzelm@23273
   105
end